Examples of symmetric primitives

D. J. Bernstein

message len | tweak | key | encrypts | authenticates
Permutation fixed no no |— —
Compression function | fixec yes |[no |— —
Block cipher fixec no yes | yes —
Tweakable block cipher | fixec yes  |yes |yes —
Hash function variable no no |— —
MAC (without nonce) |variable no  |yes|no yes
MAC (using nonce) variable yes |yes |no yes
Stream cipher variable yes |yes |yes no
Authenticated cipher |variable yes |yes |yes yes




s of symmetric primitives

rnstein
message len | tweak | key | encrypts | authenticates

ation fixed no no |— —
ssion function | fixec yes no |— —
ipher fixec no yes | yes —
ble block cipher | fixea yes  |yes |yes —
nction variable no no |— —
vithout nonce) |variable no yes | no yes
Ising nonce) variable yes |yes |no yes
cipher variable yes |yes |yes no
icated cipher  |variable yes |yes |yes yes

1994 W
a tiny er

vold en

{

uint3.

uint3.

for (.

b[0] :



1etric primitives

message len | tweak | key | encrypts | authenticates
fixed no no |— —
tion | fixec yes no |— —
fixec no yes | yes —
cipher | fixec yes |yes |yes —
variable no no |— —
nce) |variable no yes | no yes
e) variable yes |yes |no yes
variable yes |yes |yes no
her |variable yes |yes |yes yes

1994 Wheeler—Ne¢
a tiny encryption :

void encrypt(uin

{

uint32
uint32
for (r

c +=

X +=

y +=

b[0]

x = b[O0
r, c =
= 0;r <
0x9e377
ytc © (

”~

"~

(
x+c = (
(

x; bl[1l]



1tives
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for (r
C +=

X +=

y +=

b[0]

x = bl0], v = bl
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a tiny encryption algorithm’:
void encrypt(uint32 *b,uint32 *k)
tweak | key | encrypts | authenticates {
no no | — — uint32 x = b[0], y = b[1];
yESs no |— — uint32 r, c¢c = O;
no yes | yes — for (r = 0;r < 32;r += 1) A
yes yes | yes — c += 0x9e3779b9;
no no |— — x += y+c = (y<<4)+k[O0:
no yes | No yes = (y>>b)+k[1];
yes yes no yeS Yy += X+C (X<<4)+k 2
~ (x>>b)+k[3];
yes |yes |yes no
F
yes |yes |yes yes
b[0] = x; b[1] = y;
¥
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void encrypt(uint32 *b,uint32 *k)
{
uint32 x = b[0], y = b[1];
uint32 r, ¢ = 0;
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integer by + 2by + -+ - + 231
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~: xor: @: addition of

each bit separately mod 2.
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so spacing is not misleading

<<4: multiplication by 16, 1.
(0,0,0,0, by, by, ..., by7).

>>5: division by 32, I.e.,
(b5, bg,...,b31,0,0,0,0, O).
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void encrypt(uint32 *b,uint32 *k)
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Functionality

TEA is a 64-bit block cipher
with a 128-bit key.

Input: 128-bit key (namely
k[0],k[1],k[2],k[3]);

64-bit plaintext (b[0],b[1]).

Output: 64-bit ciphertext
(final b[0] ,b[1]).

Can efficiently encrypt:

(key, plaintext) +— ciphertext.

Can efficiently decrypt:
(key, ciphertext) — plaintext.
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void encrypt(uint32 *b,ui
{
uint32 x = b[0], y = bl
uint32 r, ¢ = 0;
for (r = 0;r < 32;r +=
c += 0x9e377919;

x += y+c T (y<<4)+k[C
~ (y>>b)+k[1
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b[0] = x; bl1l] = y;



Functionality Wait, how can we decrypt?
TEA is a 64-bit block cipher void encrypt(uint32 *b,uint32 *k)
with a 128-bit key. {

Input: 128-bit key (namely uint32 x = b[0], y = bl[1];

k[0],k[1],k[2],k[3]);
64-bit plaintext (b[0],b[1]).

uint32 r, ¢ = 0;
for (r = 0;r < 32;r += 1) {
c += 0x9e3779Db9;

Output: 64-bit ciphertext x += y+c ~ (y<<4)+k[0]
(final b[0],b[1]). ~ (y>>b)+k[1];
Can efficiently encrypt: y *= xtc 7 (x<<d)kl2.

(key, plaintext) — ciphertext. - (x>>5)+k[3];

Can efficiently decrypt: b[0] = x; b[1] = y;

(key, ciphertext) — plaintext. }
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Wait, how can we decrypt?

void encrypt(uint32 *b,uint32 *k)

{

uint32 x = b[0], y = b[1];

uint32 r, ¢ = 0;

for (r = 0;r < 32;r += 1) {
c += 0x9e3779b9;

x += y+c ~ (y<<4)+k[O_
© (y>>5)+k[1];

y += x+c T (x<<4)+k[2.
~ (x>>5)+k [3] ;

}
b[0] = x; bl1] = y;

Answer: Each step Is invert

void decrypt(uint32 *b,ui
{
uint32 x = b[0], y = bl
uint32 r, ¢ = 32 * 0x9e

for (r = 0;r < 32;r +=

y —= xtc © (x<<4)+k[2
T (x>>5)+k [ 3
x —= y+c T (y<<4)+k[C
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Iy
b[0] = x; bl1] = y;



Wait, how can we decrypt? 6 Answer: Each step is invertible. 7
void encrypt(uint32 *b,uint32 *k) void decrypt(uint32 *b,uint32 *k)
{ {
uint32 x = b[0], y = b[1]; uint32 x = b[0], v = b[1];
uint32 r, ¢ = 0; uint32 r, ¢ = 32 *x 0x9e3779b9;
for (r = 0;r < 32;r += 1) { for (r = 0;r < 32;r += 1) {
c += 0x9e3779b9; y -= x+c 7 (x<<4)+k[2]
x += y+c ~ (y<<4)+k[O. ~ (x>>5)+k[3];
~ (y>>b)+k[1]; x —= y+c ~ (y<<4)+k[O.
y += xtc = (x<<4)+k[2. ~ (y>>b)+k[1];
~ (x>>5)+k[3]; c —-= 0x9e3779b9;
F F
b[0] = x; bl1l] = y; b[0] = x; bl1l] = y;
¥ ¥
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crypt (uint32 *b,uint32 *k)

2 x = b[0], y = b[1];
c = 0;

r = 0;r < 32;r += 1) {
0x9e3779b9;

~ (y<<4)+k [
= (y>>B)+k[
~ (x<<4)+k [
~ (x>>5)+k [3.
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x; bl1l] = y;

Answer: Each step is invertible.

void decrypt(uint32 *b,uint32 *k)

{

uint32 x = b[0], y = b[1];

ulnt32 r, ¢ = 32 *x 0x9e3779b9;
for (r = 0;r < 32;r += 1) {
y —= xtc ~ (x<<4)+k[2.
~ (x>>5)+k[3];
x —= y+c ~ (y<<4)+k[O_
~ (y>>5)+k[1];
c —= 0x9e3779b9;
¥
b[0] = x; bl1] = y;
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=y;

Answer: Each step is invertible.

void decrypt(uint32 *b,uint32 *k)

{
uint32 x = b[0], y = b[1];
uint32 r, ¢ = 32 *x 0x9e3779b9;
for (r = 0;r < 32;r += 1) {
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+
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Answer: Each step is invertible.

void decrypt(uint32 *b,uint32 *k)

{
uint32 x = b[0], y = b[1];
ulnt32 r, ¢ = 32 *x 0x9e3779b9;
for (r = 0;r < 32;r += 1) {
y —= xtc ~ (x<<4)+k[2.
© (x>>5)+k[3];
x —= y+c T (y<<4)+k[O_
- (y>>5)+k[1];
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¥
b[0] = x; bl1] = y;
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Answer: Each step is invertible. 7 Generalization, Feistel network
void decrypt(uint32 *b,uint32 *k) (usedin,eag” “Lucifer” from
) 1973 Feistel-Coppersmith):
uint32 x = b[0], y = b[1]; x += functionl(y,k);
uint32 r, ¢ = 32 *x 0x9e3779b9; y += function2(x,k);
for (r = 0;r < 32;r += 1) { x += function3(y,k);
y —= xtc = (x<<4)+k[2. y += function4(x,k);
~ (x>>6)+k[3];
x == yre 7 (ye<d)Hkl0. Decryption, inverting each step:
~ (y>>5)+k[1];
c —= 0x9e3779b9;
} y —= function4(x,k);
b[0] = x; b[1] = v; x —= function3(y,k);
1 y —= function2(x,k);
x —= functionl(y,k);




Each step is invertible.

crypt (uint32 *b,uint32 *k)

2 x = b[0], y = b[1];

2 r, ¢ = 32 *x 0x9e3779b9;

r = O;r < 32;r += 1) {

x+c ~ (x<<4)+k[2.
~ (x>>5)+k[3];

ytc © (y<<4)+k[0.
- (y>>5)+k[1];

0x9e3779b9;

x; bl1l] = y;
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(used in, e.g., “Lucifer” from
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x += function3(y,k);
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Decryption, inverting each step:

y —-= function4(x,k);
x —-= function3(y,k) ;
y —= function2(x,k);
x -= functionl(y,k);

Higher-|:
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of 64-bit
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t32 *xb,uint32 *k)

1, v = bll];

32 * 0x9e3779b9;
32;r += 1) {
x<<4)+k [2]
x>>5)+k [3];
y<<4)+k[O0_
y>>5)+k[1];
9b9;
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(used in, e.g., “Lucifer” from
1973 Feistel-Coppersmith):

x += functionl(y,k);
y += function2(x,k);
x += function3(y,k);
y += function4(x,k);

Decryption, inverting each step:

y —= functiond(x,k);
x -= function3(y,k) ;
y —= function2(x,k);
x —-= functionl(y,k);
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(used in, e.g., “Lucifer” from
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y += function2(x,k);
x += function3(y,k);
y += functiond(x,k);
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Generalization, Feistel network
(used in, e.g., “Lucifer” from
1973 Feistel-Coppersmith):

x += functionl(y,k);
y += function2(x,k);
x += function3(y,k);
y += function4(x,k);

Decryption, inverting each step:

y —-= functiond(x,k);
x -= function3(y,k) ;
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void encrypt(uint32 *b,uint32 *k)
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void encrypt(uint32 *b,uint32 *k)
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void encrypt(uint32 *b,uint32 *k)

{
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1 ® ko @ k3o @ kea © kog @ b3

Higher output bits
are increasingly nonlinear
but they never affect first bit.
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void encrypt(uint32 *b,uint32 *k)

{
uint32 x = b[0], y = b[1];
uint32 r, ¢ = 0;
for (r = 0;r < 32;r += 1) {
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y += x+c T (x<<4)+k[2.
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First output bit is
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Higher output bits
are increasingly nonlinear
but they never affect first bit.

How TEA avoids this problem:
>>5 diffuses nonlinear changes
from high bits to low bits.
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for (r = 0;r < 32;r += 1) {

c += 0x9e3779b9;
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- (y<<B)+k[1];
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for (r = O;r < 4;r += 1
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bits: <<4; carries in addition.)
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void encrypt(uint32 *b,uint32 *k)

{

uint32
uint32
for (r

c +=

x = b[0], y = b[1];

r, c = 0;
= O;r < 4;r += 1) {
0x9e3779b9;
y+tc ~ (y<<4)+k|[O.

~ (y>>5)+k[1];
x+c © (x<<4)+k[2]

~ (x>>b)+k[3];
x; bll]l = y;
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TEA4: another bad cipher

void encrypt(uint32 *b,uint32 *k)
{
uint32 x = b[0], y = b[1];
uint32 r, ¢ = 0;
for (r = 0;r < 4;r += 1) {
c += 0x9e3779b9;

x += y+c © (y<<4)+k[O_
" (y>>5)+k[1];

y += xtc ~ (x<<4)+k[2.
© (x>>5)+k[3];

b[0] = x; bl1] = y;
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TEA4: another bad cipher

void encrypt(uint32 *b,uint32 *k)
{
uint32 x = b[0], y = b[1];
uint32 r, ¢ = 0;
for (r = 0;r < 4;r += 1) {
c += 0x9e3779b9;
x += y+c T (y<<4)+k[O.
~ (y>>b)+kl[1];
y += xtc ~ (x<<4)+k[2.
~ (x>>b)+k[3];

}
b[0] = x; b[1] = y;

Fast attack:
TEA4,(x+ 23y
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TEA4: another bad cipher

void encrypt(uint32 *b,uint32 *k)

{

uint32 x = b[0], y = b[1];

uint32 r, ¢ = 0;

for (r = O;r < 4;r += 1) {
c += 0x9e3779D9;

x += y+c ~ (y<<4)+k[O_
- (y>>5)+k[1];

y += xtc T (x<<4)+k[2.
© (x>>5)+k[3];

b[0] = x; bl1] = y;

Fast attack:
TEA4,(x + 231, y) and
TEA4,(x, y) have same firsi
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void encrypt(uint32 *b,uint32 *k)

{

uint32 x = b[0], y = b[1];

uint32 r, ¢ = 0;

for (r = 0;r < 4;r += 1) {
c += 0x9e3779b9;
x += y+c T (y<<4)+k[O.
~ (y>>5)+kl[1];
y += x+c T (x<<4)+k[2.
~ (x>>b)+k[3];

b[0] = x; b[1] = y;

Fast attack:
TEA4,(x + 2%, y) and
TEA4,(x, y) have same first bit.
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void encrypt(uint32 *b,uint32 *k)

{

uint32
uint32
for (r

c +=

X +=

y +=

}
b[0] =

x = b[0], y = b[1];

r, c = 0;

= O;r < 4;r += 1) {

0x9e3779b9;
y+c ~ (y<<4)+k
= (y>>5)+k

x; bl1l] = y;

0]
1];
x+c T (x<<4)+k[2.

© (x>>5)+k[3];
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TEA4: another bad cipher

void encrypt(uint32 *b,uint32 *k)

{

uint32 x = b[0], y = b[1];

uint32 r, ¢ = 0;
for (r = 0;r < 4;r += 1) {
c += 0x9e3779b9;
x += y+c T (y<<4)+k[O.
- (y>>5)+k[1];
y += xtc ~ (x<<4)+k[2.
~ (x>>b)+k[3];
Iy
b[0] = x; b[1] = y;

Fast attack:
TEA4,(x + 2%, y) and
TEA4,(x, y) have same first bit.

Trace x, y differences

through steps in computation.
. 231 226_
- 221 216_

r = 0: multiples o

r = 1: multiples o
r = 2: multiples of 211, 20

r = 3: multiples of 21,29

Uniform random function F:
F(x + 231, y) and F(x, y) have
same first bit with probability 1/2.
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TEA4: another bad cipher

void encrypt(uint32 *b,uint32 *k)

{
uint32 x = b[0], y = b[1];

uint32 r, ¢ = 0;
for (r = 0;r < 4;r += 1) {
c += 0x9e377919;
x += y+c T (y<<4)+k[O.
- (y>>5)+k[1];
y += x+c T (x<<4)+k[2.
~ (x>>b)+k[3];
Iy
b[0] = x; b[1] = y;
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r = 0: multiples of 231,226.
r = 1: multiples of 221 210,
r = 2: multiples of 211, 20
r = 3: multiples of 21,29

Uniform random function F:

F(x + 231, y) and F(x, y) have
same first bit with probability 1/2.

PRF advantage 1/2.
Two pairs (x, y): advantage 3/4.
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Fast attack:
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orobabilities of higher-order
differences C(x 4+ 0 + €) —
C(x+6) — C(x+¢€) + C(x); etc.
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Attacks get beyond r =4

but rapidly lose effectiveness.
Very far from full TEA.
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How many “rounds” are
really needed for security?
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REPTEA: another bad cipher

void encrypt(uint32 *b,uint32 *k)
{
uint32 x = b[0], y = b[1];
uint32 r, ¢ = 0x9e3779b9;
for (r = O;r < 1000;r += 1) {

x += y+c T (y<<4)+k[O.
~ (y>>5)+k[1];
y += x+c T (x<<4)+k[2.
~ (x>>b)+k[3];
+
b[0] = x; b[1] = y;
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REPTEA: another bad cipher

void encrypt(uint32 *b,uint32 *k)
{
uint32 x = b[0], y = b[1];
uint32 r, ¢ = 0x9e3779b9;
for (r = 0;r < 1000;r += 1) {

x += y+c T (y<<4)+k[O_
~ (y>>5)+k[1];
y += x+c T (x<<4)+k[2.
~ (x>>5)+k[3];
}
b[0] = x; bl[1l] = y;
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void encrypt(uint32 *b,uint32 *k)

{

uint32
uint32
for (r
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¥
b[0] =

x = b[0], y = b[1];
c = 0x9e3779Db9;
= 0;r < 1000;r += 1) {
y+tc ~ (y<<4)+k|[O.

~ (y>>5)+k[1];
x+c ~ (x<<4)+k[2]
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REPTEA: another bad cipher

void encrypt(uint32 *b,uint32 *k)

{
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void encrypt(uint32 *b,uint32 *k)

{
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x+c ~ (x<<4)+k[2]
~ (x>>5)+k[3];
x; bl[l] = vy;

REPTEA(b) = I;°%(b)

where I) does x+=...;y+=....

Try list of 232 inputs b.

Collect outputs REPTEA,(b).
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rotate (b[4+c]

b

b

b[8+c];

1=x"(z<<1) "~ ((y
1=y~x ~((x
1=z"y ~ (X



Next slides: reference software
from 2017 Bernstein—Kolbl-
Lucks—Massolino—Mendel-Nawaz—
Schneider—-Schwabe—Standaert—
Todo—Viguier for “Gimli: a

cross-platform permutation”.
Gimli permutes {0, 1}3%%.
“Wait, where's the key?”

Even—Mansour SPRP mode:
Ei(m) =k & Gimli(k & m).

Salsa/ChaCha PRF mode:
Sk(m) = (k, m) ® Gimli(k, m).

Or: (k,0) @ Gimli(k, m).
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void gimli(uint32 *b)

{

int T,

C,

uint32 x,y,z;

for (r

24:r > 0;--r) {

for (¢ = 0;¢c < 4;++c) {

X

O O T N <

rotate (b[4+c]

= rotate(b[ cl, 24);

,  9);

b[8+c];
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1=x"(2<<1) " ((y&z) <<2) ;
1=y"x “((x]z)<<k1);
1=z"y “((x&y)<<3);



les: reference software
17 Bernstein—Kolbl—
lassolino—Mendel-Nawaz—

>r—Schwabe—Standaert—
guier for “Gimli: a
itform permutation”.

rmutes {0, 11334,
vhere's the key?”

ansour SPRP mode:
= k @ Gimli(k & m).

1aCha PRF mode:
= (k, m) & Gimli(k, m).

)) ® Gimli(k, m).

42
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void gimli(uint32 *b)

{
int r,c;

uint32 x,y,Z;

for (r = 24;r > 0;—-1r) {
for (¢ = 0;¢c < 4;++c) {

x = rotate(b[ c], 24);

= rotate(b[4+c], 9);

= b[8+c];
8+c]=x"(z<<1) " ((y&z)<<2);
4+c]=y~x “((x]z)<<k1);
cl=z"y ~ ((x&y)<<3);

O O O N <

if

if



nce software

In—Ko
Mende

bl—
—Nawaz—

e—Standaert—

‘Gimli:

d

mutation’ .

> key?”

RP mode:
li(k @& m).

F mode:
Gimli(k, m).

(k, m).
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void gimli(uint32 *b)
{
int r,c;

uint32 x,y,z;

for (r = 24;r > 0;-—-r) {
for (¢ = 0;¢c < 4;++c) {

x = rotate(b[ «c], 24);

= rotate(b[4+c], 9);

= b[8+c];
[8+c]=x"(z<<1) ~ ((y&z)<<2)
4+c]=y~x “((xlz)<<1)
cl=z"y ~((x&y)<<3)

O O T N <

43

)
)

)

if ((r & 3)

x=b[0]

x=b[2]

- b[
- b[

if ((r & 3)

x=b[0]

x=b[1]

: bl
: bl

if ((r & 3)
b[0] = (O



are h void gimli(uint32 *b) b if ((r & 3) == 0) A
{ x=b[0]; b[0]=b[1];
awaz— int r,c; x=b[2]; b[2]=b[3];
S rt— uint32 x,y,z; +
for (r = 24;r > 0;—-r) { if ((r & 3) == 2) {
for (¢ = 0;c < 4;++c) { x=b[0]; b[0]=b[2];
x = rotate(b[ cl, 24); x=b[1]; b[1]=b[3];
y = rotate(b[4+c], 9); }
zZ = b [8+c];
b[8+c]l=x"(z<<1) " ((y&z) <<2) ; if ((r & 3) == 0)
b[4+c]=y x “((xlz)<<1); b[0] ~= (0x9e37790C
b[ cl=z"y " ((x&y)<<3); ¥
) } }




43
void gimli(uint32 *b)

{
int r,c;

uint32 x,y,z;

24:r > 0;--r) {

for (¢ = 0;¢c < 4;++c) {

for (r =

x = rotate(b[ cl, 24);

y = rotate(b[4+c], 9);

zZ = b[8+c];
b[8+c]=x"(2z<<1) " ((y&z)<<2);
b[4+c]=y~x “((x]z)<<1);
b[ cl=z"y ~((x&y)<<3);

if ((r & 3) == 0) {

x=b[0]; b[O]
x=b[2]; b[2]
+
if ((r & 3) ==
x=b[0]; bI[O.
x=b[1]; b[1]
+
if ((r & 3) ==
b[0]

=b[1.

=b [3.

0)

: b[1]

: b[3]

"= (0x9e377900 | r);

44



nl1i(uint32 *b) N if ((r & 3) == 0) { N No addr
x=b[0]; b[O0]=b[1]; b[l]l=x; are replc
,C: x=b[2]; b[2]=b[3]; b[3]=x; (Idea st
> X,V Z; ! Big rota
quickly :

r = 24;r > 0;-—-1) { if ((r & 3) == 2) {
(c = 0;¢ < 4;++c) { x=b[0]; b[0]=b[2]; b[2]=x; @ X ¥, Z |
= rotate(b[ c], 24); x=b[1]; b[1]=b[3]; b[3]=x;  Cchanges
= rotate(b[4+c], 9); } (0,4, 8;
- bl8+cl; Other s\
B+c]=x"(2<<1) " ((y&z)<<2); if ((r & 3) == 0) through
4+c]=y~x “((xlz)<kl); b[0] = (0x9e377900 | r); swaps p
cl=z"y ~((x&y)<<3); t on 3 wic

+
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2 *b)
> 0;--r) {
< 4;:++c) {
(b[ cl, 24);
(b[4+c], 9);
b[8+c];
z<<1) "~ ((y&z)<<2) ;
“((xlz)<<1);
" ((x&y)<<3);

if ((r & 3) == 0) {
x=b[0]; b[O]=b[1]
x=b[2]; b[2]=b[3]

+

if ((r & 3) == 2) {
x=b[0]; b[O]=b[2]
x=b[1]; b[1]=b[3

+

if ((r & 3) == 0)

: b[1]

: b[3]

44

b[0] ~= (0x9e377900 | r);

No additions.

are replaced

Nor

oy sh

(Idea stolen

Big rotations diffu
quickly across bi

‘rom

DIT

X, y, z Interaction

changes quickly tf
(0,4,8;1,5,9; 2,

Other swaps

diffus

through rows. Del

swaps per round =

on a wide range o



&z)<<2) ;
1z)<<1);
&y)<<3);

if ((r & 3) == 0) {
x=b [0
x=b [2.

if ((r & 3) =
0] ;
1] ;

xX=Db
X=Db

if ((r & 3)

=b[1.
=b [3.

- b[0]
: b[2]

- bl[1]
: b[3]

44

b[0] ~= (0x9e377900 | r);

No additions. Nonlinear cari

are replaced by shifts of &, |
(Idea stolen from NORX cip

Big rotations diffuse change

quickly across bit positions.

X, V, z Interaction diffuses

changes quickly through col
(0,4,8;1,5,9; 2,6,10; 3,7,

Other swaps diffuse changes
through rows. Deliberately |
swaps per round = faster r¢
on a wide range of platform:



if ((r & 3)

if ((r & 3)

x=b[0]; b[O.
x=b[1]; b[1]

if ((r & 3)

== 0) {
x=b[0]; b[0]=b[1:
x=b[2]; b[2]=b[3.

== 2) {
0]=b[2.
1]1=b[3
== 0)

: b[1]

: b[3]

b[0] ~= (0x9e377900 | r);

44

No additions. Nonlinear carries

are replaced by shifts of &, |.
(Idea stolen from NORX cipher.)

Big rotations diffuse changes

quickly across bit positions.

X, Vv, z Interaction diffuses
changes quickly through columns

(0,4,8;1,5,9; 2,6,10; 3,7,11).

Other swaps diffuse changes
through rows. Deliberately limited
swaps per round = faster rounds
on a wide range of platforms.
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