How cryptographic benchmarking
goes wrong

Daniel J. Bernstein

Thanks to NIST 60NANB12D261
for funding this work, and for not
reviewing these slides in advance.

PRESERVE, ending 2015.06.30,
was a European project
“Preparing Secure Vehicle-to-X

Communication Systems” .

Project cost: 5383431 EUR,
including 3850000 EUR from
the European Commission.

“About PRESERVE": “The
mission of PRESERVE is,

to design, implement, and

test a secure and scalable

V2X Security Subsystem for
realistic deployment scenarios.
... |Expected Results:] 1.
Harmonized V2X Security
Architecture. 2. Implementation
of V2X Security Subsystem. 3.
Cheap and scalable security ASIC
for V2X. 4. Testing results VSS
under realistic conditions. 5.
Research results for deployment
challenges.”

ptographic benchmarking
ng

. Bernstein

to NIST 60NANB12D261

ng this work, and for not
o these slides in advance.

'VE, ending 2015.06.30,
Iropean project

ng Secure Vehicle-to-X
ication Systems’ .

cost: 5383431 EUR,

r 3850000 EUR from
ypean Commission.

“About PRESERVE": “The
mission of PRESERVE is,

to design, implement, and

test a secure and scalable

V2X Security Subsystem for
realistic deployment scenarios.
... |Expected Results:| 1.
Harmonized V2X Security
Architecture. 2. Implementation
of V2X Security Subsystem. 3.
Cheap and scalable security ASIC
for V2X. 4. Testing results VSS
under realistic conditions. 5.
Research results for deployment
challenges.”

Cars alre
Why bui

PRESEF
“Securit

Security
"Proces:
second ¢
ms can |
hardwar
a Pentiu
needs at
a verific
cryptogr
likely to

= benchmarking

N

ONANB12D261

rk, and for not
des in advance.

g 2015.06.30,

roject
Vehicle-to-X

ystems' .

3431 EUR,
EUR from

1mission.

“About PRESERVE": “The
mission of PRESERVE is,

to design, implement, and

test a secure and scalable

V2X Security Subsystem for
realistic deployment scenarios.
... |Expected Results:] 1.
Harmonized V2X Security
Architecture. 2. Implementation
of V2X Security Subsystem. 3.
Cheap and scalable security ASIC
for V2X. 4. Testing results VSS
under realistic conditions. 5.
Research results for deployment
challenges.”

Cars already inclu
Why build an ASI

PRESERVE delive
“Security Requirer
Security Architect
“Processing 1,000
second and proces
ms can hardly be

hardware. As disci
a Pentium D 3.4 (
needs about 5 tim
a verification ... :
cryptographic co-y
likely to be necess

rking

D261
)r not
ance.

.30,

>-X

“"About PRESERVE": “The
mission of PRESERVE is,

to design, implement, and

test a secure and scalable

V2X Security Subsystem for
realistic deployment scenarios.
... |Expected Results:| 1.
Harmonized V2X Security
Architecture. 2. Implementation
of V2X Security Subsystem. 3.
Cheap and scalable security ASIC
for V2X. 4. Testing results VSS
under realistic conditions. 5.
Research results for deployment
challenges.”

Cars already include many (
Why build an ASIC?

PRESERVE deliverable 1.1,
“Security Requirements of \
Security Architecture”, 2011
"Processing 1,000 packets p
second and processing each
ms can hardly be met by cu

hardware. As discussed in |-
a Pentium D 3.4 GHz proce
needs about b times as long
a verification ... a dedicate
cryptographic co-processor |

likely to be necessary.”

“About PRESERVE": “The
mission of PRESERVE is,

to design, implement, and

test a secure and scalable

V2X Security Subsystem for
realistic deployment scenarios.
... |Expected Results:] 1.
Harmonized V2X Security
Architecture. 2. Implementation
of V2X Security Subsystem. 3.
Cheap and scalable security ASIC
for V2X. 4. Testing results VSS
under realistic conditions. 5.
Research results for deployment
challenges.”

Cars already include many CPUs.
Why build an ASIC?

PRESERVE deliverable 1.1,
“Security Requirements of Vehicle
Security Architecture”, 2011
"Processing 1,000 packets per
second and processing each in 1
ms can hardly be met by current

hardware. As discussed in [32],
a Pentium D 3.4 GHz processor
needs about 5 times as long for
a dedicated
cryptographic co-processor is

a verification ...

likely to be necessary.”

PRESERVE": “The

of PRESERVE is,

n, Implement, and

cure and scalable

urity Subsystem for
deployment scenarios.
ected Results:] 1.

zed V2X Security

ture. 2. Implementation
Security Subsystem. 3.
nd scalable security ASIC
4. Testing results VSS
alistic conditions. 5.

1 results for deployment
es.

Cars already include many CPUs.
Why build an ASIC?

PRESERVE deliverable 1.1,
“Security Requirements of Vehicle
Security Architecture”, 2011
"Processing 1,000 packets per
second and processing each in 1
ms can hardly be met by current

hardware. As discussed in [32],
a Pentium D 3.4 GHz processor
needs about 5 times as long for
a dedicated
cryptographic co-processor is

a verification ...

likely to be necessary.”

PRESEF
"Deploy
V4", 20
ECC sig
second |
factor fc
environn
4dmm x4
technolc
space fo
90nm w
cores an

more."”
max 10(

'E": “The
RVE is,

ent, and
scalable
system for

nt scenarios.
ults:] 1.
Security
mplementation
ubsystem. 3.
e security ASIC
g results VSS
ditions. 5.

r deployment

Cars already include many CPUs.
Why build an ASIC?

PRESERVE deliverable 1.1,
“Security Requirements of Vehicle
Security Architecture”, 2011
"Processing 1,000 packets per
second and processing each in 1
ms can hardly be met by current

hardware. As discussed in [32],
a Pentium D 3.4 GHz processor
needs about 5 times as long for
a dedicated
cryptographic co-processor is

a verification ...

likely to be necessary.”

PRESERVE delive
"Deployment Issue
V4" 2016: “ther
ECC signature ver
second Is the key |
factor for ASICs ir
environment ... [f
4mm x4mm chip]
technology may or
space for one ECC
90nm will allow fo
cores and 5bnm w

more.” For 180nn
max 100MHz, 10C

)S.

3tion

ASIC
VSS

ent

Cars already include many CPUs.
Why build an ASIC?

PRESERVE deliverable 1.1,
“Security Requirements of Vehicle
Security Architecture”, 2011
"Processing 1,000 packets per
second and processing each in 1
ms can hardly be met by current

hardware. As discussed in [32],
a Pentium D 3.4 GHz processor
needs about 5 times as long for
a dedicated
cryptographic co-processor is

a verification . ..

likely to be necessary.”

PRESERVE deliverable 5.4,
"Deployment Issues Report
V4" 2016: “the number of
ECC signature verifications
second Is the key performan
factor for ASICs in a C2C
environment ... [On a

4mm x4mm chip] the 180nn
technology may only yield el
space for one ECC core, whe
90nm will allow for up to te
cores and 55nm will allow fc

more.” For 180nm core says
max 100MHz, 100 verif/sec

Cars already include many CPUs.
Why build an ASIC?

PRESERVE deliverable 1.1,
“Security Requirements of Vehicle
Security Architecture”, 2011
"Processing 1,000 packets per
second and processing each in 1
ms can hardly be met by current

hardware. As discussed in [32],
a Pentium D 3.4 GHz processor
needs about 5 times as long for
a dedicated
cryptographic co-processor is

a verification ...

likely to be necessary.”

PRESERVE deliverable 5.4,
"Deployment Issues Report

V4" 2016: “the number of

ECC signature verifications per
second Is the key performance
factor for ASICs in a C2C
environment ... [On a

4mm x4mm chip] the 180nm
technology may only yield enough
space for one ECC core, whereas
90nm will allow for up to ten ECC
cores and 55nm will allow for even

more.” For 180nm core says
max 100MHz, 100 verif/second.

2ady include many CPUs.
Id an ASIC?

VE deliverable 1.1,

y Requirements of Vehicle
Architecture”, 2011:

sing 1,000 packets per

ind processing each in 1
nardly be met by current

. As discussed in [32],
m D 3.4 GHz processor
yout b times as long for
ation ... a dedicated
aphic co-processor Is
be necessary.”

PRESERVE deliverable 5.4,
"Deployment Issues Report

V4" 2016: “the number of

ECC signature verifications per
second Is the key performance
factor for ASICs in a C2C
environment ... [On a

4mm x4mm chip] the 180nm
technology may only yield enough
space for one ECC core, whereas
90nm will allow for up to ten ECC
cores and 55nm will allow for even

more.” For 180nm core says
max 100MHz, 100 verif/second.

Compare
JAIK NI
858 scal
in 11162
at 130nr
technolc
standarc
0.3744
conditio
core vol

Signatur
somewh
Still clos
than the

le many CPUs.
C?

rable 1.1

nents of Vehicle
ure”, 2011:
packets per
sing each in 1
met by current

ussed in [32],
sHz processor
es as long for
) dedicated
)roCessor 1S
ary.”

PRESERVE deliverable 5.4,
"Deployment Issues Report

V4" 2016: “the number of

ECC signature verifications per
second Is the key performance
factor for ASICs in a C2C
environment ... [On a

4mm x4mm chip] the 180nm
technology may only yield enough
space for one ECC core, whereas
90nm will allow for up to ten ECC
cores and 55nm will allow for even

more.” For 180nm core says
max 100MHz, 100 verif/second.

Compare to, e.g.,
IAIK NIST P-256
858 scalarmult/se
in 111620 GE at 1
at 180nm (“UMC
technology using |
standard cell librai
9.3744 um?/GE; \
conditions (tempe
core voltage 1.62\

Signature verificat
somewhat slower t
Still close to 100
than the PRESER

PUs.

‘ehicle

in 1
rrent
2],
SSOr
for

PRESERVE deliverable 5.4,
"Deployment Issues Report

V4" 2016: “the number of

ECC signature verifications per
second Is the key performance
factor for ASICs in a C2C
environment ... [On a

4mm x4mm chip] the 180nm
technology may only yield enough
space for one ECC core, whereas
90nm will allow for up to ten ECC
cores and 55nm will allow for even

more.” For 180nm core says
max 100MHz, 100 verif/second.

Compare to, e.g.,

JAIK NIST P-256 ECC Mod

858 scalarmult/second

in 111620 GE at 192 MHz
at 180nm (“UMC L180Gl|

technology using Faraday f1

standard cell library (FSAOQA
9.3744 um?/GE; worst case
conditions (temperature 12F

core voltage 1.62V)").

Signature verification will
somewhat slower than sca

D€

dl

Still close to 100x more effi
than the PRESERVE estima

PRESERVE deliverable 5.4,
"Deployment Issues Report

V4" 2016: “the number of

ECC signature verifications per
second Is the key performance
factor for ASICs in a C2C
environment ... [On a

4mm x4mm chip] the 180nm
technology may only yield enough
space for one ECC core, whereas
90nm will allow for up to ten ECC
cores and 55nm will allow for even

more.” For 180nm core says
max 100MHz, 100 verif/second.

Compare to, e.g.,

IAIK NIST P-256 ECC Module:

858 scalarmult/second

in 111620 GE at 192 MHz
at 180nm (“UMC L180Gl|

technology using Faraday 180
standard cell library (FSAOA_C),

9.3744 um?/GE; worst case
conditions (temperature 125°C,

core voltage 1.62V)").

Signature verification will
somewhat slower than sca

DE

armult.

Still close to 100x more efficient
than the PRESERVE estimates.

VE deliverable 5.4

ment |ssues Report

16: “the number of
nature verifications per

s the key performance

r ASICs in a C2C

nent ... [On a

mm chip] the 180nm

gy may only yield enough
r one ECC core, whereas
|l allow for up to ten ECC
d 55nm will allow for even

For 180nm core says
IMHz, 100 verif/second.

Compare to, e.g.,

JAIK NIST P-256 ECC Module:
858 scalarmult/second

in 111620 GE at 192 MHz

at 180nm (“UMC L180Gl!
technology using Faraday 180
standard cell library (FSAOA_C),
9.3744 um?/GE; worst case
conditions (temperature 125°C,
core voltage 1.62V)").

Signature verification will be

somewhat slower than scalarmult.

Still close to 100x more efficient
than the PRESERVE estimates.

Let's go
core arg

Central
in [32], .
Processc
(i.e., 17
for signze

32] is
/., 'Ana
overheac
Third Jc
Mobile |
(WMNC

rable 5.4,
s Report
umber of
ifications per
verformance

1 a C2C

On a

the 180nm

1ly yield enough
- core, whereas
r up to ten ECC
ill allow for even
1 core says
 verif /second.

Compare to, e.g.,

IAIK NIST P-256 ECC Module:
858 scalarmult/second

in 111620 GE at 192 MHz

at 180nm (“UMC L180Gl!
technology using Faraday 180
standard cell library (FSAOA_C),
9.3744 um?/GE; worst case
conditions (temperature 125°C,
core voltage 1.62V)").

Signature verification will be

somewhat slower than scalarmult.

Still close to 100X more efficient
than the PRESERVE estimates.

Let's go back to F
core argument for

Central claim: “A
in [32], a Pentium
processor needs at
(i.e., 17 million CI

for signature verifi

[32] is “Petit, J., |
/., 'Analysis of au

overhead in vehicL
Third Joint IFIP V

Mobile Networking
(WMNC), 2010.”

Der
ce

1
nough
2reas

n ECC
r even
:

ond.

Compare to, e.g.,

IAIK NIST P-256 ECC Module:

858 scalarmult/second

in 111620 GE at 192 MHz
at 180nm (“UMC L180Gl|

technology using Faraday 180

standard cell library (FSAOA_C),
9.3744 um?/GE; worst case
conditions (temperature 125°C,

core voltage 1.62V)").

Signature verification will
somewhat slower than sca

DE

armult.

Still close to 100x more efficient
than the PRESERVE estimates.

Let's go back to PRESERVI
core argument for an ASIC.

Central claim: “As discusse
in [32], a Pentium D 3.4 GF
processor needs about” bms

(i.e., 17 million CPU cycles)
for signature verification.

[32] is “Petit, J., Mammeri,
/., "Analysis of authenticati

overhead in vehicular netwol
Third Joint IFIP Wireless ar
Mobile Networking Conferer
(WMNC), 2010.”

Compare to, e.g.,

IAIK NIST P-256 ECC Module:
858 scalarmult/second

in 111620 GE at 192 MHz

at 180nm (“UMC L180Gl!
technology using Faraday 180
standard cell library (FSAOA_C),
9.3744 um?/GE; worst case
conditions (temperature 125°C,
core voltage 1.62V)").

Signature verification will be

somewhat slower than scalarmult.

Still close to 100X more efficient
than the PRESERVE estimates.

Let's go back to PRESERVE's
core argument for an ASIC.

Central claim:
in [32], a Pentium D 3.4 GHz
processor needs about” bms

(i.e., 17 million CPU cycles)
for signature verification.

“As discussed

32] is “Petit, J., Mammeri,

/., 'Ana

overheac

YSIS O

- authentication

In ve

nicular networks’,

Third Joint IFIP Wireless and
Mobile Networking Conference
(WMNC), 2010.”

> 10, e.g.,

>T P-256 ECC Module:
armult /second

0 GE at 192 MHz

n (“UMC L180Gl!

gy using Faraday 180

| cell library (FSAOA_C),
LmZ/GE; worst case

ns (temperature 125°C,

age 1.62V)").

e verification will be

1t slower than scalarmult.

e to 100x more efficient
. PRESERVE estimates.

Let's go

back to PRESERVE's

core argument for an ASIC.

Central claim: “As discussed
in [32], a Pentium D 3.4 GHz
processor needs about” bms

(i.e., 17 million CPU cycles)
for signature verification.

32] is “Petit, J., Mammeri,

/., 'Ana

overhead in vehicular networks’,

ysis of authentication

Third Joint IFIP Wireless and
Mobile Networking Conference
(WMNC), 2010.”

[32] say:
to the h
economi
from vel
governm
compani
have ma
vehicula
[1]. On
collision:
and 790

United €
economi

2]. ...

costing -

ECC Module:

~ond

92 MHz
L180GlI|

-araday 1180
y (FSAOA_C),

nvorst case
rature 125°C,

)"):
ion will

‘han sca

DE

" more efficient

VE estimates.

armult.

Let's go back to PRESERVE's
core argument for an ASIC.

Central claim:
in [32], a Pentium D 3.4 GHz
processor needs about” bms

(i.e., 17 million CPU cycles)
for signature verification.

“As discussed

32] is “Petit, J., Mammeri,

/., 'Ana

overhead In ve

YSIS O

- authentication

nicular networks’,

Third Joint IFIP Wireless and
Mobile Networking Conference
(WMNC), 2010.”

[32] says “1. Intrc
to the huge life lo
economic impacts
from vehicular col
governments, autc
companies, and In
have made the rec
vehicular fatalities
[1]. On average, v
collisions cause 10
and 7900 injuries
United States, lea
economic impact «
2]. ... [Similar st
costing €160 billic

ule:

30
Q).

°C,

‘mult.

clent
tes.

Let's go back to PRESERVE's
core argument for an ASIC.

Central claim: "“As discussed
in [32], a Pentium D 3.4 GHz
processor needs about” bms

(i.e., 17 million CPU cycles)
for signature verification.

[32] is “Petit, J., Mammeri,
/., "Analysis of authentication

overhead in vehicular networks’,
Third Joint IFIP Wireless and
Mobile Networking Conference
(WMNC), 2010.”

[32] says “1. Introduction.

to the huge life losses and t
economic impacts resulting
from vehicular collisions, ma
governments, automotive
companies, and industry cor
have made the reduction of
vehicular fatalities a top pric
[1]. On average, vehicular
collisions cause 102 deaths
and 7900 injuries daily in th
United States, leaving an
economic impact of $230 bi
12]. ... [Similar story for EL
costing €160 billion annuall

Let's go back to PRESERVE's
core argument for an ASIC.

Central claim: “As discussed
in [32], a Pentium D 3.4 GHz
processor needs about” bms

(i.e., 17 million CPU cycles)
for signature verification.

32] is “Petit, J., Mammeri,
/., "Analysis of authentication

overhead in vehicular networks’,

Third Joint IFIP Wireless and
Mobile Networking Conference
(WMNC), 2010.”

[32] says “1. Introduction. Due
to the huge life losses and the
economic impacts resulting

from vehicular collisions, many
governments, automotive
companies, and industry consortia
have made the reduction of
vehicular fatalities a top priority
[1]. On average, vehicular
collisions cause 102 deaths

and 7900 injuries daily in the
United States, leaving an
economic impact of $230 billion
2]. ... [Similar story for EU:]
costing €160 billion annually [3].”

back to PRESERVE's
ument for an ASIC.

claim: “As discussed
3 Pentium D 3.4 GHz
r needs about” bms

million CPU cycles)

ture verification.

Petit, J., Mammeri,
ysis of authentication

int |FIP Wireless and
Networking Conference
), 2010."

1 in vehicular networks’,

[32] says “1. Introduction. Due
to the huge life losses and the
economic impacts resulting

from vehicular collisions, many
governments, automotive
companies, and industry consortia
have made the reduction of
vehicular fatalities a top priority
[1]. On average, vehicular
collisions cause 102 deaths

and 7900 injuries daily in the
United States, leaving an
economic impact of $230 billion
[2]. ... [Similar story for EU:]
costing €160 billion annually [3].”

Vehicles
informat
of IEEE:
support
Signatur
[8] over
P-224 a
paper, W
and comr
the auth
provided
Il. Signa
verificat
D 3.4Gh

RESERVE's
an ASIC.

s discussed
D 3.4 GHz
out” bms
°U cycles)
cation.

Vlammeri,
thentication
lar networks’,
Vireless and

r Conference

[32] says “1. Introduction. Due
to the huge life losses and the
economic impacts resulting

from vehicular collisions, many
governments, automotive
companies, and industry consortia
have made the reduction of
vehicular fatalities a top priority
[1]. On average, vehicular
collisions cause 102 deaths

and 7900 injuries daily in the
United States, leaving an
economic impact of $230 billion
2]. ... [Similar story for EU:]
costing €160 billion annually [3]."

Vehicles will comn
information. “All

of IEEE1609.2 sta
support the Ellipti
Signature Algorith
[8] over the two N
P-224 and P-256.
paper, we assess t
and communicatic
the authentication
provided by ECDS
Il. Signature genel

verification times
D 3.4Ghz worksta

oN
ks’
d
ce

[32] says “1. Introduction. Due
to the huge life losses and the
economic impacts resulting

from vehicular collisions, many
governments, automotive
companies, and industry consortia
have made the reduction of
vehicular fatalities a top priority
[1]. On average, vehicular
collisions cause 102 deaths

and 7900 injuries daily in the
United States, leaving an
economic impact of $230 billion
[2]. ... [Similar story for EU:]
costing €160 billion annually [3].”

Vehicles will communicate s
information. “All implement
of IEEE1609.2 standard [7]
support the Elliptic Curve D
Signature Algorithm (ECDS
[8] over the two NIST curve
P-224 and P-256. ... In thi
paper, we assess the process
and communication overhea
the authentication mechanis
provided by ECDSA. ... Ta
ll. Signature generation and

verification times on a Penti
D 3.4Ghz workstation [10]”

[32] says “1. Introduction. Due
to the huge life losses and the
economic impacts resulting

from vehicular collisions, many
governments, automotive
companies, and industry consortia
have made the reduction of
vehicular fatalities a top priority
[1]. On average, vehicular
collisions cause 102 deaths

and 7900 injuries daily in the
United States, leaving an
economic impact of $230 billion
2]. ... [Similar story for EU:]
costing €160 billion annually [3]."

Vehicles will communicate safety
information. “All implementations
of IEEE1609.2 standard [7] shall
support the Elliptic Curve Digital
Signature Algorithm (ECDSA)
[8] over the two NIST curves
P-224 and P-256. ... In this
paper, we assess the processing
and communication overhead of
the authentication mechanism
provided by ECDSA. ... Table
Il. Signature generation and

verification times on a Pentium
D 3.4Ghz workstation [10]"

> 1. Introduction. Due
uge life losses and the

c Impacts resulting
ricular collisions, many
ents, automotive

es, and industry consortia
de the reduction of

r fatalities a top priority
average, vehicular

5 cause 102 deaths

0 Injuries daily In the
tates, leaving an

c impact of $230 billion
[Similar story for EU:]

=160 billion annually [3].”

Vehicles will communicate safety
information. “All implementations
of IEEE1609.2 standard [7] shall
support the Elliptic Curve Digital
Signature Algorithm (ECDSA)
[8] over the two NIST curves
P-224 and P-256. ... In this
paper, we assess the processing
and communication overhead of
the authentication mechanism
provided by ECDSA. ... Table
ll. Signature generation and

verification times on a Pentium
D 3.4Ghz workstation [10]"

[10] (in
J., "Anal
Authent
VANET:
Conferer
Mobility
Cairo, D

[10] says
impleme
and follc
For NIS
“Pentiul
2.50ms/
4.97ms/

duction. Due
sses and the
resulting
Isions, many
motive

dustry consortia
luction of

a top priority
ehicular

2 deaths

daily in the
ving an

f $230 billion
ory for EU:]

on annually [3]."

Vehicles will communicate safety
information. “All implementations
of IEEE1609.2 standard [7] shall
support the Elliptic Curve Digital
Signature Algorithm (ECDSA)
[8] over the two NIST curves
P-224 and P-256. ... In this
paper, we assess the processing
and communication overhead of
the authentication mechanism
provided by ECDSA. ... Table
ll. Signature generation and

verification times on a Pentium
D 3.4Ghz workstation [10]"

[10] (in [32]) is “F
J., "Analysis of EC
Authentication Pr
VANETS’, 3rd IFII
Conference on Ne
Mobility and Secu
Cairo, December

[10] says “ECDSA
implemented using
and following the
For NIST P-224/F
“Pentium D 3.4Gl
2.50ms/3.33ms to
4.97ms/6.63ms to

Due
ne

ny

1sortia

rity

lion

131

Vehicles will communicate safety
information. “All implementations
of IEEE1609.2 standard [7] shall
support the Elliptic Curve Digital
Signature Algorithm (ECDSA)
[8] over the two NIST curves
P-224 and P-256. ... In this
paper, we assess the processing
and communication overhead of
the authentication mechanism
provided by ECDSA. ... Table
Il. Signature generation and
verification times on a Pentium

D 3.4Ghz workstation [10]"

[10] (in [32]) is “Petit

J., "Analysis of ECDSA
Authentication Processing ir
VANETS', 3rd IFIP Internati
Conference on New Technol
Mobility and Security (NTN
Cairo, December 2009.”

[10] says “ECDSA was
implemented using MIRACL
and following the Fig.1."
For NIST P-224/P-256 on
"Pentium D 3.4GHz workst:
2.50ms/3.33ms to sign,
4.97ms/6.63ms to verify.

Vehicles will communicate safety
information. “All implementations
of IEEE1609.2 standard [7] shall
support the Elliptic Curve Digital
Signature Algorithm (ECDSA)
[8] over the two NIST curves
P-224 and P-256. ... In this
paper, we assess the processing
and communication overhead of
the authentication mechanism
provided by ECDSA. ... Table
Il. Signature generation and
verification times on a Pentium

D 3.4Ghz workstation [10]"

[10] (in [32]) is “Petit

J., "Analysis of ECDSA
Authentication Processing In
VANETSs', 3rd IFIP International
Conference on New Technologies,
Mobility and Security (NTMS),
Cairo, December 2009.”

[10] says “ECDSA was
implemented using MIRACL
and following the Fig.1."
For NIST P-224/P-256 on
"Pentium D 3.4GHz workstation™:
2.50ms/3.33ms to sign,
4.97ms/6.63ms to verify.

will communicate safety
ion. “All implementations
[609.2 standard [7] shall
the Elliptic Curve Digital
e Algorithm (ECDSA)
the two NIST curves
d P-256. ... In this
/e assess the processing
)munication overhead of
entication mechanism
by ECDSA. ... Table
ture generation and
on times on a Pentium
z workstation [10]"

[10] (in [32]) is “Petit
J., "Analysis of ECDSA

Authentication Processing in
VANETSs', 3rd IFIP International

Conference on New Technologies,

Mobility and Security (NTMS),
Cairo, December 2009.”

[10] says “ECDSA was
implemented using MIRACL

and following the Fig.1."
For NIST P-224/P-256 on

“Pentium D 3.4GHz workstation” :

2.50ms/3.33ms to sign,
4.97ms/6.63ms to verify.

Compare
speeds r
of 14nm
(“2015 |
https:,

0.015ms
0.049ms

aunicate safety

implementations

ndard [7] shall

c Curve Digital
m (ECDSA)

IST curves

... In this

he processing

n overhead of
mechanism

A. ... Table

-ation and

on a Pentium

tion [10]”

[10] (in [32]) is “Petit
J., "Analysis of ECDSA

Authentication Processing in
VANETSs', 3rd IFIP International

Conference on New Technologies,

Mobility and Security (NTMS),
Cairo, December 2009.”

[10] says “ECDSA was
implemented using MIRACL

and following the Fig.1."
For NIST P-224/P-256 on

“Pentium D 3.4GHz workstation” :

2.50ms/3.33ms to sign,
4.97ms/6.63ms to verify.

Compare to, e.g.,

speeds reported fo
of 14nm 3.31GHz

(“2015 Intel Core
https://bench.

0.015ms to sign (¢
0.049ms to verify

afety
ations
shall
igital
A)

S

S

ing

d of

ble

um

[10] (in [32]) is “Petit
J., "Analysis of ECDSA

Authentication Processing In
VANETSs', 3rd IFIP International

Conference on New Technologies,

Mobility and Security (NTMS),
Cairo, December 2009.”

[10] says “ECDSA was
implemented using MIRACL

and following the Fig.1."
For NIST P-224/P-256 on

“Pentium D 3.4GHz workstation” :

2.50ms/3.33ms to sign,
4.97ms/6.63ms to verify.

Compare to, e.g., Ed25519
speeds reported for single cc
of 14nm 3.31GHz Skylake
(“2015 Intel Core i15-6600")
https://bench.cr.yp.to:

0.015ms to sign (49840 cycl
0.049ms to verify (163206 c

[10] (in [32]) is “Petit Compare to, e.g., Ed25519

J., "Analysis of ECDSA speeds reported for single core
Authentication Processing in of 14nm 3.31GHz Skylake
VANETS', 3rd IFIP International (“2015 Intel Core i5-6600") on
Conference on New Technologies, https://bench.cr.yp.to:

Mobility and Security (NTMS),

| 0.015ms to sign (49840 cycles),
Cairo, December 2009.”

0.049ms to verify (163206 cycles).
[10] says “ECDSA was
implemented using MIRACL

and following the Fig.1."

For NIST P-224/P-256 on
"Pentium D 3.4GHz workstation™:
2.50ms/3.33ms to sign,
4.97ms/6.63ms to verify.

[10] (in [32]) is “Petit

J., "Analysis of ECDSA
Authentication Processing in
VANETSs', 3rd IFIP International
Conference on New Technologies,
Mobility and Security (NTMS),
Cairo, December 2009.”

[10] says “ECDSA was
implemented using MIRACL

and following the Fig.1."
For NIST P-224/P-256 on

“Pentium D 3.4GHz workstation” :

2.50ms/3.33ms to sign,
4.97ms/6.63ms to verify.

10
Compare to, e.g., Ed25519

speeds reported for single core
of 14nm 3.31GHz Skylake
(“2015 Intel Core i5-6600") on
https://bench.cr.yp.to:

0.015ms to sign (49840 cycles),
0.049ms to verify (163206 cycles).

This chip didn't exist in 20009.
Compare instead to single core
of 65nm 2.4GHz Core 2 (2007
Intel Core 2 Quad Q6600").

0.065ms to sign (156843 cycles),
0.232ms to verify (557082 cycles).

32]) is “Petit

ysis of ECDSA

ication Processing in

5, 3rd IFIP International

1ce on New Technologies,

and Security (NTMS),
ecember 2009."

; "ECDSA was
nted using MIRACL
wing the Fig.1."

I P-224 /P-256 on

n D 3.4GHz workstation” :

3.33ms to sign,
6.63ms to verity.

Compare to, e.g., Ed25519
speeds reported for single core
of 14nm 3.31GHz Skylake

(“2015 Intel Core i5-6600") on
https://bench.cr.yp.to:

0.015ms to sign (49840 cycles),

0.049ms to verify (163206 cycles).

This chip didn't exist in 20009.
Compare instead to single core
of 65nm 2.4GHz Core 2 (2007

Intel Core 2 Quad Q6600").
0.065ms to sign (156843 cycles),

0.232ms to verify (557082 cycles).

10

2012 Be
on 720
0.9ms tc¢

ARM Cc
1000MHKH
in 1Pad |
1000MH
in Sams
1000MF
Motorol.
S800MHz
Amazon
Today:
Cortex-£

etit

DSA

ocessing In

? |International
nv Technologies,
rity (NTMS),
2009.”

WwWas

r MIRACL
Fig.1.”
>_256 on

1z workstation' :

sign,
verify.

10
Compare to, e.g., Ed25519

speeds reported for single core
of 14nm 3.31GHz Skylake

(“2015 Intel Core i5-6600") on
https://bench.cr.yp.to:

0.015ms to sign (49840 cycles),
0.049ms to verify (163206 cycles).

This chip didn't exist in 20009.
Compare instead to single core
of 65nm 2.4GHz Core 2 (“2007
Intel Core 2 Quad Q6600").

0.065ms to sign (156843 cycles),
0.232ms to verify (557082 cycles).

2012 Bernstein—Sc
on 720MHz ARM
0.9ms to verify (6!

ARM Cortex-A8 ¢
1000MHz Apple A
in iPad 1, iPhone
1000MHz Samsun
in Samsung Galax
1000MHz T1 OM/
Motorola Droid X
800MHz Freescale
Amazon Kindle 4

Today: in CPUs c
Cortex-A7 Is even

onal

ogles,

S),

1tion' :

Compare to, e.g., Ed25519
speeds reported for single core
of 14nm 3.31GHz Skylake

(“2015 Intel Core i5-6600") on
https://bench.cr.yp.to:

0.015ms to sign (49840 cycles),

0.049ms to verify (163206 cycles).

This chip didn't exist in 20009.
Compare instead to single core
of 65nm 2.4GHz Core 2 (2007
Intel Core 2 Quad Q6600").

0.065ms to sign (156843 cycles),

0.232ms to verify (557082 cycles).

10

2012 Bernstein—Schwabe
on 720MHz ARM Cortex-Aé
0.9ms to verify (650102 cyc

ARM Cortex-A8 cores were
1000MHz Apple A4

in iPad 1, iPhone 4 (2010);
1000MHz Samsung Exynos
in Samsung Galaxy S (2010
1000MHz TI OMAP3630 in
Motorola Droid X (2010);
800MHz Freescale 1.MX50 1
Amazon Kindle 4 (2011); ..
Today: in CPUs costing ~2

Cortex-A7 is even more pop

Compare to, e.g., Ed25519
speeds reported for single core
of 14nm 3.31GHz Skylake

(“2015 Intel Core i5-6600") on
https://bench.cr.yp.to:

0.015ms to sign (49840 cycles),

0.049ms to verify (163206 cycles).

This chip didn't exist in 20009.
Compare instead to single core
of 65nm 2.4GHz Core 2 (2007
Intel Core 2 Quad Q6600").

0.065ms to sign (156843 cycles),

0.232ms to verify (557082 cycles).

10

11
2012 Bernstein—Schwabe

on 720MHz ARM Cortex-AS:
0.9ms to verify (650102 cycles).

ARM Cortex-A8 cores were In
1000MHz Apple A4

in iPad 1, iPhone 4 (2010);
1000MHz Samsung Exynos 3110
in Samsung Galaxy S (2010);
1000MHz TI OMAP3630 in
Motorola Droid X (2010);
800MHz Freescale 1.MX50 in
Amazon Kindle 4 (2011); ...

Today: in CPUs costing ~2 EUR.
Cortex-A7 is even more popular.

> to, e.g., Ed25519
eported for single core
3.31GHz Skylake

ntel Core i5-6600") on
'/bench.cr.yp.to:

“to sign (49840 cycles),

“to verify (163206 cycles).

p didn't exist in 2009.
> Instead to single core
2.4GHz Core 2 (2007

e 2 Quad Q6600).

‘to sign (156843 cycles),

“to verify (557082 cycles).

10

2012 Bernstein—Schwabe
on 720MHz ARM Cortex-AS8:
0.9ms to verify (650102 cycles).

ARM Cortex-A8 cores were In

1000M
In 1Pac

1000M

Hz Apple A4
1, iPhone 4 (2010);
Hz Samsung Exynos 3110

in Samsung Galaxy S (2010);

1000M

Hz TI OMAP3630 in

Motorola Droid X (2010);
800MHz Freescale 1.MX50 in
Amazon Kindle 4 (2011); ...

Today:

in CPUs costing =2 EUR.

Cortex-A7 is even more popular.

11

180nm 2
(“2001 |

0.46ms |
for Curv
using flc
Integer |

Nobody
adapting
Would k&

3.4GHz
same ba

more Ins
Ed2551C

Oon one «

Ed25519
r single core

Skylake
i5-6600") on
T .yp.to:

19840 cycles),

(163206 cycles).

xist in 2009.
0 single core
~ore 2 (2007
Q6600).

156843 cycles),

(557082 cycles).

10

2012 Bernstein—Schwabe
on 720MHz ARM Cortex-A8:
0.9ms to verify (650102 cycles).

ARM Cortex-A8 cores were In
1000MHz Apple A4

in iPad 1, iPhone 4 (2010);
1000MHz Samsung Exynos 3110
in Samsung Galaxy S (2010);
1000MHz TI OMAP3630 in
Motorola Droid X (2010);
800MHz Freescale 1.MX50 in
Amazon Kindle 4 (2011); ...

Today: in CPUs costing ~2 EUR.

Cortex-A7 is even more popular.

11

180nm 32-bit 2GH
(“2001 Intel Penti

0.46ms (0.9 millio
for Curve25519 sc
using floating-poir
Integer multiplier

Nobody has ever |
adapting this to si
Would be ~0.6ms

3.4GHz Pentium [
same basic microa
more Instructions,

Ed25519 would be
on one core than |

)re

on

es),

ycles).

ore
007

_les),

ycles).

10

2012 Bernstein—Schwabe
on 720MHz ARM Cortex-AS8:
0.9ms to verify (650102 cycles).

ARM Cortex-A8 cores were In

1000M
In 1Pac

1000M

Hz Apple A4
1, iPhone 4 (2010);
Hz Samsung Exynos 3110

in Samsung Galaxy S (2010);

1000M

Hz TI OMAP3630 in

Motorola Droid X (2010);
800MHz Freescale 1.MX50 in
Amazon Kindle 4 (2011); ...

Today:

in CPUs costing =2 EUR.

Cortex-A7 is even more popular.

11

180nm 32-bit 2GHz Willame
(“2001 Intel Pentium 4"):

0.46ms (0.9 million cycles)
for Curve25519 scalarmult
using floating-point multipli
Integer multiplier 1s much sl

Nobody has ever bothered
adapting this to signatures.
Would be ~0.6ms for verify.

3.4GHz Pentium D (dual co
same basic microarchitectur:
more instructions, faster clo
Ed25519 would be >10x fa
on one core than Petit's sofs

2012 Bernstein—Schwabe
on 720MHz ARM Cortex-A8:
0.9ms to verify (650102 cycles).

ARM Cortex-A8 cores were In
1000MHz Apple A4

in iPad 1, iPhone 4 (2010);
1000MHz Samsung Exynos 3110
in Samsung Galaxy S (2010);
1000MHz TI OMAP3630 in
Motorola Droid X (2010);
800MHz Freescale 1.MX50 in
Amazon Kindle 4 (2011); ...

Today: in CPUs costing ~2 EUR.

Cortex-A7 is even more popular.

11

12
180nm 32-bit 2GHz Willamette

(“2001 Intel Pentium 4"):

0.46ms (0.9 million cycles)

for Curve25519 scalarmult

using floating-point multiplier.
Integer multiplier Is much slower!

Nobody has ever bothered
adapting this to signatures.
Would be =~0.6ms for verify.

3.4GHz Pentium D (dual core):
same basic microarchitecture,
more instructions, faster clock.
Ed25519 would be >10x faster
on one core than Petit's software.

rnstein—Schwabe
IHz ARM Cortex-A8:

» verify (650102 cycles).

rtex-A8 cores were In

z Apple A4

1, iPhone 4 (2010);

z Samsung Exynos 3110
ung Galaxy S (2010);

z TI OMAP3630 in

3 Droid X (2010);

- Freescale 1.MX50 in
Kindle 4 (2011); ...

in CPUs costing ~2 EUR.

\7 Is even more popular.

11

180nm 32-bit 2GHz Willamette
(“2001 Intel Pentium 4"):

0.46ms (0.9 million cycles)

for Curve25519 scalarmult

using floating-point multiplier.
Integer multiplier 1s much slower!

Nobody has ever bothered
adapting this to signatures.
Would be =~0.6ms for verify.

3.4GHz Pentium D (dual core):
same basic microarchitecture,
more instructions, faster clock.

Ed25519 would be >10x faster

on one core than Petit's software.

12

Bad ECI

certainly
e can't |
e can't |
e need ¢
etc. Tyr

2000 Br
Menezes
4.0ms/6
cycles) f
inside N

2001 Be
0.7 milh
for NIST

hwabe
Cortex-AS8:
50102 cycles).

ores were In

4

4 (2010);

g Exynos 3110
y S (2010);
\P3630 in
(2010);
1.MX50 in
(2011); ...

osting ~2 EUR.

more popular.

11

180nm 32-bit 2GHz Willamette
(“2001 Intel Pentium 4"):

0.46ms (0.9 million cycles)

for Curve25519 scalarmult

using floating-point multiplier.
Integer multiplier is much slower!

Nobody has ever bothered
adapting this to signatures.
Would be =~0.6ms for veritfy.

3.4GHz Pentium D (dual core):
same basic microarchitecture,

more instructions, faster clock.
Ed25519 would be >10x faster

on one core than Petit's software.

12

Bad ECDSA-NIST
certainly has some
e can't use fastest
e can't use fastest
e need an annoyin
etc. Typical estim

2000 Brown—Hank
Menezes on 400M
4.0ms/6.4ms (1.6

cycles) for double
inside NIST P-224

2001 Bernstein, ~
0.7 million cycles
for NIST P-224 sc

les).

3110

EUR.

ular.

11

180nm 32-bit 2GHz Willamette
(“2001 Intel Pentium 4"):

0.46ms (0.9 million cycles)

for Curve25519 scalarmult

using floating-point multiplier.
Integer multiplier 1s much slower!

Nobody has ever bothered
adapting this to signatures.
Would be =~0.6ms for verify.

3.4GHz Pentium D (dual core):
same basic microarchitecture,
more instructions, faster clock.
Ed25519 would be >10x faster
on one core than Petit's software.

12

Bad ECDSA-NIST-P-256 de
certainly has some impact:

e can't use fastest mulmods
e can't use fastest curve for
e need an annoying inversio
etc. Typical estimate: 2x s

2000 Brown—Hankerson—Lé¢
Menezes on 400MHz Pentiu
4.0ms/6.4ms (1.6/2.6 millio

cycles) for double scalarmuli
inside NIST P-224/P-256 ve

2001 Bernstein, ~1.6x faste

0.7 million cycles on Pentiur
for NIST P-224 scalarmult.

180nm 32-bit 2GHz Willamette
(“2001 Intel Pentium 4"):

0.46ms (0.9 million cycles)

for Curve25519 scalarmult

using floating-point multiplier.
Integer multiplier is much slower!

Nobody has ever bothered
adapting this to signatures.
Would be =~0.6ms for verify.

3.4GHz Pentium D (dual core):
same basic microarchitecture,
more instructions, faster clock.
Ed25519 would be >10x faster
on one core than Petit's software.

12

13
Bad ECDSA-NIST-P-256 design

certainly has some impact:

e can't use fastest mulmods;

e can't use fastest curve formulas;
e need an annoying inversion;

etc. Typical estimate: 2x slower.

2000 Brown—Hankerson—Lopez—
Menezes on 400MHz Pentium lI:
4.0ms/6.4ms (1.6/2.6 million
cycles) for double scalarmult
inside NIST P-224/P-256 verif.

2001 Bernstein, ~1.6x faster:

0.7 million cycles on Pentium Il
for NIST P-224 scalarmult.

32-bit 2GHz Willamette
ntel Pentium 4"):

(0.9 million cycles)
e25519 scalarmult
ating-point multiplier.
nultiplier i1s much slower!

has ever bothered
- this to signatures.
e ~0.6ms for verity.

Pentium D (dual core):
sic microarchitecture,
tructions, faster clock.

) would be >10x faster
ore than Petit's software.

12

Bad ECDSA-NIST-P-256 design

certainly has some impact:
e can't use fastest mulmods;

e can't use fastest curve formulas:

e need an annoying inversion;
etc. Typical estimate: 2x slower.

2000 Brown—Hankerson—Lopez—
Menezes on 400MHz Pentium 1I:
4.0ms/6.4ms (1.6/2.6 million
cycles) for double scalarmult
inside NIST P-224/P-256 verif.

2001 Bernstein, ~1.6x faster:

0.7 million cycles on Pentium Il
for NIST P-224 scalarmult.

13

2000 Br
Menezes

cycles ol

e.g., P-Z
1.2 milli
2.7 milli

2001 Be
0.7 mill
0.8 muilli
0.9 milli
using co

OpenSS
2.0 milli

1z Willamette
um 4"):

n cycles)
alarmult

't multiplier.

s much slower!

yothered
gnatures.
for verity.

) (dual core):
rchitecture,
faster clock.
 >10x faster
Yetit's software.

12

Bad ECDSA-NIST-P-256 design
certainly has some impact:

e can't use fastest mulmods;

e can't use fastest curve formulas;
e need an annoying inversion;

etc. Typical estimate: 2x slower.

2000 Brown—Hankerson—Lopez—
Menezes on 400MHz Pentium lI:
4.0ms/6.4ms (1.6/2.6 million
cycles) for double scalarmult
inside NIST P-224/P-256 verif.

2001 Bernstein, ~1.6x faster:

0.7 million cycles on Pentium I
for NIST P-224 scalarmult.

13

2000 Brown—Hank
Menezes software
cycles on P4 than

e.g., P-224 scalarr
1.2 mi
2.7 mi

lon cycles

lon cycles

2001 Bernstein P-

0.7 million cycles
0.8 million cycles
0.9 million cycles

using compressed

OpenSSL 1.0.1, P
2.0 million cycles

tte

ower!

12

13
Bad ECDSA-NIST-P-256 design

certainly has some impact:

e can't use fastest mulmods;

e can't use fastest curve formulas;
e need an annoying inversion;

etc. Typical estimate: 2Xx slower.

2000 Brown—Hankerson—Lopez—
Menezes on 400MHz Pentium 1I:
4.0ms/6.4ms (1.6/2.6 million
cycles) for double scalarmult
inside NIST P-224/P-256 verif.

2001 Bernstein, ~1.6x faster:

0.7 million cycles on Pentium Il
for NIST P-224 scalarmult.

2000 Brown—Hankerson—Lo¢
Menezes software uses many

cycles on P4 than on PlI.

e.g., P-224 scalarmult:

1.2 mi
2.7 mi

lon cyc
lon cyc

es on Pentiur
es on Pentiur

2001 Bernstein P-224 scalar

0.7 mi
0.8 mi
0.9 mi

lon cyc
lon cyc
lon cyc

es on Pentiul
es on Pentiut
es on Pentiut

using compressed keys.

OpenSSL 1.0.1, P-224 verif:
2.0 million cycles on Pentiur

Bad ECDSA-NIST-P-256 design
certainly has some impact:

e can't use fastest mulmods;

e can't use fastest curve formulas;
e need an annoying inversion;

etc. Typical estimate: 2x slower.

2000 Brown—Hankerson—Lopez—
Menezes on 400MHz Pentium lI:
4.0ms/6.4ms (1.6/2.6 million
cycles) for double scalarmult
inside NIST P-224/P-256 verif.

2001 Bernstein, ~1.6x faster:

0.7 million cycles on Pentium I
for NIST P-224 scalarmult.

13

14

2000 Brown—Hankerson—Lépez—

Menezes software uses many more

cycles on P4 than on PII.

e.g., P-224 scalarmult:

1.2 mi
2.7 mi

lon cyc
lon cyc

es on Pentium II.
es on Pentium 4.

2001 Bernstein P-224 scalarmult:

0.7 mi
0.8 mi
0.9 mi

lon cyc
lon cyc
lon cyc

es on Pentium II.
es on Pentium 4.
es on Pentium 4

using compressed keys.

OpenSSL 1.0.1, P-224 verif:
2.0 million cycles on Pentium D.

DSA-NIST-P-256 design
' has some impact:
1se fastest mulmodes:

1se fastest curve formulas;

n annoying inversion;
ical estimate: 2x slower.

own—Hankerson—Lopez—
, on 400MHz Pentium II:

4ms (1.6/2.6 million

or double scalarmult
IST P-224/P-256 verif.

rnstein, ~1.6 X faster:
on cycles on Pentium ||
- P-224 scalarmult.

13

1.2 mi
2.7 mi

0.7 mi
0.8 mi
0.9 mi

lon cyc
lon cyc

lon cyc
lon cyc
lon cyc

2000 Brown—Hankerson—Lépez—
Menezes software uses many more
cycles on P4 than on PII.

e.g., P-224 scalarmult:

es on Pentium Il.
es on Pentium 4.

2001 Bernstein P-224 scalarmult:

es on Pentium II.
es on Pentium 4.
es on Pentium 4

using compressed keys.

OpenSSL 1.0.1, P-224 verif:
2.0 million cycles on Pentium D.

14

How did
17 millic
22 millic

Presumsz
bad mul

Why did
ECDSA,
underlyn

Why dic
previous

Why did
Why did

-P-256 design

' Impact:

" mulmods;
curve formulas:
g Inversion;

ate: 2x slower.

erson—Lopez—
Hz Pentium IlI:
/2.6 million
scalarmult
/P-256 verif.

1.6 x faster:
on Pentium ||
alarmult.

13

14
2000 Brown—Hankerson—Lépez—

Menezes software uses many more
cycles on P4 than on PII.

e.g., P-224 scalarmult:
1.2 million cycles on Pentium II.

2.7 million cycles on Pentium 4.

2001 Bernstein P-224 scalarmult:
0.7 million cycles on Pentium I1.

0.8 million cycles on Pentium 4.

0.9 million cycles on Pentium 4
using compressed keys.

OpenSSL 1.0.1, P-224 verif:
2.0 million cycles on Pentium D.

How did Petit mai
17 million cycles f

22 million cycles f

Presumably some
bad mulmod and |

Why did Petit reir

ECDSA, using M|
underlying arithme

Why did Petit not
previous speed lite

Why did Petit chc
Why did BHLM cl

Sign

mulas:

lower.

)EZ—

13

14
2000 Brown—Hankerson—Lépez—

Menezes software uses many more
cycles on P4 than on PII.

e.g., P-224 scalarmult:
1.2 million cycles on Pentium II.

2.7 million cycles on Pentium 4.

2001 Bernstein P-224 scalarmult:
0.7 million cycles on Pentium II.

0.8 million cycles on Pentium 4.

0.9 million cycles on Pentium 4
using compressed keys.

OpenSSL 1.0.1, P-224 verif:
2.0 million cycles on Pentium D.

How did Petit manage to us
17 million cycles for P-224 \

22 million cycles for P-256 \

Presumably some combinati
bad mulmod and bad curve

Why did Petit reimplement

ECDSA, using MIRACL for
underlying arithmetic?

Why did Petit not simply cii
previous speed literature?

Why did Petit choose Penti
Why did BHLM choose PlII?

14 15

2000 Brown—Hankerson—Lépez— How did Petit manage to use
Menezes software uses many more 17 million cycles for P-224 verif,
cycles on P4 than on PII. 22 million cycles for P-256 verif?
e.g., P-224 scalarmult: Presumably some combination of
1.2 million cycles on Pentium |I. bad mulmod and bad curve ops.

2.7 million cycles on Pentium 4. Why did Petit reimplement

2001 Bernstein P-224 scalarmult: ECDSA, using MIRACL for the
0.7 million cycles on Pentium I1. underlying arithmetic?

0.8 million cycles on Pentium 4.

Why did Petit not simply cite

0.9 million cycles on Pentium 4 . .
y previous speed literature?

using compressed keys.

| Why did Petit choose Pentium D?
OpenSSL 1.0.1, P-224 verif:

2.0 million cycles on Pentium D. Why did BHLM choose PlI?

own—Hankerson—Lépez—

, software uses many more
1 P4 than on PII.

24 scalarmult:
on cycles on Pentium II.

on cycles on Pentium 4.

rnstein P-224 scalarmult:
on cycles on Pentium II.

on cycles on Pentium 4.

on cycles on Pentium 4
mpressed keys.

L 1.0.1, P-224 verif:
on cycles on Pentium D.

14

How did Petit manage to use
17 million cycles for P-224 verif,

22 million cycles for P-256 verif?

Presumably some combination of
bad mulmod and bad curve ops.

Why did Petit reimplement
ECDSA, using MIRACL for the

underlying arithmetic?

Why did Petit not simply cite
previous speed literature?

Why did Petit choose Pentium D?

Why did BHLM choose PII7?

15

Petit: *
cryptogr
OpenSS
Authors
compari
that M|
perform:
elliptic ¢

erson—Lopez—
uses many more
on PII.

nult:
on Pentium |II.
on Pentium 4.

224 scalarmult:
on Pentium |I.
on Pentium 4.
on Pentium 4
keys.

224 verif:
on Pentium D.

14

How did Petit manage to use
17 million cycles for P-224 verif,

22 million cycles for P-256 verif?

Presumably some combination of
bad mulmod and bad curve ops.

Why did Petit reimplement
ECDSA, using MIRACL for the

underlying arithmetic?

Why did Petit not simply cite
previous speed literature?

Why did Petit choose Pentium D?

Why did BHLM choose PII?

15

Petit: “There are
cryptographic librz
OpenSSL and Cry
Authors in [21] pre
comparison and cc
that MIRACL has
performance for o
elliptic curves ovel

&Z—

/ MOrE

n .
m 4.

mult:

n Il
m 4.

n D.

14

How did Petit manage to use
17 million cycles for P-224 verif,

22 million cycles for P-256 verif?

Presumably some combination of
bad mulmod and bad curve ops.

Why did Petit reimplement
ECDSA, using MIRACL for the

underlying arithmetic?

Why did Petit not simply cite
previous speed literature?

Why did Petit choose Pentium D?

Why did BHLM choose PII7?

15

Petit: “There are three mai
cryptographic libraries: MIR
OpenSSL and Crypto++.
Authors in [21] proposed a
comparison and concluded
that MIRACL has the best
performance for operations «
elliptic curves over binary fie

15 16

How did Petit manage to use Petit: “There are three main
17 million cycles for P-224 verif, cryptographic libraries: MIRACL,
22 million cycles for P-256 verif? OpenSSL and Crypto++.

Presumably some combination of Authors. in [21] proposed 2
comparison and concluded

that MIRACL has the best
Why did Petit reimplement performance for operations on

ECDSA, using MIRACL for the elliptic curves over binary fields.”
underlying arithmetic?

bad mulmod and bad curve ops.

Why did Petit not simply cite
previous speed literature?

Why did Petit choose Pentium D?

Why did BHLM choose PII?

How did Petit manage to use
17 million cycles for P-224 verif,

22 million cycles for P-256 verif?

Presumably some combination of
bad mulmod and bad curve ops.

Why did Petit reimplement
ECDSA, using MIRACL for the

underlying arithmetic?

Why did Petit not simply cite
previous speed literature?

Why did Petit choose Pentium D?

Why did BHLM choose PII?

15

Petit: “There are three main
cryptographic libraries: MIRACL,
OpenSSL and Crypto+-+.
Authors in [21] proposed a
comparison and concluded

that MIRACL has the best
performance for operations on
elliptic curves over binary fields.”

But NIST P-224 and NIST P-256
are defined over prime fields!

[21] says “For elliptic curves
over prime fields, OpenSSL has
the best performance under all
platforms.”

16

Petit manage to use
n cycles for P-224 verif,

n cycles for P-256 verif?

bly some combination of
mod and bad curve ops.

' Petit reimplement
using MIRACL for the
g arithmetic?

' Petit not simply cite
speed literature?

' Petit choose Pentium D?

 BHLM choose PlI?

15

Petit: “There are three main
cryptographic libraries: MIRACL,
OpenSSL and Crypto++.
Authors in [21] proposed a
comparison and concluded

that MIRACL has the best
performance for operations on
elliptic curves over binary fields.”

But NIST P-224 and NIST P-256
are defined over prime fields!

[21] says “For elliptic curves
over prime fields, OpenSSL has
the best performance under all

platforms.”

16

More ge

Paper al

crypto u

If the c
Why s 1
Why shc

If the ct
Paper Is
Look, he

More
More

1k
1k

funding

nage to use
or P-224 verif,
or P-256 verif?

combination of
bad curve ops.

nplement
RACL for the

tic?

simply cite
rature?

ose Pentium D?

noose PlI?

15

Petit: “There are three main
cryptographic libraries: MIRACL,
OpenSSL and Crypto+-+.
Authors in [21] proposed a
comparison and concluded

that MIRACL has the best
performance for operations on
elliptic curves over binary fields.”

But NIST P-224 and NIST P-256

are defined over prime fields!

[21] says “For elliptic curves
over prime fields, OpenSSL has
the best performance under all
platforms.”

16

More general situsz
Paper analyzes im
Crypto upon an ar

If the crypto soun
Why is the paper
Why should 1t be

If the crypto soun
Paper Is more Inte
Look, here's a spe
More likely to be |

More likely to mot
funding to fix the

rerif,
rerif?

on of
ops.

the

XS

im D?

15

Petit: “There are three main
cryptographic libraries: MIRACL,
OpenSSL and Crypto++.
Authors in [21] proposed a
comparison and concluded

that MIRACL has the best
performance for operations on
elliptic curves over binary fields.”

But NIST P-224 and NIST P-256
are defined over prime fields!

[21] says “For elliptic curves
over prime fields, OpenSSL has
the best performance under all

platforms.”

16

More general situation:
Paper analyzes impact of
crypto upon an application.

If the crypto sounds fast:

Why Is the paper interesting
Why should it be published

If the crypto sounds slower:
Paper is more Interesting.

Look, here's a speed probler
More likely to be published.

More likely to motivate
funding to fix the problem.

Petit: “There are three main
cryptographic libraries: MIRACL,
OpenSSL and Crypto+-+.
Authors in [21] proposed a
comparison and concluded

that MIRACL has the best
performance for operations on
elliptic curves over binary fields.”

But NIST P-224 and NIST P-256
are defined over prime fields!

[21] says “For elliptic curves
over prime fields, OpenSSL has
the best performance under all
platforms.”

16

More general situation:
Paper analyzes impact of
crypto upon an application.

If the crypto sounds fast:
Why is the paper interesting?
Why should it be published?

If the crypto sounds slower:
Paper is more Interesting.
Look, here's a speed problem!
More likely to be published.

More likely to motivate
funding to fix the problem.

17

There are three main
aphic libraries: MIRACL,
L and Crypto++.

in [21] proposed a

son and concluded

RACL has the best

ance for operations on
urves over binary fields.”

T P-224 and NIST P-256
ed over prime fields!

> 'For elliptic curves
ne fields, OpenSSL has
performance under all

S.

16

More general situation:
Paper analyzes impact of
crypto upon an application.

If the crypto sounds fast:
Why is the paper interesting?
Why should it be published?

If the crypto sounds slower:
Paper is more Interesting.
Look, here's a speed problem!
More likely to be published.

More likely to motivate
funding to fix the problem.

17

Obvious
applicati

deploym

Many ra
answerir
CPU to
literatur

mulmod

Slowest,
are mosit

Situatiol
randomr
There's

delibera

three main
ries: MIRACL,

pto+-+.
oposed a
ncluded

the best
verations on

- binary fields.”

nd NIST P-256
rime fields!

ytiC curves
OpenSSL has
nce under all

16

More general situation:

Paper analyzes impact of

crypto upon an application.

If the crypto sounds fast:

Why is the paper interesting?
Why should it be published?

If the crypto sounds slower:

Paper is more Interesting.

Look, here's a speed problem!

More
More

ke
ke

y to be published.
y to motivate

funding to fix the problem.

17

Obvious question
application consid

deployment: “ls it

Many random me
answering this que
CPU to test? Wh
literature and libre

mulmod, or curve

Slowest, least com
are most likely to

Situation is fully e
randomness + nat
There's no eviden
deliberately slowe

ACL,

on

|ds.”
P-256

has
all

16

More general situation:

Paper analyzes impact of

crypto upon an application.

If the crypto sounds fast:

Why is the paper interesting?
Why should it be published?

If the crypto sounds slower:

Paper is more Interesting.

Look, here's a speed problem!

More
More

ke
ke

y to be published.
y to motivate

funding to fix the problem.

17

Obvious question whenever
application considers crypto

deployment: “lIs it fast enou

Many random methodologie
answering this question. Wt
CPU to test? What to take
literature and libraries? Reu
mulmod, or curve ops, or m

Slowest, least competent an
are most likely to be publish

Situation is fully explainable
randomness 4+ natural seleci

There's no evidence that Pe
deliberately slowed down cn

More general situation:
Paper analyzes impact of
crypto upon an application.

If the crypto sounds fast:
Why is the paper interesting?
Why should it be published?

If the crypto sounds slower:
Paper is more Interesting.
Look, here's a speed problem!
More likely to be published.

More likely to motivate
funding to fix the problem.

17

18

Obvious question whenever an

ap
de

D

D

ication considers crypto
oyment: “Is it fast enough?”

Many random methodologies for

answering this question. Which
CPU to test? What to take from
literature and libraries? Reuse

mulmod, or curve ops, or more?

Slowest, least competent answers

are most likely to be published.

Situation is fully explainable by

randomness + natural selection.

There's no evidence that Petit

deliberately slowed down crypto.

neral situation:
1alyzes impact of
pon an application.

ypto sounds fast:
he paper interesting?
uld it be published?

ypto sounds slower:
more Interesting.
re’'s a speed problem!
ely to be published.

ely to motivate
to fix the problem.

17

Obvious question whenever an

ap
de

D

D

ication considers crypto
oyment: “Is it fast enough?”

Many random methodologies for

answering this question. Which
CPU to test? What to take from
literature and libraries? Reuse

mulmod, or curve ops, or more?

Slowest, least competent answers

are most likely to be published.

Situation is fully explainable by

randomness + natural selection.

There's no evidence that Petit

deliberately slowed down crypto.

18

Paper In
software
Incentive
slow, an
report It

Paper w
function
lengths,
timing n
maximiz

from old

Thisisr

what mc

tion:
pact of
plication.

ds fast:

interesting?
published?

ds slower:
resting.

ed problem!
oublished.
Ivate
problem.

17

Obvious question whenever an

application considers crypto

deployment: “Is it fast enough?”

Many random methodologies for

answering this question. Which
CPU to test? What to take from
literature and libraries? Reuse

mulmod, or curve ops, or more?

Slowest, least competent answers

are most likely to be published.

Situation is fully explainable by

randomness 4+ natura
There's no evidence t

selection.

nat Petit

deliberately slowed down crypto.

18

Paper introducing
software or hardw:
Incentive to report
slow, and analogo!
report 1ts own cryj

Paper will natural

functions, parame
lengths, platforms
timing mechanism
maximize reportec
from old to new.

This 1s not the sar

what matters mos

17

Obvious question whenever an

app

dep

ication considers crypto
oyment: “Is it fast enough?”

Many random methodologies for

answering this question. Which
CPU to test? What to take from
literature and libraries? Reuse

mulmod, or curve ops, or more?

Slowest, least competent answers

are most likely to be published.

Situation is fully explainable by

randomness + natural selection.

There's no evidence that Petit

deliberately slowed down crypto.

18

Paper introducing new cryp1
software or hardware has sat
incentive to report older cry
slow, and analogous incenti\
report its own crypto as fast

Paper will naturally select

functions, parameters, input
lengths, platforms, 1/O form
timing mechanism, etc. that
maximize reported improven

from old to new.

This is not the same as sele

what matters most for the L

Obvious question whenever an
application considers crypto

deployment: “Is it fast enough?”

Many random methodologies for
answering this question. Which
CPU to test? What to take from
literature and libraries? Reuse
mulmod, or curve ops, or more?

Slowest, least competent answers
are most likely to be published.

Situation is fully explainable by
randomness + natural selection.

There's no evidence that Petit
deliberately slowed down crypto.

18

Paper introducing new crypto
software or hardware has same
incentive to report older crypto as
slow, and analogous incentive to
report its own crypto as fast.

Paper will naturally select
functions, parameters, input
lengths, platforms, 1/O format,
timing mechanism, etc. that
maximize reported improvement
from old to new.

This i1s not the same as selecting

what matters most for the users.

19

question whenever an
on considers crypto
ent: “Is it fast enough?”

ndom methodologies for
g this question. Which
test? What to take from
> and libraries? Reuse

, OF curve ops, or more?

least competent answers
- likely to be published.

1 1s fully explainable by
yess + natural selection.

no evidence that Petit
tely slowed down crypto.

18

Paper introducing new crypto

software or hardware has same

incentive to report older crypto as

slow, and analogous incentive to

report its own crypto as fast.

Paper will naturally select

functions, parameters, input

lengths, platforms, 1/O format,

timing mechanism, etc. that

maximize reported improvement

from old to new.

T

W

nis Is not the same as selecting

nat matters most for the users.

19

Bit oper

(assumir

as listed

key

ops

128
128
123

256
128
256
123
128
256

8¢
10(
117

144
14
15¢
162
20
23:

whenever an
2rs crypto
fast enough?”

-hodologies for
stion. Which
at to take from
ries? Reuse
ops, or more?

petent answers
be published.

xplainable by
ural selection.
e that Petit
1 down crypto.

18

19
Paper introducing new crypto

software or hardware has same
incentive to report older crypto as
slow, and analogous incentive to
report its own crypto as fast.

Paper will naturally select
functions, parameters, input
lengths, platforms, 1/O format,
timing mechanism, etc. that
maximize reported improvement
from old to new.

This i1s not the same as selecting

what matters most for the users.

Bit operations per

(assuming precom

as listed in recent

key | ops/bit | ciph
128 | 88 Sime
128|100 NOE
128|117 Skin
256 | 144 Sim
128|147.2 |PRE
256 | 156 Skin
128 162.75 | Picc
128202.5 |AES
256 [283.5 | AES

dan

gh?”

s for
1ich
from
se
ore’?

swers
ed.

1on.
tit
/PTo.

18

Paper introducing new crypto

software or hardware has same

incentive to report older crypto as

slow, and analogous incentive to

report its own crypto as fast.

Paper will naturally select

functions, parameters, input

lengths, platforms, 1/O format,

timing mechanism, etc. that

maximize reported improvement

from old to new.

T

W

nis Is not the same as selecting

nat matters most for the users.

Bit operations per bit of pla

(assuming precomputed sub

as listed in recent Skinny pa

key | ops/bit | cipher

128 | 88 Simon: 60 ops
128 | 100 NOEKEON
128 | 117 Skinny

256 | 144 Simon: 106 or
128 |147.2 | PRESENT
256 | 156 Skinny

128 {162.75 | Piccolo

128 1202.5 |AES

256 |283.5 | AES

Paper introducing new crypto

software or hardware has same

incentive to report older crypto as

slow, and analogous incentive to

report its own crypto as fast.

Paper will naturally select

functions, parameters, input

lengths, platforms, 1/O format,

timing mechanism, etc. that

maximize reported improvement

from old to new.

T

W

nis Is not the same as selecting

nat matters most for the users.

19

20

Bit operations per bit of plaintext

(assuming precomputed subkeys),

as listed in recent Skinny paper:

key | ops/bit | cipher

128 | 88 Simon: 60 ops broken
128 | 100 NOEKEON

128 | 117 Skinny

256 | 144 Simon: 106 ops broken
128 [147.2 |PRESENT

256 | 156 Skinny

128 | 162.75 | Piccolo

128 202.5 | AES

256 |283.5 | AES

Paper introducing new crypto
software or hardware has same
incentive to report older crypto as
slow, and analogous incentive to
report its own crypto as fast.

Paper will naturally select
functions, parameters, input
lengths, platforms, 1/O format,
timing mechanism, etc. that
maximize reported improvement
from old to new.

This i1s not the same as selecting

what matters most for the users.

19

20

Bit operations per bit of plaintext

(assuming precomputed subkeys),

not entirely listed in Skinny paper:

key | ops/bit | cipher

256 | 54 Salsa20/8

256 | 78 Salsa20/12

128 | 88 Simon: 60 ops broken
128 | 100 NOEKEON

128 | 117 Skinny

256|126 Salsa20

256 | 144 Simon: 106 ops broken
128 147.2 |PRESENT

256 | 156 Skinny

128 | 162.75 | Piccolo

128 202.5 | AES

256 (283.5 | AES

troducing new crypto
or hardware has same

> to report older crypto as

d analogous incentive to
s own crypto as fast.

Il naturally select

S, parameters, input
platforms, 1/O format,
1echanism, etc. that

e reported Improvement
' to new.

1ot the same as selecting
1tters most for the users.

19

20

Bit operations per bit of plaintext
(assuming precomputed subkeys),
not entirely listed in Skinny paper:
key | ops/bit | cipher

256 | 54 Salsa20/8

256 | 78 Salsa20/12

128 | 88 Simon: 60 ops broken
128 | 100 NOEKEON

128 | 117 Skinny

256 | 126 Salsa20

256 | 144 Simon: 106 ops broken
128 [147.2 |PRESENT

256 | 156 Skinny

128 | 162.75 | Piccolo

128 202.5 | AES

256 |283.5 | AES

Many b:

backed |

e.g. Do
optimize
the olde
Rely on

“"We cor

MOST arc
do muct
complet:
heuristic
get little
where tt
slightly

new crypto

are has same

- older crypto as
Us Incentive to
bto as fast.

y select

ers, Input

- 1/0 format,
~etc. that

Improvement

ne as selecting
t for the users.

19

20

Bit operations per bit of plaintext

(assuming precomputed subkeys),

not entirely listed in Skinny paper:

key | ops/bit | cipher

256 | 54 Salsa20/8

256 | 78 Salsa20/12

128 | 88 Simon: 60 ops broken
128 | 100 NOEKEON

128 | 117 Skinny

256|126 Salsa20

256 | 144 Simon: 106 ops broken
128 147.2 |PRESENT

256 | 156 Skinny

128 | 162.75 | Piccolo

128 202.5 | AES

256(283.5 | AES

Many bad exampl

backed by tons of

e.g. Do we bother
optimized impleme
the older crypto?

Rely on “optimizir

“We come so clos
most architectures
do much more wit
complete algorithr
heuristics. We car
get little niggles h
where the heuristi
slightly wrong ans

ne
pto as
/e to

at,

nent

cting
Sers.

19

20

Bit operations per bit of plaintext

(assuming precomputed subkeys),

not entirely listed in Skinny paper:

key | ops/bit | cipher

256 | 54 Salsa20/8

256 | 78 Salsa20/12

128 | 88 Simon: 60 ops broken
128 | 100 NOEKEON

128 | 117 Skinny

256 | 126 Salsa20

256 | 144 Simon: 106 ops broken
128 [147.2 | PRESENT

256 | 156 Skinny

128 | 162.75 | Piccolo

128 202.5 | AES

256283.5 | AES

Many bad examples to imitz

backed by tons of misinform

e.g. Do we bother searching
optimized implementations ¢
the older crypto? Take any
Rely on “optimizing” compl

“We come so close to optim
most architectures that we «
do much more without using
complete algorithms instead
heuristics. We can only try -
get little niggles here and th
where the heuristics get

slightly wrong answers.”

20

Bit operations per bit of plaintext

(assuming precomputed subkeys),

not entirely listed in Skinny paper:

key | ops/bit | cipher

256 | 54 Salsa20/8

256 | 78 Salsa20/12

128 | 88 Simon: 60 ops broken
128 | 100 NOEKEON

128 | 117 Skinny

256|126 Salsa20

256 | 144 Simon: 106 ops broken
128 147.2 |PRESENT

256 | 156 Skinny

128 | 162.75 | Piccolo

128 202.5 | AES

256(283.5 | AES

Many bad examples to imitate,

backed by tons of misinformation.

e.g. Do we bother searching for
optimized implementations of
the older crypto? Take any codel
Rely on “optimizing” compiler!

“We come so close to optimal on
most architectures that we can't
do much more without using NP
complete algorithms instead of
heuristics. We can only try to
get little niggles here and there
where the heuristics get

slightly wrong answers.”

21

20
ations per bit of plaintext

1g precomputed subkeys),
ely listed in Skinny paper:

/bit | cipher
| Salsa20/8

3 Salsa20/12

3 Simon: 60 ops broken
) NOEKEON

7 Skinny

) Salsa20

| Simon: 106 ops broken
7.2 | PRESENT

) Skinny
.75 | Piccolo
5 | AES
3.5 | AES

Many

bad examples to imitate,

backed

e.g. Do we bother searching for

optimized implementations of

the older crypto? Take any code!

Rely on “optimizing” compiler!

“We come so close to optimal on

most architectures that we can't

do much more without using NP

complete algorithms instead of

heuristics. We can only try to

get little niggles here and there

where the heuristics get

slightly wrong answers.”

by tons of misinformation.

21

Reality |

crypto_stream :
salsall dolbeau/amd6d-
implementations

amdé4d Skylake ’

armeabi Armada

Time

20
bit of plaintext

puted subkeys),
in Skinny paper:

er
120/8
120/12

on: 60 ops broken
"KEON

ny
120
on: 106 ops broken

SENT

ny
olo

Many bad examples to imitate,

backed

e.g. Do we bother searching for
optimized implementations of
the older crypto? Take any codel
Rely on “optimizing” compiler!

“We come so close to optimal on
most architectures that we can't
do much more without using NP
complete algorithms instead of
heuristics. We can only try to
get little niggles here and there
where the heuristics get

slightly wrong answers.”

by tons of misinformation.

21

Reality is more col

implementations

amde64d Skylake

U T

amd64 HWHAES

—-_——_— e —— — — = — = — = = S, — = = = == - — = = -+

amde4 IB+AES

amd64 Sandy Bridge

amdé4 Piledriver

amdé4 Bulldozer

e -4 - — — — L

amdé4 C2 65nm

amdéed K10 32nm

amdéd K10 45nm

amded K10 65nm

amdéed Airmont

e - — - F

amd64 K8 t\(-\g

amdée4 Bobcat

aarche4 Cortex-A57

aarche4 Cortex-A53

armeabi Armada

Time 4096 8192

20
Intext

keys),
paper:

broken

s broken

Many bad examples to imitate,

backed by tons of misinformation.

e.g. Do we bother searching for
optimized implementations of
the older crypto? Take any codel!
Rely on “optimizing” compiler!

“We come so close to optimal on
most architectures that we can't
do much more without using NP
complete algorithms instead of
heuristics. We can only try to
get little niggles here and there
where the heuristics get

slightly wrong answers.”

21

Reality i1s more complicated:

crypto_stream
salsall
implementations

amdé4d Skylake

- I .

U, N

amdé4 C2 65nm

e g a e ==

amdéd K10 32nm

aarch64 Cortex-A57

aarch64 Cortex-A53

e — _— i — = o o A — o . — — — — — -

armeabi Cortex-Al5

e

armeabi Cortex-A94+NEON

armeabi Cortex-A9

- ey

armeabi Armada

Time 4096 8192 16384 32768 6553

Many bad examples to imitate,

backed by tons of misinformation.

e.g. Do we bother searching for
optimized implementations of
the older crypto? Take any codel
Rely on “optimizing” compiler!

“We come so close to optimal on
most architectures that we can't
do much more without using NP
complete algorithms instead of
heuristics. We can only try to
get little niggles here and there
where the heuristics get

slightly wrong answers.”

21

22
Reality i1s more complicated:

crypto_stream
salsal0
implementations

""XB?;T"J}]:FPS ://bench.cr.yp.to
[20161010

amde64d Skylake

——

—_— e e e e e e e e e e e e e ey e e A - - - =

amde4 IB+AES

amd64 Sandy Bridge

——

———

amdé4 C2 65nm

amdéed K10 32nm

aarche4 Cortex-A57

aarche4 Cortex-A53

e - — — — — — — — — — — — — — — — _— Bt = = o 4= e . m —

armeabi Cortex-Al5

e e e

armeabi Cortex-A94+NEON

armeabi Cortex-A9

L e e

armeabi Armada

Time 4096 8192 16384 327638 65536

yd examples to imitate,

oy tons of misinformation.

we bother searching for
d implementations of

r crypto? Take any code!
“optimizing’ compiler!

ne so close to optimal on
hitectures that we can't
' more without using NP
e algorithms instead of
s. We can only try to

' niggles here and there
1e heuristics get

Nrong answers.”

21

22
Reality i1s more complicated:

crypto_stream el e mms e/xBSpm ""'"Sf"'”f"’fl_;tltps:,"./bench. cr.yp.to
5 _ Xmm ALl T il =1 IE‘.’Z’_C_"; e/ xib-

salsall dnlheau.-"am.dﬁ&—)uﬁl@‘nt N e/merg ~ efref ||| efxZ6-athlon |I | 20161010

. . . 8/ gdfd-xmh? , rmnecng " armnecn? .'I- e/xB6-3 I' {

implementations - | arm

amdé4d Skylake

——- - ——_ — — — —_ —_ = — —_ — = = = _— = = — ___1,|___||__|__,_]__ _______________

———

———

'\ e
e
-

N N S g — - — —

amdé4 C2 65nm

R e e e B A

amdéd K10 32nm

—————————————————————————————————————

|

|
|
]
.
b

I
__"‘-——-L____ i S

| [e
|
|
|
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

amdé4 Airmont
- — - — - — - - - - \".-r:p:a"-"

amded K8

aarch64 Cortex-A57

aarch64 Cortex-A53

e — _— i - m o A e . — — — — — — — —

armeabi Cortex-Al5

e

armeabi Cortex-A94+NEON

armeabi Cortex-A9

— — — R

armeabi Armada

Time 4096 8192 16384 32768 65536

SUPERC(
includes
of 595 ¢
>20 imy

Haswell:
Impleme
gcc -03
1S 6.15 X%
Salsa20

merged
with “m
optimiza
compiler

os to Imitate,

misinformation.

searching for
ntations of
Take any code!
g’ compiler!

e to optimal on
- that we can't
hout using NP
ns instead of

1 only try to
ere and there
cs get

wers.'

21

22
Reality i1s more complicated:

o/x8bpn afxa?'_“:‘f‘_’f_]:;j:ltps ://bench.cr.yp.to
¢ | 20161010

implementations

amde64d Skylake

__

—

————————————————————————————————

amdée4 Bulldozer

e -4 - — — — L — — —

amd64 C2 65nm o L

i i = = e e

amdéed K10 32nm

[
[
[
[
[
[
[
|
[
[
[
[
|
[
[
[
[
[
[
[
[
[
[
[
-
._‘ " /ll -
S
.]
[
[
[
T
[
[
|
5
B |
T ———

oy -__\-'-'_'- -
|
|
t—
E
""--___|__ T — I = | S
|
|
|
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

x86 P4 Willamette

—_——— e e e e e e e e e e e e e e - — — e e, - - — — — — — — — — e — — — — — — — —

aarche4 Cortex-A57

aarche4 Cortex-A53

e - — — — — — — — — — — — — — — — —_— e . D e e e e e o — — — —

armeabi Cortex-Al5

armeabi Cortex-A7

i i e it

armeabi Cortex-A8

armeabi Armada

Time 4096 8192 16384 327638 65536

SUPERCOP bencl
includes 2155 imp

of 595 cryptograpl

>20 implementati

Haswell: Reasonal
Implementation cc
gcc -03 —fomit-
Is ©6.15x slower th
Salsa20 implemen

merged implemen
with “machine-ind
optimizations and
compiler options:

1te,

ation.

for
Hf
codel
er!

al on
an t
NP
of

to

V™

ere

21

22
Reality i1s more complicated:

crypto_stream ofxbsm E*""S‘f‘f"’__“_’_’ﬁhtltps ://bench.cr.yp.to
FXOb=L i ey ...l'J'J-

20161010

Bmd&d_
salsaZl dolbeau/andé4- int
implementations

amdé4d Skylake ’

amd64 HWHAES

-_——_—— = = = = = = = = = S — = = = — - - = = = -,

amdé4d IB+AES

amdée4 Sandy Bridge

amdé4 Piledriver

——

amdé4 Bulldozer

|

——————————————————————————————————

—_——_—— e e e e e e e e e e - - = = — — T Bl e e e e e e R i i B it e

amdéd K10 32nm

amdéd4 K10 45nm

amdéed K10 65nm

amdé4 Airmont

————————————————————————————————

amd64 K8 \

L |

---------------------------- RN
amd64 Bobcat l [N =il 'I.".-"

amdé4 Atom

X86 P4 Willamette

I | e _-:___E::—:.—.::_—_::—':-:" T e e e
aarch64 Cortex-A57 = " e o o e e e i e

__

aarch64 Cortex-A53

armeabi Cortex-AT7

__
armeabi Cortex-AS8

armeabi Armada

Time 4096 8192 16384 32768 65536

SUPERCOP benchmarking -

includes 2155 implementatic
of 595 cryptographic primiti
>20 implementations of Sal

Haswell: Reasonably simple
implementation compiled wi
gcc —03 —fomit-frame-po
is 6.15x slower than fastest
Salsa20 implementation.

merged implementation

with “machine-independent’
optimizations and best of 12
compiler options: 4.52x slo

22
Reality i1s more complicated:

Ema.ﬁf?__m.,,_, es’xﬂfi'__ﬂj_lf'f_]:lj:ltps ://bench.cr.yp.to
implementations

amde64d Skylake .

amd64 HWHAES

—-_——_— e —— — — = — = — = = S, — = = = == - — = = -+

amde4 IB+AES

amd64 Sandy Bridge

amdé4 Piledriver

L

——

amdée4 Bulldozer

—_——— e e e e e e e e e e = = = - — —_— — — el e e e - -

amdéed K10 32nm

amdéd K10 45nm

amded K10 65nm

amdéed Airmont

————————————————————————————————

amd64 K8 ‘\Y
amd64 Bobcat 1 b

amdéd Atom

x86 P4 Willamette

| ;-.!'_"_-.. i Soad 1 BB, 39 |alel Pl A, B PV el 715 oy ST
! P
——————————————————————————————————— - #ﬂﬂ.“-_':-__-:;‘-—--!'——————————————————————————
{ Lk e]
e T |
=1] Msskmiran 6 8 STARAG 1% AVICUS. Trges B3, Arcend Carten ST GEINUSTLN opnsny AR

aarche4 Cortex-A57

__

aarche4 Cortex-A53

armeabi Cortex-A7

__
armeabi Cortex-A8

armeabi Armada

Time 4096 8192 16384 327638 65536

SUPERCOP benchmarking toolkit
includes 2155 implementations

of 595 cryptographic primitives.
>20 implementations of Salsa20.

Haswell: Reasonably simple ref
Implementation compiled with
gcc —03 -fomit-frame-pointer
is 6.15x slower than fastest
Salsa20 implementation.

merged implementation

with “machine-independent”
optimizations and best of 121
compiler options: 4.52x slower.

23

22

s more complicated:

e/xES = https://bench.cr.yp.to
| 20161010

4096

8192

16384

32768

65536

SUPERCOP benchmarking toolkit

includes 2155 implementations
of 595 cryptographic primitives.
>20 implementations of Salsa20.

Haswell: Reasonably simple ref
implementation compiled with
gcc —03 -fomit-frame-pointer
is 6.15x slower than fastest

Salsa20 implementation.

merged implementation

with “machine-independent”
optimizations and best of 121
compiler options: 4.52x slower.

23

Another
lattice-b
means g
of randc

2017.03
Valencia
Regazzo
sources
discrete

benchm:

Qualitat
choice o
sampling

22
mplicated:

- - efx86-pm e/xBE- "https://bench.cr.yp.to

regs &/amd64-1 Ilt'. x86-2 II e/xBE-1

{ l < efref il efx86-athlon | .' 20161010
" armneonl | i a/zBE-3 I' |

16384 327638 65536

SUPERCOP benchmarking toolkit
includes 2155 implementations

of 595 cryptographic primitives.
>20 implementations of Salsa20.

Haswell: Reasonably simple ref
iImplementation compiled with
gcc —03 -fomit-frame-pointer
is 6.15x slower than fastest
Salsa20 implementation.

merged implementation

with “machine-independent”
optimizations and best of 121
compiler options: 4.52x slower.

23

Another interestin
lattice-based signi
means generating
of random Gaussic:

2017.03 Brannigar
Valencia—O'Sullive
Regazzoni “"An in\
sources of random
discrete Gaussian
benchmarks for RI

Qualitatively large
choice of RNG =
sampling = cost ¢

22

/xS https://bench.cr.yp.to
| 20161010

SUPERCOP benchmarking toolkit

includes 2155 implementations
of 595 cryptographic primitives.
>20 implementations of Salsa20.

Haswell: Reasonably simple ref
implementation compiled with
gcc —03 -fomit-frame-pointer
is 6.15x slower than fastest
Salsa20 implementation.

merged implementation

with “machine-independent”
optimizations and best of 121
compiler options: 4.52x slower.

23

Another interesting example
lattice-based signing typicall
means generating a huge nu
of random Gaussian samples

2017.03 Brannigan—Smyth—¢
Valencia—O'Sullivan—Guneys
Regazzoni “An investigation
sources of randomness withi
discrete Gaussian sampling”
benchmarks for RNGs, samrg

Qualitatively large impacts:
choice of RNG = cost of
sampling = cost of signing.

SUPERCOP benchmarking toolkit
includes 2155 implementations

of 595 cryptographic primitives.
>20 implementations of Salsa20.

Haswell: Reasonably simple ref
Implementation compiled with
gcc —03 -fomit-frame-pointer
is 6.15x slower than fastest
Salsa20 implementation.

merged implementation

with “machine-independent”
optimizations and best of 121
compiler options: 4.52x slower.

23

24
Another interesting example:

lattice-based signing typically
means generating a huge number
of random Gaussian samples.

2017.03 Brannigan—Smyth—Oder—
Valencia—O'Sullivan—Glineysu—
Regazzoni “An investigation of
sources of randomness within
discrete Gaussian sampling’:
benchmarks for RNGs, samplers.

Qualitatively large impacts:
choice of RNG = cost of
sampling = cost of signing.

_OP benchmarking toolkit
2155 implementations
ryptographic primitives.
ylementations of Salsa20.

Reasonably simple ref
ntation compiled with
—fomit-frame-pointer

slower than fastest
Implementation.

implementation
achine-independent”
tions and best of 121
~options: 4.52x slower.

23

Another interesting example:
lattice-based signing typically
means generating a huge number
of random Gaussian samples.

2017.03 Brannigan—Smyth—Oder—
Valencia—O'Sullivan—Glineysu—
Regazzoni “An investigation of
sources of randomness within
discrete Gaussian sampling’:
benchmarks for RNGs, samplers.

Qualitatively large impacts:
choice of RNG = cost of
sampling = cost of signing.

24

Two exa

In t

Sky
383

NS 2

ake

69 |

cycles/b

using Al

(32

cycls

rmarking toolkit
lementations

nic primitives.
ons of Salsa20.

oly simple ref
mpiled with
frame-pointer
an fastest
tation.

tation
ependent”

best of 121
4 .52 % slower.

23

Another interesting example:
lattice-based signing typically
means generating a huge number
of random Gaussian samples.

2017.03 Brannigan—Smyth—Oder—
Valencia—O'Sullivan—Glineysu—
Regazzoni “An investigation of
sources of randomness within
discrete Gaussian sampling’:
benchmarks for RNGs, samplers.

Qualitatively large impacts:
choice of RNG = cost of
sampling = cost of signing.

24

Two examples of ¢

In t

Sky
383

nis 2017 paper

ake (Intel Cor

.69 MByte/sec

cycles/byte) for A
using AES-NI; 10¢

(32

cycles/byte) f

foolkit
NS

VES.
sa20.

ref
th

inter

1

WET .

23

Another interesting example:
lattice-based signing typically
means generating a huge number
of random Gaussian samples.

2017.03 Brannigan—Smyth—Oder—
Valencia—O'Sullivan—Glineysu—
Regazzoni “An investigation of
sources of randomness within
discrete Gaussian sampling’:
benchmarks for RNGs, samplers.

Qualitatively large impacts:
choice of RNG = cost of
sampling = cost of signing.

24

Two examples of speed repc

In t

Sky
383

nis 2017 paper for a 3.4(

ake (Intel Core i7-6700)
.69 MByte/sec (8.86

cycles/byte) for AES CTR-L
using AES-NI; 106.07 MByt

(32

cycles/byte) for ChaChsz

Another interesting example:
lattice-based signing typically
means generating a huge number
of random Gaussian samples.

2017.03 Brannigan—Smyth—Oder—
Valencia—O'Sullivan—Glineysu—
Regazzoni “An investigation of
sources of randomness within
discrete Gaussian sampling’:
benchmarks for RNGs, samplers.

Qualitatively large impacts:
choice of RNG = cost of
sampling = cost of signing.

24

Two examples of speed reported

In t

Sky

333
cycl

nis 2017 paper for a 3.4GHz

ake (Intel Core i7-6700):

.69 MByte/sec (8.86
es/byte) for AES CTR-DRBG

using AES-NI; 106.07 MByte/sec

(32

cycles/byte) for ChaCha20.

25

Another interesting example:
lattice-based signing typically
means generating a huge number
of random Gaussian samples.

2017.03 Brannigan—Smyth—Oder—
Valencia—O'Sullivan—Glineysu—
Regazzoni “An investigation of
sources of randomness within
discrete Gaussian sampling’:
benchmarks for RNGs, samplers.

Qualitatively large impacts:
choice of RNG = cost of
sampling = cost of signing.

24

Two examples of speed reported
in this 2017 paper for a 3.4GHz
Skylake (Intel Core i7-6700):

383.69 MByte/sec (8.86
cycles/byte) for AES CTR-DRBG
using AES-NI; 106.07 MByte/sec
(32 cycles/byte) for ChaCha20.

But wait. eBACS reports

0.92 cycles/byte for AES-256-CTR,

1.18 cycles/byte for ChaCha20.

Author non-response: “essential
for us to examine standard open

implementations”. Slow ones?

25

Interesting example:
ased signing typically
enerating a huge number
m Gaussian samples.

Brannigan—-Smyth—Oder—
—QO'Sullivan—Guneysu—

ni “An investigation of
of randomness within
Gaussian sampling”:

arks for RNGs, samplers.

ively large impacts:
f RNG = cost of
r = cost of signing.

24

Two examples of speed reported

In t

Sky
383

nis 2017 paper for a 3.4GHz

ake (Intel Core i7-6700):
.69 MByte/sec (8.86

cycles/byte) for AES CTR-DRBG
using AES-NI; 106.07 MByte/sec

(32

cycles/byte) for ChaCha20.

But wait. eBACS reports
0.92 cycles/byte for AES-256-CTR,
1.18 cycles/byte for ChaCha20.

Aut

hor non-response: “essential

for us to examine standard open

Imp

lementations’ . Slow ones?

25

| &) Google Online Se

(0 @ | https://sec

Most Visitedv @ Fe

Speeding u

connection
April 24,2014

Posted by Elie Burs

Earlier this year,
operates three t
AES hardware a
devices such as
experience, redu

amount of time

To make this ha
began impleme
encryption and |
March 2013. It

abstraction laye

o example:
ng typically
a huge number
n samples.

—Smyth—Oder—
n—Guneysu—
restigation of
ness within
sampling’:

\NGs, samplers.

Impacts:
cost of
of signing.

24

Two examples of speed reported
in this 2017 paper for a 3.4GHz
Skylake (Intel Core i7-6700):

383.69 MByte/sec (8.86
cycles/byte) for AES CTR-DRBG

using AES-
(32 cycles/

NI; 106.07 MByte/sec
oyte) for ChaCha20.

But wait. eBACS reports

0.92 cyc
1.18 cyc

es/
es/

oyte for AES-256-CTR,

oyte for ChaCha20.

Author non-response: “essential

for us to examine standard open

Implementations’ .

Slow ones?

25

{ 5] Google Online Securi... % New

(D @ | https://security.googleblog.com/20

Most Visitedv @ Fedora Documentation []

Speeding up and strengthe

connections for Chrome ol
April 24,2014

Posted by Elie Bursztein, Anti-Abuse Researcl

Earlier this year, we deployed a new T
operates three times faster than AES
AES hardware acceleration, including
devices such as Google Glass and ol«
experience, reducing latency and sav

amount of time spent encrypting and

To make this happen, Adam Langley,
began implementing new algorithms
encryption and Poly1305 for authenti
March 2013. It was a complex effort:

abstraction layer in OpenSSL in order

mber

Dder—

of

lers.

24

Two examples of speed reported
in this 2017 paper for a 3.4GHz
Skylake (Intel Core i7-6700):

383.69 MByte/sec (8.86
cycles/byte) for AES CTR-DRBG
using AES-NI; 106.07 MByte/sec
(32 cycles/byte) for ChaCha20.

But wait. eBACS reports
0.92 cycles/byte for AES-256-CTR,
1.18 cycles/byte for ChaCha20.

Author non-response: “essential
for us to examine standard open
implementations”. Slow ones?

25

{ 5] Google Online Securi... % e
(D @ | https://security.googleblog.com/2014/04/speeding-up-anc

Most Visitedv @ Fedora Documentation []Fedora Projectv [[JRed

Speeding up and strengthening HTTPS

connections for Chrome on Android
April 24,2014

Posted by Elie Bursztein, Anti-Abuse Research Lead

Earlier this year, we deployed a new TLS cipher suite in Chr
operates three times faster than AES-GCM on devices that
AES hardware acceleration, including most Android phone:
devices such as Google Glass and older computers. This ir
experience, reducing latency and saving battery life by cutt

amount of time spent encrypting and decrypting data.

To make this happen, Adam Langley, Wan-Teh Chang, Ben
began implementing new algorithms - ChaCha 20 for sym
encryption and Poly1305 for authentication - in OpenSSL a
March 2013. It was a complex effort that required impleme

abstraction layer in OpenSSL in order to support the Authel

Two examples of speed reported
in this 2017 paper for a 3.4GHz
Skylake (Intel Core i7-6700):

383.69 MByte/sec (8.86
cycles/byte) for AES CTR-DRBG
using AES-NI; 106.07 MByte/sec
(32 cycles/byte) for ChaCha20.

But wait. eBACS reports
0.92 cycles/byte for AES-256-CTR,
1.18 cycles/byte for ChaCha20.

Author non-response: “essential
for us to examine standard open
implementations”. Slow ones?

25

y 5] Google Online Securi... % _,\+

(@ | https://security.googleblog.com/2014/04/speeding-up-anc EJ1 | C »

[5 Most Visitedv @ Fedora Documentation [JFedora Projectv [[]Red HatV

Speeding up and strengthening HTTPS

connections for Chrome on Android
April 24,2014

Posted by Elie Bursztein, Anti-Abuse Research Lead

Earlier this year, we deployed a new TLS cipher suite in Chrome that
operates three times faster than AES-GCM on devices that don't have
AES hardware acceleration, including most Android phones, wearable
devices such as Google Glass and older computers. This improves user
experience, reducing latency and saving battery life by cutting down the

amount of time spent encrypting and decrypting data.

To make this happen, Adam Langley, Wan-Teh Chang, Ben Laurie and |
began implementing new algorithms - ChaCha 20 for symmetric
encryption and Poly1305 for authentication - in OpenSSL and NSS in
March 2013. It was a complex effort that required implementing a new

abstraction layer in OpenSSL in order to support the Authenticated

26

mples of speed reported
017 paper for a 3.4GHz
(Intel Core i7-6700):

IByte/sec (8.86
yte) for AES CTR-DRBG

-S-
s /

NI; 106.07 MByte/sec

oyte) for ChaCha20.

. eBACS reports

10N-response:

les/byte for AES-256-CTR,
es/byte for ChaCha20.

“essential

 examine standard open

ntations’ . Slow ones?

25

y 5] Google Online Securi... % _,\+

(® @ | https://security.googleblog.com/2014/04/speeding-up-anc EJ1 | C | »

Most Visitedv @ Fedora Documentation []Fedora Projectv [[JRed HatVv

Speeding up and strengthening HTTPS

connections for Chrome on Android
April 24,2014

Posted by Elie Bursztein, Anti-Abuse Research Lead

Earlier this year, we deployed a new TLS cipher suite in Chrome that
operates three times faster than AES-GCM on devices that don't have
AES hardware acceleration, including most Android phones, wearable
devices such as Google Glass and older computers. This improves user
experience, reducing latency and saving battery life by cutting down the

amount of time spent encrypting and decrypting data.

To make this happen, Adam Langley, Wan-Teh Chang, Ben Laurie and |
began implementing new algorithms — ChaCha 20 for symmetric
encryption and Poly1305 for authentication - in OpenSSL and NSS in
March 2013. It was a complex effort that required implementing a new

abstraction layer in OpenSSL in order to support the Authenticated

26

»

J . Do the ChaCha: b

® @ | https://bloc

Most VisitedVv @ Fe

Today we ar
form of encr
performanc
today, Goog
the Internet
all sites on C
mobile brow
visiting sites

As of the lau
10% of https
ciphersuites
when we tut

CloudFlare ciphers

speed reported
for a 3.4GHz

e i7-6700):

- (8.86

ES CTR-DRBG
.07 MByte/sec
or ChaCha20.

reports
or AES-256-CTR,

or ChaCha20.

1se: ‘essential
standard open

Slow ones?

25

| (® @ | https://security.googleblog.com/2014/04/speeding-up-anc

y 5] Google Online Securi... x | +

.

|c| »

[5 Most Visitedv @ Fedora Documentation [JFedora Projectv [[]Red HatV

Speeding up and strengthening HTTPS

connections for Chrome on Android
April 24,2014

Posted by Elie Bursztein, Anti-Abuse Research Lead

Earlier this year, we deployed a new TLS cipher suite in Chrome that
operates three times faster than AES-GCM on devices that don't have
AES hardware acceleration, including most Android phones, wearable
devices such as Google Glass and older computers. This improves user
experience, reducing latency and saving battery life by cutting down the

amount of time spent encrypting and decrypting data.

To make this happen, Adam Langley, Wan-Teh Chang, Ben Laurie and |
began implementing new algorithms - ChaCha 20 for symmetric
encryption and Poly1305 for authentication —in OpenSSL and NSS in
March 2013. It was a complex effort that required implementing a new

abstraction layer in OpenSSL in order to support the Authenticated

26

»

) . Do the ChaCha: bett... x | <+

.

O a https://blog.cloudflare.com/do-the-

Most Visitedv @ Fedora Documentation

Today we are adding a new
form of encryption — that i
performance: ChaCha20-Po
today, Google services were
the Internet that supported
all sites on CloudFlare supp
mobile browsers get a bette
visiting sites using CloudFla

As of the launch today (Feb!
10% of https connections tc
ciphersuites. The following |
when we turned ChaCha20.

CloudFlare ciphersuite chosen by percentag

epruary £s,

rted
sHz

)RBG
e/sec
20.

0-CTR,
20.

1tial
pen

4

25

Y, B Google Online Securi... % '-\+

26

= | (D @ | https://security.googleblog.com/2014/04/speeding-up-anc EI | C | »

Most Visitedv @ Fedora Documentation []Fedora Projectv [[JRed HatVv

»

y

. Do the ChaCha: bett... % '-\+

= | (D @ | https://blog.cloudflare.com/do-the-chacha-better-mobile-p

Most Visitedv @ Fedora Documentation []Fedora Projectv [[JRed

Speeding up and strengthening HTTPS

connections for Chrome on Android
April 24,2014

Posted by Elie Bursztein, Anti-Abuse Research Lead

Earlier this year, we deployed a new TLS cipher suite in Chrome that
operates three times faster than AES-GCM on devices that don't have
AES hardware acceleration, including most Android phones, wearable
devices such as Google Glass and older computers. This improves user
experience, reducing latency and saving battery life by cutting down the

amount of time spent encrypting and decrypting data.

To make this happen, Adam Langley, Wan-Teh Chang, Ben Laurie and |
began implementing new algorithms — ChaCha 20 for symmetric
encryption and Poly1305 for authentication - in OpenSSL and NSS in
March 2013. It was a complex effort that required implementing a new

abstraction layer in OpenSSL in order to support the Authenticated

Today we are adding a new feature — actu
form of encryption — that improves mobile
performance: ChaCha20-Poly1305 cipher s
today, Google services were the only major
the Internet that supported this new algori
all sites on CloudFlare support it, too. This |
mobile browsers get a better experience wi
visiting sites using CloudFlare.

As of the launch today (February 23, 2015),
10% of https connections to CloudFlare use
ciphersuites. The following graph shows th
when we turned ChaCha20/Poly1305 on gl

CloudFlare ciphersuite chosen by percentage

February 23, 2015
ChaCha20-Poly1305 laur

26 27

o 5] Google Online Securi... % "-k+ | - Do the ChaCha: bett... X ."L+

»

= | (O @ | https://security.googleblog.com/2014/04/speeding-up-anc E1 C | » = | (O @ | https://blog.cloudflare.com/do-the-chacha-better-mobile-p« EJ1 ¢

[5 Most Visitedv @ Fedora Documentation [JFedora Projectv [[]Red HatV » | [[FMost Visitedv @ Fedora Documentation [[JFedora Projectv [[]Red HatVv »

Today we are adding a new feature — actually a new

Speeding up and strengthening HTTPS form of encryption — that improves mobile
connections for Chrome on Android performance: ChaCha20-Poly1305 cipher suites. Until
ApRl2d, 2074 today, Google services were the only major sites on
the Internet that supported this new algorithm. Now
Posted by Elie Bursztein, Anti-Abuse Research Lead all sites on CloudFlare support it, too. This means

mobile browsers get a better experience when
visiting sites using CloudFlare.

Earlier this year, we deployed a new TLS cipher suite in Chrome that
operates three times faster than AES-GCM on devices that don't have

AES hardware acceleration, including most Android phones, wearable

devices such as Google Glass and older computers. This improves user As of the launch today (February 23, 2015), nearly
experience, reducing latency and saving battery life by cutting down the 10% of https connections to CloudFlare use the new
amount of time spent encrypting and decrypting data. ciphersu ites. The foIIowing graph shows the u ptiCk

_ _ when we turned ChaCha20/Poly1305 on globally:
To make this happen, Adam Langley, Wan-Teh Chang, Ben Laurie and |

began implementing new algorithms - ChaCha 20 for symmetric
] o)) CloudFlare ciphersuite chosen by percentage
encryption and Poly1305 for authentication —in OpenSSL and NSS in February 23, 2015

ChaCha20-Poly1305 launched

March 2013. It was a complex effort that required implementing a new

abstraction layer in OpenSSL in order to support the Authenticated \

curi... X \
\+

Irity.googleblog.com/2014/04/speeding-up-anc EJ1 | C »

dora Documentation [T |Fedora Projectv [[]Red HatVv

p and strengthening HTTPS
s for Chrome on Android

ztein, Anti-Abuse Research Lead

we deployed a new TLS cipher suite in Chrome that
imes faster than AES-GCM on devices that don't have
cceleration, including most Android phones, wearable

. Google Glass and older computers. This improves user
icing latency and saving battery life by cutting down the

spent encrypting and decrypting data.

ppen, Adam Langley, Wan-Teh Chang, Ben Laurie and |
nting new algorithms - ChaCha 20 for symmetric
20ly1305 for authentication - in OpenSSL and NSS in
vas a complex effort that required implementing a new

r in OpenSSL in order to support the Authenticated

26

»

) «. Do the ChaCha: bett... X -_\+

® @ | https://blog.cloudflare.com/do-the-chacha-better-mobile-pc EJ | C ._ »

Most Visitedv @ Fedora Documentation []Fedora Projectv [[JRed HatVv

Today we are adding a new feature — actually a new
form of encryption — that improves mobile
performance: ChaCha20-Poly1305 cipher suites. Until
today, Google services were the only major sites on
the Internet that supported this new algorithm. Now
all sites on CloudFlare support it, too. This means
mobile browsers get a better experience when
visiting sites using CloudFlare.

As of the launch today (February 23, 2015), nearly
10% of https connections to CloudFlare use the new
ciphersuites. The following graph shows the uptick
when we turned ChaCha20/Poly1305 on globally:

CloudFlare ciphersuite chosen by percentage

epruary £s,
ChaCha20-Poly1305 launched

27

»

) ImperialViolet - Mayt

) O a https://ww

Most VisitedVv @ Fe

Maybe Skip SH.

In 2005 and 2006,
[11[2][3]. These rep
as cryptographers
at all. After all, matr

In the wake of this
order to hedge t
“ket-chak”, I believ:
proved that we do
2005 didn't extenc
hash functions, all
it existed, it was nc
tendency to assum
ber is bigger.

As I've mentioned
It contributes to t
tested and harder
platforms typically
code-size, which is
even slower than

rrvntn nrimitiviac

14/04/speeding-up-anc E1 ¢ »

Fedora Projectv [[JRed HatVv

ning HTTPS
1 Android

1 Lead

LS cipher suite in Chrome that
-GCM on devices that don't have
most Android phones, wearable
ler computers. This improves user
ing battery life by cutting down the
decrypting data.

Wan-Teh Chang, Ben Laurie and |
— ChaCha 20 for symmetric
cation —in OpenSSL and NSS in
that required implementing a new

to support the Authenticated

26

»

) . Do the ChaCha: bett... % _|\+

(@ | https://blog.cloudflare.com/do-the-chacha-better-mobile-p:

E1| C »

[5 Most Visitedv @ Fedora Documentation [JFedora Projectv [[]Red HatV

Today we are adding a new feature — actually a new
form of encryption — that improves mobile

performance: ChaCha20-Poly1305 cipher suites. Until

today, Google services were the only major sites on
the Internet that supported this new algorithm. Now
all sites on CloudFlare support it, too. This means
mobile browsers get a better experience when

visiting sites using CloudFlare.

As of the launch today (February 23, 2015), nearly
10% of https connections to CloudFlare use the new
ciphersuites. The following graph shows the uptick
when we turned ChaCha20/Poly1305 on globally:

CloudFlare ciphersuite chosen by percentage

ChaCha20-Poly1305 launched

21

»

| ImperialViolet - Maybe S... x | +

@ @ https://www.imperialviolet.org/201

Most Visitedv @ Fedora Documentation

Maybe Skip SHA-3 (31 May 201

In 2005 and 2006, a series of significant
[11[2][3]. These repeated break-through
as cryptographers questioned whether
at all. After all, many hash functions fro

In the wake of this, NIST announced (Pl
order to hedge the risk of SHA-2 f:
“ket-chak”, I believe) won (PDF) and bec
proved that we do know how to build |
2005 didn't extend to SHA-2 and the S
hash functions, all of which are secure :
it existed, it was no longer clear that SH
tendency to assume that SHA-3 must be
ber is bigger.

As I've mentioned before, diversity of «
It contributes to the exponential num
tested and hardened; it draws on lim
platforms typically need separate, op
code-size, which is a worry again in the
even slower than SHA-2 which is alre

rvntn nrimitiviac

Hatwv

ome that
don't have

5, wearable
nproves user

ing down the

| aurie and |
metric

nd NSS in
nting a new

ticated

26

»

| = Do the ChaCha: bett... % _,\+
(O @ | https://blog.cloudflare.com/do-the-chacha-better-mobile-pc E1 | C »

Most Visitedv @ Fedora Documentation []Fedora Projectv [[JRed HatVv

Today we are adding a new feature — actually a new
form of encryption — that improves mobile
performance: ChaCha20-Poly1305 cipher suites. Until
today, Google services were the only major sites on
the Internet that supported this new algorithm. Now
all sites on CloudFlare support it, too. This means
mobile browsers get a better experience when
visiting sites using CloudFlare.

As of the launch today (February 23, 2015), nearly
10% of https connections to CloudFlare use the new
ciphersuites. The following graph shows the uptick
when we turned ChaCha20/Poly1305 on globally:

CloudFlare ciphersuite chosen by percentage

ChaCha20-Poly1305 launched

27

»

/| ImperialViolet - Maybe S... x | +

A

(D @ | https://www.imperialviolet.org/2017/05/31/skipsha3.html

Most Visitedv @ Fedora Documentation []Fedora Projectv [[JRed

Maybe Skip SHA-3 (31 May 2017)

In 2005 and 2006, a series of significant results were publish
[11[2][3]. These repeated break-throughs caused something
as cryptographers questioned whether we knew how to buil
at all. After all, many hash functions from the 1990's had not

In the wake of this, NIST announced (PDF) a competition to
order to hedge the risk of SHA-2 falling. In 2012, Kec«
“ket-chak”, I believe) won (PDF) and became SHA-3. But the «
proved that we do know how to build hash functions: the s
2005 didn't extend to SHA-2 and the SHA-3 process produ
hash functions, all of which are secure as far as we can tell.
it existed, it was no longer clear that SHA-3 was needed. Yet
tendency to assume that SHA-3 must be better than SHA-2 &
ber is bigger.

As I've mentioned before, diversity of cryptographic primit
It contributes to the exponential number of combinations
tested and hardened; it draws on limited developer resolt
platforms typically need separate, optimised code; and |
code-size, which is a worry again in the mobile age. SHA-3 is
even slower than SHA-2 which is already a comparative

rrvntn nrimitiviac

| = Do the ChaCha: bett... x | +

(0 @ | https://blog.cloudflare.com/do-the-chacha-better-mobile-p« EJ | C »

[5 Most Visitedv @ Fedora Documentation [JFedora Projectv [[]Red HatV

Today we are adding a new feature — actually a new
form of encryption — that improves mobile
performance: ChaCha20-Poly1305 cipher suites. Until
today, Google services were the only major sites on
the Internet that supported this new algorithm. Now
all sites on CloudFlare support it, too. This means
mobile browsers get a better experience when
visiting sites using CloudFlare.

As of the launch today (February 23, 2015), nearly
10% of https connections to CloudFlare use the new
ciphersuites. The following graph shows the uptick
when we turned ChaCha20/Poly1305 on globally:

ChaCha20-Poly1305 launched

21

»

23

3 ImperialViolet - Maybe S... % ! +

(D @ | https://www.imperialviolet.org/2017/05/31/skipsha3.html & »

[5 Most Visitedv @ Fedora Documentation [JFedora Projectv [[]Red HatV

Maybe Skip SHA-3 (31 May 2017)

In 2005 and 2006, a series of significant results were published against SHA-1
[11[2][3]. These repeated break-throughs caused something of a crisis of faith
as cryptographers questioned whether we knew how to build hash functions
at all. After all, many hash functions from the 1990's had not aged well [1][2].

In the wake of this, NIST announced (PDF) a competition to develop SHA-3 in
order to hedge the risk of SHA-2 falling. In 2012, Keccak (pronounced
“ket-chak”, I believe) won (PDF) and became SHA-3. But the competition itself
proved that we do know how to build hash functions: the series of results in
2005 didn't extend to SHA-2 and the SHA-3 process produced a number of
hash functions, all of which are secure as far as we can tell. Thus, by the time
it existed, it was no longer clear that SHA-3 was needed. Yet there is a natural
tendency to assume that SHA-3 must be better than SHA-2 because the num-
ber is bigger.

As I've mentioned before, diversity of cryptographic primitives is expensive.
It contributes to the exponential number of combinations that need to be
tested and hardened; it draws on limited developer resources as multiple
platforms typically need separate, optimised code; and it contributes to
code-size, which is a worry again in the mobile age. SHA-3 is also slow, and is
even slower than SHA-2 which is already a comparative laggard amongst

rvntn nrimitiviac

»

