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Can cryptographers be trusted?

48% of the 69 round-1 submissions to the NIST
post-quantum competition in 2017 are broken by
now. Some of the attacks finish in seconds.

25% of the 48 submissions that were not broken
during round 1 are broken by now.
36% of the 28 submissions selected by NIST
in 2019 for round 2 are broken by now.
See https://cr.yp.to/papers.html#qrcsp for
data, references, statistical-significance analysis.
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Are cryptographers prioritizing security?
1991: NIST proposed a signature standard without
mentioning that it had been secretly designed by
NSA. The proposal had many weaknesses, including
a 264 attack that the public didn’t find until 2000.

2013 news report: NSA paid the RSA company $10
million to make NSA’s backdoored Dual EC RNG
the default RNG in RSA’s BSafe software.
2019: Aumasson recommends using ChaCha8
instead of ChaCha20 “for a future where less energy
is wasted on computing superfluous rounds”.
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Performance vs. security

Computer-science courses highlight performance.
Prioritizing performance often reduces security. Bad!

But improving performance while maintaining high
security can enable security deployment. Good!
Beware overconfidence. Example: For ChaCha8,
Aumasson says “we have strong confidence
that the algorithm will never be wounded”.
I say: Use ChaCha20 except when deployment
really needs the speed of ChaCha12 or ChaCha8.
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Attack costs for reduced-round ChaCha
Horizontal axis: date of publication. Vertical axis:
reported attack cost. ChaCha has 256-bit keys.
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Be careful with risk assessment

For Aumasson, “wounded” is much faster than 2256.
ChaCha6 has been “wounded”; ChaCha7 hasn’t.
Each added round makes attacks more challenging.
Maybe ChaCha8 will never be “wounded”.
But it doesn’t have a comfortable security margin.

The 2019 claim of “strong confidence” comes from
• looking at several attack papers over 10 years

that find only small improvements, and
• assuming that 10 years is long enough.
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Why McEliece?



Reason #1 for McEliece: security

Out of all public-key encryption systems,
the McEliece system minimizes security risks.
We’ll see various ways to quantify this.
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Reason #2 for McEliece: performance

The McEliece system has very small ciphertexts:
e.g., 96 bytes for mceliece348864.
We’ll see why NTRU, Kyber, etc. are bigger.
(ECC is smaller, but broken by Shor’s algorithm.)

McEliece enc is simple, small (streaming public
keys), and fast: e.g., on Skylake, 30k cycles for
mceliece348864 vs. 36k for kyber512.
McEliece dec is more complicated but still fast:
e.g., 118k Skylake cycles for mceliece348864.
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“No, McEliece performance is bad!”
mceliece348864 has 261120-byte keys.
Key generation is 31 Mcycles on Skylake.

(A 2025 NIST report, hiding a keygen speedup
published by Tung Chou in 2019, says 114 Mcycles.
The page cited by NIST says that it comes from a
“defunct” benchmarking project and that its
“measurements are not up to date”. The page
already had these warnings in April 2024. Years of
official submissions to NIST had the new numbers.)
Recommended key sizes for long-term security are
1MB, with 197 Mcycles for keygen on Skylake.
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Understanding how applications use keys
Cryptographic applications use different types of
keys, typically combining multiple cryptosystems.
Example: applications using RSA encryption
normally use RSA to encrypt a random session key,
and then use an authenticated cipher such as
ChaCha20-Poly1305 to encrypt the user’s message.

— “Wouldn’t it be simpler to skip the cipher? Just
use RSA to encrypt each block of the message.”
— This would be slower and more likely to have
security problems. RSA is hard to get right; focusing
on random inputs removes some of the issues.
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Multiple types of public keys
The simplest use of public-key encryption:
All clients know the server’s “static encryption key”.

More complicated public-key infrastructure:
All clients know an authority’s “static signature
key”. Authority signs server’s static encryption key.
More complicated protection against server theft:
The server creates an “ephemeral encryption key”
and erases it after 10 minutes or after 100 uses.
(Most extreme case: “one-time encryption key”.)
Also use static keys to protect the ephemeral keys!
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Counting bytes in multiple scenarios
kyber512 mceliece348864

Ciphertext 768 96
Public key 800 261120
Server sends 1000
one-time public
keys, client sends
1000 ciphertexts

1568000 261216000

Server sends a
static public key,
client sends 1000
ciphertexts

768800 357120
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Choosing post-quantum cryptosystems

Most applications aren’t bottlenecks for most users.
So prioritize security! Use McEliece.

Even when an application is a bottleneck for the
user, the bottleneck in that application is usually
not post-quantum cryptography. Use McEliece.
For an application where the cost of post-quantum
cryptography really is an issue, McEliece is generally
the most efficient option for static keys, but
ephemeral keys are forced to use something riskier.
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Example: the Rosenpass VPN

Uses Kyber only for forward secrecy: ephemeral keys
to protect past communication if server is stolen.
Uses McEliece for static keys to identify the server,
to authenticate the server, and to encrypt data.
Ciphertexts are continually sent to those keys;
the keys themselves are almost always cached.
Using Kyber for these keys would add cost (+ risk).
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More examples of McEliece deployment
Adva Network Security’s high-speed optical
networks: “Our real-world use-case . . . Encrypted
layer 1 optical transport solutions (OTNsec) with
10-400 Gbit/s including BSI approval”.
Crypto4A’s hardware security modules: “Crypto4A
currently uses Classic McEliece in all of its HSMs
for three important use cases”.
Mullvad VPN: 2022 announcement of McEliece
experiment on some servers, 2022 announcement
of McEliece experiment on all servers, 2023
announcement of stable support for McEliece.
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Implementations for many environments
Easy-to-use software library libmceliece has already
been integrated into Debian and Ubuntu.
pymceliece is a Python wrapper. node-mceliece-nist
is a Node wrapper. classic-mceliece-rust is a Rust
translation. Botan includes a C++ translation.
Bouncy Castle includes Java and C# translations.
libgcrypt includes mceliece6688128. McTiny
supports tiny network servers. mceliece-arm-m4
supports ARM Cortex-M4 microcontrollers.
McOutsourcing supports very-low-memory key
generation. pqc-classic-mceliece supports FPGAs.
See https://mceliece.org for more resources.
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How standards are selected



NIST asks for McEliece use cases

NIST, 2022: “NIST would like feedback on specific
use cases for which Classic McEliece would be a
good solution.”
Immediate responses and subsequent responses:

• examples where McEliece is already being used;
• more examples where McEliece would be good;
• reasons for the interest in McEliece.

Daniel J. Bernstein, The McEliece cryptosystem, https://mceliece.org 19

https://mceliece.org


An example of the responses

Official comment from telecom company Ericsson,
2024: “We strongly think NIST should standardize
Classic McEliece, which has properties that makes it
the best choice in many different applications. We
are planning to use Classic McEliece. . . . The small
ciphertexts and good performance makes Classic
McEliece the best choice for many applications of
static encapsulation keys of which there are many
(WireGuard, S/MIME, IMSI encryption, File
encryption, Noise, EDHOC, etc.). . . . ”
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“Oops, we weren’t expecting answers!”

NIST’s 2025 report says: “NIST requested
feedback on specific use cases for which
Classic McEliece would be a good solution.”
Of course, the report then cites the responses,
and says that, yes, there is already McEliece usage
plus strong interest in McEliece standardization.
Actually, the report doesn’t do that. It says:
“Responses noted that Classic McEliece may
provide better performance than BIKE or HQC
for [static keys] . . . the interest expressed in Classic
McEliece was limited”. (Emphasis added.)
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plus strong interest in McEliece standardization.

Actually, the report doesn’t do that. It says:
“Responses noted that Classic McEliece may
provide better performance than BIKE or HQC
for [static keys] . . . the interest expressed in Classic
McEliece was limited”. (Emphasis added.)
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Interesting new terminology in the report
Old name New name
One-time keys “general applications”
Static keys “applications in which a public key

can be transferred once and then
used for several encapsulations”

(Exception: the old terminology is used in one line
on page 12; probably an editing error.)

Saying “the most efficient option for static keys is
McEliece” would make it difficult to use efficiency
as an excuse to delay McEliece standardization.
In the report, McEliece’s efficiency advantage
sounds obscure and uncertain.
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Interesting approach to consistency
Same report: “Having more standards to implement
adds complexity to protocols and PQC migration.”

For post-quantum signatures, NIST has already
standardized Dilithium, LMS, SPHINCS+, and
XMSS; says it will standardize Falcon “because its
small bandwidth may be necessary in certain
applications”; and is asking for more options,
including small-signature large-key options.
NIST’s official competition rules said “The goal of
this process is to select a number of acceptable
candidate cryptosystems for standardization”.
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Interesting approach to evidence
The report says that HQC’s “performance profile
would be acceptable for most general applications”,
making HQC a “general-purpose” KEM.
In 2020, NIST portrayed FrodoKEM as not having
“acceptable performance in widely used applications
overall”, so NIST eliminated FrodoKEM.

So HQC-1 (2249-byte pk, 4497-byte ct) has
acceptable performance for most applications, while
FrodoKEM-640 (9616-byte pk, 9720-byte ct) has
unacceptable performance for most applications?
Where is NIST’s list of per-application budgets?
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NIST’s decisions are controversial

ISO is currently considering a draft standard that
includes McEliece, FrodoKEM, and Kyber.

NIST’s report says “After the ISO standardization
process has been completed, NIST may consider
developing a standard for Classic McEliece
based on the ISO standard”.
But NIST could already have standardized McEliece
years ago. For some reason, NIST is trying very
hard to push everyone into using Kyber.
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Understanding who’s in charge

A 2014 NIST presentation listed its authorship as
“Post Quantum Cryptography Team, National
Institute of Standards and Technology (NIST),
pqc@nist.gov”. See also NIST’s 2017 annual report.

A lawsuit has revealed the list of people who were
members of pqc@nist.gov in 2016. There were more
NSA members (Scott Simon, Nick Gajcowski, Mark
Motley, Laurie Law, John McVey, Jerry Solinas,
Daniel Kirkwood, David Tuller, David Hubbard,
Bradley C. Lackey) than NIST members.
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What’s inside McEliece



One way to invent the McEliece system
0. Start with modern lattice-based cryptography.

1. Choose modulus 2. Bad: slower in software.
Good: simpler; easier analysis; much more stability
against cryptanalysis; nicer for hardware.
2. Then switch to a more powerful decoder.
Bad: more complicated decoding algorithm.
Good: much better security vs. ciphertext size.
3. Then travel back in time to publish in 1978.
Good: allows half century of security analysis and
half century of implementation improvements.
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The general framework
System parameters: n, q, r ∈ {1, 2, 3, . . .}.
Public key determines K0, . . . , Kn−1 ∈ (Z/q)r .
Notation: Z/q is the ring of integers mod q;
(Z/q)r = {(u0, . . . , ur−1) : each ui ∈ Z/q};
a, b ∈ X means a ∈ X and b ∈ X .

Ciphertext: C = s0K0 + · · · + sn−1Kn−1 ∈ (Z/q)r

where s0, . . . , sn−1 ∈ Z are small secrets.
Ciphertext has r log2 q bits.
This covers “code-based” and “lattice-based”
encryption. Let’s call this cola encryption.
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A cola example: ntruhps2048509

System parameters: (n, q, r) = (1018, 2048, 508).
Public key determines K0, . . . , K1017 ∈ (Z/2048)508.
Ciphertext: C = s0K0 + · · · + s1017K1017
for secrets s0, . . . , s1017 ∈ {−1, 0, 1}.
Ciphertext has 508 log2 2048 = 5588 bits,
i.e., 5588/8 = 698.5 bytes, sent in 699 bytes.
(Exercise: What are n, q, r for kyber512?)
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Lattice attacks

Attacker sees C , K0, . . . , Kn−1 ∈ (Z/q)r .
Easy linear-algebra computation finds big
t0, . . . , tn−1 ∈ Z with C = t0K0 + · · · + tn−1Kn−1.

Note: (t0 − s0)K0 + · · · + (tn−1 − sn−1)Kn−1 = 0;
i.e., (t0 − s0, . . . , tn−1 − sn−1) ∈ L where L =
{(v0, . . . , vn−1) ∈ Zn : v0K0 + · · · + vn−1Kn−1 = 0}.
Attack problem is now a “close-vector problem”:
find v in lattice L with v ≈ (t0, . . . , tn−1).
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NP-hardness myths for lattice encryption
Standard conjectures: “the polynomial hierarchy
does not collapse”; in particular, P ̸= NP; so, for
every NP-hard problem, every poly-time algorithm
fails to solve some example of the problem.

Fact: The general problem of finding v ∈ L
with v ≈ t is NP-hard. (1981 van Emde Boas)
Common mistake: “Attacking lattice encryption
is an example of this problem, so it’s NP-hard.”
No, there’s no reason to think attacking lattice
encryption is NP-hard. Fact: Every problem broken
in poly time is an example of an NP-hard problem.
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Lattice gaps
Picture from 2005 Aharanov–Regev:

due to Ajtai et al. [6] obtains a 2O(n log logn/ logn)-approximation factor for both problems; it is based on the

deterministic polynomial time 2O(n(log logn)2/ logn)-approximation algorithm by Schnorr [27].

The complexity of lattice problems in the range of polynomial approximation factors is of particular

interest. For example, Ajtai’s seminal work [3] is based on the hardness of approximation in this region (see

also [5, 25]). A sequence of incomparable results gave upper bounds on the complexity of lattice problems

in the polynomial approximation region. Banaszczyk [7] showed that GapCVPn is in NP ∩ coNP, improving

on the previous result of GapCVPn1.5 ∈ NP ∩ coNP by Lagarias, Lenstra and Schnorr [22]. We note that

containment in NP is trivial, and the difficult part is showing the containment in coNP, i.e., showing the

existence of a succinct proof that a vector is far from any lattice point. Goldreich and Goldwasser [14] gave

an upper bound on the complexity of the harder problem GapCVP√
n/ logn

, but their upper bound is weaker:

they showed containment in NP ∩ coAM, which means that instead of showing the existence of a succinct

proof that a vector is far from any lattice point, they gave an interactive proof of two rounds to that effect.

In another result, the current authors showed [2] that a certain special case of GapCVP√
n is in NP∩ coQMA,

where the latter class is the quantum analogue of coNP. Essentially, this says that there exists a succinct

quantum proof that a vector is far from the lattice. See [2] for more details.

In this paper we prove the following theorem, which essentially subsumes all three results mentioned

above.

Theorem 1.1 There exists c > 0 such that GapCVPc
√
n is in NP ∩ coNP.

Of the three results, the only result that Theorem 1.1 does not completely subsume is that of Goldreich and

Goldwasser [14]. Indeed, for gaps between
√
n/ logn and

√
n our result does not apply, and so containment

in NP ∩ coNP is not known to hold.

There is a known approximation preserving reduction from GapSVP to GapCVP [15], which we include

for completeness in Appendix A. Using this reduction, we obtain the following corollary.

Corollary 1.2 There exists c > 0 such that GapSVPc
√
n is in NP ∩ coNP.

We summarize the current complexity of lattice problems as a function of the approximation ratio β in

Figure 1.

1 2(log n)
1/2−ε

n1/ log log n
√
n/ log n

√
n 2n log logn/ logn

BPPSVP CVP
hard

NP ∩ coAM NP ∩ coNP

2n(log logn)
2/ logn

P
hard

Figure 1: The complexity of lattice problems (some constants omitted)

1.1 Proof Overview

As mentioned before, the containment in NP is trivial and it suffices to prove, e.g., that GapCVP100
√
n is in

coNP. To show this we construct an NP verifier that given a polynomial witness, verifies that v is far from

the lattice. There are three steps to this proof.

1. Define f

In this part we define a function f : Rn → R+ that is periodic over the lattice L, i.e., for all x ∈ Rn

and y ∈ L we have f(x) = f(x + y). For any lattice L, the function f satisfies the following two

properties: it is non-negligible (i.e., larger than some 1/poly(n)) for any point that lies within distance√
logn from a lattice point, and is exponentially small at distance ≥ √

n from the lattice. Note that

f(v) indicates whether v is far or close to the lattice.

2

Right side, large “gap”: t is particularly close to L;
fast algorithms find closest vector.
Left side, small “gap”: t is far from L; NP-hard.
Middle: the standard conjectures imply that the
problem is not NP-hard for, e.g., “gap” √

n.
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2

Right side, large “gap”: t is particularly close to L;
fast algorithms find closest vector.

Left side, small “gap”: t is far from L; NP-hard.
Middle: the standard conjectures imply that the
problem is not NP-hard for, e.g., “gap” √

n.
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√
n is in

coNP. To show this we construct an NP verifier that given a polynomial witness, verifies that v is far from

the lattice. There are three steps to this proof.

1. Define f

In this part we define a function f : Rn → R+ that is periodic over the lattice L, i.e., for all x ∈ Rn

and y ∈ L we have f(x) = f(x + y). For any lattice L, the function f satisfies the following two
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logn from a lattice point, and is exponentially small at distance ≥ √

n from the lattice. Note that

f(v) indicates whether v is far or close to the lattice.
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Right side, large “gap”: t is particularly close to L;
fast algorithms find closest vector.
Left side, small “gap”: t is far from L; NP-hard.

Middle: the standard conjectures imply that the
problem is not NP-hard for, e.g., “gap” √

n.
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Warning: multiple gap concepts
A typical “decisional” gap problem:
you’re guaranteed that either dist(t, L) ≤ d/G or
dist(t, L) > d ; problem is to figure out which.

“Search” problem: find v ∈ L with dist(t, v) ≤ d/G
given that all other w ∈ L have dist(t, w) > d .
Suffices to solve an “approximation” problem:
find v ∈ L with dist(t, v) ≤ G dist(t, L).
If d = max{dist(u, L)} then the guarantee forces
dist(t, L) ≤ d/G so G ≤ max{dist(u, L)}/dist(t, L).
For simplicity, let’s focus on computing
this cutoff gap: max{dist(u, L)}/dist(t, L).
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What’s the NTRU cutoff gap?

NTRU has s0, . . . , sn−1 ∈ {−1, 0, 1},
so dist(t, L) ≤ |(s0, . . . , sn−1)| ≤ n1/2.

Typically q is chosen as Θ(n). Can then show
that most vectors have distance Ω(n) from L,
so cutoff gap is Ω(n)/n1/2, i.e., Ω(n1/2).
(Exercise: Prove this gap.)
This doesn’t mean NTRU is broken! Maybe
attacking NTRU is hard without being NP-hard.
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The NTRU decoder

Alice generates an NTRU secret key and a
public key determining K0, . . . , Kn−1 ∈ (Z/q)r .
The secret key determines a linear transformation φ
such that φ(K0), . . . , φ(Kn−1) are small.

Bob computes C = s0K0 + · · · + sn−1Kn−1. Alice
computes φ(C) = s0φ(K0) + · · · + sn−1φ(Kn−1),
which is small, so the reduction mod q disappears.
A fast algorithm solves for s0, . . . , sn−1.
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A cola example mod 2: bikel1

System parameters: (n, q, r) = (24646, 2, 12323).
Public key determines K0, . . . , K24645 ∈ (Z/2)12323.
Ciphertext: C = s0K0 + · · · + s24645K24645
for “weight-134” vector (s0, . . . , s24645) ∈ {0, 1};
i.e., #{i : si ̸= 0} = 134.
Ciphertext has 12323 bits ≈ 1541 bytes.
Alice generated weight-71 φ(K0), . . . , φ(K24645).
Then φ(C) = s0φ(K0) + · · · + s24645φ(K24645)
involves some reductions mod 2, but
fast statistics usually solve for s0, . . . , s24645.
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What’s the BIKE cutoff gap?
BIKE takes (s0, . . . , sn−1) of weight Θ(n1/2),
so t has distance Θ(n1/4) from lattice L.
Can show that most vectors have distance Θ(n1/2)
from L, so cutoff gap is Θ(n1/4).

Compared to NTRU:
• Gap sounds smaller. More secure?
• But t sounds closer to L. Fewer s possibilities.

Less secure?
ntruhps2048509 (699-byte ciphertexts) and
bikel1 (1541-byte ciphertexts) are both
designed to have roughly 128 bits of security.
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The basic ISD attack
There are

(n
w

)
weight-w vectors s ∈ (Z/2)n.

For (n, w) = (24646, 134):
(n

w
)

≈ 21196.

Faster than searching through all s:
1962 Prange “information-set decoding”.
Basic idea: Maybe sr = sr+1 = · · · = sn−1 = 0;
probability

( r
w

)
/

(n
w

)
≈ 2−134.52.

Then C = s0K0 + · · · + sr−1Kr−1.
Solve for s0, . . . , sr−1 by linear algebra.
If this fails, permute {0, . . . , n − 1} and try again.
See https://isd.mceliece.org for 50 papers
studying ISD. Noticeable speedups, mostly in linear
algebra. No change in asymptotic attack exponent.
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NTRU security vs. BIKE security

NTRU has 3n possible choices of s encrypted as
r log2 q ≈ (n/2) log2 n ciphertext bits.
e.g. ntruhps2048509: 31018 ≈ 21613 choices of s
encrypted as 5588 ciphertext bits.
Compared to BIKE, less information about more
choices of s. Why isn’t this a higher security level?

Answer: NTRU attacks use combinatorial searches
and linear algebra and size variations mod q.
Size variations have led to big attack speedups.
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Another cola example: mceliece348864
System parameters: (n, q, r) = (3488, 2, 768).
Public key determines K0, . . . , K3487 ∈ (Z/2)768.
Ciphertext: C = s0K0 + · · · + s3487K3487
for weight-64 vector (s0, . . . , s3487) ∈ {0, 1}.
Ciphertext has 768 bits, i.e., 96 bytes.
This encrypts

(3488
64

)
≈ 2456 choices of s into just

768 bits. Alice decrypts using a more powerful
decoder than the NTRU or BIKE decoders.
This is another system designed for 128-bit security.
Prange uses

( n
64

)
/

( r
64

)
≈ 2142.78 iterations.
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What’s the McEliece cutoff gap?

Normally take n ≈ 5r , weight w ≈ 0.2n/log2 n.
Now |s| = w 1/2 ∈ Θ(n1/2/(log n)1/2).
Can show that most vectors have distance
Θ(n1/2) from L. Gap is just Θ((log n)1/2).
“Polylog-gap poly-distance cola encryption”.
i.e.: t is almost as far from L as most vectors are.
This relies critically on the power of Alice’s decoder!
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Summary of numerical features
Comparing PKEs (public-key encryption systems)
by orders of magnitude of |s| etc.:

PKE q ct size |s| cutoff gap
NTRU n n log n n1/2 n1/2

BIKE 2 n n1/4 n1/4

McEliece 2 n (n/log n)1/2 (log n)1/2

Can reduce NTRU gaps by having q grow somewhat
more slowly than n; but getting down to a polylog
gap requires more powerful decoder, as in McEliece.
(Exercise: GAM/LPR is also n, n log n, n1/2, n1/2.)
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So McEliece is NP-hard?

Fact: No PKE has ever been proven NP-hard.
The polylog-gap poly-distance close-vector problem
is NP-hard, but this doesn’t guarantee security or
NP-hardness for the McEliece PKE:

• Maybe it’s breakable for almost all public keys.
• Maybe it’s breakable for public keys that

correspond to McEliece secret keys.
So the McEliece attack literature studies
performance of attacks against uniform random
matrices, and studies ways to distinguish Alice’s
public key from a uniform random matrix.
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Stability metric #1: asymptotics

lim
K→∞

log2 AttackCostyear(K )
log2 AttackCost2025(K )

Green: McEliece.
Red: NTRU etc.
had 45% higher
security levels
in 2010
than they
have today.
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Stability metric #1: asymptotics

lim
K→∞

log2 AttackCostyear(K )
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Stability metric #2: challenges
There are scaled-down McEliece challenges: which
values of n can academics break? Latest records:

• n = 1284 challenge broken as title of a
Eurocrypt 2022 paper.

• n = 1347 challenge broken using the
2008 Bernstein–Lange–Peters software,
which is as fast as the 2022 software.

• n = 1409 challenge broken on a GPU cluster.
(Exercise: Find large-q attack software from 2008.
See how slow it is compared to current software.)
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Stability metric #3: bit operations

Crypto 2024 Bernstein–Chou “CryptAttackTester:
high-assurance attack analysis”: software to

• build complete attack circuits,
• predict circuit cost and probability,
• run small attacks to check accuracy.

Bit operations predicted by CryptAttackTester
to attack mceliece348864 (n = 3488):

• 2156.96: isd1, attack ideas from the 1980s.
• 2150.59: isd2, latest attacks.
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We also monitor failed attack attempts
Some useless attacks against mceliece348864:

• 2000 Sendrier: >2700 operations.
• 2011 Faugère–Gauthier–Otmani–Perret–Tillich:

inapplicable; also, only a distinguisher.
• 2022 Kirshanova–May: >29000 operations.
• 2023 Mora–Tillich: inapplicable.
• 2023 Couvreur–Mora–Tillich: >22000

operations; also, only a distinguisher.
• 2024 Bardet–Mora–Tillich: inapplicable.
• 2024 Randriambololona: claims 2529

operations; also, only a distinguisher.
• 2024 Mora: unclear cost, but much slower

than 2000 Sendrier in experiments.
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Interlude: “breakthroughs”



“Our work could be a breakthrough”

2002 Courtois–Pieprzyk: “there is a risk that the
problem to break Rijndael [i.e., AES] might be
subexponential when the number of rounds grows”;
this “would be already an important breakthrough”;
this is “an important threat for ciphers such as
Rijndael, Serpent and Camellia”.

Daniel J. Bernstein, The McEliece cryptosystem, https://mceliece.org 50

https://iacr.org/archive/asiacrypt2002/25010267/25010267.pdf
https://mceliece.org


“Our failed attack is a breakthrough”

2010 Faugère–Otmani–Perret–Tillich: “To our point
of view, disproving/mitigating this hardness
assumption is a breakthrough in code-based
cryptography and may open a new direction to
attack the McEliece cryptosystem.”
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“This one is also a breakthrough”

2024 Couvreur–Mora–Tillich: “We introduce a
novel algebraic approach for attacking the McEliece
cryptosystem which is currently at the 4-th round of
the NIST competition . . . This can be considered as
a breakthrough . . . 22231”

Daniel J. Bernstein, The McEliece cryptosystem, https://mceliece.org 52

https://eprint.iacr.org/archive/2023/950/1692882071.pdf
https://mceliece.org


The impact of hype

NIST claims that the most recent failed attacks are
“significant progress”; claims that these failed
attacks “somewhat weaken the argument that the
long-term security of Classic McEliece is guaranteed
by its long history of cryptanalysis”; and claims that
these failed attacks somewhat undermine “the case
for treating it as an especially conservative choice”.
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Look at the numbers

Extensive efforts to break McEliece keep failing:
2700, 22000, only a distinguisher, 2500, etc.
Cryptanalysis has done much more damage
to the security level of large-q systems. Example:

• A 2010 paper proposed lattice dimension 256
for security “about” 2150, “at least” 2128.

• FrodoKEM says it’s an implementation of that
paper, but proposes lattice dimension 640
for security 2128.
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More security advantages
of McEliece



Attacking keys vs. attacking ciphertexts
For each ciphertext size, speed of known attacks:

1. Fastest: Attacking NTRU/LPR/. . . ciphertexts.
2. Also fastest: Attacking NTRU/LPR/. . . keys.
3. Much slower: Attacking McEliece ciphertexts.
4. Slowest: Attacking McEliece keys.

1+2 exploit weaknesses shared by keys+ciphertexts.
Some people praise this sharing—the supposed
simplicity of having just one attack problem.
However, a closer look shows that there can be
attacks beyond the shared weaknesses; see, e.g., the
attack that forced patches in 2023 to FrodoKEM.
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The dangers of small keys
BIKE has a “quasi-cyclic” structure:
K0, . . . , Kn−1 are actually
K , xK , x 2K , . . . , x r−1K , 1, x , x 2, . . . , x r−1

for some public K ∈ (Z/2)[x ]/(x r − 1).

Similar comment applies to NTRU and to
many other cola systems, but not McEliece.
Why this matters: Some cryptosystems
(e.g., the original STOC 2009 Gentry FHE system
for cyclotomics) have been broken by attacks
exploiting this structure. Crypto 2023 298.77 attack
against bikel1 also exploited this structure.
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History: knapsack cryptosystems

1978 Hellman–Merkle: a cryptosystem that uses
“trapdoor knapsacks” to hide information.

1982 Shamir, 1983 Adleman, 1983
Brickell–Lagarias–Odlyzko, etc.: breaks of
practically all “knapsack” proposals.
This gave “knapsacks” a very bad reputation.
“Lattice-based cryptosystems” are knapsack-based
cryptosystems trying to avoid this reputation.
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In the meantime: McEliece

1978 McEliece: “A public key cryptosystem
based on algebraic coding theory”.
Uses a powerful decoder from 1970 Goppa.
We’ll look at this decoder in a moment.

1986 Niederreiter: space improvement, producing
the short ciphertexts that I’ve been talking about.
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More history: NTRU
1996 Hoffstein–Pipher–Silverman preprint “NTRU:
a new high speed public key cryptosystem”:

• “In conclusion, for appropriate choice of
parameters, NTRU appears to be secure
against lattice reduction methods, including
any future progress in solving the lattice
proximity problem.”

• “NTRU bears a superficial resemblance to the
McEliece public key cryptosystem.”

1997 Coppersmith–Shamir: better lattice attacks.
1998 Hoffstein–Pipher–Silverman: bigger NTRU.
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Perspectives on cola cryptography
2003 Bernstein posting that coined the phrase
“post-quantum cryptography” mentioned
“lattice-type public-key systems, such as McEliece
and NTRU”.
2017 Barak similarly summarizes “the ‘geometric’ or
‘coding/lattice’-based systems of the type first
proposed by McEliece”—but claims without
justification that “known lattice-based public-key
encryption schemes can be broken using oracle
access to an O(√n) approximation algorithm for
the lattice closest vector problem”. Does
“lattice-based” exclude McEliece? Why?
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Chosen-ciphertext security
McEliece’s original security goal was one-wayness:
stopping attacker from finding random s given C .
In 2017, “Classic McEliece” (main focus of current
McEliece deployment) converted this into a KEM,
adding protection against chosen-ciphertext attacks.
QROMCCASecLevel(Classic McEliece) ≥
OneWaySecLevel(1978 McEliece) − 5.

(GAM/LPR systems such as Kyber and HQC have
weaker theorems: chosen-ciphertext security could
be 100 bits below one-wayness, or even worse!)
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The decoder



How does the decoder work?
Last topic today: Let’s look at how Alice decodes
(s0, . . . , sn−1) with high weight (small gap).

System parameters: Typical
• Integer m ≥ 1. m ∈ {12, 13}
• Integer n ≥ 1 with n ≤ 2m. 2m−1 < n ≤ 2m

• Integer w ≥ 2 with mw < n. w ≈ 0.2n/log2 n
• Integer r = mw . r ≈ 0.2n
• Finite field F with #F = 2m.

For mceliece348864: m = 12; n = 3488; w = 64;
r = 768; F = (Z/2)[z ]/(z12 + z3 + 1).
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The McEliece secret key

Alice chooses the following secrets:
• Distinct elements α0, α1, . . . , αn−1 of F .

• Monic irreducible deg-w polynomial g ∈ F [x ]:
i.e., g = xw + gw−1xw−1 + · · · + g1x + g0,
each gj ∈ F , and g is irreducible in F [x ].

Note that g(αi) ̸= 0 since w ≥ 2.
Obvious secret-key format has (n + w)m bits.
There are (2m)(2m − 1) · · · (2m − n + 1) choices of α,
and about 2wm/w choices of g .
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The McEliece public key
Think of the public key as a linear transformation
H : (Z/2)n → (Z/2)mw . Note that everyone can
compute the lattice {c ∈ Zn : H(c) = 0}.

Alice chooses a transformation H satisfying
the Goppa property: H(c) = 0 if and only if∑
i

ciA/(x − αi) ∈ gF [x ], where A =
∏
i
(x − αi).

To avoid revealing any information other than the
lattice, Alice chooses H in systematic form. This
means H(zeropad(v)) = v for all v ∈ (Z/2)mw ,
where zeropad(v) = (v , 0, 0, . . . , 0) ∈ (Z/2)n.
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The decoding algorithm
How Alice decodes a ciphertext:

• Input C ∈ (Z/2)mw .

• Interpolate B ∈ F [x ] with deg B < n and
B(αi) = zeropad(C)iA′(αi)/g2(αi) for each i ,
where A′ is the derivative of A.

• Compute a, b ∈ F [x ] with deg a ≤ w ,
deg(aB − bA) < n − w , and gcd{a, b} = 1.
(This is a “half-gcd” computation.)

• Compute s ∈ (Z/2)n with si = [a(αi) = 0],
i.e., si = 1 if and only if a(αi) = 0.

• Output s.
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Magic fact: The algorithm works

Fact: If s ∈ (Z/2)n has weight w and C = H(s)
then the algorithm outputs s.
Converse: If the algorithm outputs s ∈ (Z/2)n

and s has weight w then C = H(s).
To understand why this works,
take a course on coding theory,
or read my minicourse on this algorithm:
cr.yp.to/papers.html#goppadecoding.
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