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Programmers waste enormous
amounts of time thinking about,
or worrying about, the speed

of noncritical parts of their
programs, and these attempts at
efficiency actually have a strong
negative impact when debugging
and maintenance are considered.
We should forget about small
efficiencies, say about 97% of
the time; premature optimization
Is the root of all evil.

(Donald E. Knuth,

“Structured programming
with go to statements”, 1974)
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In fact, compiler designers
take responsibility only for
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Outside this bailiwick they
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Function specification

Algorithm designer

Y
Source code with all

machine-independent
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Optimizing compiler
Y
Object code with
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optimizations

Output of optimizing compiler
is algorithm for target machine.

Algorithm designer could have
targeted this machine directly.

Why build a new designer as
compiler o old designer?

Advantages of this composition:
(1) save designer’s time

in handling complex machines;
(2) save designer’s time

in handling many machines.

Optimizing compiler is general-
purpose, used by many designers.
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“Superscalar’ processing:

tlip-tlops

INsn
fetch

INsn
fetch

flip-1

lops

Insn
decode

Insn
decode

flip-

lops

register
read

register
read

register
read

register
read

flip-

lops

X

flip-

flops

register
write

register

write

“Vector’ processing:

Expand each 32-bit integer
into n-vector of 32-bit integers.
ARM “NEON" has n = 4;
"AVX2" has n = 8;
"AVX-512" has n = 16;

GPUs have larger n.

Inte

Inte

nx speedup if

nx arithmetic circuits,
nx read/write circuits.
Benefit: Amortizes insn circuits.

Huge effect on higher-level
algorithms and data structures.



calar” processing:

~ flip-flops

INsn
fetch

Insn
fetch

~ flip-

lops

Insn
ecode

Insn
decode

~ flip-

lops

gister
read

register
read

register
read

~ flip-

lops

- X

flip-flops

gister
write

register
write

“Vector’ processing:

Expand each 32-bit integer
into n-vector of 32-bit integers.
ARM “NEON" has n = 4;

Intel “AVX2" has n = 8;

Intel “AVX-512" has n = 16;

GPUs have larger n.

nx speedup if
nXx arithmetic circuits,
nx read/write circuits.

Benefit: Amortizes insn circuits.

Huge effect on higher-level
algorithms and data structures.

Network

How exf

Input: a
Each nu

represen

Output:
IN INCrea
represen
same mi



Cessing:

register
read

Ler

“Vector’ processing:

Expand each 32-bit integer

into n-vector of 32-bit integers.
ARM “NEON" has n = 4;

Inte
Inte

"AVX2" has n = 3;
"AVX-512" has n = 16;

GPUs have larger n.

nx speedup if

nx arithmetic circuits,

nx read/write circuits.

Benefit: Amortizes insn circuits.

Huge effect on higher-level

algorithms and data structures.

Network on chip:

How expensive Is

Input: array of nr
Each number in {
represented In bin;

Output: array of 1
In Increasing order
represented In bin:
same multiset as |



“Vector’ processing:

Expand each 32-bit integer
into n-vector of 32-bit integers.
ARM “NEON" has n = 4;

Intel “AVX2" has n = 8;

Intel “AVX-512" has n = 16;

GPUs have larger n.

nx speedup if
nXx arithmetic circuits,
nx read/write circuits.

Benefit: Amortizes insn circuits.

Huge effect on higher-level
algorithms and data structures.

Network on chip: the mesh

How expensive is sorting?

Input: array of n numbers.
Each number In {1, 2. ....nN
represented in binary.

Output: array of n numbers
in Increasing order,
represented In binary:;

same multiset as input.



“Vector’ processing:

Expand each 32-bit integer
into n-vector of 32-bit integers.
ARM “NEON" has n = 4;

Intel “AVX2" has n = 8;

Intel “AVX-512" has n = 16;

GPUs have larger n.

nx speedup if
nx arithmetic circuits,
nx read/write circuits.

Benefit: Amortizes insn circuits.

Huge effect on higher-level
algorithms and data structures.

Network on chip: the mesh

How expensive is sorting?

Input: array of n numbers.
Each number In {1, 2. ..., n2},
represented in binary.

Output: array of n numbers,
In Increasing order,
represented In binary;

same multiset as input.



“Vector’ processing:

Expand each 32-bit integer
into n-vector of 32-bit integers.
ARM “NEON" has n = 4;

Intel “AVX2" has n = 8;

Intel “AVX-512" has n = 16;

GPUs have larger n.

nx speedup if
nx arithmetic circuits,
nx read/write circuits.

Benefit: Amortizes insn circuits.

Huge effect on higher-level
algorithms and data structures.

Network on chip: the mesh

How expensive is sorting?

Input: array of n numbers.
Each number In {1, 2. ..., n2},
represented in binary.

Output: array of n numbers,
In Increasing order,
represented In binary;

same multiset as input.

Metric: seconds used by
circuit of area nito(l),

For simplicity assume n = 4k



" processing:

each 32-bit integer
actor of 32-bit integers.
\[EON" has n = 4;
VX2" has n = 8;
VX-512" has n = 16;

wve larger n.

dup if
metic circults,
/write circuits.

Amortizes insh circuits.

ect on higher-level
ns and data structures.

Network on chip: the mesh

How expensive is sorting?

Input: array of n numbers.
Each number in {1, 2. ..., nz},
represented in binary.

Output: array of n numbers,
in Increasing order,
represented In binary;

same multiset as input.

Metric: seconds used by
circuit of area nito(l),

For simplicity assume n = 4k

Spread ¢
square n
each of
with nec

K—X—X—X—X—X—X—X—X—X
K —X—X—X—X—X—X—X—X—X

X
X
X
X
X
X
X
X
X
X




\g:

t Integer
-bit integers.
s n=4;

n = 8;

as n = 16;

n.

uits,
“ulits.

S INSN CIrcults.

her-level
ta structures.

Network on chip: the mesh

How expensive is sorting?

Input: array of n numbers.
Each number In {1, 2. ..., nz},
represented in binary.

Output: array of n numbers,
In Increasing order,
represented In binary;

same multiset as input.

Metric: seconds used by
circuit of area nito(l),

For simplicity assume n = 4k

Spread array acros
square mesh of n :
each of area n°(1)
with near-neighbo

X—X—X

X
X

K —X—X—X— X —X—X—X—X—X
X—X—X—X—X—X—X—X—X—X

>
>
>
>
>
>
>
>
>
>

X—X—X—X—XK—X—X—X—X
X—X—X—X—X—X—X—X
K—X—X—X—X—X—X—X



Network on chip: the mesh Spread array across

How expensive is sorting? square mesh of n small cells

each of area n°(1),

ers.
Input: array of n numbers. with near-neighbor wiring:
; 2
Each number in {1,2,...,n°}, VARV VIV VIV
'_ represented in binary. VRIS SN
Output: array of n numbers, XXX X X XXX
In Increasing order, XXX X=X X X=X
represented In binary; X=X —X——X—X—X—X—X—
same multiset as input. XXX X=X XXX
| XX — X —X—X—X—X—X—
uits. Metric: seconds used by
circuit of area n .
XX — X —X—X—X—X—X—
es. For simplicity assume n = 4k NV R SR N R T




Network on chip: the mesh Spread array across

How expensive is sorting? square mesh of n small cells,

each of area n°1),
Input: array of n numbers. with near-neighbor wiring:

Each number iIn {1, 2. ..., nz},
represented in binary.

K—X—X—X—X—X

K—X—X—X—X

Output: array of n numbers,

In Increasing order,

represented In binary;

same multiset as input.

Metric: seconds used by

circuit of area nlto(l).

K —X—X—X—X—X—X—X—X—X
X—X—X—X—X—X—X—X—X—X
X—X—X—X—XK—X—X—X—X
X—X—X—X—X—X—X—X
K —X—X—X—X—X—X—X
K —X—X—X—X—X—X—X
X—X—X—X—X—X—X—X
K—X—X—X—X—X—X—X
X—X—X—X—X—X—X—X—X—X

For simplicity assume n = 4k

K —X— X —X— XK —X—X—X—X—X



~on chip: the mesh

ensive Is sorting?

rray of n numbers.
mber in {1,2,..., nz},
ted in binary.

array of n numbers,
sing order,

ted in binary;

iltiset as input.

seconds used by
f area nito(l)

licity assume n = 4.

Spread array across

square mesh of n small cells,

each of area no(l),

with near-neighbor wiring:

K —X—X—X—X—X—X—X

X

X

X

X

X

X

X—X—X—X—X—X—X—X—X
X—X—X—X—XK—X—X—X—X
X—X—X—X—X—X—X—X

HX—X—X—X—X—X—X—X

X—X—X—X—X—X—X—X

K—X—X—X—X—X—X—X

K —X—X—X—X—X—X—X

K —X—X—X—X—X—X—X

K —X—X—X—X—X—X—X—X—X

X —X—X—X—X—X—X—X—X—X

Sort row

N n0.5—|—<

e Sort e
314
131

e Sort a
131,
113

e Repea
equals



the mesh

sorting?
yumbers.
1,2,...,n°},
ary.

1 numbers,

Ary;
nput.

sed by
o(1)

me n = 4K

Spread array across

square mesh of n small cells,
each of area no(l),

with near-neighbor wiring:

K—X—X—X—X—X

K—X—X—X—X

K —X—X—X—X—X—X—X—X—X
X—X—X—X—X—X—X—X—X—X
X—X—X—X—XK—X—X—X—X
X—X—X—X—X—X—X—X

K —X—X—X—X—X—X—X
K—X—X—X—X—X—X—X
X—X—X—X—X—X—X—X
K—X—X—X—X—X—X—X

X —X—X—X—X—X—X—X—X—X

K —X— X —X—XK—X—X—X—X—X

0.5 ¢

Sort row of n ¢

in n0-5To(1) secon

e Sort each pair ir
31415926
13145926

e Sort alternate p:
13145926
113452906

e Repeat until nur
equals row lengt



Spread array across

square mesh of n small cells,
each of area no(l),

with near-neighbor wiring:

K —X—X—X—X—X

X—X—X—X—X

X —X—X—X—X—X—X—X—X—X
X —X—X—X—X—X—X—X—X—X
X—X—X—X—X—X—X—X—X
HX—X—X—X—X—X—X—X
X—X—X—X—X—X—X—X
X—X—X—X—X—X—X—X

K —X—X—X—X—X—X—X

K —X—X—X—X—X—X—X

K —X—X—X— X —X—X—X—X—X

K —X—X—X—X—X—X—X—X—X

Sort row of n®> cells

0.5+0(1)

N N seconds:

e Sort each pair in parallel.
31415926+
13145926

e Sort alternate pairs in par
13145926 +—

11345296

e Repeat until number of st
equals row length.



Spread array across

square mesh of n small cells,

each of area no(l),

with near-neighbor wiring:

K —X—X—X—X—X

X

X

X

X

X

X —X—X—X—X—X—X—X—X—X
HX—X—X—X—X—X—X—X—X—X
X—X—X—X—XK—X—X—X—X
X—X—X—X—X—X—X—X

K—X—X—X—X—X—X—X

X—X—XK—XK—XK—X—X—X

X—X—X—X—X—X—X—X

HX—X—X—X—X—X—X—X

X —X—X—X—X—X—X—X—X—X

K —X— X —X—X—X—X—X—X—X

Sort row of n> cells
in n0-5to(1) seconds:

e Sort each pair in parallel.
31415926+~
13145926

e Sort alternate pairs in parallel.
13145926 +—

11345296

e Repeat until number of steps
equals row length.



Spread array across

square mesh of n small cells,

each of area no(l),

with near-neighbor wiring:

K —X—X—X—X—X

X

X

X

X

X

X —X—X—X—X—X—X—X—X—X
HX—X—X—X—X—X—X—X—X—X
X—X—X—X—XK—X—X—X—X
X—X—X—X—X—X—X—X

K—X—X—X—X—X—X—X

X—X—XK—XK—XK—X—X—X

X—X—X—X—X—X—X—X

HX—X—X—X—X—X—X—X

X —X—X—X—X—X—X—X—X—X

K —X— X —X—X—X—X—X—X—X

Sort row of n> cells
in n0-5to(1) seconds:

e Sort each pair in parallel.
31415926+~
13145926

e Sort alternate pairs in parallel.
13145926 +—

11345296

e Repeat until number of steps
equals row length.

Sort each row, in parallel,

0.540(1)

In a total of n seconds.



Irray across

1esh of n small cells,

area no(l),

r-neighbor wiring:

K—X—X—X—X

X

X

X

X

X

HX—X—X—X—X—X—X—X

X—X—X—X—X—X—X—X

X—X—X—X—X—X—X—X

K —X—X—X—X—X—X—X

X—X—X—X—X—X—X—X

K —X—X—X—X—X—X—X—X—X

X —X—X—X—X—X—X—X—X—X

Sort row of n®> cells

0.5+0(1)

N N seconds:

e Sort each pair in parallel.
31415926+
13145926

e Sort alternate pairs in parallel.

13145926 +—
11345296

e Repeat until number of steps
equals row length.

Sort each row, in parallel,

0.54+0(

In a total of n 1) seconds.

Sort all

N n0.5—|—<

e Recur:

In par:
e Sort e
e Sort e
e Sort e
e Sort e

With pre
left-to-ri
for each
that this



S
small cells,

r Wiring:

(—X—X

X
X

K—X—X—X—X—X—X—X
X—X—X—X—X—X—X—X
HX—X—X—X—X—X—X—X—X—X

K —X— X —X—X—X—X—X—X—X

Sort row of n®> cells
in n0-5to(1) seconds:

e Sort each pair in parallel.
31415926+~
13145926

e Sort alternate pairs in parallel.

1314592606 +—
11345296

e Repeat until number of steps
equals row length.

Sort each row, in parallel,

0.540(1)

In a total of n seconds.

Sort all n cells

in n0-5to(1) secon

e Recursively sort

in parallel, if n>

e Sort eac
e Sort eac
e Sort eac
e Sort eac

n colum
N row In

n colum

N row In

With proper choic
left-to-right /right-
for each row, can

that this sorts whe



Sort row of n®> cells

0.540(1)

N N seconds:

e Sort each pair in parallel.
31415926+
13145926

e Sort alternate pairs in parallel.

13145926 +—
11345296

e Repeat until number of steps
equals row length.

Sort each row, in parallel,

0.54+0(

In a total of n 1) seconds.

Sort all n cells

0.5+0(1)

N N seconds:

e Recursively sort quadrants
in parallel, if n > 1.

e Sort each column in parall

e Sort each row in parallel.

e Sort each column in parall

e Sort each row in parallel.

With proper choice of
left-to-right /right-to-left
for each row, can prove
that this sorts whole array.



Sort row of n®> cells
in n0-5to(1) seconds:

e Sort each pair in parallel.
31415926+~
13145926

e Sort alternate pairs in parallel.

1314592606 +—
11345296

e Repeat until number of steps
equals row length.

Sort each row, in parallel,

0.540(1)

In a total of n seconds.

Sort all n cells
in n0-5to(1) seconds:

e Recursively sort quadrants

in parallel, if n > 1.

e Sort eac
e Sort eac
e Sort eac
e Sort eac

n column in parallel.
n row In parallel.

n column in parallel.

n row In parallel.

With proper choice of
left-to-right /right-to-left
for each row, can prove

that this sorts whole array.



of n%° cells
(1) seconds:

ach pair in parallel.
15926 +—
415926

lternate pairs in parallel.

415926 +—
415296

t until number of steps
row length.

h row, In parallel,

0.54+0(

[ of n 1) seconds.

Sort all n cells

N n

0.5+0(1)

seconds:

e Recursively sort quadrants

in parallel, if n > 1.

e Sort eac
e Sort eac
e Sort eac
e Sort eac

n column in parallel.

n row In parallel.

n column in parallel.

n row In parallel.

With proper choice of
left-to-right /right-to-left
for each row, can prove

that this sorts whole array.

For exar
this 8 X

(

~N O P O W N o1 W
~ B OO DD W W W =
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o||s
1s:

' parallel.
—

aIrs In parallel.

—

nber of steps
h.

parallel,
o(1) seconds.

Sort all n cells
in n0-5to(1) seconds:

e Recursively sort quadrants
in parallel, if n > 1.

e Sort each column in parallel.

e Sort each row in parallel.

e Sort each column in parallel.

e Sort each row in parallel.

With proper choice of
left-to-right /right-to-left
for each row, can prove
that this sorts whole array.

For example, assu
this 8 x 8 array Is

5

~N OO0 = O W N 61 W
~ =B O DD W W W =
© O ©O© OO o o O H
~ 1 W OO W H OO =
~ O O H N O O

0
i
2
7
1
0
2
5




Sort all n cells For example, assume that

in n9-52(1) seconds: this 8 x 8 array Is in cells:
e Recursively sort quadrants 31 415 9 26
in parallel, it n > 1. 5 35 8 0 7 O 3
e Sort each column in parallel. > 38 46 2 6 4
el e Sort each row in p.araIIeI. 1383027095
e Sort each column in parallel.
. 0 2 88 4197
e Sort each row in parallel.
1 6 9 3 9 9 37
eps With pr.oper c-hoice of 5 1058920 0
left-to-right /right-to-left
¢ 7 4 9 4 4 5 9 2
or each row, can prove

that this sorts whole array.




Sort all n cells For example, assume that

in n9-5t0(1) seconds: this 8 x 8 array Is in cells:
e Recursively sort quadrants 31 415 9 2 6
in parallel, if n > 1. 5 35 8 0 7 0 3
e Sort each column in parallel. > 38 46 2 6 4
| llel.
e Sort each row in p.ara e 3138139270 5
e Sort each column in parallel.
. 0 2 88 4197
e Sort each row in parallel.
1 6 9 3 9 9 37
With prf)per c.hoice of 5 1058920 9
left-to-right /right-to-left
7 4 9 4 45 9 2
for each row, can prove

that this sorts whole array.




n cells

(1) seconds:

sively sort quadrants
allel, if n > 1.

dC
dC
dC
dC

n row In parallel.

n row In parallel.

bper choice of
ght /right-to-left
row, can prove

, sorts whole array.

For example, assume that
this 8 x 8 array Is in cells:

n column in parallel.

n column in parallel.

31 415 9 26
5 353 9 7 9 3
2 3 3 46 2 6 4
33 8 3 2 7 95
0 2 8 3 4 1 9 7
1 6 9 3 9 9 3 7
51 05 8 2009
(4 9 4 4 5 9 2

Recursiv
top —,

N DY |

) SN | TN

(

O ~N A RO W W =
O O Hh R OO A W =




1s:

quadrants
> 1.

n in parallel.

 parallel.

n in parallel.

 parallel.

e of
to-left
prove

le array.

For example, assume that
this 8 x 8 array Is in cells:

31 415 9 26
b 353 9 7 9 3
2 3 3 4606 2 6 4
33 8 3 2 7 95
0 2 8 3 41 9 7
1 6 9 3 9 9 37
5 1 05 8 2009
74 9 4 45 9 2

Recursively sort gt
top —, bottom <+

11 2 3[2 2
3 3 3 3|4 5
3 4 4 5|6 6
58 8 8|9 0
1 10 0|2 2
4 4 3 2|5 4
76 5 5|9 8
0 90 8 8|9 ¢
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Recursively sort quadrants,

top —, bottom <+

1 1 2 312 2 2 3

33 3 3|45 56

34 4 5]6 6 7 7

b 83 3|9 9 9 9
1 1002 2 10
4 4 3 2|5 4 4 3
/(6 5 5|9 8 7 7
9 9 3 3/9 9 99

For example, assume that

this 8 x 8 array Is in cells:

31415 9 26
b 353 9 7 9 3

2 3 3 4606 2 6 4

33383 27 95

0 2 8 38 4 1 9 7

1 6 9 3 9 9 37
5 1 05 8 2009

(4 9 4 4 5 9 2
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For some reason we all (especially
me) had a mental block about
optimization, namely that we
always regarded it as a behind-
the-scenes activity, to be done
In the machine language, which
the programmer isn't supposed
to know. This veil was first
lifted from my eyes ... when |
ran across a remark by Hoare
[42] that, ideally, a language
should be designed so that an
optimizing compiler can describe
Iits optimizations in the source
language. Of course! . ..

The time is clearly ripe

for program-manipulation
systems ... The programmer
using such a system will write
his beautifully-structured, but
possibly inefficient, program P;
then he will interactively specify
transformations that make it
efficient. Such a system will be
much more powerful and reliable
than a completely automatic
one. ... As | say, this idea
certainly isn't my own, it Is so
exciting | hope that everyone soon
becomes aware of its possibilities.



