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when we turned ChaCha20/Poly1305 on globally:
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Today we are adding a new feature — actually a new
form of encryption — that improves mobile

performance: ChaCha20-Poly1305 cipher suites. Until

today, Google services were the only major sites on
the Internet that supported this new algorithm. Now
all sites on CloudFlare support it, too. This means
mobile browsers get a better experience when

visiting sites using CloudFlare.

As of the launch today (February 23, 2015), nearly
10% of https connections to CloudFlare use the new
ciphersuites. The following graph shows the uptick
when we turned ChaCha20/Poly1305 on globally:

CloudFlare ciphersuite chosen by percentage

ChaCha20-Poly1305 launched

21

»

| ImperialViolet - Maybe S... x | +

@ @  https://www.imperialviolet.org/201

Most Visitedv @ Fedora Documentation

Maybe Skip SHA-3 (31 May 201

In 2005 and 2006, a series of significant
[11[2][3]. These repeated break-through
as cryptographers questioned whether
at all. After all, many hash functions fro

In the wake of this, NIST announced (Pl
order to hedge the risk of SHA-2 f:
“ket-chak”, I believe) won (PDF) and bec
proved that we do know how to build |
2005 didn't extend to SHA-2 and the S
hash functions, all of which are secure :
it existed, it was no longer clear that SH
tendency to assume that SHA-3 must be
ber is bigger.

As I've mentioned before, diversity of «
It contributes to the exponential num
tested and hardened; it draws on lim
platforms typically need separate, op
code-size, which is a worry again in the
even slower than SHA-2 which is alre

rvntn nrimitiviac




Hatwv

ome that
don't have

5, wearable
nproves user

ing down the

| aurie and |
metric

nd NSS in
nting a new

ticated

26

»

| = Do the ChaCha: bett... % _,\+
(O @ | https://blog.cloudflare.com/do-the-chacha-better-mobile-pc  E1 | C »

Most Visitedv @ Fedora Documentation [ ]Fedora Projectv [[JRed HatVv

Today we are adding a new feature — actually a new
form of encryption — that improves mobile
performance: ChaCha20-Poly1305 cipher suites. Until
today, Google services were the only major sites on
the Internet that supported this new algorithm. Now
all sites on CloudFlare support it, too. This means
mobile browsers get a better experience when
visiting sites using CloudFlare.

As of the launch today (February 23, 2015), nearly
10% of https connections to CloudFlare use the new
ciphersuites. The following graph shows the uptick
when we turned ChaCha20/Poly1305 on globally:
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Today we are adding a new feature — actually a new
form of encryption — that improves mobile
performance: ChaCha20-Poly1305 cipher suites. Until
today, Google services were the only major sites on
the Internet that supported this new algorithm. Now
all sites on CloudFlare support it, too. This means
mobile browsers get a better experience when
visiting sites using CloudFlare.

As of the launch today (February 23, 2015), nearly
10% of https connections to CloudFlare use the new
ciphersuites. The following graph shows the uptick
when we turned ChaCha20/Poly1305 on globally:
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Maybe Skip SHA-3 (31 May 2017)

In 2005 and 2006, a series of significant results were published against SHA-1
[11[2][3]. These repeated break-throughs caused something of a crisis of faith
as cryptographers questioned whether we knew how to build hash functions
at all. After all, many hash functions from the 1990's had not aged well [1][2].

In the wake of this, NIST announced (PDF) a competition to develop SHA-3 in
order to hedge the risk of SHA-2 falling. In 2012, Keccak (pronounced
“ket-chak”, I believe) won (PDF) and became SHA-3. But the competition itself
proved that we do know how to build hash functions: the series of results in
2005 didn't extend to SHA-2 and the SHA-3 process produced a number of
hash functions, all of which are secure as far as we can tell. Thus, by the time
it existed, it was no longer clear that SHA-3 was needed. Yet there is a natural
tendency to assume that SHA-3 must be better than SHA-2 because the num-
ber is bigger.

As I've mentioned before, diversity of cryptographic primitives is expensive.
It contributes to the exponential number of combinations that need to be
tested and hardened; it draws on limited developer resources as multiple
platforms typically need separate, optimised code; and it contributes to
code-size, which is a worry again in the mobile age. SHA-3 is also slow, and is
even slower than SHA-2 which is already a comparative laggard amongst
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