Examples of symmetric primitives

D. J. Bernstein

message len | tweak | key | encrypts | authenticates
Permutation fixed no no |— —
Compression function | fixec yes |[no |— —
Block cipher fixec no yes | yes —
Tweakable block cipher | fixec yes |yes |yes —
Hash function variable no no |— —
MAC (without nonce) |variable no |yes|no yes
MAC (using nonce) variable yes |yes |no yes
Stream cipher variable yes |yes |yes no
Authenticated cipher |variable yes |yes |yes yes

s of symmetric primitives

rnstein
message len | tweak | key | encrypts | authenticates

ation fixed no no |— —
ssion function | fixec yes no |— —
ipher fixec no yes | yes —
ble block cipher | fixea yes |yes |yes —
nction variable no no |— —
vithout nonce) |variable no yes | no yes
Ising nonce) variable yes |yes |no yes
cipher variable yes |yes |yes no
icated cipher |variable yes |yes |yes yes

1994 W
a tiny er

vold en

{

uint3.

uint3.

for (.

b[0] :

1etric primitives

message len | tweak | key | encrypts | authenticates
fixed no no |— —
tion | fixec yes no |— —
fixec no yes | yes —
cipher | fixec yes |yes |yes —
variable no no |— —
nce) |variable no yes | no yes
e) variable yes |yes |no yes
variable yes |yes |yes no
her |variable yes |yes |yes yes

1994 Wheeler—Ne¢
a tiny encryption :

void encrypt(uin

{

uint32
uint32
for (r

c +=

X +=

y +=

b[0]

x = b[O0
r, c =
= 0;r <
0x9e377
ytc © (

”~

"~

(
x+c = (
(

x; bl[1l]

1tives

ssage len | tweak | key | encrypts | authenticates
ed no no |— —
le yes no |— —
Lo no yes | yes —
lo yes |yes |yes —
1able no no |— —
1able no yes | no yes
1able yes yes | no yes
1able yes yes | yes no
1able yes yes | yes yes

1994 Wheeler-Needham “T
a tiny encryption algorithm”

void encrypt(uint32 *b,ui

{
uint32

uint32
for (r
C +=

X +=

y +=

b[0]

x = bl0], v = bl

1
2
3

r, c = 0;
= 0;r < 32;r +=
0x9e3779b9;
y+c ~ (y<<4)+k[C
~ (y>>5)+k
x+c © (x<<4)+k
~ (x>>5)+k
x; bl1l] = y;

2 3
1994 Wheeler-Needham “TEA,
a tiny encryption algorithm’:
void encrypt(uint32 *b,uint32 *k)
tweak | key | encrypts | authenticates {
no no | — — uint32 x = b[0], y = b[1];
yESs no |— — uint32 r, c¢c = O;
no yes | yes — for (r = 0;r < 32;r += 1) A
yes yes | yes — c += 0x9e3779b9;
no no |— — x += y+c = (y<<4)+k[O0:
no yes | No yes = (y>>b)+k[1];
yes yes no yeS Yy += X+C (X<<4)+k 2
~ (x>>b)+k[3];
yes |yes |yes no
F
yes |yes |yes yes
b[0] = x; b[1] = y;
¥

encrypts | authenticates
yes —

yes —

no yes

no yes

yes no

yes yes

1994 Wheeler—-Needham “TEA,
a tiny encryption algorithm™:

void encrypt(uint32 *b,uint32 *k)

{

uint32
uint32
for (r

C +=

x = b[0], y = b[1];

r, c = 0;

= 0;r < 32;r += 1) {
0x9e3779b9;
ytc ~ (y<<4)+k[O0]

© (y>>b5)+k[1];
x+c = (x<<4)+k[2]

© (x>>5)+k[3];
x; bl1l] = y;

uint32:
represen
integer |

+: addit
c += d:
T XOr: ¢
each bit

Lower pi
SO spacil

<<4: mi
(0,0, 0, (

>>5: diy
(bs, be. -

1994 Wheeler—Needham “TEA, uint32: 32 bits (
a tiny encryption algorithm": representing the

integer by + 2b
void encrypt(uint32 *b,uint32 *k) ger bo + 201

authenticates| ¢ +: addition mod 2
— int32 = b[0], = bll];

i : o1,y = c += d: same as ¢
— uint32 r, c = 0;
— for (r = 0;r < 32;r += 1) { 1 xor; @; additiol
_ c += 0x9e3779b9: each bit separatel
o x += y+c = (y<<4)+k [0 Lower precedence
ves ~ (y>>B5)+k[1]; SO spacing IS not r
yes y += xtc 7 (x&<4)+kl2. <<4: multiplicatio
no (x>>5)+k[3]; (0,0,0,0, by, by, ..

F
yes TR

b[0] = x; b[1] = y; >>5: division by 3

\ (bs, b, . .., b31, 0,

Icates

1994 Wheeler-Needham “TEA,
a tiny encryption algorithm™:

void encrypt(uint32 *b,uint32 *k)
{
uint32 x = b[0], y = b[1];
uint32 r, ¢ = 0;
for (r = 0;r < 32;r += 1) {
c += 0x9e3779b9;
x += y+c = (y<<4)+k[O0]
~ (y>>5)+kl[1];
y += x+c T (x<<4)+k[2.
© (x>>5)+k[3];

b[0] = x; bl[1] = y;

uint32: 32 bits (bg, by, . ..
representing the “unsigned”
integer by + 2by + -+ - + 231

+: addition mod 232,
c +=d: same as c = c + d.

~: xor: @: addition of

each bit separately mod 2.
Lower precedence than + In
so spacing is not misleading

<<4: multiplication by 16, 1.
(0,0,0,0, by, by, ..., by7).

>>5: division by 32, I.e.,
(b5, bg,...,b31,0,0,0,0, O).

1994 Wheeler-Needham “TEA,
a tiny encryption algorithm’:

void encrypt(uint32 *b,uint32 *k)
{
uint32 x = b[0], y = b[1];
uint32 r, c¢c = 0;
for (r = 0;r < 32;r += 1) {
c += 0x9e3779b9;
x += y+tc ~ (y<<4)+k[O.
~ (y>>5)+k[1];
y += x+c T (x<<4)+k[2.
~ (x>>b)+k[3];

b[0] = x; b[1] = y;

uint32: 32 bits (bg, b1, ..., b31)
representing the “unsigned”
integer by + 2b1 + - - - + 231b31.

+: addition mod 232,
c +=d: same as c =c + d.

~. xor: @: addition of

each bit separately mod 2.
Lower precedence than + in C,
so spacing Is not misleading.

<<4: multiplication by 16, I.e.,
(0,0,0,0, by, by, ..., by7).

>>5: division by 32, I.e.,
(b5, bg,...,b31,0,0,0,0, O).

neeler-Needham “TEA,
cryption algorithm™:

crypt (uint32 *b,uint32 *k)

2 x = b[0], y = bl[1];
2 r, ¢c = 0;

r = O;r < 32;r += 1) {
0x9e3779b9;

ytc ~ (y<<4)+k[O]

~ (y>>b)+k[1];
= x+c ~ (x<<4)+k|[2.

~ (x>>b)+k[3];
= x; bl1l] = y;

uint32: 32 bits (bg, by, ..., b31)
representing the “unsigned”
integer by + 2b1 + - - - + 231 b31.

+: addition mod 232,
c +=d: same as c = c + d.

~: xor: @: addition of

each bit separately mod 2.
Lower precedence than + in C,
so spacing is not misleading.

<<4: multiplication by 16, I1.e.,
(0,0,0,0, by, by, ..., byy).

>>5: division by 32, I.e.,
(b5, bg,...,b31,0,0,0,0, O).

Functior

TEA iIs :
with a 1

xdham “TEA,
lgorithm™ ;

t32 *b,uint32 *k)

1, y = blll;
O;

32;r += 1) {
9b9;
y<<4)+k[0_
y>>5)+k[1];
x<<4)+k[2]
x>>5)+k [3];

=y;

uint32: 32 bits (bg, by, ..., b31)
representing the “unsigned”
integer by + 2b1 + - - - + 231b31.

+: addition mod 232,
c +=d: same as c =c + d.

~: xor: @: addition of

each bit separately mod 2.
Lower precedence than + in C,
so spacing Is not misleading.

<<4: multiplication by 16, I.e.,
(0,0,0,0, by, by, ..., bo7).

>>5: division by 32, I.e.,
(b5, bg, ..., b31,0,0,0,0, O).

Functionality

TEA is a 64-bit b
with a 128-bit ke

uint32: 32 bits (bg, by, ..., b31)
representing the “unsigned”
integer by + 2b1 + - - - + 231 b37.

+: addition mod 232,
c +=d: same as c = c + d.

~: xor: @: addition of

each bit separately mod 2.
Lower precedence than + in C,
so spacing Is not misleading.

<<4: multiplication by 16, I1.e.,
(0,0,0,0, by, by, ..., byy).

>>5: division by 32, I.e.,
(b5, bg, ..., b31,0,0,0,0, O).

Functionality

TEA is a 64-bit block ciph
with a 128-bit key.

uint32: 32 bits (bg, by, ..., b31)
representing the “unsigned”
integer by + 2b1 + - - - + 231b31.

+: addition mod 232,
c +=d: same as c =c + d.

~: xor: @: addition of

each bit separately mod 2.
Lower precedence than + in C,
so spacing is not misleading.

<<4: multiplication by 16, I.e.,
(0,0,0,0, by, by, ..., by7).

>>5: division by 32, I.e.,
(b5, bg, ..., b31,0,0,0,0, O).

Functionality

TEA is a 64-bit block cipher
with a 128-bit key.

uint32: 32 bits (bg, by, ..., b31)
representing the “unsigned”
integer by + 2b1 + - - - + 231b31.

+: addition mod 232,
c +=d: same as c =c + d.

~: xor: @: addition of

each bit separately mod 2.
Lower precedence than + in C,
so spacing is not misleading.

<<4: multiplication by 16, I.e.,
(0,0,0,0, by, b1, ..., by7).

>>5: division by 32, I.e.,
(b5, bg, ..., b31,0,0,0,0, O).

Functionality

TEA is a 64-bit block cipher
with a 128-bit key.

Input: 128-bit key (namely
k[0],k[1],k[2],k[3]);
64-bit plaintext (b[0],b[1]).

Output: 64-bit ciphertext
(final b[0] ,b[1]).

uint32: 32 bits (bg, by, ..., b31)
representing the “unsigned”
integer by + 2b1 + - - - + 231b31.

+: addition mod 232,
c +=d: same as c =c + d.

~: xor: @: addition of

each bit separately mod 2.
Lower precedence than + in C,
so spacing is not misleading.

<<4: multiplication by 16, I.e.,
(0,0,0,0, by, by, ..., by7).

>>5: division by 32, I.e.,
(b5, bg, ..., b31,0,0,0,0, O).

Functionality

TEA is a 64-bit block cipher
with a 128-bit key.

Input: 128-bit key (namely
k[0],k[1],k[2],k[3]);
64-bit plaintext (b[0],b[1]).

Output: 64-bit ciphertext
(final b[0] ,b[1]).

Can efficiently encrypt:
(key, plaintext) — ciphertext.

Can efficiently decrypt:
(key, ciphertext) — plaintext.

32 bits (bg, by, - . ., b31)
ting the “unsigned”
o + 2b1 + - + 23Lbay.

ion mod 232.

same as ¢c = ¢ + d.

D: addition of
separately mod 2.
ecedence than + in C,
g Is not misleading.

iltiplication by 16, I1.e.,
), by, by, ..., by7).

Ision by 32, I.e.,
..,b31,0,0,0,0,0).

Functionality

TEA is a 64-bit block cipher
with a 128-bit key.

Input: 128-bit key (namely
k[0],k[1],k[2],k[3]);

64-bit plaintext (b[0],b[1]).

Output: 64-bit ciphertext
(final b[0] ,b[1]).

Can efficiently encrypt:

(key, plaintext) +— ciphertext.

Can efficiently decrypt:
(key, ciphertext) — plaintext.

Wait, hc

vold en

{

uint3.

uint3.

for (:

b[0] :

unsigned”
e 231b31_

32

= c + d.

1 of

/ mod 2.
than + in C,
nisleading.

n by 16, I.e.,
., br7).

2. 1.e.,
0,0,0,0).

Functionality

TEA is a 64-bit block cipher
with a 128-bit key.

Input: 128-bit key (namely
k[0],k[1],k[2],k[3]);

64-bit plaintext (b[0],b[1]).

Output: 64-bit ciphertext
(final b[0],b[1]).

Can efficiently encrypt:
(key, plaintext) — ciphertext.

Can efficiently decrypt:
(key, ciphertext) — plaintext.

Wait, how can we

void encrypt(uin

{
uint32

uint32
for (r
C +=

X +=

= 0;r <
0x9e377

 b31)

Functionality

TEA is a 64-bit block cipher
with a 128-bit key.

Input: 128-bit key (namely
k[0],k[1],k[2],k[3]);

64-bit plaintext (b[0],b[1]).

Output: 64-bit ciphertext
(final b[0] ,b[1]).

Can efficiently encrypt:

(key, plaintext) +— ciphertext.

Can efficiently decrypt:
(key, ciphertext) — plaintext.

Wait, how can we decrypt?

void encrypt(uint32 *b,ui
{
uint32 x = b[0], y = bl
uint32 r, ¢ = 0;
for (r = 0;r < 32;r +=
c += 0x9e377919;

x += y+c T (y<<4)+k[C
~ (y>>b)+k[1
y += x+c T (x<<4)+k[2
T (x>>5)+k[3

b[0] = x; bl1l] = y;

Functionality Wait, how can we decrypt?
TEA is a 64-bit block cipher void encrypt(uint32 *b,uint32 *k)
with a 128-bit key. {

Input: 128-bit key (namely uint32 x = b[0], y = bl[1];

k[0],k[1],k[2],k[3]);
64-bit plaintext (b[0],b[1]).

uint32 r, ¢ = 0;
for (r = 0;r < 32;r += 1) {
c += 0x9e3779Db9;

Output: 64-bit ciphertext x += y+c ~ (y<<4)+k[0]
(final b[0],b[1]). ~ (y>>b)+k[1];
Can efficiently encrypt: y *= xtc 7 (x<<d)kl2.

(key, plaintext) — ciphertext. - (x>>5)+k[3];

Can efficiently decrypt: b[0] = x; b[1] = y;

(key, ciphertext) — plaintext. }

ality

y 604-bit block cipher
28-bit key.

28-bit key (namely
11 ,k[2] ,k[3]);

laintext (b[0] ,b[1]).

064-bit ciphertext
0],b[1]).

“lently encrypt:
intext) — ciphertext.

“lently decrypt:
hertext) — plaintext.

Wait, how can we decrypt?

void encrypt(uint32 *b,uint32 *k)

{

uint32 x = b[0], y = b[1];

uint32 r, ¢ = 0;

for (r = 0;r < 32;r += 1) {
c += 0x9e3779b9;

x += y+c ~ (y<<4)+k[O_
© (y>>5)+k[1];

y += x+c T (x<<4)+k[2.
~ (x>>5)+k [3] ;

b[0] = x; bl1l] = y;

Answer:

vold de

{

uint3.

uint3.

for (:
y—:

b[0] :

lock cipher
y.

(namely

k[3]);

b[0],b[1]).

Yhertext

“rypt:
ciphertext.

rypt:
» plaintext.

Wait, how can we decrypt?

void encrypt(uint32 *b,uint32 *k)

{

uint32
uint32
for (r

c +=

X +=

y +=

}
b[0] =

x = b[0], y = b[1];

r, C O;
= 0;r < 32;r += 1) {
0x9e3779b9;
y+tc ~ (y<<4)+k[O.

~ (y>>5)+k[1];
x+c ~ (x<<4)+k[2]

~ (x>>b)+k[3];
x; bl1l] = y;

Answer: Each stej

void decrypt(uin

{
uint32 x = b[O0
uint32 r, c =

for (r = 0;r <

y —= x+c = (
~(
x —= y+tc = (
" (
c —= 0x9e377
+
b[0] = x; b[1]
Iy

er

Wait, how can we decrypt?

void encrypt(uint32 *b,uint32 *k)

{

uint32 x = b[0], y = b[1];

uint32 r, ¢ = 0;

for (r = 0;r < 32;r += 1) {
c += 0x9e3779b9;

x += y+c ~ (y<<4)+k[O_
© (y>>5)+k[1];

y += x+c T (x<<4)+k[2.
~ (x>>5)+k [3] ;

}
b[0] = x; bl1] = y;

Answer: Each step Is invert

void decrypt(uint32 *b,ui
{
uint32 x = b[0], y = bl
uint32 r, ¢ = 32 * 0x9e

for (r = 0;r < 32;r +=

y —= xtc © (x<<4)+k[2
T (x>>5)+k [3
x —= y+c T (y<<4)+k[C
= (y>>b)+k[1
c —= 0x9e3779b9;
Iy
b[0] = x; bl1] = y;

Wait, how can we decrypt? 6 Answer: Each step is invertible. 7
void encrypt(uint32 *b,uint32 *k) void decrypt(uint32 *b,uint32 *k)
{ {
uint32 x = b[0], y = b[1]; uint32 x = b[0], v = b[1];
uint32 r, ¢ = 0; uint32 r, ¢ = 32 *x 0x9e3779b9;
for (r = 0;r < 32;r += 1) { for (r = 0;r < 32;r += 1) {
c += 0x9e3779b9; y -= x+c 7 (x<<4)+k[2]
x += y+c ~ (y<<4)+k[O. ~ (x>>5)+k[3];
~ (y>>b)+k[1]; x —= y+c ~ (y<<4)+k[O.
y += xtc = (x<<4)+k[2. ~ (y>>b)+k[1];
~ (x>>5)+k[3]; c —-= 0x9e3779b9;
F F
b[0] = x; bl1l] = y; b[0] = x; bl1l] = y;
¥ ¥

)W can we decrypt?

crypt (uint32 *b,uint32 *k)

2 x = b[0], y = b[1];
c = 0;

r = 0;r < 32;r += 1) {
0x9e3779b9;

~ (y<<4)+k [
= (y>>B)+k[
~ (x<<4)+k [
~ (x>>5)+k [3.

2 T,

y+c

"
P
.|.
@]
W 1[\)| |H| |o|

x; bl1l] = y;

Answer: Each step is invertible.

void decrypt(uint32 *b,uint32 *k)

{

uint32 x = b[0], y = b[1];

ulnt32 r, ¢ = 32 *x 0x9e3779b9;
for (r = 0;r < 32;r += 1) {
y —= xtc ~ (x<<4)+k[2.
~ (x>>5)+k[3];
x —= y+c ~ (y<<4)+k[O_
~ (y>>5)+k[1];
c —= 0x9e3779b9;
¥
b[0] = x; bl1] = y;

Generali

(used in
1973 Fe

x += fu

y += fu

x += fu

y += fu

Decrypti

y —= fu
x —= fu
y —= fu

x —= fuw

decrypt?

t32 *xb,uint32 *k)

1, v = bll];
O;

32;r += 1) {
9b9;
y<<4)+k[0_
y>>5)+k[1];
x<<4)+k[2]
x>>5)+k [3] ;

=y;

Answer: Each step is invertible.

void decrypt(uint32 *b,uint32 *k)

{
uint32 x = b[0], y = b[1];
uint32 r, ¢ = 32 *x 0x9e3779b9;
for (r = 0;r < 32;r += 1) {

y —= xtc T (x<<4)+k[2.
~ (x>>5)+k([3];
x —= y+c T (y<<4)+k[O.
- (y>>5)+k[1];
c —= 0x9e3779b9;
+
b[0] = x; b[1] = y;

Generalization, Fe
(used in, e.g., “Lu
1973 Feistel-Copp

x += functionl(y
y += function2(x
x += function3(y

y += function4d(x

Decryption, Invert

y —= functiond(x
x —= function3(y
y —= function2(x

x —= functionl(y

Answer: Each step is invertible.

void decrypt(uint32 *b,uint32 *k)

{
uint32 x = b[0], y = b[1];
ulnt32 r, ¢ = 32 *x 0x9e3779b9;
for (r = 0;r < 32;r += 1) {
y —= xtc ~ (x<<4)+k[2.
© (x>>5)+k[3];
x —= y+c T (y<<4)+k[O_
- (y>>5)+k[1];
c —= 0x9e3779b9;
¥
b[0] = x; bl1] = y;
F

Generalization, Feistel netw
(used in, e.g., “Lucifer” fror
1973 Feistel-Coppersmith):

x += functionl(y,k);
y += function2(x,k);
x += function3(y,k);
y += functiond(x,k);

Decryption, inverting each s

y —-= function4(x,k);
x —-= function3(y,k) ;
y —= function2(x,k);
x —-= functionl(y,k);

Answer: Each step is invertible. 7 Generalization, Feistel network
void decrypt(uint32 *b,uint32 *k) (usedin,eag” “Lucifer” from
) 1973 Feistel-Coppersmith):
uint32 x = b[0], y = b[1]; x += functionl(y,k);
uint32 r, ¢ = 32 *x 0x9e3779b9; y += function2(x,k);
for (r = 0;r < 32;r += 1) { x += function3(y,k);
y —= xtc = (x<<4)+k[2. y += function4(x,k);
~ (x>>6)+k[3];
x == yre 7 (ye<d)Hkl0. Decryption, inverting each step:
~ (y>>5)+k[1];
c —= 0x9e3779b9;
} y —= function4(x,k);
b[0] = x; b[1] = v; x —= function3(y,k);
1 y —= function2(x,k);
x —= functionl(y,k);

Each step is invertible.

crypt (uint32 *b,uint32 *k)

2 x = b[0], y = b[1];

2 r, ¢ = 32 *x 0x9e3779b9;

r = O;r < 32;r += 1) {

x+c ~ (x<<4)+k[2.
~ (x>>5)+k[3];

ytc © (y<<4)+k[0.
- (y>>5)+k[1];

0x9e3779b9;

x; bl1l] = y;

Generalization, Feistel network
(used in, e.g., “Lucifer” from
1973 Feistel-Coppersmith):

x += functionl(y,k);
y += function2(x,k);
x += function3(y,k);
y += functiond(x,k);

Decryption, inverting each step:

y —-= function4(x,k);
x —-= function3(y,k) ;
y —= function2(x,k);
x -= functionl(y,k);

Higher-|:

User's ir
of 64-bit

) 1S Invertible.

t32 *xb,uint32 *k)

1, v = bll];

32 * 0x9e3779b9;
32;r += 1) {
x<<4)+k [2]
x>>5)+k [3];
y<<4)+k[O0_
y>>5)+k[1];
9b9;

Generalization, Feistel network
(used in, e.g., “Lucifer” from
1973 Feistel-Coppersmith):

x += functionl(y,k);
y += function2(x,k);
x += function3(y,k);
y += function4(x,k);

Decryption, inverting each step:

y —= functiond(x,k);
x -= function3(y,k) ;
y —= function2(x,k);
x —-= functionl(y,k);

Higher-level functi

User's message is
of 64-bit blocks m

ble.

nt32 *xk)

1];

1) A

Generalization, Feistel network
(used in, e.g., “Lucifer” from
1973 Feistel-Coppersmith):

x += functionl(y,k);
y += function2(x,k);
x += function3(y,k);
y += functiond(x,k);

Decryption, inverting each step:

y —-= function4(x,k);
x —-= function3(y,k) ;
y —= function2(x,k);
x -= functionl(y,k);

Higher-level functionality

User's message is long seque
of 64-bit blocks mqg, m1, mo,

Generalization, Feistel network
(used in, e.g., “Lucifer” from
1973 Feistel-Coppersmith):

x += functionl(y,k);
y += function2(x,k);
x += function3(y,k);
y += function4(x,k);

Decryption, inverting each step:

y —-= functiond(x,k);
x -= function3(y,k) ;
y —= function2(x,k);
x -= functionl(y,k);

Higher-level functionality

User's message is long sequence
of 64-bit blocks mg, my, mo,

Generalization, Feistel network
(used in, e.g., “Lucifer” from
1973 Feistel-Coppersmith):

x += functionl(y,k);
y += function2(x,k);
x += function3(y,k);
y += function4(x,k);

Decryption, inverting each step:

y —-= functiond(x,k);
x -= function3(y,k) ;
y —= function2(x,k);
x -= functionl(y,k);

Higher-level functionality

User's message is long sequence
of 64-bit blocks mg, my, mo,

TEA-CTR produces ciphertext
Co = mp D TEAk(n, 0),
C1=m &P TEAk(n, 1),
co=my®TEAL(N,2), ...
using 128-bit key k,

32-bit nonce n,

32-bit block counter 0,1, 2,

Generalization, Feistel network
(used in, e.g., “Lucifer” from
1973 Feistel-Coppersmith):

x += functionl(y,k);
y += function2(x,k);
x += function3(y,k);
y += function4(x,k);

Decryption, inverting each step:

y —-= functiond(x,k);
x -= function3(y,k) ;
y —= function2(x,k);
x -= functionl(y,k);

Higher-level functionality

User's message is long sequence
of 64-bit blocks mg, my, mo,

TEA-CTR produces ciphertext
Co = mg D TEAk(n, 0),
C1=m &P TEAk(n, 1),
co=my®TEAL(N,2), ...
using 128-bit key k,

32-bit nonce n,

32-bit block counter 0,1, 2,

CTR is a mode of operation
that converts block cipher TEA
into stream cipher TEA-CTR.

zation, Feistel network
ce.g., "Lucifer’ from
stel-Coppersmith):

nctionl (y,k) ;
nction2(x,k) ;
nction3(y,k) ;
nctiond (x,k);

on, Inverting each step:

nctiond (x,k) ;
nction3(y,k) ;
nction2(x,k);

nctionl (y,k) ;

Higher-level functionality

User's message is long sequence

of 64-bit blocks mg, m1, mo,

TEA-CTR produces ciphertext
Co = mp D TEAk(n, O),
C1=m D TEAk(n, 1),
co=my®TEAL(N,2), ...
using 128-bit key k,

32-
32-

It nonce n,

it block counter 0,1,2,

CTR is a mode of operation
that converts block cipher TEA
into stream cipher TEA-CTR.

User als
forged /r

istel network
cifer’ from
»ersmith):

Higher-level functionality

User's message is long sequence
of 64-bit blocks mg, my, mo,

TEA-CTR produces ciphertext
co = mg @ TEA(n,0),
C1=m &P TEAk(n, 1),
co=my®TEAL(N,2), ...
using 128-bit key k,

32-bit nonce n,

32-bit block counter 0,1, 2,

CTR is a mode of operation
that converts block cipher TEA
into stream cipher TEA-CTR.

User also wants tc
forged /modified ci

jork

tep:

Higher-level functionality

User's message is long sequence
of 64-bit blocks mg, m1, mo,

TEA-CTR produces ciphertext
co = mg @ TEAL(n,0),
C1=m D TEAk(n, 1),
co=my®TEAL(N,2), ...
using 128-bit key k,

32-bit nonce n,

32-bit block counter 0,1,2,

CTR is a mode of operation
that converts block cipher TEA
into stream cipher TEA-CTR.

User also wants to recognize
forged /modified ciphertexts.

Higher-level functionality

User's message is long sequence
of 64-bit blocks mg, my, mo,

TEA-CTR produces ciphertext
co = Mg D TEAk(n, 0),
C1=m &P TEAk(n, 1),
co=my®TEAL(N,2), ...
using 128-bit key k,

32-bit nonce n,

32-bit block counter 0,1,2,

CTR is a mode of operation
that converts block cipher TEA
into stream cipher TEA-CTR.

User also wants to recognize
forged /modified ciphertexts.

10

Higher-level functionality

User's message is long sequence
of 64-bit blocks mg, my, mo,

TEA-CTR produces ciphertext
Co = mg D TEAk(n, 0),

C1=m &P TEAk(n, 1),
co=my®TEAL(N,2), ...
using 128-bit key k,

32-bit nonce n,

32-bit block counter 0,1, 2,

CTR is a mode of operation
that converts block cipher TEA
into stream cipher TEA-CTR.

User also wants to recognize
forged /modified ciphertexts.

Usual strategy:
append authenticator to

the ciphertext ¢ = (¢, c1, ¢, .. .).

10

Higher-level functionality

User's message is long sequence
of 64-bit blocks mg, my, mo,

TEA-CTR produces ciphertext
co = Mg D TEAk(n, 0),
C1=m &P TEAk(n, 1),
co=my®TEAL(N,2), ...
using 128-bit key k,

32-bit nonce n,

32-bit block counter 0,1,2,

CTR is a mode of operation
that converts block cipher TEA
into stream cipher TEA-CTR.

10
User also wants to recognize

forged /modified ciphertexts.

Usual strategy:
append authenticator to

the ciphertext ¢ = (¢, c1, ¢, .. .).

TEA-XCBC-MAC computes

d) — TEAJ'(C()),

al = TEAj(Cl ® ap),

ar = TEAJ'(CQ ®ai), ...,

ag—1 = TEAj(cp—1 @ ag—2),

dy = TEAj(i D cpDay_1)

using 128-bit key j, 64-bit key 1.
Authenticator is ay: I.e.,
transmit (cg, c1,..., ¢, ag).

evel functionality

1essage Is long sequence
- blocks mg, my1, mo,

'R produces ciphertext
® TEA,(n, 0),

® TEA,(n, 1),

® TEAL(n,2), ...
8-bit key k,

once n,

lock counter 0,1,2,

» mode of operation
verts block cipher TEA
xam cipher TEA-CTR.

User also wants to recognize
forged /modified ciphertexts.

Usual strategy:
append authenticator to
the ciphertext ¢ = (¢, c1, ©2, ..

TEA-XCBC-MAC computes

d) — TEAj(CO),

al = TEAj(Cl ® ap),

a = TEAj(CQ ®ai), ...,

ag—1 = TEAj(ci—1 @ ag—2),

dy = TEAj(I' D ¢y D ag_l)

using 128-bit key J, 64-bit key 1.
Authenticator is ay: 1.e.,

transmit (cg, c1, ..., ¢, ag).

).

10

Specifyit
authent

320-bit |
Specify

uniform

onality

long sequence

0, My, mo,

s ciphertext
n,0),

n,1),

n2)), ...

K,

ter 0,1,2,....

[operation
k cipher TEA
r TEA-CTR.

User also wants to recognize
forged /modified ciphertexts.

Usual strategy:
append authenticator to

the ciphertext ¢ = (¢, c1, o, ..

TEA-XCBC-MAC computes

d) — TEAJ'(C()),

al = TEAj(Cl ® ap),

ar = TEAJ'(CQ ®ai), ...,

ag—1 = TEAj(c—1 @ ag—2),

g = TEAj(i D cpDay_1)

using 128-bit key j, 64-bit key 1.
Authenticator is ay: I.e.,
transmit (cg, c1,..., ¢, ag).

).

10

Specifying TEA-C
authenticated cij
320-bit key (k,j, i
Specify how this i
uniform random 3

2NCE

Xt

n
EA
'R,

User also wants to recognize
forged /modified ciphertexts.

Usual strategy:
append authenticator to
the ciphertext ¢ = (¢, c1, ©2, ..

TEA-XCBC-MAC computes

d) — TEAj(CO),

al = TEAj(Cl ® ap),

a = TEAj(CQ ®ai), ...,

ag—1 = TEAj(c—1 @ ag—2),

dy = TEAj(I' D cpDay_1)

using 128-bit key j, 64-bit key 1.
Authenticator is ay: I.e.,
transmit (cg, c1, ..., ¢, ag).

).

10

Specifying TEA-CTR-XCBC
authenticated cipher:
320-bit key (k,J,).

Specify how this is chosen:
uniform random 320-bit stri

User also wants to recognize
forged /modified ciphertexts.

Usual strategy:

append authenticator to

the ciphertext ¢ = (¢, c1, o, ..

TEA-XCBC-MAC computes

d) — TEAJ'(C()),

al = TEAj(Cl ® ap),

a = TEAJ'(CQ ®ai), ...,

ag—1 = TEAj(ci—1 @ ag—2),

g = TEAj(i D Cp D ag_l)

using 128-bit key j, 64-bit key 1.
Authenticator is ay: 1.e.,

transmit (cg, c1,..., ¢, ag).

).

10

Specifying TEA-CTR-XCBC-MAC
authenticated cipher:

320-bit key (k, J,).

Specify how this is chosen:
uniform random 320-bit string.

11

User also wants to recognize
forged /modified ciphertexts.

Usual strategy:

append authenticator to

the ciphertext ¢ = (¢, c1, o, ..

TEA-XCBC-MAC computes

d) — TEAJ'(C()),

al = TEAj(Cl ® ap),

a = TEAJ'(CQ ®ai), ...,

ag—1 = TEAj(ci—1 @ ag—2),

g = TEAj(i D Cp D ag_l)

using 128-bit key j, 64-bit key 1.
Authenticator is ay: 1.e.,

transmit (cg, c1,..., ¢, ag).

).

10

Specifying TEA-CTR-XCBC-MAC
authenticated cipher:

320-bit key (k,j,).
Specify how this is chosen:
uniform random 320-bit string.

Specify set of messages:
message Is sequence of

at most 232 64-bit blocks.
(Can do some extra work

to allow sequences of bytes.)

11

User also wants to recognize
forged /modified ciphertexts.

Usual strategy:

append authenticator to

the ciphertext ¢ = (¢, c1, o, ..

TEA-XCBC-MAC computes

d) — TEAJ'(C()),

al = TEAj(Cl ® ap),

a = TEAJ'(CQ ®ai), ...,

ag—1 = TEAj(ci—1 @ ag—2),

g = TEAj(i D Cp D ag_l)

using 128-bit key j, 64-bit key 1.
Authenticator is ay: 1.e.,

transmit (cg, c1,..., ¢, ag).

).

10

Specifying TEA-CTR-XCBC-MAC
authenticated cipher:

320-bit key (k,j,).
Specify how this is chosen:
uniform random 320-bit string.

Specify set of messages:
message Is sequence of

at most 232 64-bit blocks.
(Can do some extra work

to allow sequences of bytes.)

Specify how nonce is chosen:
message number. (Stateless

alternative: uniform random.)

11

O wants to recognize
nodified ciphertexts.

rategy:
authenticator to
ertext ¢ = (g, c1, O, ..

BC-MAC computes
Aj(c),

EAj(Cl ® ap),

EAj(CQ D 31), Ce
TEA;(cp—1 ® ag-2),
Aj(l' D cp D ay_1)

8-bit key j, 64-bit key 1.
iIcator 1s ay: l.e.,

L (Co, C1,---,0Cy, ag).

).

10

Specifying TEA-CTR-XCBC-MAC
authenticated cipher:

320-bit key (k,j, i).
Specify how this is chosen:
uniform random 320-bit string.

Specify set of messages:
message Is sequence of

at most 232 64-bit blocks.
(Can do some extra work

to allow sequences of bytes.)

Specify how nonce is chosen:
message number. (Stateless

alternative: uniform random.)

11

|s this se

Step 1.
for auth

) recognize
phertexts.

ator to
(g, €1, 0, ..

computes

0),

D ag2),

D ay1)

| 64-bit key i
/. i.e.,

., Cy,ayp).

).

10

Specifying TEA-CTR-XCBC-MAC
authenticated cipher:

320-bit key (k,j, i).
Specify how this is chosen:
uniform random 320-bit string.

Specify set of messages:
message Is sequence of

at most 232 64-bit blocks.
(Can do some extra work

to allow sequences of bytes.)

Specify how nonce is chosen:
message number. (Stateless

alternative: uniform random.)

11

Is this secure?

Step 1: Define sec
for authenticated

ey 1.

10

Specifying TEA-CTR-XCBC-MAC
authenticated cipher:

320-bit key (k,j, i).
Specify how this is chosen:
uniform random 320-bit string.

Specify set of messages:
message Is sequence of

at most 232 64-bit blocks.
(Can do some extra work

to allow sequences of bytes.)

Specify how nonce is chosen:
message number. (Stateless

alternative: uniform random.)

11

Is this secure?

Step 1: Define security
for authenticated ciphers.

Specifying TEA-CTR-XCBC-MAC
authenticated cipher:

320-bit key (k,j, i).
Specify how this is chosen:
uniform random 320-bit string.

Specify set of messages:
message Is sequence of

at most 232 64-bit blocks.
(Can do some extra work

to allow sequences of bytes.)

Specify how nonce is chosen:
message number. (Stateless

alternative: uniform random.)

11

Is this secure?

Step 1: Define security
for authenticated ciphers.

12

Specifying TEA-CTR-XCBC-MAC
authenticated cipher:

320-bit key (k,j, i).
Specify how this is chosen:
uniform random 320-bit string.

Specify set of messages:
message Is sequence of

at most 232 64-bit blocks.
(Can do some extra work

to allow sequences of bytes.)

Specify how nonce is chosen:
message number. (Stateless

alternative: uniform random.)

11

Is this secure?

Step 1: Define security
for authenticated ciphers.

This Is not easy to do!

12

Specifying TEA-CTR-XCBC-MAC
authenticated cipher:

320-bit key (k,j, i).
Specify how this is chosen:
uniform random 320-bit string.

Specify set of messages:
message Is sequence of

at most 232 64-bit blocks.
(Can do some extra work

to allow sequences of bytes.)

Specify how nonce is chosen:
message number. (Stateless

alternative: uniform random.)

11

Is this secure?

Step 1: Define security
for authenticated ciphers.

This Is not easy to do!

Useless extreme: “lt's secure
unless you show me the key.”
Too weak. Many ciphers

leak plaintext or allow forgeries
without leaking key.

12

Specifying TEA-CTR-XCBC-MAC
authenticated cipher:

320-bit key (k,j, i).
Specify how this is chosen:
uniform random 320-bit string.

Specify set of messages:
message Is sequence of

at most 232 64-bit blocks.
(Can do some extra work

to allow sequences of bytes.)

Specify how nonce is chosen:
message number. (Stateless

alternative: uniform random.)

11

12
Is this secure?

Step 1: Define security
for authenticated ciphers.

This Is not easy to do!

Useless extreme: “lt's secure
unless you show me the key.”
Too weak. Many ciphers

leak plaintext or allow forgeries

without leaking key.

Another useless extreme;:

“Any structure Is an attack.”
Hard to define clearly.
Everything seems “attackable™.

1g TEA-CTR-XCBC-MAC
icated cipher:

ey (k,Jj, 1).
how this Is chosen:
random 320-bit string.

set of messages:

Is sequence of

232 64-bit blocks.
some extra work
sequences of bytes.)

how nonce 1s chosen:
number. (Stateless

ve: uniform random.)

11

Is this secure?

Step 1: Define security
for authenticated ciphers.

This Is not easy to do!

Useless extreme: “lt's secure
unless you show me the key.”
Too weak. Many ciphers

leak plaintext or allow forgeries

without leaking key.

Another useless extreme:
“"Any structure Is an attack.”
Hard to define clearly.

Everything seems “attackable™.

12

Step 2:
target se
prove th

from sin

TR-XCBC-MAC
dher:

).
5 chosen:
20-bit string.

sages:
ce of

- blocks.

a work

, of bytes.)

 Is chosen:
(Stateless

m random.)

11

12
Is this secure?

Step 1: Define security
for authenticated ciphers.

This Is not easy to do!

Useless extreme: “lt's secure
unless you show me the key.”
Too weak. Many ciphers

leak plaintext or allow forgeries

without leaking key.

Another useless extreme;:

“Any structure Is an attack.”
Hard to define clearly.
Everything seems “attackable™.

Step 2: After sett
target security def
prove that security
from simpler prop

-MAC

ng.

11

Is this secure?

Step 1: Define security
for authenticated ciphers.

This Is not easy to do!

Useless extreme: “lt's secure
unless you show me the key.”
Too weak. Many ciphers

leak plaintext or allow forgeries
without leaking key.

Another useless extreme:
“"Any structure iIs an attack.”
Hard to define clearly.

Everything seems “attackable”.

12

Step 2: After settling on
target security definition,
prove that security follows
from simpler properties.

Is this secure?

Step 1: Define security
for authenticated ciphers.

This Is not easy to do!

Useless extreme: “lt's secure
unless you show me the key.”
Too weak. Many ciphers

leak plaintext or allow forgeries
without leaking key.

Another useless extreme;:
“Any structure Is an attack.”
Hard to define clearly.

Everything seems “attackable™.

12

Step 2: After settling on
target security definition,
prove that security follows
from simpler properties.

13

Is this secure?

Step 1: Define security
for authenticated ciphers.

This Is not easy to do!

Useless extreme: “lt's secure
unless you show me the key.”
Too weak. Many ciphers

leak plaintext or allow forgeries

without leaking key.

Another useless extreme;:
“Any structure Is an attack.”
Hard to define clearly.

Everything seems “attackable™.

12

Step 2: After settling on
target security definition,
prove that security follows
from simpler properties.

e.g. Prove PRF security of

n— TEAL(n,0), TEA.(n, 1), ...

assuming PRF security of
b— TEA(D).

13

Is this secure?

Step 1: Define security
for authenticated ciphers.

This Is not easy to do!

Useless extreme: “lt's secure
unless you show me the key.”
Too weak. Many ciphers

leak plaintext or allow forgeries
without leaking key.

Another useless extreme;:
“Any structure Is an attack.”
Hard to define clearly.

Everything seems “attackable™.

12

Step 2: After settling on
target security definition,
prove that security follows
from simpler properties.

e.g. Prove PRF security of

n— TEAk(n,0), TEA,(n,1),...
assuming PRF security of

b— TEA(D).

l.e. Prove that

any PRF attack against

n— TEAk(n, O), TEAk(n, 1), C
implies PRF attack against

b — TEAk(b).

13

12 13
cure’? Step 2: After settling on

j - | finiti TE
Define security target security definition,

. . rove that security follows
enticated ciphers. P Y

from simpler properties.

1ot easy to do! |
e.g. Prove PRF security of

extreme: “lt's secure n— TEA,(n,0), TEA,(n,1),...
u show me the key.” assuming PRF security of
k. Many ciphers b— TEA(b). n— TE

ntext or allow forgeries |
i.e. Prove that

leaking key. .

any PRF attack against
useless extreme: n— TEA,(n,0), TEA,(n,1),...
ucture is an attack.” implies PRF attack against
define clearly. b— TEAL(b).

ng seems “attackable”.

urity
ciphers.

) do!

‘It's secure
e the key.”
ciphers

llow forgeries
\

treme:
an attack.”
arly.

“attackable” .

12

Step 2: After settling on
target security definition,
prove that security follows
from simpler properties.

e.g. Prove PRF security of

n— TEAk(n,0), TEA,(n,1),...
assuming PRF security of

b— TEA(D).

l.e. Prove that

any PRF attack against

n— TEAk(n, O), TEAk(n, 1), C
implies PRF attack against

b — TEAk(b).

13

privac
TEA-CTR-X

privac
TEA-(

PRF secL
n— TEA,(n,0),

r1es

e” .

12

Step 2: After settling on
target security definition,
prove that security follows
from simpler properties.

e.g. Prove PRF security of

n— TEA.(n,0), TEA.(n, 1), ...

assuming PRF security of
b— TEAL(D).

l.e. Prove that
any PRF attack against

n— TEAk(n, O), TEAk(n, 1), N

implies PRF attack against
b — TEAk(b).

13

privacy of
TEA-CTR-XCBC-MAC

privacy of
TEA-CTR

PRF security of
n+— TEAk(n, 0), TEAk(n, 1

A

Step 2: After settling on
target security definition,
prove that security follows
from simpler properties.

e.g. Prove PRF security of

n+— TEAk(n, O), TEAk(n, 1), C

assuming PRF security of
b— TEA(D).

l.e. Prove that
any PRF attack against

n— TEAk(n, O), TEAk(n, 1), C

implies PRF attack against
b — TEAk(b).

13

14

privacy of
TEA-CTR-XCBC-MAC

privacy of
TEA-CTR

PRF security of
n— TEAk(n,0), TEA,(n,1),...

.

PRF secL

PRP sect

13 14
After settling on privacy of

TEA-CTR-XCBC-MAC

curity definition,
at security follows

\pler properties.

privacy of
ve PRF security of TEA;\CTR
Ai(n,0), TEAL(n, 1), ...
g PRF security of PRF security of
A, (b). n— TEAk(n,0), TEA,(n,1),...

e that
- attack against

Ak(n, O), TEAk(n, 1), C
°RF attack against
Ak(b).

PRF security of TE

AN

PRP security of TE

ing on
Inition,

/ follows
arties.

curity of

I'EAk(n, 1), C

urity of

rainst

I'EAk(n, 1), C

k against

13

14

privacy of

aut
TEA-C

TEA-CTR-XCBC-MAC

privacy of
TEA-CTR

PRF security of

n— TEA.(n,0), TEA.(n, 1), ...

aut
TEA

PRI
TEA

.

PRF security of TEA

\

AN

PRP security of TEA

13

14

privacy of
TEA-CTR-XCBC-MAC

privacy of
TEA-CTR

authenticity c
TEA-CTR-XCBC

PRF security of

n+— TEAk(n, O), TEAk(n, 1), C

authenticity c
TEA-XCBC-M

PRF security
TEA-XCBC-M

A

PRF security of TEA

e

AN

PRP security of TEA

14

privacy of
TEA-CTR-XCBC-MAC

privacy of
TEA-CTR

authenticity of

TEA-CTR-XCBC-MAC

PRF security of

n— TEA.(n,0), TEAL(n, 1), ...

authenticity of
TEA-XCBC-MAC

PRF security of
TEA-XCBC-MAC

.

PRF security of TEA

e

AN

PRP security of TEA

15

privacy of
A-CTR-XCBC-MAC

privacy of
TEA-CTR

PRF security of
EAk(n, O), TEAk(n, 1), C

14

authenticity of
TEA-CTR-XCBC-MAC

authenticity of
TEA-XCBC-MAC

PRF security of
TEA-XCBC-MAC

A

PRF security of TEA

S

N\

PRP security of TEA

15

Many th

1. Secui

14

y of
CBC-MAC

authenticity of

TEA-CTR-XCBC-MAC

y of
TR

Irity of

TEAk(n, 1), C

authenticity of
TEA-XCBC-MAC

PRF security of
TEA-XCBC-MAC

.

PRF security of TEA

e

AN

PRP security of TEA

15

Many things can ¢

1. Security definit

_ 14

authenticity of

).

TEA-CTR-XCBC-MAC

authenticity of
TEA-XCBC-MAC

PRF security of
TEA-XCBC-MAC

| PRF security of TEA

S

AN

PRP security of TEA

15

Many things can go wrong |

1. Security definition too we

authenticity of

TEA-CTR-XCBC-MAC

authenticity of
TEA-XCBC-MAC

PRF security of
TEA-XCBC-MAC

rity of TEA

e

AN

irity of TEA

15

Many things can go wrong here:

1. Security definition too weak.

16

authenticity of

TEA-CTR-XCBC-MAC

authenticity of
TEA-XCBC-MAC

PRF security of
TEA-XCBC-MAC

rity of TEA

e

AN

irity of TEA

15

Many things can go wrong here:
1. Security definition too weak.

2. Internal mismatch between
hypotheses and conclusions.

16

authenticity of

TEA-CTR-XCBC-MAC

authenticity of
TEA-XCBC-MAC

PRF security of
TEA-XCBC-MAC

rity of TEA

e

AN

irity of TEA

15

Many things can go wrong here:

1. Security definition too weak.

2. Internal mismatch between
hypotheses and conclusions.

3. Errors in proofs.
Did anyone write full proofs?

Did anyone check all details?

16

authenticity of

TEA-CTR-XCBC-MAC

authenticity of
TEA-XCBC-MAC

PRF security of
TEA-XCBC-MAC

e

rity of TEA

AN

irity of TEA

15

Many things can go wrong here:

1. Security definition too weak.

2. Internal mismatch between

hypotheses and conclusions.

3. Errors in proofs.

Dic

Dic

anyone write fu
anyone check a

proofs?
details?

4. Quantitative problems.

e.g. 2016 Bhargavan—Leurent
sweet32.info: Triple-DES
broken in TLS: PRP-PRF switch

too weak for 64-bit block ciphers.

16

authenticity of

TEA-CTR-XCBC-MAC

authenticity of
TEA-XCBC-MAC

PRF security of
TEA-XCBC-MAC

e

rity of TEA

AN

irity of TEA

15

Many things can go wrong here:

1. Security definition too weak.

2. Internal mismatch between

hypotheses and conclusions.

3. Errors in proofs.

Dic

Dic

anyone write fu
anyone check a

proofs?
details?

4. Quantitative problems.

e.g. 2016 Bhargavan—Leurent
sweet32.info: Triple-DES
broken in TLS: PRP-PRF switch

too weak for 64-bit block ciphers.

5. Is TEA PRP-secure?

16

authenticity of

TEA-CTR-XCBC-MAC

authenticity of
TEA-XCBC-MAC

PRF security of
TEA-XCBC-MAC

~

15

Many things can go wrong here:
1. Security definition too weak.

2. Internal mismatch between
hypotheses and conclusions.

3. Errors in proofs.
Did anyone write full proofs?

Did anyone check all details?

4. Quantitative problems.

e.g. 2016 Bhargavan—Leurent
sweet32.info: Triple-DES
broken in TLS: PRP-PRF switch

too weak for 64-bit block ciphers.

5. Is TEA PRP-secure?

16

One-tim
proof of
as long .

henticity of

TR-XCBC-MAC

henticity of
-XCBC-MAC

- secu rity of
-XCBC-MAC

/

15

Many things can go wrong here:

1. Security definition too weak.

2. Internal mismatch between

hypotheses and conclusions.

3. Errors in proofs.

Dic

Dic

anyone write fu
anyone check a

proofs?
details?

4. Quantitative problems.

e.g. 2016 Bhargavan—Leurent
sweet32.info: Triple-DES

broken in TLS: PRP-PRF switch
too weak for 64-bit block ciphers.

5. Is TEA PRP-secure?

16

One-time pad has
proof of privacy, b
as long as total of

Sf
MAC

15

Many things can go wrong here:

1. Security definition too weak.

2. Internal mismatch between

hypotheses and conclusions.

3. Errors in proofs.

Dic

Dic

anyone write fu
anyone check a

proofs?
details?

4. Quantitative problems.

e.g. 2016 Bhargavan—Leurent
sweet32.info: Triple-DES

broken in TLS: PRP-PRF switch
too weak for 64-bit block ciphers.

5. Is TEA PRP-secure?

16

One-time pad has complete
proof of privacy, but key mu
as long as total of all messa

Many things can go wrong here:

1. Security definition too weak.

2. Internal mismatch between

hypotheses and conclusions.

3. Errors in proofs.

Dic

Dic

anyone write fu
anyone check a

proofs?
details?

4. Quantitative problems.

e.g. 2016 Bhargavan—Leurent
sweet32.info: Triple-DES

broken in TLS: PRP-PRF switch
too weak for 64-bit block ciphers.

5. Is TEA PRP-secure?

16

One-time pad has complete
proof of privacy, but key must be
as long as total of all messages.

17

Many things can go wrong here:

1. Security definition too weak.

2. Internal mismatch between

hypotheses and conclusions.

3. Errors in proofs.

Dic

Dic

anyone write fu
anyone check a

proofs?
details?

4. Quantitative problems.

e.g. 2016 Bhargavan—Leurent
sweet32.info: Triple-DES

broken in TLS: PRP-PRF switch
too weak for 64-bit block ciphers.

5. Is TEA PRP-secure?

16

One-time pad has complete
proof of privacy, but key must be
as long as total of all messages.

Wegman—Carter authenticator has
complete proof of authenticity,
but key length Is proportional to
number of messages.

17

Many things can go wrong here:

1. Security definition too weak.

2. Internal mismatch between

hypotheses and conclusions.

3. Errors in proofs.

Dic

Dic

anyone write fu
anyone check a

proofs?
details?

4. Quantitative problems.

e.g. 2016 Bhargavan—Leurent
sweet32.info: Triple-DES

broken in TLS: PRP-PRF switch
too weak for 64-bit block ciphers.

5. Is TEA PRP-secure?

16

One-time pad has complete
proof of privacy, but key must be
as long as total of all messages.

Wegman—Carter authenticator has
complete proof of authenticity,
but key length Is proportional to
number of messages.

Short-key cipher handling many
messages: no complete proofs.

17

Many things can go wrong here:
1. Security definition too weak.

2. Internal mismatch between
hypotheses and conclusions.

3. Errors in proofs.
proofs?
details?

Did anyone write fu

Did anyone check a

4. Quantitative problems.

e.g. 2016 Bhargavan—Leurent
sweet32.info: Triple-DES
broken in TLS: PRP-PRF switch

too weak for 64-bit block ciphers.

5. Is TEA PRP-secure?

16

One-time pad has complete
proof of privacy, but key must be
as long as total of all messages.

Wegman—Carter authenticator has
complete proof of authenticity,
but key length Is proportional to
number of messages.

Short-key cipher handling many
messages: no complete proofs.

We conjecture security

after enough failed attack efforts.
“All of these attacks fail and we
don’'t have better attack ideas.”

16 17
ings can go wrong here: One-time pad has complete XORTE.
ity definition too weak. proof of privacy, but key must be void en
as long as total of all messages.
. {
1al mismatch between |
. Wegman—Carter authenticator has uint3:
ses and conclusions. o
complete proof of authenticity, uint3:
S In proofs. but key length Is proportional to for (:
one write full proofs? number of messages. c +
one check all details? | | x ~
Short-key cipher handling many
titative problems. messages: no complete proofs.)
6 Bhargavan—Leurent " _ | J
. info: Triple-DES Ve conjecture securtty
1 TLS: PRP-PRF switch ?‘Atir ef”"h“g e kat:a_‘; edorts' }
k for 64-bit block ciphers. of these attacks fal .an We blo] -
don't have better attack ideas.” }
-A PRP-secure?

0 wrong here:
lon too weak.

tch between
nclusions.

.

full proofs?

all details?

oblems.
an—Leurent
riple-DES
P-PRF switch

t block ciphers.

ecure?

16

One-time pad has complete
proof of privacy, but key must be
as long as total of all messages.

Wegman—Carter authenticator has
complete proof of authenticity,
but key length Is proportional to
number of messages.

Short-key cipher handling many
messages: no complete proofs.

We conjecture security

after enough failed attack efforts.
“All of these attacks fail and we
don’'t have better attack ideas.”

17

XORTEA: a bad ¢

void encrypt(uin

{
uint32 x = b[O0
ulnt32 r, c =

for (r = 0;r <

c += 0x9e377
x "= y7c " (
~
y "= x"c " (
" (
+
b[0] = x; b[1]
¥

1€re.

ak.

1t

vitch

ohers.

16

One-time pad has complete
proof of privacy, but key must be
as long as total of all messages.

Wegman—Carter authenticator has
complete proof of authenticity,
but key length Is proportional to
number of messages.

Short-key cipher handling many
messages: no complete proofs.

We conjecture security
after enough failed attack efforts.
“All of these attacks fail and we

don't have better attack ideas.”

17

XORTEA: a bad cipher

void encrypt(uint32 *b,ui
{
uint32 x = b[0], y = bl
uint32 r, ¢ = 0;
for (r = 0;r < 32;r +=
c += 0x9e377919;

x "= y~c ~ (y<<4) k[C
= (y>>5)"k[1
y "= x"c T (x<<4) k[2
~ (x>>5) "k [3
¥
b[0] = x; bl1] = y;

One-time pad has complete
proof of privacy, but key must be
as long as total of all messages.

Wegman—Carter authenticator has
complete proof of authenticity,
but key length Is proportional to
number of messages.

Short-key cipher handling many
messages: no complete proofs.

We conjecture security
after enough failed attack efforts.
“All of these attacks fail and we

don't have better attack ideas.”

17

XORTEA: a bad cipher

18

void encrypt(uint32 *b,uint32 *k)

{

uint32 x = b[0], y = b[1];

uint32
for (r

c +=

X =

”~

y s

}
b[0] =

r, c = 0;

= 0;r < 32;r += 1) {

0x9e3779b9;

vy c ~ (y<<4) k[0
= (y>>5)°k

x"c ~ (x<<4)"k[2]
~ (x>>5) "k [3];

x; bl1l] = y;

1]

e pad has complete
privacy, but key must be
as total of all messages.

—Carter authenticator has
= proof of authenticity,
length Is proportional to
of messages.

y cipher handling many
s: no complete proofs.

ecture security

bugh failed attack efforts.
hese attacks fail and we
ve better attack ideas.”

17

18
XORTEA: a bad cipher

void encrypt(uint32 *b,uint32 *k)
{
uint32 x = b[0], y = b[1];
uint32 r, ¢ = 0;
for (r = 0;r < 32;r += 1) {
c += 0x9e3779b9;

x "= y~c ~ (y<<4)~k[0O]
~ (y>>5)"k[1];

y "= x"c T (x<<4)"k[2.
© (x>>5) "k [3];

}
b[0] = x; bl1] = y;

“"Hardw:

XOr CIrcL

complete
ut key must be
“all messages.

uthenticator has
authenticity,
yroportional to
€s.

andling many
1plete proofs.

urity

| attack efforts.
ks fail and we
attack ideas.”

17

18

XORTEA: a bad cipher

void encrypt(uint32 *b,uint32 *k)

{

uint32 x = b[0], y = b[1];

uint32 r, ¢ = 0;

for (r = 0;r < 32;r += 1) {
c += 0x9e3779b9;
x "=y~ c ~ (y<<4)~k[0]
~ (y>>5)"k[1];
y "= x"c T (x<<4)k[2.
=~ (x>>5) "k [3];
+
b[0] = x; b[1] = y;

"Hardware-friendli
Xor circuit Is cheaj

st be
ges.

or has
ty,
1| to

any
)ofs.

forts.
] we

17

XORTEA: a bad cipher

18

void encrypt(uint32 *b,uint32 *k)

{

uint32 x = b[0], y = b[1];

uint32 r, ¢ = 0;

for (r = 0;r < 32;r += 1) {

c += 0x9e3779b9;

x "=y~ c ~ (y<<4)°k[
= (y>>5) k[
y "= x"c T (x<<4) k[
~ (x>>5) k[

}
b[0] = x; bl1] = y;

le I[\)I IHI Iol

"Hardware-friendlier” cipher
xor circult 1s cheaper than a

XORTEA: a bad cipher

18

void encrypt(uint32 *b,uint32 *k)

{

uint32 x = b[0], y = b[1];

uint32 r, ¢ = 0;

for (r = 0;r < 32;r += 1) {

c += 0x9e3779Db9;

x "=y~ c © (y<<4)~k[0O]
= (y>>5)°k

y "= x"c T (x<<4) " k[2.
~ (x>>5)°k[3];

}
b[0] = x; b[1] = y;

1]

"Hardware-friendlier” cipher, since
xor circuit 1s cheaper than add.

19

XORTEA: a bad cipher

18

void encrypt(uint32 *b,uint32 *k)

{

uint32 x = b[0], y = b[1];

uint32 r, ¢ = 0;

for (r = 0;r < 32;r += 1) {

c += 0x9e3779Db9;

x "=y~ c © (y<<4)~k[0O]
= (y>>5)°k

y "= x"c T (x<<4) " k[2.
~ (x>>5)°k[3];

}
b[0] = x; b[1] = y;

1]

"Hardware-friendlier” cipher, since
xor circuit 1s cheaper than add.

But output bits are linear
functions of input bits!

19

XORTEA: a bad cipher

18

void encrypt(uint32 *b,uint32 *k)

{

uint32
uint32
for (r

c +=

"

X s

<
Il

b[0]

x = b[0], y = bl[1];

r, c = 0;

= 0;r < 32;r += 1) {

0x9e3779b9;

y c ~ (y<<4)~k[O:
~ (y>>5)"k[1];

x"c ~ (x<<4) k[2.
=~ (x>>5)"k[3];

x; bl1l] = y;

"Hardware-friendlier” cipher, since
xor circuit 1s cheaper than add.

But output bits are linear
functions of input bits!

e.g. First output bit Is

1D ko P ki ®ks P kig® k11 D k1o @
k20 @ ko1 D k3o @ k32 @ k33 D k35 ©
kg2 @ ka3 D kag @ ks @ k53 D kep D
Koa D ko7 D keg D k76 D kg5 D kog &
koo D koo D k101D k108D k117D k126D
b1®b3Db10Db12D b1 D b30D b3 D
b33 P b3 P b37 B b3g D bao @ baz B
bas ® ba7 ® bsy @ bs3z D bs7 D be.

19

18
A: a bad cipher

crypt (uint32 *b,uint32 *k)

2 x = b[0], y = b[1];
2 r, ¢c = 0;

r = O;r < 32;r += 1) {
= 0x9e377909;

= y~c = (y<<4) "k[O0]
~ (y>>5)"k[1];
= x"¢c = (x<<4) " "k[2]
~ (x>>5)"k[3];
= x; bl1l] = y;

"Hardware-friendlier” cipher, since
xor circult 1s cheaper than add.

But output bits are linear
functions of input bits!

e.g. First output bit Is

1D ko P k1 D ks P k1o D k11 D k1o P
koo D ko1 @ k30 D k32 D k33 @ k35 D
kap @ ka3 @ kaa @ ks @ k53 D kgp @
koa D ko7 D koo @ k76 D kgs © koa @
ko6 D koo D k101D k108D k117D k126D
b1 ®b3® b10D b12B b1 D b3 D b3 D
b33 P b3 P b37 B b3g D bao @ baz D
bas © ba7 ® bsy @ bs3 @ bs7 D be.

19

There is

WIth COE€

such tha
XORTE

ipher

t32 *xb,uint32 *k)

1, vy = bl1l];

0;

32;r += 1) {

9b9;
y<<4) "k
y>>5) "k

=y;

0]
1];
x<<4) "k [2]
x>>5) "k [3];

"Hardware-friendlier” cipher, since
xor circuit 1s cheaper than add.

But output bits are linear
functions of input bits!

e.g. First output bit Is

1D ko P ki ®ks P kig® k11 D k1o D
k20 @ ko1 D k3o @ k32 @ k33 D k35 D
kg2 @ ka3 D kag @ ks @ k53 D kep D
koa D ko7 D keg D k76 D kg5 D kog &
koo D koo D k101D k108D k117D k126D
b1®b3Db10Db12D b1 D b30D b3 D
b33 P b3 P b37 B b3g D bao @ baz B
basg ® ba7 ® bsy @ bs3z @ bs7 D be.

19

There 1s a matrix
with coefficients it

such that, for all (
XORTEAL(b) = (

18

"Hardware-friendlier” cipher, since
xor circult 1s cheaper than add.

But output bits are linear
functions of input bits!

e.g. First output bit Is

1D ko P k1 D ks P k1o D k11 D k1o P
koo D ko1 @ k30 D k32 D k33 @ k35 D
kap @ ka3 @ Kaa @ ks @ k53 D ke @
Koa D ko7 D koo @ k76 D kgs © koa @
ko6 D koo D k101D k108D k117D k126D
b1 ®b3® b10D b12B b1 D b3oD b3 D
b33 P b3 P b37 B b3g D bao D baz D
bas © ba7 ® bsy @ bs3 D bs7 D be.

19

There i1s a matrix M

with coefficients in F»
such that, for all (k, b),
XORTEA,(b) = (1, k, b)M.

"Hardware-friendlier” cipher, since
xor circuit 1s cheaper than add.

But output bits are linear
functions of input bits!

e.g. First output bit Is

1D ko P ki ®ks P kig® k11 D k1o @
k20 @ ko1 D k3o @ k32 @ k33 D k35 D
kg2 @ ka3 D kag @ ks @ k53 D kep D
koa D ko7 D keg D kv6 D kg5 D kog &
koo D koo D k101D k108D k117D k126D
b1®b3Db10Db12D b1 D b30D b3 D
b33 P b3 P b37 B b3g D bao @ baz B
bas ® ba7 ® bsy @ bs3z D bs7 D be.

19

20
There 1s a matrix M

with coefficients in F»
such that, for all (k, b),
XORTEAL(b) = (1, k, b)M.

"Hardware-friendlier” cipher, since
xor circuit 1s cheaper than add.

But output bits are linear
functions of input bits!

e.g. First output bit Is

1D ko P ki ®ks P kig® k11 D k1o @
k20 @ ko1 D k3o @ k32 @ k33 D k35 D
kg2 @ ka3 D kag @ ks @ k53 D kep D
koa D ko7 D keg D kv6 D kg5 D kog &
koo D koo D k101D k108D k117D k126D
b1®b3Db10Db12D b1 D b30D b3 D
b33 P b3 P b37 B b3g D bao @ baz B
bas ® ba7 ® bsy @ bs3z D bs7 D be.

19

20
There 1s a matrix M

with coefficients in F»
such that, for all (k, b),
XORTEAL(b) = (1, k, b)M.

XORTEA,(b1) ® XORTEA,(by)
= (0,0, by & b)) M.

19
"Hardware-friendlier” cipher, since There I1s a matrix M

xor circuit 1s cheaper than add. with coefficients in F»
such that, for all (k, b),
XORTEAL(b) = (1, k, b)M.

But output bits are linear
functions of input bits!
XORTEA,(b1) ® XORTEA,(by)

e.g. First output bit Is
= (0,0, by & b)) M.

1D ko P ki ®ks P kig® k11 D k1o @
koo D ko1 D k3o D k3o B k33 D kas P Very fast attack:

kap D ka3 D kag @ ksp ® k53 D ke @ it by = b1 @ by ® b3 then

kea ® ko7 ® koo @ k76 @ kgs ® koa ® | XORTEA(b1) BXORTEA(b2) =
koD koo @ k101 Pk10sDk117®k126® = XORTEA,(b3) @ XORTEA(bs).
b1®b3Db10Db12D b1 D b30D b3 D
b33 P b3 P b37 B b3g D bao @ baz B
baa © by7 ® bsp @ bs3 @ bs7 D beo.

"Hardware-friendlier” cipher, since
xor circuit 1s cheaper than add.

But output bits are linear
functions of input bits!

e.g. First output bit Is

1D ko P ki ®ks P kig® k11 D k1o @
k20 @ ko1 D k3o @ k32 @ k33 D k35 D
kg2 @ ka3 D kag @ ks @ k53 D kep D
koa D ko7 D keg D kv6 D kg5 D kog &
koo D koo D k101D k108D k117D k126D
b1®b3Db10Db12D b1 D b30D b3 D
b33 P b3 P b37 B b3g D bao @ baz B
bas ® ba7 ® bsy @ bs3z D bs7 D be.

19

There i1s a matrix M

with coefficients in F»
such that, for all (k, b),
XORTEAL(b) = (1, k, b)M.

XORTEA,(b1) ® XORTEA,(by)
= (0,0, by & b)) M.

Very fast attack:

if bg = b1 @ by & b3 then
XORTEA(b1) ®XORTEA(by) =
XORTEA,(b3) & XORTEA(bs).

This breaks PRP (and PRF):
uniform random permutation

(or function) F almost never has
F(b1) ® F(b2) = F(b3) ® F(ba).

20

ire-friendlier” cipher, since : There I1s a matrix M : LEFTEA

1t Is cheaper than add. with coefficients in F» |
volid en

. . such that, for all (k, b),

out bits are linear {

s of input bits! XORTEAL(b) = (1. k, b)M. uint3.

t output bit is XORTEA,(b1) ® XORTEA|(bo) uint3.

ki ® ka @ k1o @ ki1 @ ki @ = (0,0, by & bo)M. for (:

1 D k3o D k3o ® ka3 P k3 B Very fast attack: .

3 D kaa B ko D kg3 P kgo B if by = by @ by @ b3 then o

7 D kgo D k76 D kgs P kog B XORTEAk(bl)@XORTEAk(bg) —

Dk101Dk10s@k117Dk126®® = XORTEA,(b3) ® XORTEA,(bs). a

PL0®b2®bn®b0®b2® i breaks PRP (and PRF) }

5 ba7 @ b3o ® b © baz @ uniform random permutation b[0] :

7® bs2 @ bs3 @ bs7 B b2 (or function) F almost never has }

F(b1) @ F(b2) = F(b3) ® F(bs).

er’ cipher, since
ber than add.

e linear
bits!

It IS

k10 D k11 D k12 @
(30 D k33 D k3 P
52 D k53 @ kg2 @
76 D kg5 D kgg ©
08D k117D k126D
b1 D b3o® b32D
139 D bao B baz B
bs3 @D bs7 @ bgo.

19

There i1s a matrix M

with coefficients in F»
such that, for all (k, b),
XORTEA,(b) = (1, k, b)M.

XORTEA,(b1) ® XORTEA|(by)
= (0,0, by & b)) M.

Very fast attack:

if bg = b1 @ by & b3 then
XORTEA(b1) ®XORTEA(by) =
XORTEA|(b3) & XORTEA(bs).

This breaks PRP (and PRF):

uniform random permutation
(or function) F almost never has

F(b1) ® F(by) = F(b3) ® F(bs).

20

LEFTEA:

another

void encrypt(uin

{
uint32

uint32

for (r

= 0;r <
0x9e377

since

dd.

19

There 1s a matrix M
with coefficients in F»

such that, for all (k, b),
XORTEAK(b) = (1, k, b)M.

XORTEA,(b1) ® XORTEA|(bo)
= (0,0, by & by)M.

Very fast attack:

if by = by & by P b3 then
XORTEA(b1) ®XORTEA(by) =
XORTEA(b3) & XORTEA(bs).

This breaks PRP (and PRF):

uniform random permutation
(or function) F almost never has

F(b1) ® F(b2) = F(b3) @ F(ba).

20

LEFTEA: another bad ciphe

void encrypt(uint32 *b,ui

{

uint32
uint32

for (r

x = b[0], vy = bl

r, c = 0;

= 0;r < 32;r +=

0x9e3779b9;

y+c © (y<<4)+k[C
~ (y<<b)+k[1

x+c ~ (x<<4)+k[2
© (x<<5)+k[3

x; bl1l] = y;

There i1s a matrix M

with coefficients in F»
such that, for all (k, b),
XORTEA,(b) = (1, k, b)M.

XORTEA,(b1) ® XORTEA|(by)
= (0,0, by & b)) M.

Very fast attack:

if bg = b1 @ by & b3 then
XORTEA(b1) ®XORTEA(by) =
XORTEA|(b3) & XORTEA(bs).

This breaks PRP (and PRF):
uniform random permutation

(or function) F almost never has
F(b1) ® F(b2) = F(b3) ® F(ba).

20

LEFTEA: another bad cipher

21

void encrypt(uint32 *b,uint32 *k)

{

uint32 x = b[0], y = b[1];

uint32

for (r

r, c = 0;

= 0;r < 32;r += 1) {

0x9e3779b9;
y+c ~ (y<<4)+k
~ (y<<b)+k

x; bl1l] = y;

0.
1]1;
x+c © (x<<4)+k|[2.

© (x<<5)+k[3];

a matrix M
fficients in F»

t, for all (k, b),

A (b) = (1, k, b)M.

A(b1) ® XORTEA,(bo)
b1 @ by) M.

t attack:

)1 D by @ b3 then

A (b1)BXORTEAL(by) =
A (b3) @ XORTEA,(by).

aks PRP (and PRF):

random permutation
tion) F almost never has

F(bo) = F(b3) @ F(bs).

20

LEFTEA: another bad cipher

21

void encrypt(uint32 *b,uint32 *k)

{
uint32 x = b[0], y = b[1];

uint32 r, ¢ = 0;

for (r = 0;r < 32;r += 1) {
c += 0x9e377919;
x += y+c © (y<<4)+k[O_
~ (y<<5)+k[1];
y += x+c T (x<<4)+k[2.
~ (x<<5)+k[3];
¥
b[0] = x; bl1] = y;

Addition
but addi

First out
1® kg @

M

' F»>

k., b),

1, k, b)M.

XORTEA (by)
.

b3 then
(ORTEA.(by) =
XORTEA(bs).

and PRF):
ermutation
most never has

F(b3) @ F(bs).

20

LEFTEA:

21
another bad cipher

void encrypt(uint32 *b,uint32 *k)

{
uint32
uint32
for (r
C +=

X +=

x = b[0], y = b[1];

r, c = 0;
= 0;r < 32;r += 1) {
0x9e3779b9;
y+tc ~ (y<<4)+k[O.

© (y<<b5)+k[1];
x+c ~ (x<<4)+k[2]

~ (x<<b)+k[3];
x; bll]l = y;

Addition i1s not F»
but addition mod

First output bit is
1B kg D k3o D ke

:(b2)

(b2)

:(b4)'

r has

(ba).

20

LEFTEA: another bad cipher

21

void encrypt(uint32 *b,uint32 *k)

{
uint32 x = b[0], y = b[1];
uint32 r, ¢ = 0;
for (r = 0;r < 32;r += 1) {
c += 0x9e3779b9;

x += y+c ~ (y<<4)+k[O_
" (y<<5)+k[1];

y += xtc ~ (x<<4)+k[2.
T (x<<5)+k[3];

b[0] = x; bl1] = y;

Addition 1s not F»s-linear,
but addition mod 2 is F»-lin

First output bit is
1 & ko @ k3o @ kea D kos D -

LEFTEA: another bad cipher

21

void encrypt(uint32 *b,uint32 *k)

{

uint32
uint32
for (r

c +=

x = b[0], y = bl[1];

r, c = 0;

= 0;r < 32;r += 1) {

0x9e3779b9;

ytc ~ (y<<4)+k|[O.
© (y<<b5)+k[1];

x+c T (x<<4)+k[2.
~ (x<<b)+k[3];

x; bl1l] = y;

Addition i1s not F»-linear,
but addition mod 2 is F»-linear.

First output bit is
1 ® ko @ k3o @ kea © kog @ b3

22

LEFTEA: another bad cipher

21

void encrypt(uint32 *b,uint32 *k)

{

uint32
uint32
for (r

c +=

X +=

y +=

}
b[0] =

x = b[0], y = b[1];

r, C O;
= 0;r < 32;r += 1) {
0x9e3779b9;
ytc ~ (y<<4)+k|[O.

© (y<<b)+k[1];
x+c = (x<<4)+k[2]

© (x<<5)+k[3];
x; bl1l] = y;

Addition 1s not F»s-linear,

but addition mod 2 is F»-linear.

First output bit is

1 ® ko @ k3o @ kea © kog @ b3

Higher output bits
are increasingly nonlinear
but they never affect first bit.

22

LEFTEA: another bad cipher

21

void encrypt(uint32 *b,uint32 *k)

{
uint32 x = b[0], y = b[1];
uint32 r, ¢ = 0;
for (r = 0;r < 32;r += 1) {

c += 0x9e3779b9;

x += y+c T (y<<4)+k[O.
- (y<<B)+k[1];

y += x+c T (x<<4)+k[2.
~ (x<<b)+k[3];

b[0] = x; b[1] = y;

Addition 1s not F»s-linear,

but addition mod 2 is F»-linear.

First output bit is

1 ® ko @ k3o @ kea © kog @ b3

Higher output bits
are increasingly nonlinear
but they never affect first bit.

How TEA avoids this problem:
>>5 diffuses nonlinear changes
from high bits to low bits.

22

LEFTEA: another bad cipher

21

void encrypt(uint32 *b,uint32 *k)

{
uint32 x = b[0], y = b[1];
uint32 r, ¢ = 0;
for (r = 0;r < 32;r += 1) {

c += 0x9e3779b9;

x += y+c T (y<<4)+k[O.
- (y<<B)+k[1];

y += x+c T (x<<4)+k[2.
~ (x<<b)+k[3];

b[0] = x; b[1] = y;

Addition 1s not F»s-linear,

but addition mod 2 is F»-linear.

First output bit is
1 ® ko @ k3o @ kea © kog @ b3

Higher output bits
are increasingly nonlinear
but they never affect first bit.

How TEA avoids this problem:
>>5 diffuses nonlinear changes
from high bits to low bits.

(Diffusion from low bits to high
bits: <<4; carries in addition.)

22

\

another bad cipher

crypt (uint32 *b,uint32 *k)

x = b[0], y = b[1];
r, c = 0;

= 0;r < 32;r += 1) {

0x9e3779b9;

y+tc = (y<<4)+k|[O.
© (y<<b)+k[1];

x+c = (x<<4)+k[2]
" (x<<b)+k[3];

x; bl1l] = y;

Addition is not F»-linear,

but addition mod 2 is F»-linear.

First output bit is
1 ® ko @ k3o @ kga © kog @ b3

Higher output bits
are increasingly nonlinear
but they never affect first bit.

How TEA avoids this problem:
>>5 diffuses nonlinear changes
from high bits to low bits.

(Diffusion from low bits to high
bits: <<4; carries in addition.)

22

b[0] :

21
‘bad cipher

t32 *xb,uint32 *k)

I, y = Dbll];
O;

32;r += 1) {
9b9;
y<<4)+k[0_
y<<5)+k[1];
x<<4)+k[2]
x<<5)+k [3];

=y;

Addition 1s not F»s-linear,

but addition mod 2 is F»-linear.

First output bit is
1 ® ko @ k3o @ kea © kog @ b3

Higher output bits
are increasingly nonlinear
but they never affect first bit.

How TEA avoids this problem:
>>5 diffuses nonlinear changes
from high bits to low bits.

(Diffusion from low bits to high
bits: <<4; carries in addition.)

22

TEA4: another be

void encrypt(uin

{
uint32 x = b[O0
uint32 r, c =

for (r = 0;r <

c += 0x9e377
x += y+tc ~ (
= (
y += xtc = (
= (
¥

b[0] = x; b[1]

21

| =<

nt32 *xk)

Addition 1s not F»-linear,

but addition mod 2 is F»-linear.

First output bit is
1 ® ko @ k3o © kgsa © kog @ b3

Higher output bits
are increasingly nonlinear
but they never affect first bit.

How TEA avoids this problem:
>>5 diffuses nonlinear changes
from high bits to low bits.

(Diffusion from low bits to high
bits: <<4; carries in addition.)

22

TEA4: another bad cipher

void encrypt(uint32 *b,ui
{
uint32 x = b[0], y = bl
uint32 r, ¢ = 0;
for (r = O;r < 4;r += 1
c += 0x9e3779b9;

x += y+c T (y<<4)+k[C
= (y>>b)+k[1
y += x+c T (x<<4)+k[2
T (x>>5)+k[3

}
b[0] = x; bl1] = y;

Addition 1s not F»s-linear,

but addition mod 2 is F»-linear.

First output bit is
1 ® ko @ k3o @ kesa © kog @ b3

Higher output bits
are increasingly nonlinear
but they never affect first bit.

How TEA avoids this problem:
>>5 diffuses nonlinear changes
from high bits to low bits.

(Diffusion from low bits to high
bits: <<4; carries in addition.)

22

TEA4: another bad cipher

23

void encrypt(uint32 *b,uint32 *k)

{

uint32
uint32
for (r

c +=

x = b[0], y = b[1];

r, c = 0;
= O;r < 4;r += 1) {
0x9e3779b9;
y+tc ~ (y<<4)+k|[O.

~ (y>>5)+k[1];
x+c © (x<<4)+k[2]

~ (x>>b)+k[3];
x; bll]l = y;

Is not F»r-linear,

tion mod 2 i1s Fo-linear.

put bit Is
) k32 @ Kea D kog D b3p.

utput bits
asingly nonlinear
' never affect first bit.

A avoids this problem:
uses nonlinear changes
h bits to low bits.

n from low bits to high
4: carries in addition.)

22

23
TEA4: another bad cipher

void encrypt(uint32 *b,uint32 *k)
{
uint32 x = b[0], y = b[1];
uint32 r, ¢ = 0;
for (r = 0;r < 4;r += 1) {
c += 0x9e3779b9;

x += y+c © (y<<4)+k[O_
" (y>>5)+k[1];

y += xtc ~ (x<<4)+k[2.
© (x>>5)+k[3];

b[0] = x; bl1] = y;

Fast att.
TEA4,(
TEA4,(

-linear,

2 1s Fo-linear.

L @ ko D b3

nlinear
act first bit.

his problem:
near changes
ow bits.

N bits to high
n addition.)

22

23
TEA4: another bad cipher

void encrypt(uint32 *b,uint32 *k)
{
uint32 x = b[0], y = b[1];
uint32 r, ¢ = 0;
for (r = 0;r < 4;r += 1) {
c += 0x9e3779b9;
x += y+c T (y<<4)+k[O.
~ (y>>b)+kl[1];
y += xtc ~ (x<<4)+k[2.
~ (x>>b)+k[3];

}
b[0] = x; b[1] = y;

Fast attack:
TEA4,(x+ 23y
TEA4,(x, y) have

ear.

ges

11gh

22

23

TEA4: another bad cipher

void encrypt(uint32 *b,uint32 *k)

{

uint32 x = b[0], y = b[1];

uint32 r, ¢ = 0;

for (r = O;r < 4;r += 1) {
c += 0x9e3779D9;

x += y+c ~ (y<<4)+k[O_
- (y>>5)+k[1];

y += xtc T (x<<4)+k[2.
© (x>>5)+k[3];

b[0] = x; bl1] = y;

Fast attack:
TEA4,(x + 231, y) and
TEA4,(x, y) have same firsi

TEA4: another bad cipher

23

void encrypt(uint32 *b,uint32 *k)

{

uint32 x = b[0], y = b[1];

uint32 r, ¢ = 0;

for (r = 0;r < 4;r += 1) {
c += 0x9e3779b9;
x += y+c T (y<<4)+k[O.
~ (y>>5)+kl[1];
y += x+c T (x<<4)+k[2.
~ (x>>b)+k[3];

b[0] = x; b[1] = y;

Fast attack:
TEA4,(x + 2%, y) and
TEA4,(x, y) have same first bit.

24

TEA4: another bad cipher

23

void encrypt(uint32 *b,uint32 *k)

{

uint32
uint32
for (r

c +=

X +=

y +=

}
b[0] =

x = b[0], y = b[1];

r, c = 0;

= O;r < 4;r += 1) {

0x9e3779b9;
y+c ~ (y<<4)+k
= (y>>5)+k

x; bl1l] = y;

0]
1];
x+c T (x<<4)+k[2.

© (x>>5)+k[3];

Fast attack:
TEA4,(x + 2%, y) and

TEA4,(x, y) have same first bit.

Trace x, y differences

through ste

r =0:
r =1:
r = 2:
r = 3:

mu
mu
mu

mu

tip
tip
tip
tip

€S O]
€S O
€S O

0s In computation.

] 231 226_
- 221 216_
:211 26_

€S O

- ol 20

24

23

TEA4: another bad cipher

void encrypt(uint32 *b,uint32 *k)

{

uint32 x = b[0], y = b[1];

uint32 r, ¢ = 0;
for (r = 0;r < 4;r += 1) {
c += 0x9e3779b9;
x += y+c T (y<<4)+k[O.
- (y>>5)+k[1];
y += xtc ~ (x<<4)+k[2.
~ (x>>b)+k[3];
Iy
b[0] = x; b[1] = y;

Fast attack:
TEA4,(x + 2%, y) and
TEA4,(x, y) have same first bit.

Trace x, y differences

through steps in computation.
. 231 226_
- 221 216_

r = 0: multiples o

r = 1: multiples o
r = 2: multiples of 211, 20

r = 3: multiples of 21,29

Uniform random function F:
F(x + 231, y) and F(x, y) have
same first bit with probability 1/2.

24

23
TEA4: another bad cipher

void encrypt(uint32 *b,uint32 *k)

{
uint32 x = b[0], y = b[1];

uint32 r, ¢ = 0;
for (r = 0;r < 4;r += 1) {
c += 0x9e377919;
x += y+c T (y<<4)+k[O.
- (y>>5)+k[1];
y += x+c T (x<<4)+k[2.
~ (x>>b)+k[3];
Iy
b[0] = x; b[1] = y;

24
Fast attack:

TEA4,(x + 2%, y) and
TEA4,(x, y) have same first bit.

Trace x, y differences

through steps in computation.

r = 0: multiples of 231,226.
r = 1: multiples of 221 210,
r = 2: multiples of 211, 20
r = 3: multiples of 21,29

Uniform random function F:

F(x + 231, y) and F(x, y) have
same first bit with probability 1/2.

PRF advantage 1/2.
Two pairs (x, y): advantage 3/4.

another bad cipher

23

crypt (uint32 *b,uint32 *k)

2 x = b[0], y = b[1];

2 r, ¢c = 0;
r = O;r < 4;r += 1) {
= 0x9e3779b9;
= y+c ~ (y<<4)+k[
= (y>>B)+k[
= x+c ~ (x<<4)+k[
~ (x>>B)+k ([
= x; bl1l] = y;

le I[\)I IHI Iol

Fast attack:
TEA4,(x + 231, y) and
TEA4,(x, y) have same first bit.

Trace x, y differences

through steps in computation.
r = 0: multiples of 231, 220
r = 1: multiples of 221 210,
r = 2: multiples of 211, 20

r = 3: multiples of 21,29

Uniform random function F:
F(x + 231, y) and F(x, y) have
same first bit with probability 1/2.

PRF advantage 1/2.
Two pairs (x, y): advantage 3/4.

24

More so
trace pr
brobabil

probabil
differenc
C(x+4
Use alge

NON-ranc

d cipher

23

t32 *xb,uint32 *k)

1, vy = bl1];

O;

4:r +=
9b9;
y<<4)+k
y>>5)+k

=y;

0]
1]1;
x<<4)+k[2]
x>>5)+k [3] ;

1) A

Fast attack:
TEA4,(x + 2%, y) and
TEA4,(x, y) have same first bit.

Trace x, y differences

through steps in computation.
. 231 226_
- 221 216_

r = 0: multiples o
r = 1: multiples o

r = 2: multiples of 211, 20

r = 3: multiples of 21,29

Uniform random function F:
F(x + 231, y) and F(x, y) have
same first bit with probability 1/2.

PRF advantage 1/2.
Two pairs (x, y): advantage 3/4.

24

More sophisticatec

trace probabilities

orobabilities of lin
orobabilities of hig

differences C(x +

C(x+94)— C(x

Use alge

ora-+stati:

Non-randa

omness Ir

23

nt32 *xk)

Fast attack:
TEA4,(x + 231, y) and
TEA4,(x, y) have same first bit.

Trace x, y differences

through steps in computation.

r = 0: multiples of 231 220,
221 216_

r = 1. multiples of
r = 2: multiples of 211, 20
r = 3: multiples of 21,29

Uniform random function F:
F(x + 23! y) and F(x, y) have
same first bit with probability 1/2.

PRF advantage 1/2.
Two pairs (x, y): advantage 3/4.

24

More sophisticated attacks:

trace probabilities of differer

orobabilities of linear equati
orobabilities of higher-order

differences C(x + 9 + €) —
C(x+0)—C(x+¢€)+ C(x)

Use alge

ora-+statistics to ex

Nnon-randa

omness In probabili

Fast attack:
TEA4,(x + 2%, y) and

TEA4,(x, y) have same first bit.

Trace x, y differences

through ste

r=0: mu
r=1: mu
r—=2: mu
r =3: mu

tip

tip
tip
tip

€S O]
€S O
€S O

0s In computation.

] 231 226_
- 221 216_
:211 26_

€S O

- ol 20

Uniform random function F:
F(x + 231, y) and F(x, y) have

same first bit with probability 1/2.

PRF advantage 1/2.

Two pairs (x, y): advantage 3/4.

24

25

More sophisticated attacks:

trace probabilities of differences;

orobabilities of linear equations;
orobabilities of higher-order

differences C(x + 0 + €) —
C(x+6) — C(x+¢€) + C(x); etc.

Use alge

ora+-statistics to exploit

Nnon-randa

omness In probabilities.

Fast attack:
TEA4,(x + 2%, y) and
TEA4,(x, y) have same first bit.

Trace x, y differences

through steps in computation.
. 231 226_
- 221 216_

r = 0: multiples o

r = 1: multiples o
r = 2: multiples of 211, 20

r = 3: multiples of 21,20

Uniform random function F:
F(x + 231, y) and F(x, y) have
same first bit with probability 1/2.

PRF advantage 1/2.
Two pairs (x, y): advantage 3/4.

24

25
More sophisticated attacks:

trace probabilities of differences;
orobabilities of linear equations;

orobabilities of higher-order
differences C(x 4+ 0 + €) —
C(x+6) — C(x+¢€) + C(x); etc.
Use algebra+-statistics to exploit

non-randomness in probabilities.

Attacks get beyond r =4

but rapidly lose effectiveness.
Very far from full TEA.

Fast attack:

TEA4,(x + 2%, y) and

TEA4,(x, y) have same first bit.

Trace x, y differences

through steps in computation.

r = 0: multip
r = 1. multip
r = 2: multip
r = 3: multip

€S O]
€S O
€S O

] 231 226_
- 221 216_
:211 26_

€S O

- ol 20

Uniform random function F:
F(x + 231, y) and F(x, y) have

same first bit with probability 1/2.

PRF advantage 1/2.

Two pairs (x, y): advantage 3/4.

24

25
More sophisticated attacks:

trace probabilities of differences;
orobabilities of linear equations;

orobabilities of higher-order
differences C(x 4+ 0 + €) —
C(x+6) — C(x+¢€) + C(x); etc.
Use algebra+-statistics to exploit

non-randomness in probabilities.

Attacks get beyond r =4

but rapidly lose effectiveness.
Very far from full TEA.

Hard question in cipher design:
How many “rounds” are
really needed for security?

ack:
x + 231 y) and
X, y) have same first bit.

y differences

steps In computation.
nultiples of 231 220
nultiples of 221 210,
nultiples of 211, 26

nultiples of 21,29,

random function F:
3L y) and F(x, y) have

st bit with probability 1/2.

/antage 1/2.
rs (x, y): advantage 3/4.

24

More sophisticated attacks:

trace probabilities of differences;

orobabilities of linear equations;
orobabilities of higher-order

differences C(x + 0 + €) —

C(x+6)— C(x+¢€)+ C(x); etc.

Use alge

ora+-statistics to exploit

Nnon-randa

omness In probabilities.

Attacks get beyond r =4
but rapidly lose effectiveness.

Very far

from full TEA.

Hard question in cipher design:

How many “rounds” are

really needed for security?

25

REPTE/

vold en

{

uint3.

uint3.
for (.

X +

y +

b[0] -

) and
same first bit.

Cces

omputation.
f 231 226_

£ 221 216_
r:211 26_
£ 21 20_

unction F:
F(x, y) have
probability 1/2.

2.
advantage 3/4.

24

More sophisticated attacks:
trace probabilities of differences;
orobabilities of linear equations;

orobabilities of higher-order
differences C(x 4+ 0 + €) —

C(x+6) — C(x+¢€) + C(x); etc.

Use algebra+-statistics to exploit

non-randomness In probabilities.

Attacks get beyond r =4

but rapidly lose effectiveness.
Very far from full TEA.

Hard question in cipher design:
How many “rounds” are
really needed for security?

25

REPTEA: another

void encrypt(uin

{
uint32 x = b[O0

uint32 r, c =

for (r = 0;r <
x += y+c ~ (
~(

y += xtc = (

(

- bit.

aVE

y 1/2.

' 3/4.

24

More sophisticated attacks:

trace probabilities of differences;

orobabilities of linear equations;
orobabilities of higher-order

differences C(x 4+ 0 + €) —

C(x+6) — C(x+¢€) + C(x); etc.

Use alge

ora+-statistics to exploit

NnonN-randa

omness In probabilities.

Attacks get beyond r =4
but rapidly lose effectiveness.

Very far

from full TEA.

Hard question in cipher design:

How many “rounds” are

really needed for security?

25

REPTEA: another bad ciphe

void encrypt(uint32 *b,ui

{
uint32

uint32
for (r

X +=

y +=

Iy
b[0] =

x = b[0], vy = bl
r, ¢ = 0x9e3779t
= 0;r < 1000;r +
y+c © (y<<4)+k[C

~ (y>>b)+k[1
x+c ~ (x<<4)+k[2

T (x>>5)+k[3
x; b[1l] = y;

More sophisticated attacks:
trace probabilities of differences;
orobabilities of linear equations;

orobabilities of higher-order
differences C(x 4+ 0 + €) —

C(x+6) — C(x+¢€)+ C(x); etc.

Use algebra+-statistics to exploit

non-randomness in probabilities.

Attacks get beyond r =4

but rapidly lose effectiveness.
Very far from full TEA.

Hard question in cipher design:
How many “rounds” are
really needed for security?

25

26
REPTEA: another bad cipher

void encrypt(uint32 *b,uint32 *k)
{
uint32 x = b[0], y = b[1];
uint32 r, ¢ = 0x9e3779b9;
for (r = O;r < 1000;r += 1) {

x += y+c T (y<<4)+k[O.
~ (y>>5)+k[1];
y += x+c T (x<<4)+k[2.
~ (x>>b)+k[3];
+
b[0] = x; b[1] = y;

phisticated attacks:
obabilities of differences;
ties of linear equations;
ties of higher-order

es C(x+ 6 +¢€) —

) — C(x + €) + C(x); etc.

bra+-statistics to exploit

lomness in probabilities.

get beyond r =4
dly lose effectiveness.
from full TEA.

estion Iin cipher design:
ny “rounds’ are
eded for security?

25

26
REPTEA: another bad cipher

void encrypt(uint32 *b,uint32 *k)
{
uint32 x = b[0], y = b[1];
uint32 r, ¢ = 0x9e3779b9;
for (r = 0;r < 1000;r += 1) {

x += y+c T (y<<4)+k[O_
~ (y>>5)+k[1];
y += x+c T (x<<4)+k[2.
~ (x>>5)+k[3];
}
b[0] = x; bl[1l] = y;

REP TE/
where I,

] attacks:

of differences;
car equations;
her-order

0 +€) —

e) + C(x); etc.

stics to exploit
1 probabilities.

dr=4
fectiveness.
TEA.

ipher design:
s’ are
ecurity?

25

REPTEA: another bad cipher

26

void encrypt(uint32 *b,uint32 *k)

{

uint32
uint32
for (r

X +=

y +=

¥
b[0] =

x = b[0], y = b[1];
c = 0x9e3779Db9;
= 0;r < 1000;r += 1) {
y+tc ~ (y<<4)+k|[O.

~ (y>>5)+k[1];
x+c ~ (x<<4)+k[2]

~ (x>>5)+k[3];
x; bl[l] = vy;

REPTEA.(b) = Il:
where I, does x+=

1CES,
ons,

- etcC.

ploit
ties.

on:

25

26

REPTEA: another bad cipher

void encrypt(uint32 *b,uint32 *k)

{

uint32 x = b[0], y = b[1];

uint32
for (r

X +=

y +=

Iy
b[0] =

r, c =

0x9e3779b9;

= 0;r < 1000;r += 1) {

y+tc = (y<<4)+k|[O.
~ (y>>5)+k[1];
x+c ~ (x<<4)+k[2]
~ (x>>5)+k[3];
x; b[1l] = y;

REPTEA(b) = I,°%°(b)

where I, does x+=. .

L yt=

REPTEA: another bad cipher

26

void encrypt(uint32 *b,uint32 *k)

{

uint32
uint32

for (r

X +=

y +=

¥
b[0] =

x = bl0], y = b[1];
r, ¢ = 0x9e3779b9;
= 0;r < 1000;r += 1) {

y+tc ~ (y<<4)+k|[O.
~ (y>>5)+k[1];
x+c ~ (x<<4)+k[2]
~ (x>>5)+k[3];
x; bl[l] = vy;

REPTEA(b) = I;°%(b)
where I) does x+=...;y+=....

27

REPTEA: another bad cipher

26

void encrypt(uint32 *b,uint32 *k)

{

uint32 x = b[0], y = b[1];
r, ¢ = 0x9e3779b9;
for (r = O;r < 1000;r += 1) {

uint32

X +=

y +=

¥
b[0] =

y+tc ~ (y<<4)+k|[O.
~ (y>>5)+k[1];
x+c ~ (x<<4)+k[2]
~ (x>>5)+k[3];
x; bl[l] = vy;

REPTEA(b) = I;°%(b)

where I) does x+=...;y+=....

Try list of 232 inputs b.

Collect outputs REPTEA,(b).

27

26

REPTEA: another bad cipher REPTEA(b) = I;°%(b)
. . , where I, does x+=...;y+=....
void encrypt(uint32 *b,uint32 *k)
{ Try list of 232 inputs b.
uint32 x = b[0], y = b[1]; Collect outputs REPTEA,(b).
uint32 r, ¢ = 0x9e3779b9; Good chance that some b in list
for (r = 0;r < 1000;r += 1) { also has a = I, (b) in list. Then
x += y+c T (y<<4)+k[O. REPTEAk(a):Ik(REPTEAk(b)).
© (y>>5)+k[1];
y += x+c T (x<<4)+k[2.
~ (x>>5)+k[3];

}
b[0] = x; b[1] = v;

26

REPTEA: another bad cipher REPTEA(b) = I;°%(b)
. . , where I, does x+=...;y+=....
void encrypt(uint32 *b,uint32 *k)
{ Try list of 232 inputs b.
uint32 x = b[0], y = b[1]; Collect outputs REPTEA,(b).
uint32 r, ¢ = 0x9e3779b9; Good chance that some b in list
for (r = 0;r < 1000;r += 1) { also has a = I, (b) in list. Then
x += y+c T (y<<4)+k[O. REPTEAk(a):Ik(REPTEAk(b)).
A (y>>5)+k:1: ; For each (b, a) from list:
y *+= xre 7 (x<<d)+k '2: Try solving equations a = I (b),
~ (x>>5)+k[3];

REPTEA,(a)=I,(REPTEA(b))

’ to figure out k. (More equations:

b[0] = x; b[1] = y; try re-encrypting these outputs.)

26

REPTEA: another bad cipher REPTEA(b) = I;°%(b)
. . , where I, does x+=...;y+=....
void encrypt(uint32 *b,uint32 *k)
{ Try list of 232 inputs b.
uint32 x = b[0], y = b[1]; Collect outputs REPTEA,(b).
uint32 r, ¢ = 0x9e3779b9; Good chance that some b in list
for (r = 0;r < 1000;r += 1) { also has a = I, (b) in list. Then
x += y+c T (y<<4)+k[O. REPTEAk(a):Ik(REPTEAk(b)).
A (y>>5)+k:1: ; For each (b, a) from list:
y *+= xre 7 (x<<d)+k '2: Try solving equations a = I (b),
- (>0)kis); REPTEA(a)=I(REPTEA (b))
’ to figure out k. (More equations:
b[0] = x; b[l] = y; .
) try re-encrypting these outputs.)

This 1s a slide attack.
TEA avoids this by varying c.

26
\: another bad cipher

crypt (uint32 *b,uint32 *k)

2 x = b[0], v = b[1];
2 r, ¢ = 0x9e3779b9;
r = 0;r < 1000;r += 1) {

= y+c ~ (y<<4)+k[O0]
~ (y>>5)+k[1];
= x+c = (x<<4)+k[2]
~ (x>>b)+k[3];
= x; bl[1] = y;

REPTEA(b) = I;°°(b)
where I, does x+=...;y+=....

Try list of 232 inputs b.
Collect outputs REPTEA,(b).

Good chance that some b in list

also has a = Ix(b) in list. Then

REPTEA,(a)=I,(REPTEA,(b)).

For each (b, a) from list:
Try solving equations a = I (b),
REPTEA(a)=Ix(REPTEAL(b))

to figure out k. (More equations:

try re-encrypting these outputs.)

This 1s a slide attack.
TEA avoids this by varying c.

27

What ak

vold en

{

uint3.

uint3.

for (:

b[0] :

26 27

_bad cipher REPTEA(b) = I;°%(b) What about origin
, where I, does x+=...;y+=.... , .
t32 *b,uint32 *k) void encrypt(uin
Try list of 232 inputs b. {
1, vy = b[1]; Collect outputs REPTEA,(b). uint32 x = b[0
0x9e3779b9; Good chance that some b in list uint32 r, ¢ =
1000;r += 1) { also has a = Ix(b) in list. Then for (r = O;r <
y<<4)+k[0: REPTEA,(a)=I(REPTEAL(b)). c += 0x9e377
y>>5)+k:1: ; For each (b, a) from list: %+ yre 7
K<<A)HK '2: Try solving equations a = I, (b), -
x>>58)+k(3]; REPTEA, (a)=I,(REPTEA(b)) y = oxre "
to figure out k. (More equations: . (
- Y

try re-encrypting these outputs.)

This is a slide attack. }
TEA avoids this by varying c.

26

REPTEA(b) = I;°%°(b)
where I, does x+=...;y+=....

Try list of 232 inputs b.
Collect outputs REPTEA,(b).

Good chance that some b in list

also has a = Ix(b) in list. Then

REPTEA,(a)=I,(REPTEA,(b)).

For each (b, a) from list:
Try solving equations a = I (b),
REPTEA(a)=Ix(REPTEAL(b))

to figure out k. (More equations:

try re-encrypting these outputs.)

This 1s a slide attack.
TEA avoids this by varying c.

27

What about original TEA?

void encrypt(uint32 *b,ui
{
uint32 x = b[0], y = bl
uint32 r, ¢ = 0;
for (r = 0;r < 32;r +=
c += 0x9e377919;

x += y+c T (y<<4)+k[C
= (y>>b)+k[1
y += x+c T (x<<4)+k[2
T (x>>5)+k|[3

b[0] = x; bl1] = y;

REPTEA(b) = I;°%(b)
where I, does x+=...;y+=....

Try list of 232 inputs b.

Collect outputs REPTEA,(b).
Good chance that some b in list

also has a = Ix(b) in list. Then

REPTEA,(a)=I,(REPTEA,(b)).

For each (b, a) from list:
Try solving equations a = I (b),
REPTEA(a)=Ix(REPTEAL(b))

to figure out k. (More equations:

try re-encrypting these outputs.)

This 1s a slide attack.
TEA avoids this by varying c.

21

What about original TEA?

23

void encrypt(uint32 *b,uint32 *k)

{

uint32 x = b[0], y = b[1];

uint32
for (r
C +=

X +=

r, c = 0;
= 0;r < 32;r += 1) {
0x9e3779b9;
y+tc ~ (y<<4)+k|[O.

~ (y>>5)+k
x+c T (x<<4)+k[2]

© (x>>5)+k[3];
x; bll]l = y;

1]

\(b) = [0%()
- does x+=...;y+=....

5f 232 inputs b.
utputs REPTEA(b).

ance that some b in list
a = I,(b) in list. Then

\«(3)=I,(REPTEA,(b)).

(b, a) from list:
ng equations a = I;(b),
\«(a)=I(REPTEA/(b))

out k. (More equations:

crypting these outputs.)

 slide attack.

oids this by varying c.

27

28

What about original TEA?

void encrypt(uint32 *b,uint32 *k)

{

uint32 x = b[0], y = b[1];

uint32 r, ¢ = 0;

for (r = 0;r < 32;r += 1) {
c += 0x9e377919;
x += y+c © (y<<4)+k[O_
- (y>>5)+k[1];
y += x+c T (x<<4)+k[2.
~ (x>>5)+k[3];
¥
b[0] = x; bl1] = y;

Related

TEA /(¢
where (/
(k[O] +

%OOO(b)

LY=L

its b.
“PTEAL(b).
some b In list
in list. Then

REPTEA,(b)).

m |ist:
ons a = I (b),
REPTEA,(b))

Vlore equations:

hese outputs.)

ack.
y varying c.

21

23

What about original TEA?

void encrypt(uint32 *b,uint32 *k)

{

uint32
uint32
for (r

c +=

X +=

x = b[0], y = b[1];

r, c = 0;
= 0;r < 32;r += 1) {
0x9e3779b9;
y+tc ~ (y<<4)+k[O.

~ (y>>5)+k[1];
x+c ~ (x<<4)+k[2]

~ (x>>b)+k[3];
x; bl1l] = y;

Related keys: e.g.
TEA,/(b) = TEA,
where (k'[0], K'[1],
(k[0] + 231, k[1] +

27

28
What about original TEA?

void encrypt(uint32 *b,uint32 *k)
{
uint32 x = b[0], y = b[1];
uint32 r, ¢ = 0;
for (r = 0;r < 32;r += 1) {
c += 0x9e3779b9;

x += y+c ~ (y<<4)+k[O_
- (y>>5)+k[1];
y += x+c T (x<<4)+k[2.
~ (x>>5)+k[3];
Iy
b[0] = x; bl1] = y;
Iy

Related keys: e.g
TEA,/(b) = TEA
where (k'[0], k'[1]

k(b)
K'[2], K[
- 231 k2],

(k[0] + 231, k[1] -

What about original TEA?

23

void encrypt(uint32 *b,uint32 *k)

{

uint32 x = b[0], y = b[1];

uint32 r, ¢ = 0;

for (r = 0;r < 32;r += 1) {
c += 0x9e3779b9;

x += y+c T (y<<4)+k[O.
~ (y>>5)+kl[1];

y += x+c T (x<<4)+k[2.
~ (x>>b)+k[3];

b[0] = x; b[1] = y;

Related keys: e.g
TEA,/(b) = TEA
where (k'[0], K'[1

k(b)
CK'[2], K]
- 231 k2

(k[0] + 231, k[1] -

29

What about original TEA?

23

void encrypt(uint32 *b,uint32 *k)

{

uint32 x = b[0], y = b[1];

uint32 r, ¢ = 0;

for (r = 0;r < 32;r += 1) {
c += 0x9e3779b9;

x += y+c T (y<<4)+k[O.
~ (y>>5)+kl[1];

y += x+c T (x<<4)+k[2.
~ (x>>b)+k[3];

b[0] = x; b[1] = y;

Related keys: e.g
TEA,/(b) = TEA
where (k'[0], K'[1

k(D)

(k[0] + 231, k[1] -

Is this an attack?

CK'[2], K

- 231 k2

29

What about original TEA?

23

void encrypt(uint32 *b,uint32 *k)

{

uint32 x = b[0], y = b[1];

uint32 r, ¢ = 0;

for (r = 0;r < 32;r += 1) {
c += 0x9e377919;
x += y+c T (y<<4)+k[O.
- (y>>5)+k[1];
y += x+c T (x<<4)+k[2.
~ (x>>5)+k[3];
Iy
b[0] = x; b[1] = y;

Related keys: e.g.,
TEAk/(b) — TEAk(b)
where (k'[0], k'[1], K'[2], K'[3]) =

(k[0] 4+ 231, k[1] + 231, k[2], k[3]).

Is this an attack?

PRP attack goal: distinguish
TEA,, for one secret key k, from
uniform random permutation.

29

What about original TEA?

23

void encrypt(uint32 *b,uint32 *k)

{

uint32 x = b[0], y = b[1];

uint32 r, ¢ = 0;

for (r = 0;r < 32;r += 1) {
c += 0x9e377919;
x += y+c T (y<<4)+k[O.
- (y>>5)+k[1];
y += x+c T (x<<4)+k[2.
~ (x>>5)+k[3];
Iy
b[0] = x; b[1] = y;

Related keys: e.g.,
TEAk/(b) — TEAk(b)
where (k'[0], k'[1], K'[2], K'[3]) =

(k[0] 4+ 231, k[1] + 231, k[2], k[3]).

Is this an attack?

PRP attack goal: distinguish
TEA,, for one secret key k, from
uniform random permutation.

Brute-force attack:
Guess key g, see if TEA,
matches TEA, on some outputs.

29

What about original TEA?

23

void encrypt(uint32 *b,uint32 *k)

{

uint32 x = b[0], y = b[1];

uint32 r, ¢ = 0;

for (r = 0;r < 32;r += 1) {
c += 0x9e377919;
x += y+c T (y<<4)+k[O.
- (y>>5)+k[1];
y += x+c T (x<<4)+k[2.
~ (x>>5)+k[3];
Iy
b[0] = x; b[1] = y;

Related keys: e.g.,
TEAk/(b) — TEAk(b)
where (k'[0], k'[1], K'[2], K'[3]) =

(k[0] 4+ 231, k[1] + 231, k[2], k[3]).

Is this an attack?

PRP attack goal: distinguish
TEA,, for one secret key k, from
uniform random permutation.

Brute-force attack:
Guess key g, see if TEA,
matches TEA, on some outputs.

Related keys = g succeeds with
chance 27120 Still very small.

29

28 29

yout original TEA? Related keys: e.g., 1997 Ke
crypt (uint32 *b,uint32 *k) TEAkI(b2 - TEAk(b) _ Fancier
where (k'[0], K'[1], K'[2], K'[3]) = has char
31 031 ' .
) x = b[0], ¥ = bI1]: (k[O] 4+ 2°+, k[1] 4+ 2°%, k[2], k[3]). a partict
2 r, ¢ = 0; Is this an attack?
P = 0w < 3% 4= 1) A PRP attack goal: distinguish
- 0x9e3779b9; TEA,, for one secret key k, from
= y+c ~ (y<<4)+k[O: . .
uniform random permutation.
© (y>>5)+k[1];
= x+c ~ (x<<4)+k[2] Brute-force attack:
~ (x>>5)+k[3] ; Guess key g, see if TEA,
matches TEA, on some outputs.
= x; bl1l] = y;

Related keys = g succeeds with
chance 27120 Still very small.

al TEA?

23

t32 *xb,uint32 *k)

1, vy = bl1];

0;

32;r += 1) {

9b9;
y<<4)+k

y>>5)+k

=y;

0]
1] ;
x<<4)+k[2]
x>>5)+k [3] ;

Related keys: e.g.,
TEAk/(b) — TEAk(b)
where (k'[0], k'[1], K'[2], K'[3]) =

(k[0] 4+ 231, k[1] + 231, k[2], k[3]).

Is this an attack?

PRP attack goal: distinguish
TEA,, for one secret key k, from
uniform random permutation.

Brute-force attack:
Guess key g, see if TEA,
matches TEA, on some outputs.

Related keys = g succeeds with
chance 27120 Still very small.

29

1997 Kelsey—Schn
Fancier relationshi
has chance 271 ¢
a particular outpu

28

Related keys: e.g.,

TEA,(b) = TEA
where (k'[0], k'[1]

k(b)
K'[2], K

(k[0] 4+ 231, k[1] -

Is this an attack?

3]) =

- 231 k2

PRP attack goal: distinguish
TEA,, for one secret key k, from

uniform random permutation.

Brute-force attack:

Guess key g, see

if TEA,

matches TEA, on some outputs.

Related keys = g succeeds with

chance 27120 Still very small.

 k[3]).

29

1997 Kelsey—Schneier—Wagr
Fancier relationship between
has chance 27! of producir
a particular output equation

Related keys: e.g.,

TEA,/(b) = TEA,(b)

where (k'[0], kK'[1], K'[2], K'[3]) =
(k[0] + 234, k[1] 4 23, k[2], K[3]).

Is this an attack?

PRP attack goal: distinguish
TEA,, for one secret key k, from
uniform random permutation.

Brute-force attack:
Guess key g, see if TEA,
matches TEA, on some outputs.

Related keys = g succeeds with
chance 27120 Still very small.

29

30
1997 Kelsey—Schneier—\Wagner:

Fancier relationship between k, k'’
has chance 27! of producing
a particular output equation.

Related keys: e.g.,

TEA,/(b) = TEA
where (k'[0], K'[1

k(D)
K'[2], K

(k[0] + 231, k[1] -

Is this an attack?

3]) =

- 231 k2

PRP attack goal: distinguish
TEA,, for one secret key k, from

uniform random permutation.

Brute-force attack:

Guess key g, see

if TEA,

matches TEA, on some outputs.

Related keys = g succeeds with

chance 27120 Still very small.

 k[3]).

29

30
1997 Kelsey—Schneier—\Wagner:

Fancier relationship between k, k'’
has chance 27! of producing
a particular output equation.

No evidence in literature that
this helps brute-force attack,
or otherwise affects PRP security.

No challenge to security analysis
of TEA-CTR-XCBC-MAC.

Related keys: e.g.,

TEA,/(b) = TEA,(b)

where (k'[0], kK'[1], K'[2], K'[3]) =
(k[0] + 231, k[1] + 231, k[2], k[3]).

Is this an attack?

PRP attack goal: distinguish
TEA,, for one secret key k, from
uniform random permutation.

Brute-force attack:
Guess key g, see if TEA,
matches TEA, on some outputs.

Related keys = g succeeds with
chance 27120 Still very small.

29

30
1997 Kelsey—Schneier—\Wagner:

Fancier relationship between k, k'’

2—11

has chance of producing

a particular output equation.

No evidence in literature that
this helps brute-force attack,
or otherwise affects PRP security.

No challenge to security analysis
of TEA-CTR-XCBC-MAC.

But advertised as
“related-key cryptanalysis”

and claimed to justify
recommendations for designers
regarding key scheduling.

keys: e.g
)) = TEA
[0], K[1.

(b)
K'[2], K’
- 231 k2

3L k(1] -

n attack?

3]) =

ack goal: distinguish

or one secret key k, from

random permutation.

rce attack:

Yy g, see

if TEA,

TEA, on some outputs.

keys = g succeeds with

—126 - Siill very small.

 k[3]).

29

1997 Kelsey—Schneier—\Wagner:
Fancier relationship between k, k'
has chance 27! of producing

a particular output equation.

No evidence in literature that
this helps brute-force attack,
or otherwise affects PRP security.

No challenge to security analysis
of TEA-CTR-XCBC-MAC.

But advertised as
“related-key cryptanalysis”

and claimed to justify
recommendations for designers
regarding key scheduling.

30

Some w;

about ci
hash-fur

Take up
“Selecte
Includes

Read at
especia

Try to b
e.g., finc
Reasona
2000 Sc
in block

(b)
K'[2], K'[3]) =

231 k2], k[3)).

distinguish
ret key k, from
ermutation.

f TEA,
some outputs.

succeeds with
| very small.

29

1997 Kelsey—Schneier—\Wagner:
Fancier relationship between k, k'
has chance 27! of producing

a particular output equation.

No evidence in literature that
this helps brute-force attack,
or otherwise affects PRP security.

No challenge to security analysis
of TEA-CTR-XCBC-MAC.

But advertised as
“related-key cryptanalysis”

and claimed to justify
recommendations for designers
regarding key scheduling.

30

Some ways to lear
about cipher attac
hash-function atta

Take upcoming ca
“Selected areas in
Includes symmetri

Read attack paper
especially from FS

Try to break ciphe
e.g., find attacks ¢

Reasonable startin
2000 Schneier “Se
in block-cipher cry

k[3]).

from

puts.

with
11,

29

1997 Kelsey—Schneier—\Wagner:
Fancier relationship between k, k'
has chance 27! of producing

a particular output equation.

No evidence in literature that
this helps brute-force attack,
or otherwise affects PRP security.

No challenge to security analysis
of TEA-CTR-XCBC-MAC.

But advertised as
“related-key cryptanalysis”

and claimed to justify
recommendations for designers
regarding key scheduling.

30

Some ways to learn more

about cipher attacks,

hash-function attacks, etc.:

Take upcoming course

“Selected areas in cryptolog

Includes symmetric attacks.

Read attack papers,

especially from FSE confere

Try to break ciphers yoursel
e.g., find attacks on FEAL.
Reasonable starting point:

2000 Schneier “Self-study c

in block-cipher cryptana

VSIS

1997 Kelsey—Schneier—\Wagner:
Fancier relationship between k, k'
has chance 27! of producing

a particular output equation.

No evidence in literature that
this helps brute-force attack,
or otherwise affects PRP security.

No challenge to security analysis
of TEA-CTR-XCBC-MAC.

But advertised as
“related-key cryptanalysis”

and claimed to justify
recommendations for designers
regarding key scheduling.

30

31

Some ways to learn more

about cipher attacks,

hash-function attacks, etc.:

Take upcoming course

“Selected areas in cryptology”.

Includes symmetric attacks.

Read attack papers,

especially from FSE conference.

Try to break ciphers yourself:
e.g., find attacks on FEAL.
Reasonable starting point:

2000 Schneier “Self-study course

in block-cipher cryptana

ysIs' .

Isey—Schneier—\Wagner:
relationship between k, k'
ice 2711 of producing
ilar output equation.

nce In literature that
s brute-force attack,
wise affects PRP security.

enge to security analysis
CTR-XCBC-MAC.

artised as
-key cryptanalysis”

med to justify
endations for designers
o key scheduling.

30

Some ways to learn more

about cipher attacks,

hash-fun

ction attacks, etc.:

Take upcoming course

“Selected areas in cryptology”.

Includes

symmetric attacks.

Read attack papers,

especially from FSE conference.

Try to break ciphers yourself:

e.g., finc

attacks on FEAL.

Reasona

2000 Schneier “Self-study course
in block-

vle starting point:

cipher cryptanalysis”.

31

Some ci

1973, ar
U.S. Na
Standar«
for a Da

eler—\Wagner:

p between k, k'
f producing

E equation.

rature that

rce attack,

s PRP security.
curity analysis
C-MAC.

analysis”

tify

for designers
duling.

30

Some ways to learn more
about cipher attacks,
hash-function attacks, etc.:

Take upcoming course
“Selected areas in cryptology”.
Includes symmetric attacks.

Read attack papers,
especially from FSE conference.

Try to break ciphers yourself:
e.g., find attacks on FEAL.
Reasonable starting point:

2000 Schneier “Self-study course

in block-cipher cryptanalysis’.

31

Some cipher histol

1973, and again Ir
U.S. National Bur
Standards solicits
for a Data Encryp

er:
kK

g

1t

—urity.
lysis

ers

30

Some ways to learn more

about cipher attacks,

hash-function attacks, etc.:

Take upcoming course

“Selected areas in cryptology”.

Includes symmetric attacks.

Read attack papers,

especially from FSE conference.

Try to break ciphers yourself:
e.g., find attacks on FEAL.
Reasonable starting point:

2000 Schneier “Self-study course

in block-cipher cryptana

SIS .

31

Some cipher history

1973, and again in 1974:
U.S. National Bureau of
Standards solicits proposals
for a Data Encryption Stanc

Some ways to learn more
about cipher attacks,
hash-function attacks, etc.:

Take upcoming course
“Selected areas in cryptology”.
Includes symmetric attacks.

Read attack papers,
especially from FSE conference.

Try to break ciphers yourself:
e.g., find attacks on FEAL.
Reasonable starting point:

2000 Schneier “Self-study course

in block-cipher cryptanalysis’.

31

Some cipher history

1973, and again in 1974:

U.S. National Bureau of
Standards solicits proposals

for a Data Encryption Standard.

32

Some ways to learn more
about cipher attacks,
hash-function attacks, etc.:

Take upcoming course
“Selected areas in cryptology”.
Includes symmetric attacks.

Read attack papers,
especially from FSE conference.

Try to break ciphers yourself:
e.g., find attacks on FEAL.
Reasonable starting point:

2000 Schneier “Self-study course

in block-cipher cryptanalysis’.

31

32
Some cipher history

1973, and again in 1974:

U.S. National Bureau of
Standards solicits proposals

for a Data Encryption Standard.

1975: NBS publishes IBM DES
proposal. 64-bit block, 56-bit key.

Some ways to learn more
about cipher attacks,
hash-function attacks, etc.:

Take upcoming course
“Selected areas in cryptology”.
Includes symmetric attacks.

Read attack papers,
especially from FSE conference.

Try to break ciphers yourself:
e.g., find attacks on FEAL.
Reasonable starting point:

2000 Schneier “Self-study course

in block-cipher cryptanalysis’.

31

32
Some cipher history

1973, and again in 1974:

U.S. National Bureau of
Standards solicits proposals

for a Data Encryption Standard.

1975: NBS publishes IBM DES
proposal. 64-bit block, 56-bit key.

1976: NSA meets Diffie and
Hellman to discuss criticism.
Claims “somewhere over
$400,000,000" to break a DES
key; “l don't think you can tell
any Congressman what's going to
be secure 25 years from now.”

ys to learn more
pher attacks,
ction attacks, etc.:

coming course
d areas In cryptology".
symmetric attacks.

ack papers,

y from FSE conference.
reak ciphers yourself:

I attacks on FEAL.

ole starting point:

hneier “Self-study course

-cipher cryptanalysis’.

31

Some cipher history

1973, and again in 1974:

U.S. National Bureau of
Standards solicits proposals

for a Data Encryption Standard.

1975: NBS publishes IBM DES
proposal. 64-bit block, 56-bit key.

1976: NSA meets Diffie and
Hellman to discuss criticism.
Claims “somewhere over
$400,000,000" to break a DES
key; “l don't think you can tell
any Congressman what's going to
be secure 25 years from now.”

32

1977: D

1977: D
publish
$200000
hundred

N More

ks,

cks, etc.:

urse

cryptology” .
c attacks.

S

E conference.

rs yourself:
on FEAL.
g point:

If-study course

'ptana

ysIs' .

31

Some cipher history

1973, and again in 1974

U.S. National Bureau of
Standards solicits proposals

for a Data Encryption Standard.

1975: NBS publishes IBM DES
proposal. 64-bit block, 56-bit key.

1976: NSA meets Diffie and
Hellman to discuss criticism.
Claims “somewhere over
$400,000,000" to break a DES
key; “l don’'t think you can tell
any Congressman what's going to
be secure 25 years from now.”

32

1977: DES is stan

1977: Diffie and F
publish detailed de
$20000000 machir
hundreds of DES |

NCeE.

ourse

31

Some cipher history

1973, and again in 1974:

U.S. National Bureau of
Standards solicits proposals

for a Data Encryption Standard.

1975: NBS publishes IBM DES
proposal. 64-bit block, 56-bit key.

1976: NSA meets Diffie and

Hellman to discuss criticism.
Claims “somewhere over
$400,000,000" to break a DES
key; “l don't think you can tell
any Congressman what's going to
be secure 25 years from now.”

32

1977: DES is standardized.

1977: Dittie and Hellman
publish detailed design of
$20000000 machine to breal
hundreds of DES keys per y

Some cipher history

1973, and again in 1974

U.S. National Bureau of
Standards solicits proposals

for a Data Encryption Standard.

1975: NBS publishes IBM DES
proposal. 64-bit block, 56-bit key.

1976: NSA meets Diffie and
Hellman to discuss criticism.
Claims “somewhere over
$400,000,000" to break a DES
key; “l don’'t think you can tell
any Congressman what's going to
be secure 25 years from now.”

32

1977: DES is standardized.

1977: Diftfie and Hellman
publish detailed design of
$20000000 machine to break

hundreds of DES keys per year.

33

Some cipher history

1973, and again in 1974

U.S. National Bureau of
Standards solicits proposals

for a Data Encryption Standard.

1975: NBS publishes IBM DES

proposal. 64-bit block, 56-bit key.

1976: NSA meets Diffie and
Hellman to discuss criticism.
Claims “somewhere over
$400,000,000" to break a DES
key; “l don’'t think you can tell
any Congressman what's going to
be secure 25 years from now.”

32

33
1977: DES is standardized.

1977: Dithe and Hellman
publish detailed design of
$20000000 machine to break
hundreds of DES keys per year.

1978: Congressional investigation
iInto NSA influence concludes
“NSA convinced IBM that a

reduced key size was sufficient” .

Some cipher history

1973, and again in 1974

U.S. National Bureau of
Standards solicits proposals

for a Data Encryption Standard.

1975: NBS publishes IBM DES

proposal. 64-bit block, 56-bit key.

1976: NSA meets Diffie and
Hellman to discuss criticism.
Claims “somewhere over
$400,000,000" to break a DES
key; “l don’'t think you can tell
any Congressman what's going to
be secure 25 years from now.”

32

33
1977: DES is standardized.

1977: Dithe and Hellman
publish detailed design of
$20000000 machine to break
hundreds of DES keys per year.

1978: Congressional investigation

iInto NSA influence concludes
“NSA convinced IBM that a
reduced key size was sufficient” .

1983, 1988, 1993: Government
reaffirms DES standard.

Some cipher history

1973, and again in 1974

U.S. National Bureau of
Standards solicits proposals

for a Data Encryption Standard.

1975: NBS publishes IBM DES

proposal. 64-bit block, 56-bit key.

1976: NSA meets Diffie and
Hellman to discuss criticism.
Claims “somewhere over
$400,000,000" to break a DES
key; “l don’'t think you can tell
any Congressman what's going to
be secure 25 years from now.”

32

33
1977: DES is standardized.

1977: Dithe and Hellman
publish detailed design of
$20000000 machine to break
hundreds of DES keys per year.

1978: Congressional investigation
into NSA influence concludes

“NSA convinced IBM that a
reduced key size was sufficient” .

1983, 1988, 1993: Government
reaffirms DES standard.

Researchers publish new cipher
proposals and security analysis.

pher history

id again in 1974:

tional Bureau of

Is solicits proposals

ta Encryption Standard.

BS publishes IBM DES

_ 64-bit block, 56-bit key.

SA meets Diffie and

to discuss criticism.
'somewhere over

),000" to break a DES
lon't think you can tell
gressman what's going to
e 25 years from now."

32

1977: DES is standardized.

1977: Dithe and Hellman
publish detailed design of
$20000000 machine to break
hundreds of DES keys per year.

1978: Congressional investigation

iInto NSA influence concludes
“NSA convinced IBM that a
reduced key size was sufficient” .

1983, 1988, 1993: Government
reaffirms DES standard.

Researchers publish new cipher
proposals and security analysis.

33

1997: U
of Stanc
(NIST, 1
for prop:
Encrypti
block, 1

Y

' 1974

eau of
proposals

tion Standard.

nes IBM DES

Ditfie and

5 criticism.

e over

break a DES

. you can tell
what's going to

from now.”

ock, 56-bit key.

32

1977: DES is standardized.

1977: Dithe and Hellman
publish detailed design of
$20000000 machine to break
hundreds of DES keys per year.

1978: Congressional investigation

iInto NSA influence concludes
“NSA convinced IBM that a
reduced key size was sufficient” .

1983, 1988, 1993: Government
reaffirms DES standard.

Researchers publish new cipher
proposals and security analysis.

33

1997: U.S. Natior
of Standards and
(NIST, formerly N
for proposals for A

Encryption Stand:
block, 128/192 /2"

lard.
)ES

it key.

el
ing to

32

1977: DES is standardized.

1977: Dithe and Hellman
publish detailed design of
$20000000 machine to break
hundreds of DES keys per year.

1978: Congressional investigation
into NSA influence concludes

“NSA convinced IBM that a
reduced key size was sufficient” .

1983, 1988, 1993: Government
reaffirms DES standard.

Researchers publish new cipher
proposals and security analysis.

33

1997: U.S. National Institut
of Standards and Technolog
(NIST, formerly NBS) calls
for proposals for Advanced

Encryption Standard. 128-b
block, 128/192/256-bit key.

1977: DES is standardized.

1977: Dithe and Hellman
publish detailed design of
$20000000 machine to break
hundreds of DES keys per year.

1978: Congressional investigation

iInto NSA influence concludes
“NSA convinced IBM that a
reduced key size was sufficient” .

1983, 1988, 1993: Government
reaffirms DES standard.

Researchers publish new cipher
proposals and security analysis.

33

34
1997: U.S. National Institute

of Standards and Technology
(NIST, formerly NBS) calls
for proposals for Advanced
Encryption Standard. 128-bit
block, 128/192/256-bit key.

1977: DES is standardized.

1977: Dithe and Hellman
publish detailed design of
$20000000 machine to break
hundreds of DES keys per year.

1978: Congressional investigation

iInto NSA influence concludes
“NSA convinced IBM that a
reduced key size was sufficient” .

1983, 1988, 1993: Government
reaffirms DES standard.

Researchers publish new cipher
proposals and security analysis.

33

34

1997: U.S. National Institute

of Standards and Techno
(NIST, formerly NBS) ca

ogy
s

for proposals for Advanced
Encryption Standard. 128-bit
block, 128/192/256-bit key.

1998: 15 AES proposals.

1977: DES is standardized.

1977: Dithe and Hellman
publish detailed design of
$20000000 machine to break
hundreds of DES keys per year.

1978: Congressional investigation

iInto NSA influence concludes
“NSA convinced IBM that a
reduced key size was sufficient” .

1983, 1988, 1993: Government
reaffirms DES standard.

Researchers publish new cipher
proposals and security analysis.

33

1997: U.S. National Institute
of Standards and Technology
(NIST, formerly NBS) calls
for proposals for Advanced
Encryption Standard. 128-bit
block, 128/192/256-bit key.

1998: 15 AES proposals.

1998: EFF builds “Deep Crack”
for under $250000 to break
hundreds of DES keys per year.

34

33

1977: DES is standardized. 1997: U.S. National Institute
1977: Diffie and Hellman of Standards and Technology
(NIST, formerly NBS) calls

publish detailed design of
$20000000 machine to break
hundreds of DES keys per year.

for proposals for Advanced
Encryption Standard. 128-bit

block, 128/192/256-bit key.

1978: Congressional investigation

iInto NSA influence concludes 1998: 15 AES proposals.

“NSA convinced IBM that a 1998: EFF builds “Deep Crack”
reduced key size was sufficient” . for under $250000 to break

1083, 1988, 1993: Government hundreds of DES keys per year.

reaffirms DES standard. 1999: NIST selects five
AES finalists: MARS, RC6,

Researchers publish new cipher B |
Rijndael, Serpent, Twofish.

proposals and security analysis.

ES is standardized.

iffie and Hellman
Jetailed design of

00 machine to break

s of DES keys per year.

ongressional investigation
A influence concludes
onvinced IBM that a

key size was sufficient” .

)88, 1993: Government
s DES standard.

1ers publish new cipher
s and security analysis.

33

1997: U.S. National Institute
of Standards and Technology
(NIST, formerly NBS) calls
for proposals for Advanced
Encryption Standard. 128-bit
block, 128/192/256-bit key.

1998: 15 AES proposals.

1998: EFF builds “Deep Crack”
for under $250000 to break
hundreds of DES keys per year.

1999: NIST selects five

AES finalists: MARS, RC6,
Rijndael, Serpent, Twofish.

34

2000: N
selects F

“Securit
factor in

dardized.

1ellman

sign of

1e to break
Keys per year.

al investigation
> concludes
BM that a

/as sufficient’ .

Government
1dard.

h new cipher
Irity analysis.

33

1997: U.S. National Institute
of Standards and Technology
(NIST, formerly NBS) calls
for proposals for Advanced
Encryption Standard. 128-bit
block, 128/192/256-bit key.

1998: 15 AES proposals.

1998: EFF builds “Deep Crack”

for under $250000 to break

hundreds of DES keys per year.

1999: NIST selects five
AES finalists: MARS, RC6,

Rijndael, Serpent, Twofish.

34

2000: NIST, aduvis
selects Rijndael as

“Security was the
factor in the evalu

ent

her
SIS.

33

1997: U.S. National Institute
of Standards and Technology
(NIST, formerly NBS) calls
for proposals for Advanced
Encryption Standard. 128-bit
block, 128/192/256-bit key.

1998: 15 AES proposals.

1998: EFF builds “Deep Crack”

for under $250000 to break

hundreds of DES keys per year.

1999: NIST selects five

AES finalists: MARS, RC6,
Rijndael, Serpent, Twofish.

34

2000: NIST, advised by NS,
selects Rijndael as AES.

“Security was the most imp:
factor in the evaluation”—=F

1997: U.S. National Institute
of Standards and Technology
(NIST, formerly NBS) calls
for proposals for Advanced
Encryption Standard. 128-bit
block, 128/192/256-bit key.

1998: 15 AES proposals.

1998: EFF builds “Deep Crack”
for under $250000 to break
hundreds of DES keys per year.

1999: NIST selects five
AES finalists: MARS, RC6,
Rijndael, Serpent, Twofish.

34

2000: NIST, advised by NSA,
selects Rijndael as AES.

“Security was the most important
factor in the evaluation”—Really?

35

1997: U.S. National Institute
of Standards and Technology
(NIST, formerly NBS) calls
for proposals for Advanced
Encryption Standard. 128-bit
block, 128/192/256-bit key.

1998: 15 AES proposals.

1998: EFF builds “Deep Crack”

for under $250000 to break

hundreds of DES keys per year.

1999: NIST selects five
AES finalists: MARS, RC6,
Rijndael, Serpent, Twofish.

34

35
2000: NIST, advised by NSA,

selects Rijndael as AES.

“Security was the most important
factor in the evaluation”—Really?

"Rijndael appears to offer an
adequate security margin. ...
Serpent appears to offer a
high security margin.”

1997: U.S. National Institute
of Standards and Technology
(NIST, formerly NBS) calls
for proposals for Advanced
Encryption Standard. 128-bit
block, 128/192/256-bit key.

1998: 15 AES proposals.

1998: EFF builds “Deep Crack”

for under $250000 to break

hundreds of DES keys per year.

1999: NIST selects five
AES finalists: MARS, RC6,
Rijndael, Serpent, Twofish.

34

35
2000: NIST, advised by NSA,

selects Rijndael as AES.

“Security was the most important
factor in the evaluation”—Really?

"Rijndael appears to offer an
adequate security margin. ...
Serpent appears to offer a
high security margin.”

2004-2008: eSTREAM
competition for stream ciphers.

1997: U.S. National Institute
of Standards and Technology
(NIST, formerly NBS) calls
for proposals for Advanced
Encryption Standard. 128-bit
block, 128/192/256-bit key.

1998: 15 AES proposals.

1998: EFF builds “Deep Crack”

for under $250000 to break

hundreds of DES keys per year.

1999: NIST selects five
AES finalists: MARS, RC6,
Rijndael, Serpent, Twofish.

34

35
2000: NIST, advised by NSA,

selects Rijndael as AES.

“Security was the most important
factor in the evaluation”—Really?

"Rijndael appears to offer an
adequate security margin. ...
Serpent appears to offer a
high security margin.”

2004-2008: eSTREAM
competition for stream ciphers.

2007-2012: SHA-3 competition.

1997: U.S. National Institute
of Standards and Technology
(NIST, formerly NBS) calls
for proposals for Advanced
Encryption Standard. 128-bit
block, 128/192/256-bit key.

1998: 15 AES proposals.

1998: EFF builds “Deep Crack”

for under $250000 to break

hundreds of DES keys per year.

1999: NIST selects five
AES finalists: MARS, RC6,

Rijndael, Serpent, Twofish.

34

35
2000: NIST, advised by NSA,

selects Rijndael as AES.

“Security was the most important
factor in the evaluation”—Really?

"Rijndael appears to offer an
adequate security margin. ...
Serpent appears to offer a
high security margin.”

2004-2008: eSTREAM
competition for stream ciphers.

2007-2012: SHA-3 competition.
2013—now: CAESAR competition.

34 35

.S. National Institute 2000: NIST, advised by NSA, Main op

lards and Technology selects Rijndael as AES. add rour

ormerly NBS) calls “Security was the most important apply 52u

osals for Advanced . o X > x%°
| factor in the evaluation”—Really?

on Standard. 128-bit to each

28/192/256-bit key. “Rijndael appears to offer an linearly |

adequate security margin. . ..

» AES proposals.
Serpent appears to offer a

FF builds “Deep Crack” high security margin.”

r $250000 to break

s of DES keys per year.

2004-2008: eSTREAM
competition for stream ciphers.

IST selects five

lists: MARS, RC6,
 Serpent, Twofish. 2013—now: CAESAR competition.

2007-2012: SHA-3 competition.

34 35

al Institute 2000: NIST, advised by NSA, Main operations ir
Technology selects Rijndael as AES. add round key to |
B5) calls “Security was the most important apply szgzll)s.tltutlm
\dvanced . . X = x=>7 in Fosge
| factor in the evaluation”—Really? |
rd. 128-bit to each byte in bl
0-bit key. "Rijndael appears to offer an linearly mix bits a
adequate security margin. . ..
posals.
Serpent appears to offer a
“Deep Crack” high security margin.”
to break

2004-2008: eSTREAM
Keys per year. L .
competition for stream ciphers.

s five

RS, RC6,
Twofish. 2013—now: CAESAR competition.

2007-2012: SHA-3 competition.

34 35
2000: NIST, advised by NSA,

selects Rijndael as AES.

“Security was the most important
factor in the evaluation”—Really?

"Rijndael appears to offer an
adequate security margin. ...
Serpent appears to offer a
high security margin.”

2004-2008: eSTREAM
competition for stream ciphers.

2007-2012: SHA-3 competition.
2013—now: CAESAR competition.

Main operations in AES:
add round key to block;
apply substitution box
X = X254 In F256

to each byte in block;

linearly mix bits across blocl

2000: NIST, advised by NSA,
selects Rijndael as AES.

“Security was the most important
factor in the evaluation”—Really?

"Rijndael appears to offer an
adequate security margin. ...
Serpent appears to offer a
high security margin.”

2004-2008: eSTREAM
competition for stream ciphers.

2007-2012: SHA-3 competition.
2013—now: CAESAR competition.

35

Main operations in AES:
add round key to block;
apply substitution box
X = X254 In F256

to each byte in block;

linearly mix bits across block.

36

2000: NIST, advised by NSA,
selects Rijndael as AES.

“Security was the most important
factor in the evaluation”—Really?

"Rijndael appears to offer an
adequate security margin. ...
Serpent appears to offer a
high security margin.”

2004-2008: eSTREAM
competition for stream ciphers.

2007-2012: SHA-3 competition.
2013—now: CAESAR competition.

35

36
Main operations in AES:

add round key to block;
apply substitution box
X = X254 In F256

to each byte in block;

linearly mix bits across block.

Extensive security analysis.
No serious threats to AES-256
multi-target SPRP security
(which implies PRP security),

even In a post-quantum world.

2000: NIST, advised by NSA,
selects Rijndael as AES.

“Security was the most important
factor in the evaluation”—Really?

"Rijndael appears to offer an
adequate security margin. ...
Serpent appears to offer a
high security margin.”

2004-2008: eSTREAM
competition for stream ciphers.

2007-2012: SHA-3 competition.

2013—now: CAESAR competition.

35

Main operations in AES:
add round key to block;
apply substitution box
X = X254 In F256

to each byte in block;

linearly mix bits across block.

Extensive security analysis.
No serious threats to AES-256
multi-target SPRP security
(which implies PRP security),

even In a post-quantum world.

So why isn't AES-256 the end
of the symmetric-crypto story?

36

IST, advised by NSA,
ijndael as AES.

y was the most important
the evaluation”—Really?

| appears to offer an
e security margin. . ..
appears to offer a

urity margin.”

08: eSTREAM
tion for stream ciphers.

12: SHA-3 competition.

w: CAESAR competition.

35

Main operations in AES:
add round key to block;
apply substitution box

X = X2

4 In F256
to each byte in block;

linearly mix bits across block.

Extensive security analysis.

No serious threats to AES-256
multi-target SPRP security
(which implies PRP security),

even In a post-quantum world.

So why isn't AES-256 the end
of the symmetric-crypto story?

36

[£) Google Online Security

C & o

The latest ne
on the Intern

Speedil
HTTPS

Androic
April 24, 2|

Posted by El

Earlier this
Chrome th
GCM on d
acceleratic
devices su
This imprc
saving bat

spent encr

To make il
Ben Laurie

- ChaCha

ed by NSA,
AES.

most important
ation” —Really?

to offer an
margin. . ..
y offer a

n.

EAM
ream ciphers.

3 competition.

AR competition.

35

Main operations in AES:
add round key to block;
apply substitution box

254 N F256

X = X
to each byte in block;

linearly mix bits across block.

Extensive security analysis.
No serious threats to AES-256
multi-target SPRP security
(which implies PRP security),
even In a post-quantum world.

So why isn't AES-256 the end
of the symmetric-crypto story?

36

3 Google Online Security - X | =+

c @ & @ @ nhttps:/isecurity.googlebloc

The latest news and insights from (
on the Internet

Speeding up and stre
HTTPS connections

Android
April 24,2014

Posted by Elie Bursztein, Anti-Abus

Earlier this year, we deployed
Chrome that operates three fi
GCM on devices that don't ha
acceleration, including most /
devices such as Google Glas:
This improves user experienc
saving battery life by cutting ¢
spent encrypting and decrypti

To make this happen, Adam L
Ben Laurie and | began implel

- ChaCha 20 for symmetric e

ortant
eally?

=rS.

tion.

tition.

35

36
Main operations in AES:

add round key to block;
apply substitution box

254 i F256

X = X
to each byte in block;

linearly mix bits across block.

Extensive security analysis.
No serious threats to AES-256
multi-target SPRP security
(which implies PRP security),

even In a post-quantum world.

So why isn't AES-256 the end
of the symmetric-crypto story?

) Google Online Security ¢ X | 4+

C @ & (D @ hitps:/isecurity.googlebloc E 170% vee % Se

The latest news and insights from Google on security and
on the Internet

Speeding up and strengthening
HTTPS connections for Chrome or

Android
April 24,2014

Posted by Elie Bursztein, Anti-Abuse Research Lead

Earlier this year, we deployed a new TLS cipher s
Chrome that operates three times faster than AE
GCM on devices that don't have AES hardware

acceleration, including most Android phones, we
devices such as Google Glass and older comput
This improves user experience, reducing latency
saving battery life by cutting down the amount o1

spent encrypting and decrypting data.

To make this happen, Adam Langley, Wan-Teh CI
Ben Laurie and | began implementing new algorit

-- ChaCha 20 for symmetric encryption and Poly"

3 Google Online Security - X | =+

Main operations in AES: 60 0 [0 i B @ | —][0 s
d d d roun d key to b I OC k’ The latest news and insights from Google on security and safety

on the Internet

apply substitution box

x — x2** in Fosg
to each byte in block; Speeding up and strengthening
t | ' bit block HTTPS connections for Chrome on
inearly mix bits across block. Android
. . . April 24, 2014
Extensive security analysis.
NO Serlous th reats tO AES—256 Posted by Elie Bursztein, Anti-Abuse Research Lead
mu |t|—ta rget S P R P Ssecu r|ty Earlier this year, we deployed a new TLS cipher suite in

Chrome that operates three times faster than AES-

GCM on devices that don't have AES hardware

(which implies PRP security),

even | N a ;)()S'[‘_—q uantum W()rld] acceleration, including most Android phones, wearable
devices such as Google Glass and older computers.
SO Why isn 't A ES_256 the end This improves user experience, reducing latency and
] saving battery life by cutting down the amount of time
Of th S Sym metric-C ry ptO StOry? spent encrypting and decrypting data.

To make this happen, Adam Langley, Wan-Teh Chang,

Ben Laurie and | began implementing new algorithms

-- ChaCha 20 for symmetric encryption and Poly1305

erations in AES:

1d key to block;
bstitution box

*in Fose

byte in block;

mix bits across block.

e security analysis.

us threats to AES-256
rget SPRP security
mplies PRP security),

3 post-quantum world.

isn't AES-256 the end
/mmetric-crypto story?

36

) Google Online Security ¢ X | 4+

C o & (D @ https://security.googlebloc B @ 170% see Search

The latest news and insights from Google on security and safety
on the Internet

Speeding up and strengthening
HTTPS connections for Chrome on

Android
April 24,2014

Posted by Elie Bursztein, Anti-Abuse Research Lead

Earlier this year, we deployed a new TLS cipher suite in
Chrome that operates three times faster than AES-
GCM on devices that don't have AES hardware
acceleration, including most Android phones, wearable
devices such as Google Glass and older computers.
This improves user experience, reducing latency and
saving battery life by cutting down the amount of time

spent encrypting and decrypting data.

To make this happen, Adam Langley, Wan-Teh Chang,
Ben Laurie and | began implementing new algorithms

-- ChaCha 20 for symmetric encryption and Poly1305

»

37

Date:

Messagse
[Downloz

From: Er
Hi all,

(Please
it to be

It was c
encrypti
storage
"Androic
these de
have to
Cryptog!

As we e
challenc
the very
suitable
Speck, 1
has a lz

Therefor
encrypti

ChaCha =
nanear he

' AES:
block:
1 box

ck:
~ross block.

analysis.
to AES-256
» security
P security),

ntum world.

256 the end
“rypto story?

36

3 Google Online Security - X | =+

o & @ & hitps:/isecurity.googleblot B 170% e P Search

The latest news and insights from Google on security and safety
on the Internet

Speeding up and strengthening
HTTPS connections for Chrome on

Android
April 24,2014

Posted by Elie Bursztein, Anti-Abuse Research Lead

Earlier this year, we deployed a new TLS cipher suite in
Chrome that operates three times faster than AES-
GCM on devices that don't have AES hardware
acceleration, including most Android phones, wearable
devices such as Google Glass and older computers.
This improves user experience, reducing latency and
saving battery life by cutting down the amount of time

spent encrypting and decrypting data.

To make this happen, Adam Langley, Wan-Teh Chang,
Ben Laurie and | began implementing new algorithms

-- ChaCha 20 for symmetric encryption and Poly1305

»

37

Date: 201
Message-ID: 201
[Download message

From: Eric Biggers
Hi all,

(Please note that
it to be merged qu

It was officially
encryption [1]. W
storage encryption
"Android Go" devic
these devices stil
have to use older
Cryptography Exten

As we explained in
challenging proble
the very strict pe
suitable for pract
Speck, in this day
has a large politi

Therefore, we (wel
encryption mode, H

ChaCha stream ciph
naner here* httns-

36

) Google Online Security ¢ X | 4+

C @ & (D @@ hitps:/isecurity.googlebloc B @ 170% e Search »

The latest news and insights from Google on security and safety
on the Internet

Speeding up and strengthening
HTTPS connections for Chrome on

Android
April 24,2014

Posted by Elie Bursztein, Anti-Abuse Research Lead

Earlier this year, we deployed a new TLS cipher suite in
Chrome that operates three times faster than AES-
GCM on devices that don't have AES hardware
acceleration, including most Android phones, wearable
devices such as Google Glass and older computers.
This improves user experience, reducing latency and
saving battery life by cutting down the amount of time

spent encrypting and decrypting data.

To make this happen, Adam Langley, Wan-Teh Chang,
Ben Laurie and | began implementing new algorithms

-- ChaCha 20 for symmetric encryption and Poly1305

37

Date: 2018-08-06 2
Message-ID: 20180806223:
[Download message RAW]

From: Eric Biggers <ebiggers
Hi all,

(Please note that this patch
it to be merged quite yetl)

It was officially decided to
encryption [1]. We've been
storage encryption to entry-
"Android Go" devices sold in
these devices still ship wit
have to use older CPUs like
Cryptography Extensions, mak

As we explained in detail ea
challenging problem due to t
the very strict performance
suitable for practical use 1i
Speck, in this day and age t
has a large political elemen

Therefore, we (well, Paul Cr
encryption mode, HPolyC. 1In

ChaCha stream cipher for dis
nanar here* httnes://anrint _i

3 Google Online Security - X | =+

c @ & E @ 170% O 4 Search

@ @ hittps:/isecurity.googlebloc

The latest news and insights from Google on security and safety
on the Internet

Speeding up and strengthening
HTTPS connections for Chrome on

Android
April 24,2014

Posted by Elie Bursztein, Anti-Abuse Research Lead

Earlier this year, we deployed a new TLS cipher suite in
Chrome that operates three times faster than AES-
GCM on devices that don't have AES hardware
acceleration, including most Android phones, wearable
devices such as Google Glass and older computers.
This improves user experience, reducing latency and
saving battery life by cutting down the amount of time

spent encrypting and decrypting data.

To make this happen, Adam Langley, Wan-Teh Chang,
Ben Laurie and | began implementing new algorithms

- ChaCha 20 for symmetric encryption and Poly1305

»

37

Date: 2018-08-06 22:32:51
Message-ID: 20180806223300.11389
[Download message RAW]

From: Eric Biggers <ebiggers@google.co
Hi all,

(Please note that this patchset is a t
it to be merged quite yetl!)

It was officially decided to *not* all
encryption [1]. We've been working to
storage encryption to entry-level Andr
"Android Go" devices sold in developin:
these devices still ship with no encry,
have to use older CPUs like ARM Cortex
Cryptography Extensions, making AES-XT

As we explained in detail earlier, e.g
challenging problem due to the lack of
the very strict performance requiremen
suitable for practical use in dm-crypt
Speck, in this day and age the choice |
has a large political element, restric

Therefore, we (well, Paul Crowley did
encryption mode, HPolyC. In essence, |

ChaCha stream cipher for disk encrypti
nanar here* httne://anrint _dacr_orn/20

x |+

(D @ https://security.googlebloc B @ 170% see Search

ws and insights from Google on security and safety
et

1g up and strengthening

connections for Chrome on

i
)14

ie Bursztein, Anti-Abuse Research Lead

year, we deployed a new TLS cipher suite in
at operates three times faster than AES-
avices that don't have AES hardware

N, including most Android phones, wearable
ch as Google Glass and older computers.
Ves user experience, reducing latency and
tery life by cutting down the amount of time

ypting and decrypting data.

1is happen, Adam Langley, Wan-Teh Chang,
and | began implementing new algorithms

20 for symmetric encryption and Poly1305

»

37

Date: 2018-08-06 22:32:51
Message-ID: 20180806223300.113891-1-ebigg
[Download message RAW]

From: Eric Biggers <ebiggers@google.com>
Hi all,

(Please note that this patchset is a true RFC, 1.
it to be merged quite yetl)

It was officially decided to *not* allow Android
encryption [1]. We've been working to find an a.
storage encryption to entry-level Android device:
"Android Go" devices sold in developing countrie:
these devices still ship with no encryption, sind
have to use older CPUs like ARM Cortex-A7; and tl
Cryptography Extensions, making AES-XTS much too

As we explained in detail earlier, e.g. in [2], 1
challenging problem due to the lack of encryptiol
the very strict performance requirements, while :
suitable for practical use in dm-crypt and fscryj
Speck, in this day and age the choice of cryptog
has a large political element, restricting the o]

Therefore, we (well, Paul Crowley did the real wi
encryption mode, HPolyC. 1In essence, HPolyC maki

ChaCha stream cipher for disk encryption. HPolyt
nanar hara® httns://anrint _dacr _ ora/2018/720 _ndf

B 170% ses Y Search

500¢@le on security and safety

ngthening
for Chrome on

> Research Lead

a new TLS cipher suite in
mes faster than AES-

ve AES hardware

\ndroid phones, wearable
5 and older computers.

e, reducing latency and
lown the amount of time

ng data.

angley, Wan-Teh Chang,
menting new algorithms

ncryption and Poly1305

»

37

Date: 2018-08-06 22:32:51
Message-ID: 20180806223300.113891-1-ebiggers () ke
[Download message RAW]

From: Eric Biggers <ebiggers@google.com>
Hi all,

(Please note that this patchset is a true RFC, i.e. we're r
it to be merged quite yetl)

It was officially decided to *not* allow Android devices ftc
encryption [1]. We've been working to find an alternative
storage encryption to entry-level Android devices like the
"Android Go" devices sold in developing countries. Unforti
these devices still ship with no encryption, since for cost
have to use older CPUs like ARM Cortex-A7; and these CPUs 1]
Cryptography Extensions, making AES-XTS much too slow.

As we explained in detail earlier, e.g. in [2], this is a v
challenging problem due to the lack of encryption algorithn
the very strict performance requirements, while still beinct
suitable for practical use in dm-crypt and fscrypt. And ac
Speck, in this day and age the choice of cryptographic prin
has a large political element, restricting the options ever

Therefore, we (well, Paul Crowley did the real work) desigr
encryption mode, HPolyC. In essence, HPolyC makes it secur

ChaCha stream cipher for disk encryption. HPolyC is specif
nanar harea: httns://anrint _dacr_ orn/2018//720 _ndf ("HPnalvC:

safety

uite in

G-

arable
ors.,
and

“time

1ang,
hms

1305

»

37

Date: 2018-08-06 22:32:51
Message-ID: 20180806223300.113891-1-ebiggers () kernel ! o
[Download message RAW]

From: Eric Biggers <ebiggers@google.com>
Hi all,

(Please note that this patchset is a true RFC, i.e. we're not ready f
it to be merged quite yetl)

It was officially decided to *not* allow Android devices to use Speck
encryption [1]. We've been working to find an alternative way to bri
storage encryption to entry-level Android devices like the inexpensiy
"Android Go" devices sold in developing countries. Unfortunately, of
these devices still ship with no encryption, since for cost reasons t
have to use older CPUs like ARM Cortex-A7; and these CPUs lack the AR
Cryptography Extensions, making AES-XTS much too slow.

As we explained in detail earlier, e.g. in [2], this is a very
challenging problem due to the lack of encryption algorithms that mee
the very strict performance requirements, while still being secure an
suitable for practical use in dm-crypt and fscrypt. And as we saw wi
Speck, in this day and age the choice of cryptographic primitives als
has a large political element, restricting the options even further.

Therefore, we (well, Paul Crowley did the real work) designed a new
encryption mode, HPolyC. 1In essence, HPolyC makes it secure to use t

ChaCha stream cipher for disk encryption. HPolyC is specified by our
nanar hara: httns://anrint _dacr _ora/2018/720 _ndf ("HPnlvC:

Date: 2018-08-06 22:32:51 N 39
Message-ID: 20180806223300.113891-1-ebiggers () kernel ! org
[Download message RAW]

From: Eric Biggers <ebiggers@google.com>

Hi all,

(Please note that this patchset is a true RFC, i.e. we're not ready for
it to be merged quite yetl)

It was officially decided to *not* allow Android devices to use Speck
encryption [1]. We've been working to find an alternative way to bring
storage encryption to entry-level Android devices like the inexpensive
"Android Go" devices sold in developing countries. Unfortunately, often
these devices still ship with no encryption, since for cost reasons they
have to use older CPUs like ARM Cortex-A7; and these CPUs lack the ARMvS8
Cryptography Extensions, making AES-XTS much too slow.

As we explained in detail earlier, e.g. in [2], this is a very
challenging problem due to the lack of encryption algorithms that meet
the very strict performance requirements, while still being secure and
suitable for practical use in dm-crypt and fscrypt. And as we saw with
Speck, in this day and age the choice of cryptographic primitives also
has a large political element, restricting the options even further.

Therefore, we (well, Paul Crowley did the real work) designed a new
encryption mode, HPolyC. In essence, HPolyC makes it secure to use the

ChaCha stream cipher for disk encryption. HPolyC is specified by our
nanar harea: httns://anrint _dacr_ orn/2018//720 _ndf ("HPnalvC:

2018-08-06 22:32:51 R 39
2-ID: 20180806223300.113891-1-ebiggers () kernel ! org
\d message RAW]

'ic Biggers <ebiggers@google.com>

note that this patchset is a true RFC, i.e. we're not ready for
 merged quite yetl)

fficially decided to *not* allow Android devices to use Speck
lon [1]. We've been working to find an alternative way to bring
encryption to entry-level Android devices like the inexpensive

| Go" devices sold in developing countries. Unfortunately, often
vices still ship with no encryption, since for cost reasons they
use older CPUs like ARM Cortex-A7; and these CPUs lack the ARMvS8
‘aphy Extensions, making AES-XTS much too slow.

‘plained in detail earlier, e.g. in [2], this is a very

Jing problem due to the lack of encryption algorithms that meet
r strict performance requirements, while still being secure and
» for practical use in dm-crypt and fscrypt. And as we saw with
n this day and age the choice of cryptographic primitives also
rge political element, restricting the options even further.

‘e, we (well, Paul Crowley did the real work) designed a new
.on mode, HPolyC. 1In essence, HPolyC makes it secure to use the

tream cipher for disk encryption. HPolyC is specified by our
ra* httns://enrint _diacr _ora/2018/720 _ndf ("HPnlv(:

AES per
in both

by small
heavy S-

8-08-06 22:32:51
80806223300.113891-1-ebiggers () kernel ! org
RAW]

- <ebiggers@google.com>

this patchset is a true RFC, i.e. we're not ready for
ite yetl!)

decided to *not* allow Android devices to use Speck
e've been working to find an alternative way to bring
- to entry-level Android devices like the inexpensive
es sold in developing countries. Unfortunately, often
1l ship with no encryption, since for cost reasons they
CPUs like ARM Cortex-A7; and these CPUs lack the ARMvS
sions, making AES-XTS much too slow.

- detail earlier, e.g. in [2], this is a very

m due to the lack of encryption algorithms that meet
rformance requirements, while still being secure and
ical use in dm-crypt and fscrypt. And as we saw with
~and age the choice of cryptographic primitives also
cal element, restricting the options even further.

1l, Paul Crowley did the real work) designed a new
PolyC. In essence, HPolyC makes it secure to use the

er for disk encryption. HPolyC is specified by our
ffanrint _dacr _orn/20188/7260 _ndf ("HPnlv(C:

39

AES performance
iIn both hardware
by small 128-bit b

heavy S-box desig

2:32:51
}00.113891-1-ebiggers () kernel ! org

@google.com>

set is a true RFC, i.e. we're not ready for

not allow Android devices to use Speck
working to find an alternative way to bring
level Android devices like the inexpensive

developing countries. Unfortunately, often
h no encryption, since for cost reasons they
ARM Cortex-A7; and these CPUs lack the ARMvS8
ing AES-XTS much too slow.

rlier, e.g. in [2], this is a very

he lack of encryption algorithms that meet
requirements, while still being secure and
n dm-crypt and fscrypt. And as we saw with
he choice of cryptographic primitives also
t, restricting the options even further.

owley did the real work) designed a new
essence, HPolyC makes it secure to use the

kK encryption. HPolyC is specified by our
arcr _orn/?2018/720 _ndf ("HPnlvC:

39

AES performance seems |im
in both hardware and softws

by small 128-bit block size,
heavy S-box design strategy

39
1-1-ebiggers () kernel ! org

mn=>

rue RFC, i.e. we're not ready for

oW Android devices to use Speck
find an alternative way to bring
0id devices like the inexpensive

g countries. Unfortunately, often
ption, since for cost reasons they
-A7; and these CPUs lack the ARMvS8
S much too slow.

. in [2], this is a very
encryption algorithms that meet
ts, while still being secure and
and fscrypt. And as we saw with
of cryptographic primitives also
ting the options even further.

the real work) designed a new
HPolyC makes it secure to use the

on. HPolyC is specified by our
18/720 _ndf ("HPnalv(::

40
AES performance seems limited

in both hardware and software

by small 128-bit block size,
heavy S-box design strategy.

1-1-ebiggers () kernel ! org

mn=>

rue RFC, i.e. we're not ready for

oW Android devices to use Speck
find an alternative way to bring
0id devices like the inexpensive

g countries. Unfortunately, often
ption, since for cost reasons they
-A7; and these CPUs lack the ARMvS8
S much too slow.

. in [2], this is a very
encryption algorithms that meet
ts, while still being secure and
and fscrypt. And as we saw with
of cryptographic primitives also
ting the options even further.

the real work) designed a new
HPolyC makes it secure to use the

on. HPolyC is specified by our
18/720 _ndf ("HPnalv(::

39

40
AES performance seems limited

In both hardware and software
by small 128-bit block size,

heavy S-box design strategy.

AES software ecosystem is
complicated and dangerous.

Fast software implementations
of AES S-box often leak
secrets through timing.

1-1-ebiggers () kernel ! org

mn=>

rue RFC, i.e. we're not ready for

oW Android devices to use Speck
find an alternative way to bring
0id devices like the inexpensive

g countries. Unfortunately, often
ption, since for cost reasons they
-A7; and these CPUs lack the ARMvS8
S much too slow.

. in [2], this is a very
encryption algorithms that meet
ts, while still being secure and
and fscrypt. And as we saw with
of cryptographic primitives also
ting the options even further.

the real work) designed a new
HPolyC makes it secure to use the

on. HPolyC is specified by our
18/720 _ndf ("HPnalv(::

39

40
AES performance seems limited

In both hardware and software
by small 128-bit block size,

heavy S-box design strategy.

AES software ecosystem is
complicated and dangerous.

Fast software implementations
of AES S-box often leak
secrets through timing.

Picture is worse for high-security
authenticated ciphers. 128-bit
block size limits PRF security.
Workarounds are hard to audit.

ers () kernel ! org

.e. we're not ready for

devices to use Speck
lternative way to bring
5 1like the inexpensive
5. Unfortunately, often
e for cost reasons they
1ese CPUs lack the ARMvS8
slow.

his is a very

1 algorithms that meet
5till being secure and
>t. And as we saw with
aphic primitives also
ytions even further.

ork) designed a new
a5 it secure to use the

> 1s specified by our
("HPalwvC:

39

AES performance

seems limited

in both hardware and software

by small 128-bit b

lock size,

heavy S-box design strategy.

AES software ecosystem is

complicated and ¢

Fast software imp

angerous.
ementations

of AES S-box often leak
secrets through timing.

Picture is worse for high-security

authenticated ciphers. 128-bit

block size limits P

RF security.

Workarounds are hard to audit.

40

ChaCha

with mu

arnel ! org

10t ready for

) use Speck
way to bring
inexpensive
Inately, often
. reasons they
.ack the ARMvS

ery

1S that meet
] secure and
; we saw with
iitives also
1 further.

ied a new
‘e to use the
‘ied by our

39

AES performance

seems limited

in both hardware and software

by small 128-bit b

lock size,

heavy S-box design strategy.

AES software ecosystem is

complicated and ¢

Fast software imp

angerous.
ementations

of AES S-box often leak
secrets through timing.

Picture is worse for high-security

authenticated ciphers. 128-bit
block size limits PRF security.

Workarounds are hard to audit.

40

ChaCha creates sa
with much less wc

or

ng
e
ten
hey
Mv8

d
th

he

39

AES performance

seems limited

in both hardware and software

by small 128-bit b

lock size,

heavy S-box design strategy.

AES software ecosystem is

complicated and ¢

angerous.

Fast software imp

ementations

of AES S-box often leak
secrets through timing.

Picture is worse for high-security

authenticated ciphers. 128-bit

block size limits P

RF security.

Workarounds are hard to audit.

40

ChaCha creates safe system:
with much less work than A

AES performance

seems limited

in both hardware and software
by small 128-bit block size,
heavy S-box design strategy.

AES software ecosystem is

complicated and ¢

angerous.

Fast software imp

ementations

of AES S-box often leak
secrets through timing.

Picture is worse for high-security

authenticated ciphers. 128-bit

block size limits P

RF security.

Workarounds are hard to audit.

40

ChaCha creates safe systems
with much less work than AES.

41

AES performance seems limited
in both hardware and software

by small 128-bit block size,
heavy S-box design strategy.

AES software ecosystem is
complicated and dangerous.

Fast software implementations
of AES S-box often leak
secrets through timing.

Picture is worse for high-security
authenticated ciphers. 128-bit
block size limits PRF security.
Workarounds are hard to audit.

40

ChaCha creates safe systems
with much less work than AES.

More examples of how symmetric
primitives have been improving

speed, simplicity, security:
PRESENT is better than DES.

Skinny is better than
Simon and Speck.

Keccak, BLAKE2, Ascon
are better than MD5, SHA-O,
SHA-1, SHA-256, SHA-512.

41

formance seems |limited
hardware and software

128-bit block size,
-box design strategy.

tware ecosystem Is
ited and dangerous.

f'ware implementations
S-box often leak
hrough timing.

s worse for high-security
cated ciphers. 128-bit
e limits PRF security.
unds are hard to audit.

40

41
ChaCha creates safe systems

with much less work than AES.

More examples of how symmetric
primitives have been improving

speed, simplicity, security:
PRESENT is better than DES.

Skinny is better than
Simon and Speck.

Keccak, BLAKE2, Ascon
are better than MD5, SHA-O,
SHA-1, SHA-256, SHA-512.

Next slic
from 20
Lucks—N
Schneide
Todo—V
Cross-ple

Gimli pe

seems limited
and software
lock size,

n strategy.

ystem IS
angerous.
ementations
n leak

ning.

r high-security
ers. 128-bit
RF security.
1ard to audit.

40

41
ChaCha creates safe systems

with much less work than AES.

More examples of how symmetric
primitives have been improving

speed, simplicity, security:
PRESENT is better than DES.

Skinny is better than
Simon and Speck.

Keccak, BLAKE2, Ascon
are better than MD5, SHA-O,
SHA-1, SHA-256, SHA-512.

Next slides: refere
from 2017 Bernste
Lucks—Massolino—
Schneider—Schwat
Todo—Viguier for
cross-platform per

Gimli permutes {C

Ited
re

nsS

urity
It

Y.
dit.

40

ChaCha creates safe systems
with much less work than AES.

More examples of how symmetric
primitives have been improving

speed, simplicity, security:
PRESENT is better than DES.

Skinny is better than
Simon and Speck.

Keccak, BLAKE2, Ascon
are better than MD5, SHA-O,
SHA-1, SHA-256, SHA-512.

41

Next slides: reference softw:
from 2017 Bernstein—Kolbl—
Lucks—Massolino—Mendel-N
Schneider—-Schwabe—Standat
Todo—Viguier for “Gimli: a

cross-platform permutation”

Gimli permutes {0, 13334,

ChaCha creates safe systems
with much less work than AES.

More examples of how symmetric
primitives have been improving

speed, simplicity, security:
PRESENT is better than DES.

Skinny is better than
Simon and Speck.

Keccak, BLAKE2, Ascon
are better than MD5, SHA-O,
SHA-1, SHA-256, SHA-512.

41

Next slides: reference software
from 2017 Bernstein—Kolbl-
Lucks—Massolino—Mendel-Nawaz—
Schneider—-Schwabe—Standaert—
Todo—Viguier for “Gimli: a

cross-platform permutation”.

Gimli permutes {0, 1}3%%.

42

ChaCha creates safe systems
with much less work than AES.

More examples of how symmetric
primitives have been improving

speed, simplicity, security:
PRESENT is better than DES.

Skinny is better than
Simon and Speck.

Keccak, BLAKE2, Ascon
are better than MD5, SHA-O,
SHA-1, SHA-256, SHA-512.

41

Next slides: reference software
from 2017 Bernstein—Kolbl-
Lucks—Massolino—Mendel-Nawaz—
Schneider—-Schwabe—Standaert—
Todo—Viguier for “Gimli: a

cross-platform permutation”.
Gimli permutes {0, 1}3%%.

“Wait, where's the key?”

42

ChaCha creates safe systems
with much less work than AES.

More examples of how symmetric
primitives have been improving

speed, simplicity, security:
PRESENT is better than DES.

Skinny is better than
Simon and Speck.

Keccak, BLAKE2, Ascon
are better than MD5, SHA-O,
SHA-1, SHA-256, SHA-512.

41

Next slides: reference software
from 2017 Bernstein—Kolbl-
Lucks—Massolino—Mendel-Nawaz—
Schneider—-Schwabe—Standaert—
Todo—Viguier for “Gimli: a

cross-platform permutation”.
Gimli permutes {0, 1}3%%.
“Wait, where's the key?”

Even—Mansour SPRP mode:
Ei(m) =k & Gimli(k & m).

Salsa/ChaCha PRF mode:
Sk(m) = (k, m) ® Gimli(k, m).

Or: (k,0) @ Gimli(k, m).

42

creates safe systems
ch less work than AES.

amples of how symmetric
s have been improving

mplicity, security:
[T is better than DES.

s better than
nd Speck.

BLAKE2, Ascon
or than MD5, SHA-O,
SHA-256, SHA-512.

41

42
Next slides: reference software

from 2017 Bernstein—Kolbl—
Lucks—Massolino—Mendel-Nawaz—
Schneider—-Schwabe—Standaert—
Todo—Viguier for “Gimli: a

cross-platform permutation”.
Gimli permutes {0, 13334,
“Wait, where's the key?”

Even—Mansour SPRP mode:
Ei(m) =k & Gimli(k & m).

Salsa/ChaCha PRF mode:
Sk(m) = (k, m) ® Gimli(k, m).

Or: (k,0) @ Gimli(k, m).

vold g1il
{
int r

uint3.

for (.

for

P4

O O T N <

fe systems
rk than AES.

how symmetric
en improving

ecurity:
or than DES.

1an

Ascon
D5, SHA-O,
SHA-512.

41

Next slides: reference software
from 2017 Bernstein—Kolbl-
Lucks—Massolino—Mendel-Nawaz—
Schneider—-Schwabe—Standaert—
Todo—Viguier for “Gimli: a

cross-platform permutation”.
Gimli permutes {0, 1}3%%.
“Wait, where's the key?”

Even—Mansour SPRP mode:
Ei(m) =k & Gimli(k & m).

Salsa/ChaCha PRF mode:
Sk(m) = (k, m) ® Gimli(k, m).

Or: (k,0) @ Gimli(k, m).

42

void gimli(uint3
{
int r,c;

uint32 x,y,z;

for (r = 24;r
for (c = 0;c

X = rotate

y = rotate
z =

b[8+c]=x"(
b[4+c]=y~x
b[cl=z"y

V)

netric
Ing

41 42
Next slides: reference software

from 2017 Bernstein—Kolbl—
Lucks—Massolino—Mendel-Nawaz—
Schneider—-Schwabe—Standaert—
Todo—Viguier for “Gimli: a

cross-platform permutation”.
Gimli permutes {0, 13334,
“Wait, where's the key?”

Even—Mansour SPRP mode:
Ei(m) =k & Gimli(k & m).

Salsa/ChaCha PRF mode:
Sk(m) = (k, m) ® Gimli(k, m).

Or: (k,0) @ Gimli(k, m).

void gimli(uint32 *b)

{

int T,

C,

uint32 x,y,Z;

for (r

24:r > 0;--1)

for (c = 0;c < 4;++c)

X

O O O N <

= rotate(b[c

rotate (b[4+c]

b

b

b[8+c];

1=x"(z<<1) "~ ((y
1=y~x ~((x
1=z"y ~ (X

Next slides: reference software
from 2017 Bernstein—Kolbl-
Lucks—Massolino—Mendel-Nawaz—
Schneider—-Schwabe—Standaert—
Todo—Viguier for “Gimli: a

cross-platform permutation”.
Gimli permutes {0, 1}3%%.
“Wait, where's the key?”

Even—Mansour SPRP mode:
Ei(m) =k & Gimli(k & m).

Salsa/ChaCha PRF mode:
Sk(m) = (k, m) ® Gimli(k, m).

Or: (k,0) @ Gimli(k, m).

42

void gimli(uint32 *b)

{

int T,

C,

uint32 x,y,z;

for (r

24:r > 0;--r) {

for (¢ = 0;¢c < 4;++c) {

X

O O T N <

rotate (b[4+c]

= rotate(b[cl, 24);

, 9);

b[8+c];

43

1=x"(2<<1) " ((y&z) <<2) ;
1=y"x “((x]z)<<k1);
1=z"y “((x&y)<<3);

les: reference software
17 Bernstein—Kolbl—
lassolino—Mendel-Nawaz—

>r—Schwabe—Standaert—
guier for “Gimli: a
itform permutation”.

rmutes {0, 11334,
vhere's the key?”

ansour SPRP mode:
= k @ Gimli(k & m).

1aCha PRF mode:
= (k, m) & Gimli(k, m).

)) ® Gimli(k, m).

42

43
void gimli(uint32 *b)

{
int r,c;

uint32 x,y,Z;

for (r = 24;r > 0;—-1r) {
for (¢ = 0;¢c < 4;++c) {

x = rotate(b[c], 24);

= rotate(b[4+c], 9);

= b[8+c];
8+c]=x"(z<<1) " ((y&z)<<2);
4+c]=y~x “((x]z)<<k1);
cl=z"y ~ ((x&y)<<3);

O O O N <

if

if

nce software

In—Ko
Mende

bl—
—Nawaz—

e—Standaert—

‘Gimli:

d

mutation’ .

> key?”

RP mode:
li(k @& m).

F mode:
Gimli(k, m).

(k, m).

42

void gimli(uint32 *b)
{
int r,c;

uint32 x,y,z;

for (r = 24;r > 0;-—-r) {
for (¢ = 0;¢c < 4;++c) {

x = rotate(b[«c], 24);

= rotate(b[4+c], 9);

= b[8+c];
[8+c]=x"(z<<1) ~ ((y&z)<<2)
4+c]=y~x “((xlz)<<1)
cl=z"y ~((x&y)<<3)

O O T N <

43

)
)

)

if ((r & 3)

x=b[0]

x=b[2]

- b[
- b[

if ((r & 3)

x=b[0]

x=b[1]

: bl
: bl

if ((r & 3)
b[0] = (O

are h void gimli(uint32 *b) b if ((r & 3) == 0) A
{ x=b[0]; b[0]=b[1];
awaz— int r,c; x=b[2]; b[2]=b[3];
S rt— uint32 x,y,z; +
for (r = 24;r > 0;—-r) { if ((r & 3) == 2) {
for (¢ = 0;c < 4;++c) { x=b[0]; b[0]=b[2];
x = rotate(b[cl, 24); x=b[1]; b[1]=b[3];
y = rotate(b[4+c], 9); }
zZ = b [8+c];
b[8+c]l=x"(z<<1) " ((y&z) <<2) ; if ((r & 3) == 0)
b[4+c]=y x “((xlz)<<1); b[0] ~= (0x9e37790C
b[cl=z"y " ((x&y)<<3); ¥
) } }

43
void gimli(uint32 *b)

{
int r,c;

uint32 x,y,z;

24:r > 0;--r) {

for (¢ = 0;¢c < 4;++c) {

for (r =

x = rotate(b[cl, 24);

y = rotate(b[4+c], 9);

zZ = b[8+c];
b[8+c]=x"(2z<<1) " ((y&z)<<2);
b[4+c]=y~x “((x]z)<<1);
b[cl=z"y ~((x&y)<<3);

if ((r & 3) == 0) {

x=b[0]; b[O]
x=b[2]; b[2]
+
if ((r & 3) ==
x=b[0]; bI[O.
x=b[1]; b[1]
+
if ((r & 3) ==
b[0]

=b[1.

=b [3.

0)

: b[1]

: b[3]

"= (0x9e377900 | r);

44

nl1i(uint32 *b) N if ((r & 3) == 0) { N No addr
x=b[0]; b[O0]=b[1]; b[l]l=x; are replc
,C: x=b[2]; b[2]=b[3]; b[3]=x; (Idea st
> X,V Z; ! Big rota
quickly :

r = 24;r > 0;-—-1) { if ((r & 3) == 2) {
(c = 0;¢ < 4;++c) { x=b[0]; b[0]=b[2]; b[2]=x; @ X ¥, Z |
= rotate(b[c], 24); x=b[1]; b[1]=b[3]; b[3]=x; Cchanges
= rotate(b[4+c], 9); } (0,4, 8;
- bl8+cl; Other s\
B+c]=x"(2<<1) " ((y&z)<<2); if ((r & 3) == 0) through
4+c]=y~x “((xlz)<kl); b[0] = (0x9e377900 | r); swaps p
cl=z"y ~((x&y)<<3); t on 3 wic

+

43
2 *b)
> 0;--r) {
< 4;:++c) {
(b[cl, 24);
(b[4+c], 9);
b[8+c];
z<<1) "~ ((y&z)<<2) ;
“((xlz)<<1);
" ((x&y)<<3);

if ((r & 3) == 0) {
x=b[0]; b[O]=b[1]
x=b[2]; b[2]=b[3]

+

if ((r & 3) == 2) {
x=b[0]; b[O]=b[2]
x=b[1]; b[1]=b[3

+

if ((r & 3) == 0)

: b[1]

: b[3]

44

b[0] ~= (0x9e377900 | r);

No additions.

are replaced

Nor

oy sh

(Idea stolen

Big rotations diffu
quickly across bi

‘rom

DIT

X, y, z Interaction

changes quickly tf
(0,4,8;1,5,9; 2,

Other swaps

diffus

through rows. Del

swaps per round =

on a wide range o

&z)<<2) ;
1z)<<1);
&y)<<3);

if ((r & 3) == 0) {
x=b [0
x=b [2.

if ((r & 3) =
0] ;
1] ;

xX=Db
X=Db

if ((r & 3)

=b[1.
=b [3.

- b[0]
: b[2]

- bl[1]
: b[3]

44

b[0] ~= (0x9e377900 | r);

No additions. Nonlinear cari

are replaced by shifts of &, |
(Idea stolen from NORX cip

Big rotations diffuse change

quickly across bit positions.

X, V, z Interaction diffuses

changes quickly through col
(0,4,8;1,5,9; 2,6,10; 3,7,

Other swaps diffuse changes
through rows. Deliberately |
swaps per round = faster r¢
on a wide range of platform:

if ((r & 3)

if ((r & 3)

x=b[0]; b[O.
x=b[1]; b[1]

if ((r & 3)

== 0) {
x=b[0]; b[0]=b[1:
x=b[2]; b[2]=b[3.

== 2) {
0]=b[2.
1]1=b[3
== 0)

: b[1]

: b[3]

b[0] ~= (0x9e377900 | r);

44

No additions. Nonlinear carries

are replaced by shifts of &, |.
(Idea stolen from NORX cipher.)

Big rotations diffuse changes

quickly across bit positions.

X, Vv, z Interaction diffuses
changes quickly through columns

(0,4,8;1,5,9; 2,6,10; 3,7,11).

Other swaps diffuse changes
through rows. Deliberately limited
swaps per round = faster rounds
on a wide range of platforms.

45

