The death of optimizing compilers

Daniel J. Bernstein
University of lllinois at Chicago &
Technische Universiteit Eindhoven

Programmers waste enormous
amounts of time thinking about,
or worrying about, the speed

of noncritical parts of their
programs, and these attempts at
efficiency actually have a strong
negative impact when debugging
and maintenance are considered.
We should forget about small
efficiencies, say about 97% of
the time; premature optimization
Is the root of all evil.

(Donald E. Knuth,

“Structured programming
with go to statements”, 1974)

th of optimizing compilers

. Bernstein
ty of lllinois at Chicago &
he Universiteit Eindhoven

Programmers waste enormous
amounts of time thinking about,
or worrying about, the speed

of noncritical parts of their
programs, and these attempts at
efficiency actually have a strong
negative impact when debugging
and maintenance are considered.
We should forget about small
efficiencies, say about 97% of
the time; premature optimization
Is the root of all evil.

(Donald E. Knuth,

“Structured programming
with go to statements”, 1974)

The ove

Once up
CPUs w
Software
Software
hand-tul

mizing compilers

l
is at Chicago &
siteit Eindhoven

Programmers waste enormous
amounts of time thinking about,
or worrying about, the speed

of noncritical parts of their
programs, and these attempts at
efficiency actually have a strong
negative impact when debugging
and maintenance are considered.
We should forget about small
efficiencies, say about 97% of
the time; premature optimization
Is the root of all evil.

(Donald E. Knuth,

“Structured programming
with go to statements”, 1974)

The oversimplified

Once upon a time
CPUs were painfu
Software speed m:
Software was care
hand-tuned in ma

npilers

g0 &
hoven

Programmers waste enormous
amounts of time thinking about,
or worrying about, the speed

of noncritical parts of their
programs, and these attempts at
efficiency actually have a strong
negative impact when debugging
and maintenance are considered.
We should forget about small
efficiencies, say about 97% of
the time; premature optimization
Is the root of all evil.

(Donald E. Knuth,

“Structured programming
with go to statements”, 1974)

The oversimplified story

Once upon a time:

CPUs were painfully slow.
Software speed mattered.
Software was carefully
hand-tuned in machine lang

Programmers waste enormous
amounts of time thinking about,
or worrying about, the speed

of noncritical parts of their
programs, and these attempts at
efficiency actually have a strong
negative impact when debugging
and maintenance are considered.
We should forget about small
efficiencies, say about 97% of
the time; premature optimization
Is the root of all evil.

(Donald E. Knuth,

“Structured programming
with go to statements”, 1974)

The oversimplified story

Once upon a time:

CPUs were painfully slow.
Software speed mattered.
Software was carefully
hand-tuned in machine language.

Programmers waste enormous
amounts of time thinking about,
or worrying about, the speed

of noncritical parts of their
programs, and these attempts at
efficiency actually have a strong
negative impact when debugging
and maintenance are considered.
We should forget about small
efficiencies, say about 97% of
the time; premature optimization
Is the root of all evil.

(Donald E. Knuth,

“Structured programming
with go to statements”, 1974)

The oversimplified story

Once upon a time:

CPUs were painfully slow.
Software speed mattered.
Software was carefully
hand-tuned in machine language.

Today:

CPUs are so fast that
software speed is irrelevant.
“Unoptimized” is fast enough.
Programmers have stopped
thinking about performance.
Compilers will do the same:
easier to write, test, verify.

)mers waste enormous

s of time thinking about,
ing about, the speed
itical parts of their

s, and these attempts at
v actually have a strong
Impact when debugging
ntenance are considered.
Ild forget about small
jes, say about 97% of

- premature optimization
ot of all evil.

E. Knuth,

ired programming
to statements”, 1974)

The oversimplified story

Once upon a time:

CPUs were painfully slow.
Software speed mattered.
Software was carefully

hand-tuned in machine language.

Today:

CPUs are so fast that
software speed is irrelevant.
“Unoptimized” is fast enough.
Programmers have stopped
thinking about performance.
Compilers will do the same:
easier to write, test, verify.

The acti

Wait! It
Software

Users ar
for their

fe enormous
hinking about,
- the speed

s of their

se attempts at
have a strong
hen debugging
are considered.
about small
out 97% of

re optimization

vil.

amming
ents”, 1974)

The oversimplified story

Once upon a time:

CPUs were painfully slow.
Software speed mattered.
Software was carefully

hand-tuned in machine language.

Today:

CPUs are so fast that
software speed is irrelevant.
“Unoptimized” is fast enough.
Programmers have stopped
thinking about performance.
Compilers will do the same:
easier to write, test, verify.

The actual story

Wait! It's not tha
Software speed sti

Users are often ws
for their computer

US

)out,

ts at
ong
ging
ered.
/1

of

ation

The oversimplified story

Once upon a time:

CPUs were painfully slow.
Software speed mattered.
Software was carefully

hand-tuned in machine language.

Today:

CPUs are so fast that
software speed is irrelevant.
“Unoptimized” is fast enough.
Programmers have stopped
thinking about performance.
Compilers will do the same:
easier to write, test, verify.

The actual story

Wait! It's not that simple.
Software speed still matters.

Users are often waiting
for their computers.

The oversimplified story

Once upon a time:

CPUs were painfully slow.
Software speed mattered.
Software was carefully

hand-tuned in machine language.

Today:

CPUs are so fast that
software speed is irrelevant.
“Unoptimized” is fast enough.
Programmers have stopped
thinking about performance.
Compilers will do the same:
easier to write, test, verify.

The actual story

Wait! It's not that simple.
Software speed still matters.

Users are often waiting
for their computers.

The oversimplified story

Once upon a time:

CPUs were painfully slow.
Software speed mattered.
Software was carefully

hand-tuned in machine language.

Today:

CPUs are so fast that
software speed is irrelevant.
“Unoptimized” is fast enough.
Programmers have stopped
thinking about performance.
Compilers will do the same:
easier to write, test, verify.

The actual story

Wait! It's not that simple.
Software speed still matters.

Users are often waiting
for their computers.

To avoid unacceptably slow
computations, users are often
limiting what they compute.

The oversimplified story

Once upon a time:

CPUs were painfully slow.
Software speed mattered.
Software was carefully

hand-tuned in machine language.

Today:

CPUs are so fast that
software speed is irrelevant.
“Unoptimized” is fast enough.
Programmers have stopped
thinking about performance.
Compilers will do the same:
easier to write, test, verify.

The actual story

Wait! It's not that simple.

Software speed still matters.

Users are often waiting

for their computers.

To avoid unacceptably slow

computations, users are often

limiting what they compute.

Example: In your favorite

sword-fighting video game,

are light ref
realistically

ections affected

oy sword vibration?

rsimplified story

on a time:

ere painfully slow.
» speed mattered.
» was carefully

1ed in machine language.

e so fast that

speed is irrelevant.
mized” is fast enough.
)mers have stopped
about performance.
rs will do the same:
 write, test, verify.

The actual story

Wait! It's not that simple.
Software speed still matters.

Users are often waiting
for their computers.

To avoid unacceptably slow
computations, users are often
limiting what they compute.

Example: In your favorite
sword-fighting video game,

are light reflections affected
realistically by sword vibration?

_story

ly slow.
ttered.
fully

“hine language.

hat
rrelevant.
fast enough.
> stopped
formance.

the same:
t, verity.

The actual story

Wait! It's not that simple.
Software speed still matters.

Users are often waiting
for their computers.

To avoid unacceptably slow
computations, users are often
limiting what they compute.

Example: In your favorite
sword-fighting video game,
are light reflections affected

realistically by sword vibration?

uage.

The actual story

Wait! It's not that simple.
Software speed still matters.

Users are often waiting
for their computers.

To avoid unacceptably slow
computations, users are often
limiting what they compute.

Example: In your favorite
sword-fighting video game,

are light reflections affected
realistically by sword vibration?

| W EEEN TN

L& N . j ":;9 TR bl

)

...

The actual story

Wait! It's not that simple.

Software speed still matters.

Users are often waiting
for their computers.

To avoid unacceptably slow
computations, users are often
limiting what they compute.

Example: In your favorite
sword-fighting video game,
are light reflections affected

realistically by sword vibration?

The actual story

Wait! It's not that simple.

Software speed still matters.

Users are often waiting

for their computers.

To avoid unacceptably slow

computations, users are often

limiting what they compute.

Example: In your favorite

sword-fighting video game,

are light ref
realistically

ections affected

oy sword vibration?

) | | | M| [D

L. ..

1al story e B T T

's not that simple.

L] .

3 Speed st ” matters. - a5, T A i rluuu-:lr‘”ﬁi‘ﬂ _'73‘-"'

e often waiting
computers.

| unacceptably slow
'tions, users are often
what they compute.

. In your favorite

rhting video game,
reflections affected

lly by sword vibration?

t simple.

Il matters.
1ting

S.

ably slow

rs are often
~compute.

favorite

20 game,

s affected

rd vibration?

-fl~

n’?

A

k| --- g | ||

m m A_

lﬂh P JE'I- .!i

sty || M| |
LTI - D O

Old CPL

Oms: St

400ms:

1200ms:

1600ms:

| —

Old CPU displayir

Oms: Start openin

400ms: Start disp

1200ms: Start cle

1600ms: Finish.

Old CPU displaying a file:

Oms: Start opening file.

400ms: Start displaying con

1200ms: Start cleaning up.

1600ms: Finish.

Old CPU displaying a file:

Oms: Start opening file.

400ms: Start displaying contents.

1200ms: Start cleaning up.

1600ms: Finish.

CPUs become faster:

Oms: Start opening file.

350ms: Start displaying contents.

1050ms: Start cleaning up.

1400ms: Finish.

CPUs become faster:

Oms: Start opening file.

300ms: Start displaying contents.

900ms: Start cleaning up.

1200ms: Finish.

CPUs become faster:

Oms: Start opening file.

250ms: Start displaying contents.

800ms: Start cleaning up.

1000ms: Finish.

CPUs become faster:

Oms: Start opening file.

200ms: Start displaying contents.

600ms: Start cleaning up.

800ms: Finish.

User displays bigger file:

Oms: Start opening file.

200ms: Start displaying contents.

1000ms: Start cleaning up.

1200ms: Finish.

CPUs become faster:

Oms: Start opening file.

175ms: Start displaying contents.

875ms: Start cleaning up.

1050ms: Finish.

CPUs become faster:

Oms: Start opening file.

150ms: Start displaying contents.

750ms: Start cleaning up.

900ms: Finish.

CPUs become faster:

Oms: Start opening file.

125ms: Start displaying contents.

625ms: Start cleaning up.

750ms: Finish.

CPUs become faster:

Oms: Start opening file.

100ms: Start displaying contents.

500ms: Start cleaning up.

600ms: Finish.

User displays bigger file:

Oms: Start opening file.

100ms: Start displaying contents.

900ms: Start cleaning up.

1000ms: Finish.

User displays bigger file:

100ms: Start displaying contents.

1000ms: Finish.

CPUs become faster:

87.5ms: Start displaying contents.

875ms: Finish.

CPUs become faster:

75.0ms: Start displaying contents.

750ms: Finish.

CPUs become faster:

62.5ms: Start displaying contents.

625ms: Finish.

CPUs become faster:

50ms: Start displaying contents.

500ms: Finish.

ser displays bigger file:

50ms: Start displaying contents.

ms: Finish.

User displays bigger file: Cheaper

users pre

50ms: Start displaying contents.

900ms: Finish.

User displays bigger file: Cheaper computat

USErS process maore

50ms: Start displaying contents.

900ms: Finish.

User displays bigger file: Cheaper computation =

users process more data.

50ms: Start displaying contents.

900ms: Finish.

User displays bigger file: Cheaper computation =

users process more data.

50ms: Start displaying contents.

900ms: Finish.

User displays bigger file:

50ms: Start displaying contents.

900ms: Finish.

Cheaper computation =
users process more data.

Performance issues disappear
for most operations.
e.g. open file, clean up.

User displays bigger file:

50ms: Start displaying contents.

900ms: Finish.

Cheaper computation =
users process more data.

Performance issues disappear
for most operations.

e.g. open file, clean up.

Inside the top operations:
Performance issues disappear
for most subroutines.

User displays bigger file: Cheaper computation =

users process more data.

50ms: Start displaying contents. | |
Performance issues disappear

for most operations.
e.g. open file, clean up.

Inside the top operations:
Performance issues disappear

900ms: Finish. for most subroutines.

Performance remains important
for occasional hot spots:

small segments of code

applied to tons of data.

splays bigger file:

tart displaying contents.

Finish.

Cheaper computation =
users process more data.

Performance issues disappear
for most operations.

e.g. open file, clean up.

Inside the top operations:
Performance issues disappear
for most subroutines.

Performance remains important
for occasional hot spots:

small segments of code

applied to tons of data.

“"Except
applicati
mostly f
a lot of

ger file:

ying contents.

Cheaper computation =
users process more data.

Performance issues disappear
for most operations.
e.g. open file, clean up.

Inside the top operations:
Performance issues disappear
for most subroutines.

Performance remains important
for occasional hot spots:

small segments of code

applied to tons of data.

“Except, uh, a lot
applications whose
mostly flat, becau:
a lot of time optir

oNnts.

Cheaper computation =
users process more data.

Performance issues disappear
for most operations.

e.g. open file, clean up.

Inside the top operations:
Performance issues disappear
for most subroutines.

Performance remains important
for occasional hot spots:

small segments of code

applied to tons of data.

“Except, uh, a lot of people
applications whose profiles 2
mostly flat, because they've
a lot of time optimizing thel

Cheaper computation =
users process more data.

Performance issues disappear
for most operations.
e.g. open file, clean up.

Inside the top operations:
Performance issues disappear
for most subroutines.

Performance remains important
for occasional hot spots:

small segments of code

applied to tons of data.

“Except, uh, a lot of people have
applications whose profiles are
mostly flat, because they've spent
a lot of time optimizing them.”

Cheaper computation =
users process more data.

Performance issues disappear
for most operations.
e.g. open file, clean up.

Inside the top operations:
Performance issues disappear
for most subroutines.

Performance remains important
for occasional hot spots:

small segments of code

applied to tons of data.

“Except, uh, a lot of people have
applications whose profiles are
mostly flat, because they've spent
a lot of time optimizing them.”

— T his view Is obsolete.

Flat profiles are dying.

Already dead for most programs.
Larger and larger fraction

of code runs freezingly cold,

while hot spots run hotter.

Underlying phenomena:
Optimization tends to converge.
Data volume tends to diverge.

computation =
ycess more data.

ance Issues disappear
~operations.
n file, clean up.

e top operations:
ance Issues disappear
subroutines.

ance remains important
sional hot spots:
ocments of code

o tons of data.

"Except, uh, a lot of people have
applications whose profiles are
mostly flat, because they've spent
a lot of time optimizing them.”

— T his view Is obsolete.

Flat profiles are dying.

Already dead for most programs.
Larger and larger fraction

of code runs freezingly cold,

while hot spots run hotter.

Underlying phenomena:
Optimization tends to converge.
Data volume tends to diverge.

Speed nr

2015.02
"Do the
perform:

(boldfac
Google s

major sI
supporte
Now all
support
Poly130!
than AE

devices.

decrypti
renderin

on =
> data.

s disappear
S.

n up.

rations:
s disappear
es.

Ins Important
Spots:

code

data.

“Except, uh, a lot of people have
applications whose profiles are
mostly flat, because they've spent
a lot of time optimizing them.”

— T his view Is obsolete.

Flat profiles are dying.

Already dead for most programs.
Larger and larger fraction

of code runs freezingly cold,

while hot spots run hotter.

Underlying phenomena:
Optimization tends to converge.
Data volume tends to diverge.

Speed matters: ar

2015.02.23 Cloudl
"Do the ChaCha:
performance with
(boldface added):
Google services we
major sites on the
supported this nev
Now all sites on C

support It, too. ..
Poly1305 is three
than AES-128-GC

devices. Spending

decryption means
rendering and bett

r

r

ant

"Except, uh, a lot of people have

applications whose profiles are

mostly flat, because they've spent

a lot of time optimizing them.”

— Th

IS view IS obsolete.

Flat profiles are dying.

Already dead for most programs.

Larger and larger fraction

of coc
while

e runs freezingly cold,

not spots run hotter.

Underlying phenomena:

Optimization tends to converge.

Data volume tends to diverge.

Speed matters: an example

2015.02.23 CloudFlare blog
"Do the ChaCha: better mc
performance with cryptograj

(boldface added): “Until to
Google services were the onl

major sites on the Internet t
supported this new algorithr
Now all sites on CloudFlare
support it, too. ... ChaCha
Poly1305 is three times fas
than AES-128-GCM on mok

devices. Spending less time

decryption means faster pag
rendering and better battery

“Except, uh, a lot of people have Speed matters: an example

applications whose profiles are 2015.02.23 CloudFlare blog post

"Do the ChaCha: better mobile
performance with cryptography”
— This view is obsolete. (boldface added): “Until today,
Google services were the only

mostly flat, because they've spent
a lot of time optimizing them.”

Flat profiles are dying.

major sites on the Internet that
Already dead for most programs.)

| hi lgorithm.
Larger and larger fraction supported this new algorithm

Now all sites on CloudFlare
support it, too. ... ChaCha20-

Poly1305 is three times faster

of code runs freezingly cold,

while hot spots run hotter.

Underlying phenomena: than AES-128-GCM on mobile
Optimization tends to converge. devices. Spending less time on
Data volume tends to diverge. decryption means faster page

rendering and better battery life.”

- uh, a lot of people have
ons whose profiles are
lat, because they ve spent
time optimizing them."

view IS obsolete.

files are dying.

dead for most programs.
nd larger fraction

runs freezingly cold,

t spots run hotter.

ng phenomena:
ation tends to converge.
lume tends to diverge.

Speed matters: an example

2015.02.23 CloudFlare blog post
"Do the ChaCha: better mobile
performance with cryptography”
(boldface added): “Until today,
Google services were the only
major sites on the Internet that
supported this new algorithm.
Now all sites on CloudFlare
support it, too. ... ChaCha20-
Poly1305 is three times faster
than AES-128-GCM on mobile

devices. Spending less time on

decryption means faster page

rendering and better battery life.”

What akt

CloudFl:
“In orde
HTTPS
we have
usage IS
perform:
source a
of ChaC
engineer
that has
servers’
the cost

this new

of people have
> profiles are
se they 've spent
nizing them.”

solete.

/INg.

NOoSt programs.
fraction

ngly cold,

n hotter.

nena:
S tO converge.
s to diverge.

Speed matters: an example

2015.02.23 CloudFlare blog post
“Do the ChaCha: better mobile
performance with cryptography”
(boldface added): “Until today,
Google services were the only
major sites on the Internet that
supported this new algorithm.
Now all sites on CloudFlare
support it, too. ... ChaCha20-
Poly1305 is three times faster
than AES-128-GCM on mobile

devices. Spending less time on

decryption means faster page

rendering and better battery life.”

What about the s

CloudFlare blog p«
“In order to suppc
HTTPS sites on o
we have to make ¢
usage Is low. To I
performance we at
source assembly ¢
of ChaCha/Poly b
engineer Vlad Kra
that has been opt
servers’ Intel CP
the cost of encryp

this new cipher to

have
re
spent

ams.

rge.

Speed matters: an example

2015.02.23 CloudFlare blog post
"Do the ChaCha: better mobile
performance with cryptography”
(boldface added): “Until today,
Google services were the only

major sites on the Internet that
supported this new algorithm.

Now all sites on CloudFlare

support it, too. ... ChaCha20-

Poly1305 is three times faster
than AES-128-GCM on mobile
devices. Spending less time on

rendering and better battery life.”

decryption means faster page

What about the servers?

CloudFlare blog post, contir
“In order to support over a
HTTPS sites on our servers,
we have to make sure CPU

usage Is low. To help impro
performance we are using ar
source assembly code vers
of ChaCha/Poly by CloudFI:
engineer Vlad Krasnov and ¢
that has been optimized fo
servers’ Intel CPUs. This

the cost of encrypting data

this new cipher to a minimu

Speed matters: an example

2015.02.23 CloudFlare blog post
"Do the ChaCha: better mobile
performance with cryptography”
(boldface added): “Until today,
Google services were the only
major sites on the Internet that
supported this new algorithm.
Now all sites on CloudFlare
support it, too. ... ChaCha20-
Poly1305 is three times faster
than AES-128-GCM on mobile
devices. Spending less time on

decryption means faster page

rendering and better battery life.”

What about the servers?

CloudFlare blog post, continued:
“In order to support over a million
HTTPS sites on our servers,

we have to make sure CPU

usage Is low. To help improve
performance we are using an open
source assembly code version

of ChaCha/Poly by CloudFlare
engineer Vlad Krasnov and others
that has been optimized for our
servers’ Intel CPUs. This keeps
the cost of encrypting data with

this new cipher to a minimum.”

atters: an example

23 CloudFlare blog post

ChaCha: better mobile

ance with cryptography”

e added): “Until today,
ervices were the only
tes on the Internet that
d this new algorithm.
sites on CloudFlare

it, too. ... ChaCha20-
5 Is three times faster
S5-128-GCM on mobile
Spending less time on
on means faster page

o and better battery life.”

What about the servers?

CloudFlare blog post, continued:
“In order to support over a million
HTTPS sites on our servers,

we have to make sure CPU

usage Is low. To help improve
performance we are using an open
source assembly code version

of ChaCha/Poly by CloudFlare
engineer Vlad Krasnov and others
that has been optimized for our
servers’ Intel CPUs. This keeps
the cost of encrypting data with

this new cipher to a minimum.”

Typical
Inner loc

vpaddd -
vpxor $:
vpshutfb
vpaddd
vpxor 3
vpslld |
vpsrld

vpxor $

Mobile ¢
heavy ve

1 example

-lare blog post
better mobile
cryptography”
“Until today,
re the only
Internet that
v algorithm.
loudFlare
. ChaCha20-
times faster
M on mobile
less time on
faster page

er battery life.”

What about the servers?

CloudFlare blog post, continued:
“In order to support over a million
HTTPS sites on our servers,

we have to make sure CPU

usage Is low. To help improve
performance we are using an open
source assembly code version

of ChaCha/Poly by CloudFlare
engineer Vlad Krasnov and others
that has been optimized for our
servers’ Intel CPUs. This keeps
the cost of encrypting data with

this new cipher to a minimum.”

Typical excerpt frc
inner loop of serve

vpaddd $b, $a, $
vpxor $a, $d, $d
vpshufb .rol16(Y%
vpaddd $d, $c, $
vpxor $c, $b, $b
vpslld \$12, $b,
vpsrld \$20, $b,
vpxor $tmp, $b,

Mobile code simil:
heavy vectorizatio

post
bile

ohy
day,

hat

20-
ter
ile
on

ife.”

What about the servers?

CloudFlare blog post, continued:
“In order to support over a million
HTTPS sites on our servers,

we have to make sure CPU

usage Is low. To help improve
performance we are using an open
source assembly code version

of ChaCha/Poly by CloudFlare
engineer Vlad Krasnov and others
that has been optimized for our
servers’ Intel CPUs. This keeps
the cost of encrypting data with

this new cipher to a minimum.”

Typical excerpt from
inner loop of server code:

vpaddd $b, $a, $a

vpxor $a, $d, $d

vpshufb .roll16()rip), $d,
vpaddd $d, $c, $c

vpxor $c, $b, $b

vpslld \$12, $b, $tmp
vpsrld \$20, $b, $b
vpxor $tmp, $b, $b

Mobile code similarly has
heavy vectorization + asm.

What about the servers?

CloudFlare blog post, continued:
“In order to support over a million
HTTPS sites on our servers,

we have to make sure CPU

usage Is low. To help improve
performance we are using an open
source assembly code version

of ChaCha/Poly by CloudFlare
engineer Vlad Krasnov and others
that has been optimized for our
servers’ Intel CPUs. This keeps
the cost of encrypting data with

this new cipher to a minimum.”

Typical excerpt from
inner loop of server code:

vpaddd $b, $a, $a

vpxor $a, $d, $d

vpshufb .roll16(%rip), $d, $d
vpaddd $d, $c, $c

vpxor $c, $b, $b

vpslld \$12, $b, $tmp

vpsrld \$20, $b, $b

vpxor $tmp, $b, $b

Mobile code similarly has
heavy vectorization + asm.

yout the servers?

re blog post, continued:

r to support over a million
sites on our servers,

to make sure CPU

low. To help improve
INCe we are using an open
ssembly code version
ha/Poly by CloudFlare
‘Vlad Krasnov and others
been optimized for our
Intel CPUs. This keeps
of encrypting data with

cipher to a minimum.”

Typical excerpt from
inner loop of server code:

vpaddd $b, $a, $a

vpxor $a, $d, $d

vpshufb .rol16(%rip), $d, $d
vpaddd $d, $c, $c

vpxor $c, $b, $b

vpslld \$12, $b, $tmp

vpsrld \$20, $b, $b

vpxor $tmp, $b, $b

Mobile code similarly has
heavy vectorization + asm.

Hand-tu

Wikiped
even pel
optimizi
perform:

arvers”?

ost, continued:
rt over a million
ur servers,

sure CPU

elp Improve

€ using an open
~ode version

y CloudFlare
snov and others
imized for our
Us. This keeps
ting data with

a minimum.’

Typical excerpt from
inner loop of server code:

vpaddd $b, $a, $a

vpxor $a, $d, $d

vpshufb .roll16(%rip), $d, $d
vpaddd $d, $c, $c

vpxor $c, $b, $b

vpslld \$12, $b, $tmp

vpsrld \$20, $b, $b

vpxor $tmp, $b, $b

Mobile code similarly has
heavy vectorization + asm.

Hand-tuned? In 2

Wikipedia: "By tf
even performance
optimizing compile
performance of hu

ued:
million

Ve

1 open
jon
re
thers
r our
keeps
with

m.

Typical excerpt from
inner loop of server code:

vpaddd $b, $a, $a

vpxor $a, $d, $d

vpshufb .rol16(%rip), $d, $d
vpaddd $d, $c, $c

vpxor $c, $b, $b

vpslld \$12, $b, $tmp

vpsrld \$20, $b, $b

vpxor $tmp, $b, $b

Mobile code similarly has
heavy vectorization + asm.

Hand-tuned? In 20157 Seri

Wikipedia: "By the late 19C€
even performance sensitive ¢
optimizing compilers exceed

performance of human expe

Typical excerpt from
inner loop of server code:

vpaddd $b, $a, $a

vpxor $a, $d, $d

vpshufb .rol16(%rip), $d, $d
vpaddd $d, $c, $c

vpxor $c, $b, $b

vpslld \$12, $b, $tmp

vpsrld \$20, $b, $b

vpxor $tmp, $b, $b

Mobile code similarly has
heavy vectorization + asm.

Hand-tuned? In 20157 Seriously?

Wikipedia: "By the late 1990s for
even performance sensitive code,
optimizing compilers exceeded the
performance of human experts.”

Typical excerpt from
inner loop of server code:

vpaddd $b, $a, $a

vpxor $a, $d, $d

vpshufb .rol16(%rip), $d, $d
vpaddd $d, $c, $c

vpxor $c, $b, $b

vpslld \$12, $b, $tmp

vpsrld \$20, $b, $b

vpxor $tmp, $b, $b

Mobile code similarly has
heavy vectorization + asm.

Hand-tuned? In 20157 Seriously?

Wikipedia: "By the late 1990s for
even performance sensitive code,
optimizing compilers exceeded the
performance of human experts.”

— [citation needed]

Typical excerpt from
inner loop of server code:

vpaddd $b, $a, $a

vpxor $a, $d, $d

vpshufb .rol16(%rip), $d, $d
vpaddd $d, $c, $c

vpxor $c, $b, $b

vpslld \$12, $b, $tmp

vpsrld \$20, $b, $b

vpxor $tmp, $b, $b

Mobile code similarly has
heavy vectorization + asm.

Hand-tuned? In 20157 Seriously?

Wikipedia: "By the late 1990s for
even performance sensitive code,
optimizing compilers exceeded the
performance of human experts.”

— T he experts disagree,
and hold the speed records.

Typical excerpt from
inner loop of server code:

vpaddd $b, $a, $a

vpxor $a, $d, $d

vpshufb .rol16(%rip), $d, $d
vpaddd $d, $c, $c

vpxor $c, $b, $b

vpslld \$12, $b, $tmp

vpsrld \$20, $b, $b

vpxor $tmp, $b, $b

Mobile code similarly has
heavy vectorization + asm.

Hand-tuned? In 20157 Seriously?

Wikipedia: "By the late 1990s for
even performance sensitive code,
optimizing compilers exceeded the
performance of human experts.”

— T he experts disagree,
and hold the speed records.

Mike Pall, LuaJIT author, 2011:
“If you write an interpreter loop
In assembler, you can do much
better ... There's just no way
you can reasonably expect even
the most advanced C compilers to

do this on your behalf.”

excerpt from
p of server code:

Pb, $a, 3Pa

2, $d, $d
.rol16(%rip), $d, $d

pd, $c, $c¢

c, $b, $b

\$12, $b, $tmp

\$20, $b, $b

tmp, $b, $b

ode similarly has

ctorization 4+ asm.

Hand-tuned? In 20157 Seriously?

Wikipedia: "By the late 1990s for
even performance sensitive code,
optimizing compilers exceeded the
performance of human experts.”

— T he experts disagree,
and hold the speed records.

Mike Pall, LuaJIT author, 2011:
“If you write an interpreter loop
in assembler, you can do much
better ... There's just no way
you can reasonably expect even
the most advanced C compilers to

do this on your behalf.”

— "We
on most
can't do
NP com
of heuris
get little
where tt

wrong a

)M

r code:

rip), $d, $d

$tmp

$b

irly has
n -+ asm.

Hand-tuned? In 20157 Seriously?

Wikipedia: "By the late 1990s for
even performance sensitive code,
optimizing compilers exceeded the
performance of human experts.”

— T he experts disagree,
and hold the speed records.

Mike Pall, LuaJIT author, 2011:
“If you write an interpreter loop
iIn assembler, you can do much
better ... There's just no way
you can reasonably expect even
the most advanced C compilers to

do this on your behalf.”

— "We come so ¢
on most architectl
can't do much mc
NP complete algo
of heuristics. We
get little niggles h
where the heuristi

wrong answers."

Hand-tuned? In 20157 Seriously?

Wikipedia: "By the late 1990s for
even performance sensitive code,
optimizing compilers exceeded the
performance of human experts.”

— T he experts disagree,
and hold the speed records.

Mike Pall, LuaJIT author, 2011:
“If you write an interpreter loop
in assembler, you can do much
better ... There's just no way
you can reasonably expect even
the most advanced C compilers to

do this on your behalf.”

— “We come so close to of
on most architectures that v
can't do much more withou
NP complete algorithms inst
of heuristics. We can only t
get little niggles here and th
where the heuristics get slig

wrong answers."

Hand-tuned? In 20157 Seriously?

Wikipedia: "By the late 1990s for
even performance sensitive code,
optimizing compilers exceeded the
performance of human experts.”

— T he experts disagree,
and hold the speed records.

Mike Pall, LuaJIT author, 2011:
“If you write an interpreter loop
iIn assembler, you can do much
better ... There's just no way
you can reasonably expect even
the most advanced C compilers to

do this on your behalf.”

— “We come so close to optimal
on most architectures that we
can’'t do much more without using
NP complete algorithms instead
of heuristics. We can only try to
get little niggles here and there
where the heuristics get slightly
wrong answers."

Hand-tuned? In 20157 Seriously?

Wikipedia: "By the late 1990s for
even performance sensitive code,
optimizing compilers exceeded the
performance of human experts.”

— T he experts disagree,
and hold the speed records.

Mike Pall, LuaJIT author, 2011:
“If you write an interpreter loop
iIn assembler, you can do much
better ... There's just no way
you can reasonably expect even
the most advanced C compilers to

do this on your behalf.”

— “We come so close to optimal
on most architectures that we
can’'t do much more without using
NP complete algorithms instead
of heuristics. We can only try to
get little niggles here and there
where the heuristics get slightly

wrong answers."

— “Which compiler is this which

can, for instance, take Netlib
LAPACK and run serial Linpack
as fast as OpenBLAS on recent
x86-647 (Other common hotspots
are available.) Enquiring HPC
minds want to know.”

ned? In 20157 Seriously?

a: “By th

e late 1990s for

formance sensitive code,

ng compilers exceeded the

ance of human experts.”

experts disagree,

| the speed records.

I, LuadlT

author, 2011:

vrite an interpreter loop

bler, you can do much

. There's

just no way

reasonably expect even

t advanceqg

C compilers to

on your be

nalf.”

— “We come so close to optimal
on most architectures that we
can’'t do much more without using
NP complete algorithms instead
of heuristics. We can only try to
get little niggles here and there
where the heuristics get slightly

wrong answers."

— “Which compiler is this which

can, for instance, take Netlib
LAPACK and run serial Linpack
as fast as OpenBLAS on recent
x86-647 (Other common hotspots
are available.) Enquiring HPC
minds want to know.”

The algc

Context:
that we’

CS 101

0157 Seriously?

e late 1990s for
sensitive code,
rs exceeded the
man experts.”

agree,
1 records.

author, 2011:
terpreter loop
can do much
just no way
y exXpect even

1 C compilers to
half.”

— “We come so close to optimal
on most architectures that we
can't do much more without using
NP complete algorithms instead
of heuristics. We can only try to
get little niggles here and there
where the heuristics get slightly
wrong answers."

— “Which compiler is this which

can, for instance, take Netlib
LAPACK and run serial Linpack
as fast as OpenBLAS on recent
x86-647 (Other common hotspots
are available.) Enquiring HPC
minds want to know.”

The algorithm des

Context: What's t
that we're trying t

CS 101 view: “Ti

ously?

)Os for

ode,
ed the

rts.

011:
oop
ich

ray
ven

lers to

— “We come so close to optimal
on most architectures that we
can't do much more without using
NP complete algorithms instead
of heuristics. We can only try to
get little niggles here and there
where the heuristics get slightly
wrong answers."

— “Which compiler is this which

can, for instance, take Netlib
LAPACK and run serial Linpack
as fast as OpenBLAS on recent
x86-647 (Other common hotspots
are available.) Enquiring HPC
minds want to know.”

The algorithm designer’s jok

Context: What's the metric
that we're trying to optimiz:

CS 101 view: “Time".

— “We come so close to optimal The algorithm designer’s job

on most architectures that we , .
Context: What's the metric

can't do much more without using , . .
that we're trying to optimize?

NP complete algorithms instead
of heuristics. We can only try to CS 101 view: "Time".
get little niggles here and there
where the heuristics get slightly

wrong answers."

— “Which compiler i1s this which

can, for instance, take Netlib
LAPACK and run serial Linpack
as fast as OpenBLAS on recent
x86-647 (Other common hotspots
are available.) Enquiring HPC
minds want to know.”

— “We come so close to optimal The algorithm designer’s job

on most architectures that we , .
Context: What's the metric

can't do much more without using , . .
that we're trying to optimize?

NP complete algorithms instead
of heuristics. We can only try to CS 101 view: "Time”.

get little niggles here and there What exactly does this mean?

where the heuristics get slightly Need to specify machine model

wWrong answers. in enough detail to analyze.

— “Which compiler is this which

can, for instance, take Netlib
LAPACK and run serial Linpack
as fast as OpenBLAS on recent
x86-647 (Other common hotspots
are available.) Enquiring HPC
minds want to know.”

— “We come so close to optimal The algorithm designer’s job

on most architectures that we , .
Context: What's the metric

can't do much more without using , . .
that we're trying to optimize?

NP complete algorithms instead
of heuristics. We can only try to CS 101 view: "Time”.

get little niggles here and there What exactly does this mean?

where the heuristics get slightly Need to specify machine model

wWrong answers. in enough detail to analyze.

— “Which compiler is this which Simple defn of “RAM” model
can, for instance, take Netlib

LAPACK and run serial Linpack
as fast as OpenBLAS on recent
x86-647 (Other common hotspots
are available.) Enquiring HPC

nas pathologies: e.g., can

factor integers in poly “time".

minds want to know."

— “We come so close to optimal The algorithm designer’s job

on most architectures that we , .
Context: What's the metric

can't do much more without using , . .
that we're trying to optimize?

NP complete algorithms instead
of heuristics. We can only try to CS 101 view: "Time”.

get little niggles here and there What exactly does this mean?

where the heuristics get slightly Need to specify machine model

wWrong answers. in enough detail to analyze.

— “Which compiler is this which Simple defn of “RAM” model
can, for instance, take Netlib

LAPACK and run serial Linpack

as fast as OpenBLAS on recent

x86-647 (Other common hotspots With more work can build
more reasonable "RAM"™ model.

nas pathologies: e.g., can

factor integers in poly “time".

are available.) Enquiring HPC
minds want to know."

come so close to optimal
architectures that we
much more without using
plete algorithms instead
tics. We can only try to

' niggles here and there

1e heuristics get slightly

nswers."

ch compiler is this which

iInstance, take Netlib

¢ and run serial Linpack

s OpenBLAS on recent
(Other common hotspots
able.) Enquiring HPC
ant to know.”

The algorithm designer’s job

Context: What's the metric
that we're trying to optimize?

CS 101 view: “Time".

What exactly does this mean?
Need to specify machine model
in enough detail to analyze.

Simple defn of “RAM"” model

has pathologies: e.g., can
factor integers in poly “time".

With more work can build

more reasonable "RAM" model.

Many ot
space, C.

lose to optimal
Ires that we

re without using
rithms Instead
can only try to
ere and there

cs get slightly

er 1s this which
take Netlib
serial Linpack

AS on recent
ymmon hotspots

quiring HPC

OW.

The algorithm designer’'s job

Context: What's the metric
that we're trying to optimize?

CS 101 view: “Time".

What exactly does this mean?
Need to specity machine model
in enough detail to analyze.

Simple defn of “RAM" model

has pathologies: e.g., can
factor integers in poly “time".

With more work can build

more reasonable "RAM’ model.

Many other choice
space, cache utiliz

timal
ve

L using
ead

ry to
cre
ntly

vhich

yack
ent
tspots
(C

The algorithm designer’s job

Context: What's the metric
that we're trying to optimize?

CS 101 view: “Time".

What exactly does this mean?
Need to specify machine model
in enough detail to analyze.

Simple defn of “RAM" model

has pathologies: e.g., can
factor integers in poly “time".

With more work can build

more reasonable "RAM" model.

Many other choices of metri
space, cache utilization, etc.

The algorithm designer’'s job

Context: What's the metric
that we're trying to optimize?

CS 101 view: “Time".

What exactly does this mean?
Need to specify machine model
in enough detail to analyze.

Simple defn of “RAM" model
has pathologies: e.g., can
factor integers in poly “time".

With more work can build

more reasonable "RAM’ model.

Many other choices of metrics:
space, cache utilization, etc.

The algorithm designer’'s job

Context: What's the metric
that we're trying to optimize?

CS 101 view: “Time".

What exactly does this mean?
Need to specify machine model
in enough detail to analyze.

Simple defn of “RAM" model

has pathologies: e.g., can
factor integers in poly “time".

With more work can build

more reasonable "RAM’ model.

Many other choices of metrics:
space, cache utilization, etc.

Many physical metrics
such as real time and energy

defined by physical machines:
e.g., my smartphone;

my laptop;

a cluster:

a data center;

the entire Internet.

The algorithm designer’'s job

Context: What's the metric
that we're trying to optimize?

CS 101 view: “Time".

What exactly does this mean?
Need to specify machine model
in enough detail to analyze.

Simple defn of “RAM" model

has pathologies: e.g., can
factor integers in poly “time".

With more work can build

more reasonable "RAM’ model.

Many other choices of metrics:
space, cache utilization, etc.

Many physical metrics
such as real time and energy

defined by physical machines:
e.g., my smartphone;

my laptop;

a cluster:

a data center;

the entire Internet.

Many other abstract models.
e.g. Simplify: Turing machine.
e.g. Allow parallelism: PRAM.

orithm designer’'s job

- What's the metric
re trying to optimize?

view: “Time'.

actly does this mean?
specify machine model
h detail to analyze.

lefn of "RAM"” model

ologies: e.g., can
tegers Iin poly “time".

re work can build

yisonable "RAM" model.

Many other choices of metrics:

space, cache utilization, etc.

Many physical metrics
such as real time and energy

defined by physical machines:
e.g., my smartphone;

my laptop;

a cluster:

a data center;

the entire Internet.

Many other abstract models.

e.g. Simplify: Turing machine.
e.g. Allow parallelism: PRAM.

Output
an algor
of instru

Try to n
cost of t
In the s
(or coml

igner's |ob

he metric
0 optimize?

ne .

> this mean?
achine model
> analyze.

AM" model
.g., Can
boly “time’.

an build

RAM™ model.

Many other choices of metrics:

space, cache utilization, etc.

Many physical metrics
such as real time and energy

defined by physical machines:
e.g., my smartphone;

my laptop;

a cluster:

a data center;

the entire Internet.

Many other abstract models.

e.g. Simplify: Turing machine.
e.g. Allow parallelism: PRAM.

Output of algorith
an algorithm—spe
of instructions for

Try to minimize

cost of the algoritl
in the specified m
(or combinations ¢

|

del.

Many other choices of metrics:

space, cache utilization, etc.

Many physical metrics
such as real time and energy

defined by physical machines:
e.g., my smartphone;

my laptop;

a cluster:

a data center;

the entire Internet.

Many other abstract models.

e.g. Simplify: Turing machine.
e.g. Allow parallelism: PRAM.

Output of algorithm design:
an algorithm—specification
of instructions for machine.

Try to minimize

cost of the algorithm

in the specified metric

(or combinations of metrics

Many other choices of metrics:

space, cache utilization, etc.

Many physical metrics
such as real time and energy

defined by physical machines:
e.g., my smartphone;

my laptop;

a cluster:

a data center;

the entire Internet.

Many other abstract models.

e.g. Simplify: Turing machine.
e.g. Allow parallelism: PRAM.

Output of algorithm design:
an algorithm—specification
of instructions for machine.

Try to minimize

cost of the algorithm

in the specified metric

(or combinations of metrics).

Many other choices of metrics:

space, cache utilization, etc.

Many physical metrics
such as real time and energy

defined by physical machines:
e.g., my smartphone;

my laptop;

a cluster:

a data center;

the entire Internet.

Many other abstract models.

e.g. Simplify: Turing machine.
e.g. Allow parallelism: PRAM.

Output of algorithm design:
an algorithm—specification
of instructions for machine.

Try to minimize

cost of the algorithm

in the specified metric

(or combinations of metrics).

Input to algorithm design:
specification of function
that we want to compute.
Typically a simpler algorithm
in a higher-level language:
e.g., a mathematical formula.

her choices of metrics:

ache utilization, etc.

wysical metrics
real time and energy

by physical machines:
smartphone;

P;

enter;

€ Internet.

her abstract models.

plify: Turing machine.
w parallelism: PRAM.

Output of algorithm design:
an algorithm—specification
of instructions for machine.

Try to minimize
cost of the algorithm
in the specified metric

(or combinations of metrics).

Input to algorithm design:
specification of function
that we want to compute.
Typically a simpler algorithm
in a higher-level language:

e.g., a mathematical formula.

Algorith

Massive
State of
extremel

Some ge
with bro

(e.g., dy
out Mos

neavily
Karatsul
Strassen
the Boye
the Ford
Shor's a

s of metrics:

ation, etc.

trics

and energy
| machines:
ne;

ct models.

ing machine.
ism: PRAM.

Output of algorithm design:
an algorithm—specification
of instructions for machine.

Try to minimize
cost of the algorithm
in the specified metric

(or combinations of metrics).

Input to algorithm design:
specification of function
that we want to compute.
Typically a simpler algorithm
in a higher-level language:

e.g., a mathematical formula.

Algorithm design |

Massive research t
State of the art is
extremely complic

Some general tech
with broad applics
(e.g., dynamic pro
DUt MOST progress

neavily domain-sg
Karatsuba's algori
Strassen’s algorith
the Boyer—Moore

the Ford—Fulkerso

Shor's algorithm,

CS.

NeE.

Output of algorithm design:
an algorithm—specification
of instructions for machine.

Try to minimize
cost of the algorithm
in the specified metric

(or combinations of metrics).

Input to algorithm design:
specification of function
that we want to compute.
Typically a simpler algorithm
in a higher-level language:

e.g., a mathematical formula.

Algorithm design iIs hard.

Massive research topic.
State of the art is
extremely complicated.

Some general techniques
with broad applicability
(e.g., dynamic programming
out most progress Is

neavily domain-specific:
Karatsuba's algorithm,
Strassen’s algorithm,

the Boyer—Moore algorithm,

the Ford—Fulkerson algorithr

Shor's algorithm, . ..

Output of algorithm design:
an algorithm—specification
of instructions for machine.

Try to minimize
cost of the algorithm
in the specified metric

(or combinations of metrics).

Input to algorithm design:
specification of function
that we want to compute.
Typically a simpler algorithm
in a higher-level language:

e.g., a mathematical formula.

Algorithm design Is hard.

Massive research topic.
State of the art is
extremely complicated.

Some general techniques
with broad applicability
(e.g., dynamic programming)
out most progress Is

neavily domain-specific:
Karatsuba's algorithm,
Strassen’s algorithm,

the Boyer—Moore algorithm,

the Ford—Fulkerson algorithm,

Shor's algorithm, . ..

of algorithm design:
ithm—specification
ctions for machine.
1Inimize

he algorithm
vecified metric

vinations of metrics).

algorithm design:
tion of function
want to compute.

/ a simpler algorithm
1er-level language:

1athematical formula.

Algorithm design iIs hard.

Massive research topic.
State of the art is
extremely complicated.

Some general techniques
with broad applicability
(e.g., dynamic programming)
out most progress Is

neavily domain-specific:
Karatsuba's algorithm,
Strassen’s algorithm,

the Boyer—Moore algorithm,

Shor's algorithm, . ..

Algorith

the Ford—Fulkerson algorithm,

Wikiped
compiler
tries to |
some at
compute

— So th

(viewed
IS an op

m design:
cification
machine.

nm

otricC

of metrics).

design:
1ction
ompute.

- algorithm
nguage:

~al formula.

Algorithm design Is hard.

Massive research topic.
State of the art is
extremely complicated.

Some general techniques
with broad applicability
(e.g., dynamic programming)
out most progress Is

neavily domain-specific:
Karatsuba's algorithm,
Strassen’s algorithm,

the Boyer—Moore algorithm,

Shor's algorithm, . ..

Algorithm designe

the Ford—Fulkerson algorithm,

Wikipedia: “"An o
compiler Is a comj
tries to minimize ¢
some attributes of
computer program

— So the algorith
(viewed as a mact
IS an optimizing c

Algorithm design iIs hard.

Massive research topic.
State of the art is
extremely complicated.

Some general techniques
with broad applicability
(e.g., dynamic programming)
out most progress Is

neavily domain-specific:
Karatsuba's algorithm,
Strassen’s algorithm,

the Boyer—Moore algorithm,

Shor's algorithm, . ..

Algorithm designer vs. comg

the Ford—Fulkerson algorithm,

Wikipedia: “An optimizing
compiler 1s a compiler that

tries to minimize or maximiz
some attributes of an execus

computer program.”

— So the algorithm designe
(viewed as a machine)
IS an optimizing compiler?

Algorithm design Is hard.

Massive research topic.
State of the art is
extremely complicated.

Some general techniques
with broad applicability
(e.g., dynamic programming)
out most progress Is

neavily domain-specific:
Karatsuba's algorithm,
Strassen’s algorithm,

the Boyer—Moore algorithm,

Shor's algorithm, . ..

Algorithm designer vs. compiler

the Ford—Fulkerson algorithm,

Wikipedia: “An optimizing
compiler 1s a compiler that

tries to minimize or maximize
some attributes of an executable

computer program.”

— So the algorithm designer
(viewed as a machine)
IS an optimizing compiler?

Algorithm design Is hard.

Massive research topic.
State of the art is
extremely complicated.

Some general techniques
with broad applicability
(e.g., dynamic programming)
out most progress Is

neavily domain-specific:
Karatsuba's algorithm,
Strassen’s algorithm,

the Boyer—Moore algorithm,

Shor's algorithm, . ..

Algorithm designer vs. compiler

the Ford—Fulkerson algorithm,

Wikipedia: “An optimizing
compiler 1s a compiler that

tries to minimize or maximize
some attributes of an executable

computer program.”

— So the algorithm designer
(viewed as a machine)
IS an optimizing compiler?

Nonsense. Compiler designers

nave narrower focus. Example:
“A compiler will not change an
implementation of bubble sort to
use mergesort.” — Why not?

m design Is hard.

research topic.
the art Is
y complicated.

neral techniques

ad applicability
namic programming)
t progress IS
lomain-specific:
ba's algorithm,

's algorithm,
r—Moore algorithm,

gorithm, ...

—Fulkerson algorithm,

Algorithm designer vs. compiler

Wikipedia: “An optimizing

compiler 1s a compiler that

tries to minimize or maximize
some attributes of an executable
computer program.”

— So the algorithm designer
(viewed as a machine)

IS an optimizing compiler?

Nonsense. Compiler designers

nave narrower focus. Example:
“A compiler will not change an
implementation of bubble sort to
use mergesort.” — Why not?

In fact,
take res
“machin
Outside

freely bl.

Fu nctio'

Source
machin
opt

Objec
macl
opt

s hard.

opIC.

ated.

niques
bility
gramming)
1S

yecific:

thm,

m,
algorithm,

n algorithm,

Algorithm designer vs. compiler

Wikipedia: “An optimizing
compiler 1s a compiler that

tries to minimize or maximize
some attributes of an executable
computer program.”

— So the algorithm designer
(viewed as a machine)
IS an optimizing compiler?

Nonsense. Compiler designers

nave narrower focus. Example:
“A compiler will not change an
implementation of bubble sort to
use mergesort.” — Why not?

In fact, compiler @

take responsibility

“machine-specific

Outsid

e this bailiw

freely

blame algor

Function specifice

Algori

Y

Source code witt
machine-indepen
optimizations

Optimr
Y

Object code Wi
machine-specif
optimizations

Algorithm designer vs. compiler

Wikipedia: “An optimizing

compiler 1s a compiler that

tries to minimize or maximize
some attributes of an executable
computer program.”

— So the algorithm designer
(viewed as a machine)
IS an optimizing compiler?

Nonsense. Compiler designers

nave narrower focus. Example:
“A compiler will not change an
implementation of bubble sort to
use mergesort.” — Why not?

In fact, compiler designers

take responsibility only for

“machine-specific optimizati

Outsic

e this bailiwick they

freely

olame algorithm desig

Funct

ion specification

Algorithm desig

Y

mach

Source code with all

optimizations

ine-independent

Optimizing com
Y

ma

Object code with

optimizations

chine-specific

Algorithm designer vs. compiler

Wikipedia: “An optimizing
compiler 1s a compiler that

tries to minimize or maximize
some attributes of an executable
computer program.”

— So the algorithm designer
(viewed as a machine)
IS an optimizing compiler?

Nonsense. Compiler designers

nave narrower focus. Example:
“A compiler will not change an
implementation of bubble sort to
use mergesort.” — Why not?

In fact, compiler designers
take responsibility only for
“machine-specific optimization”.
Outside this bailiwick they
freely blame algorithm designers:

Function specification

Algorithm designer

Y
Source code with all

machine-independent
optimizations

Optimizing compiler
Y
Object code with

machine-specific
optimizations

m designer vs. compiler

la: "An optimizing
I1s a compiler that

Mminimize or maximize
‘ributes of an executable
r program.”

e algorithm designer
as a machine)
timizing compiler?

e. Compiler designers
rower focus. Example:
diler will not change an
ntation of bubble sort to
resort.” — Why not?

In fact, compiler designers
take responsibility only for
“machine-specific optimization” .
Outside this bailiwick they

freely blame algorithm designers:

Function specification

Algorithm designer

i
Source code with all

machine-independent
optimizations

Optimizing compiler
Y
Object code with

machine-specific
optimizations

Output
s algori

Algorith

targeted
Why bui
compiler

r vs. compiler

otimizing

iler that

r maximize
“an executable

m designer
ine)
mpiler?

er designers
1s. Example:
ot change an
“bubble sort to
- Why not?

In fact, compiler designers
take responsibility only for
“machine-specific optimization”.
Outside this bailiwick they

freely blame algorithm designers:

Function specification

Algorithm designer
Y

Source code with all
machine-independent
optimizations

Optimizing compiler
Y
Object code with

machine-specific
optimizations

Output of optimiz
is algorithm for ta

Algorithm designe
targeted this mact

Why build a new
compiler o old des

e
rable

rs
le:
an
rt to

In fact, compiler designers

take responsibility only for

“machine-specific optimization”.

Outsic

e this bailiwick they

freely

Funct

ion specification

Algorithm designer
Y

mach

Source code with all

optimizations

ine-independent

Optimizing compiler
Y

ma

Object code with

optimizations

chine-specific

blame algorithm designers:

Output of optimizing compi
is algorithm for target mach

Algorithm designer could ha
targeted this machine direct

Why build a new designer a:
compiler o old designer?

In fact, com

piler designers

take responsibility only for

“machine-specific optimization”.

Outside this
freely blame

bailiwick they

algorithm designers:

Function specification

Y

Algorithm designer

Source code with all
machine-independent
optimizations

Y

Optimizing compiler

Object code with
machine-specific
optimizations

Output of optimizing compiler
is algorithm for target machine.

Algorithm designer could have
targeted this machine directly.

Why build a new designer as
compiler o old designer?

In fact, compiler designers
take responsibility only for
“machine-specific optimization”.
Outside this bailiwick they

freely blame algorithm designers:

Function specification

Algorithm designer

Y
Source code with all

machine-independent
optimizations

Optimizing compiler
Y
Object code with

machine-specific
optimizations

Output of optimizing compiler
is algorithm for target machine.

Algorithm designer could have
targeted this machine directly.

Why build a new designer as
compiler o old designer?

Advantages of this composition:
(1) save designer’s time

in handling complex machines;
(2) save designer’s time

in handling many machines.

Optimizing compiler is general-
purpose, used by many designers.

compiler designers

bonsibility only for

e-specific optimization”.
this bailiwick they

ame algorithm designers:

n specification

Y

Algorithm designer

‘code with all
e-independent
Imizations

Y

Optimizing compiler

t code with
ne-
Imizations

specific

Output of optimizing compiler
is algorithm for target machine.

Algorithm designer could have
targeted this machine directly.

Why build a new designer as
compiler o old designer?

Advantages of this composition:
(1) save designer’s time

in handling complex machines;
(2) save designer’s time

in handling many machines.

Optimizing compiler is general-

purpose, used by many designers.

And the

say the |
Rememt
“We cor
on most
only try
and ther
get sligh

lesigners
only for
optimization” .
/ick they

thm designers:

ition

thm designer

' all
Jent

1zing compiler
th
IC

Output of optimizing compiler
is algorithm for target machine.

Algorithm designer could have
targeted this machine directly.

Why build a new designer as
compiler o old designer?

Advantages of this composition:
(1) save designer’s time

in handling complex machines;
(2) save designer’s time

in handling many machines.

Optimizing compiler is general-

purpose, used by many designers.

And the compiler
say the results are
Remember the tyg
“We come so clos
on most architectl
only try to get litt
and there where tl
get slightly wrong

on .

Nners.

Ner

piler

Output of optimizing compiler
is algorithm for target machine.

Algorithm designer could have
targeted this machine directly.

Why build a new designer as
compiler o old designer?

Advantages of this composition:
(1) save designer’s time

in handling complex machines;
(2) save designer’s time

in handling many machines.

Optimizing compiler is general-

purpose, used by many designers.

And the compiler designers
say the results are great!
Remember the typical quote
“We come so close to optim
on most architectures ... W
only try to get little niggles
and there where the heuristi
get slightly wrong answers.”

Output of optimizing compiler
is algorithm for target machine.

Algorithm designer could have
targeted this machine directly.

Why build a new designer as
compiler o old designer?

Advantages of this composition:
(1) save designer’s time

in handling complex machines;
(2) save designer’s time

in handling many machines.

Optimizing compiler is general-

purpose, used by many designers.

And the compiler designers

say the results are great!
Remember the typical quote:

“We come so close to optimal

on most architectures ... We can
only try to get little niggles here
and there where the heuristics
get slightly wrong answers.”

Output of optimizing compiler
is algorithm for target machine.

Algorithm designer could have
targeted this machine directly.

Why build a new designer as
compiler o old designer?

Advantages of this composition:
(1) save designer’s time

in handling complex machines;
(2) save designer’s time

in handling many machines.

Optimizing compiler is general-

purpose, used by many designers.

And the compiler designers

say the results are great!
Remember the typical quote:

“We come so close to optimal

on most architectures ... We can
only try to get little niggles here
and there where the heuristics
get slightly wrong answers.”

— But they're wrong.

Their results are becoming

less and less satisfactory,
despite clever compiler research;
more CPU time for compilation:;
extermination of many targets.

of optimizing compiler
hm for target machine.

m designer could have
this machine directly.

Id a new designer as
o old designer?

ges of this composition:
designer’s time

ing complex machines;
designer's time

ing many machines.

ing compiler Is general-
used by many designers.

And the compiler designers

say the results are great!
Remember the typical quote:

“We come so close to optimal

on most architectures ... We can
only try to get little niggles here
and there where the heuristics
get slightly wrong answers.”

— But they're wrong.

Their results are becoming

less and less satisfactory,
despite clever compiler research;
more CPU time for compilation:;
extermination of many targets.

How the

Fastest
hot spot
by algor
using do

Mediocr
output ¢
hot spot
algorithr

ing compiler
rget machine.

r could have
1ne directly.
lesigner as
igner?

5 composition:
> time

X machines;

> time

machines.

er Is general-
nany designers.

And the compiler designers

say the results are great!
Remember the typical quote:

“We come so close to optimal

on most architectures ... We can
only try to get little niggles here
and there where the heuristics
get slightly wrong answers.”

— But they're wrong.

Their results are becoming

less and less satisfactory,
despite clever compiler research;
more CPU time for compilation:;
extermination of many targets.

How the code bas

Fastest code:

hot spots targeted
by algorithm desig
using domain-spec

Mediocre code:
output of optimizi
hot spots not yet
algorithm designer

ler

Ine.

Ve

V)

10N

CS,

ral-

Tners.

And the compiler designers

say the results are great!
Remember the typical quote:

“We come so close to optimal

on most architectures ... We can
only try to get little niggles here
and there where the heuristics
get slightly wrong answers.”

— But they're wrong.

Their results are becoming

less and less satisfactory,
despite clever compiler research;
more CPU time for compilation:;
extermination of many targets.

How the code base is evolvi

Fastest code:

hot spots targeted directly
by algorithm designers,
using domain-specific tools.

Mediocre code:

output of optimizing compil
hot spots not yet reached by
algorithm designers.

And the compiler designers

say the results are great!
Remember the typical quote:

“We come so close to optimal

on most architectures ... We can
only try to get little niggles here
and there where the heuristics
get slightly wrong answers.”

— But they're wrong.

Their results are becoming

less and less satisfactory,
despite clever compiler research;
more CPU time for compilation:;
extermination of many targets.

How the code base Is evolving:

Fastest code:

hot spots targeted directly
by algorithm designers,
using domain-specific tools.

Mediocre code:

output of optimizing compilers;
hot spots not yet reached by
algorithm designers.

And the compiler designers

say the results are great!
Remember the typical quote:

“We come so close to optimal

on most architectures ... We can
only try to get little niggles here
and there where the heuristics
get slightly wrong answers.”

— But they're wrong.

Their results are becoming

less and less satisfactory,
despite clever compiler research;
more CPU time for compilation:;
extermination of many targets.

How the code base Is evolving:

Fastest code:

hot spots targeted directly
by algorithm designers,
using domain-specific tools.

Mediocre code:

output of optimizing compilers;
hot spots not yet reached by
algorithm designers.

Slowest code:

code with optimization turned off;
so cold that optimization

Isn't worth the costs.

And the compiler designers

say the results are great!
Remember the typical quote:

“We come so close to optimal

on most architectures ... We can
only try to get little niggles here
and there where the heuristics
get slightly wrong answers.”

— But they're wrong.

Their results are becoming

less and less satisfactory,
despite clever compiler research:;
more CPU time for compilation:;
extermination of many targets.

How the code base Is evolving:

Fastest code:

hot spots targeted directly
by algorithm designers,
using domain-specific tools.

Mediocre code:

output of optimizing compilers;
hot spots not yet reached by
algorithm designers.

Slowest code:

code with optimization turned off;
so cold that optimization

Isn't worth the costs.

And the compiler designers

say the results are great!
Remember the typical quote:

“We come so close to optimal

on most architectures ... We can
only try to get little niggles here
and there where the heuristics
get slightly wrong answers.”

— But they're wrong.

Their results are becoming

less and less satisfactory,
despite clever compiler research:;
more CPU time for compilation:;
extermination of many targets.

How the code base Is evolving:

Fastest code:

hot spots targeted directly
by algorithm designers,
using domain-specific tools.

Mediocre code:

output of optimizing compilers;
hot spots not yet reached by
algorithm designers.

Slowest code:

code with optimization turned off;
so cold that optimization

Isn't worth the costs.

And the compiler designers

say the results are great!
Remember the typical quote:

“We come so close to optimal

on most architectures ... We can
only try to get little niggles here
and there where the heuristics
get slightly wrong answers.”

— But they're wrong.

Their results are becoming

less and less satisfactory,
despite clever compiler research:;
more CPU time for compilation:;
extermination of many targets.

How the code base Is evolving:

Fastest code:

hot spots targeted directly
by algorithm designers,
using domain-specific tools.

Mediocre code:

output of optimizing compilers;
hot spots not yet reached by
algorithm designers.

Slowest code:

code with optimization turned off;
so cold that optimization

Isn't worth the costs.

And the compiler designers

say the results are great!
Remember the typical quote:

“We come so close to optimal

on most architectures ... We can
only try to get little niggles here
and there where the heuristics
get slightly wrong answers.”

— But they're wrong.

Their results are becoming

less and less satisfactory,
despite clever compiler research:;
more CPU time for compilation:;
extermination of many targets.

How the code base Is evolving:

Fastest code:

hot spots targeted directly
by algorithm designers,
using domain-specific tools.

Mediocre code:

output of optimizing compilers;
hot spots not yet reached by
algorithm designers.

Slowest code:

code with optimization turned off;
so cold that optimization

Isn't worth the costs.

And the compiler designers

say the results are great!
Remember the typical quote:

“We come so close to optimal

on most architectures ... We can
only try to get little niggles here
and there where the heuristics
get slightly wrong answers.”

— But they're wrong.

Their results are becoming

less and less satisfactory,
despite clever compiler research:;
more CPU time for compilation:;
extermination of many targets.

How the code base Is evolving:

Fastest code:

hot spots targeted directly
by algorithm designers,
using domain-specific tools.

Mediocre code:

output of optimizing compilers;
hot spots not yet reached by
algorithm designers.

Slowest code:

code with optimization turned off;
so cold that optimization

Isn't worth the costs.

And the compiler designers How the code base Is evolving:

say the results are great!

| Fastest code:
Remember the typical quote: _
) | hot spots targeted directly
We come so close to optimal _ _
| by algorithm designers,
on most architectures ... We can _ _ .
using domain-specific tools.

only try to get little niggles here
and there where the heuristics
get slightly wrong answers.”

— But they're wrong.

Their results are becoming Slowest code:

less and less satisfactor . oL
Y code with optimization turned off;

despite clever compiler research: L.
P P ’ so cold that optimization

more CPU time for compilation: o
U P ' Isn't worth the costs.

extermination of many targets.

And the compiler designers How the code base Is evolving:

say the results are great!

| Fastest code:
Remember the typical quote: _
) | hot spots targeted directly
We come so close to optimal _ _
| by algorithm designers,
on most architectures ... We can _ _ .
using domain-specific tools.

only try to get little niggles here
and there where the heuristics
get slightly wrong answers.”

— But they're wrong.

Their results are becoming Slowest code:

less and less satisfactor . oL
Y code with optimization turned off;

despite clever compiler research: L.
P P ’ so cold that optimization

more CPU time for compilation: o
U P ' Isn't worth the costs.

extermination of many targets.

And the compiler designers How the code base Is evolving:

say the results are great!

| Fastest code:
Remember the typical quote: _
) | hot spots targeted directly
We come so close to optimal _ _
| by algorithm designers,
on most architectures ... We can _ _ .
using domain-specific tools.

only try to get little niggles here
and there where the heuristics
get slightly wrong answers.”

— But they're wrong.

Their results are becoming Slowest code:

less and less satisfactor . oL
Y code with optimization turned off;

despite clever compiler research: L.
P P ’ so cold that optimization

more CPU time for compilation: o
U P ' Isn't worth the costs.

extermination of many targets.

And the compiler designers How the code base Is evolving:

say the results are great!

| Fastest code:
Remember the typical quote: _
) | hot spots targeted directly
We come so close to optimal _ _
| by algorithm designers,
on most architectures ... We can _ _ .
using domain-specific tools.

only try to get little niggles here
and there where the heuristics
get slightly wrong answers.”

— But they're wrong.

Their results are becoming Slowest code:

less and less satisfactor . oL
Y code with optimization turned off;

despite clever compiler research: L.
P P ’ so cold that optimization

more CPU time for compilation: o
U P ' Isn't worth the costs.

extermination of many targets.

And the compiler designers How the code base Is evolving:

say the results are great!

| Fastest code:
Remember the typical quote: _
) | hot spots targeted directly
We come so close to optimal _ _
| by algorithm designers,
on most architectures ... We can _ _ .
using domain-specific tools.

only try to get little niggles here
and there where the heuristics
get slightly wrong answers.”

— But they're wrong.

Their results are becoming Slowest code:

less and less satisfactor . oL
Y code with optimization turned off;

despite clever compiler research: L.
P P ’ so cold that optimization

more CPU time for compilation: o
U P ' Isn't worth the costs.

extermination of many targets.

And the compiler designers

say the results are great!
Remember the typical quote:

“We come so close to optimal

on most architectures ... We can
only try to get little niggles here
and there where the heuristics
get slightly wrong answers.”

— But they're wrong.

Their results are becoming

less and less satisfactory,
despite clever compiler research;
more CPU time for compilation:;
extermination of many targets.

How the code base Is evolving:

Fastest code (most CPU time):
hot spots targeted directly

by algorithm designers,

using domain-specific tools.

Slowest code (almost all code):
code with optimization turned off;
so cold that optimization

Isn't worth the costs.

compiler designers
results are great!

er the typical quote:

ne so close to optimal
architectures ... We can
to get little niggles here
e where the heuristics

tly wrong answers.”

hey're wrong.

sults are becoming

| less satisfactory,
“lever compiler research;
’U time for compilation;
ation of many targets.

How the code base Is evolving:

Fastest code (most CPU time):
hot spots targeted directly

by algorithm designers,

using domain-specific tools.

Slowest code (almost all code):
code with optimization turned off;
so cold that optimization

isn't worth the costs.

2013 W,
"AUGE]
high per
algebra |

“"Many |
are man
assembl
Our tem
[allows]

optimizz

applicati

allows tf
how bes
kernels t
Integrat

designers How the code base Is evolving: 2013 Wang—Zhan;

t! “AUGEM: aut
Bre Fastest code (most CPU time): aureme

ical quote: _ high performance
1 | hot spots targeted directly &1 P
e to optimal _ _ algebra kernels on
by algorithm designers,
ires ... We can . . . y
| using domain-specific tools. Many DLA kerne
le niggles here .
o are manually impl
1e heuristics
) assembly by doma
answers.
Our template-base
ong. [allows| multiple n
ecomin optimizations In a
; & Slowest code (almost all code): . o
stactor . Ce L. application s
| Y code with optimization turned off; PHEALION SPECIT
piler research:; allows the expert |

so cold that optimization

r compilation; how best to optim

Isn't worth the costs.
nany targets. kernels to be sean

integrated in the |

al
/e can
here

rch:
1oN;
{S.

How the code base Is evolving:

Fastest code (most CPU time):
hot spots targeted directly

by algorithm designers,

using domain-specific tools.

Slowest code (almost all code):
code with optimization turned off;
so cold that optimization

isn't worth the costs.

2013 Wang—Zhang—/Zhang—"
"AUGEM: automatically ger
high performance dense line

algebra kernels on x86 CPU:

“Many DLA kernels in ATL:
are manually implemented i

assembly by domain experts

Our template-based approac

lallows| multiple machine-le

O
d
d

otimizations in a domain/
oplication specific setting a

lows the expert knowledge

how best to optimize varyin,

kernels to be seamlessly

integrated in the process.”

How the code base Is evolving:

Fastest code (most CPU time):
hot spots targeted directly

by algorithm designers,

using domain-specific tools.

Slowest code (almost all code):
code with optimization turned off;
so cold that optimization

Isn't worth the costs.

2013 Wang—Zhang—/Zhang-Y
"AUGEM: automatically generate
high performance dense linear
algebra kernels on x86 CPUs":

“Many DLA kernels in ATLAS

are manually implemented in
assembly by domain experts ...

Our template-based approach
[allows] multiple machine-level
optimizations in a domain/
application specific setting and

allows the expert knowledge of
how best to optimize varying
kernels to be seamlessly
integrated in the process.”

' code base Is evolving:

code (most CPU time):
s targeted directly
thm designers,
main-specific tools.

code (almost all code):

h optimization turned off;
‘hat optimization

th the costs.

2013 Wang—Zhang—Zhang-Y]
"AUGEM: automatically generate
high performance dense linear
algebra kernels on x86 CPUs":

“Many DLA kernels in ATLAS

are manually implemented in
assembly by domain experts ...

Our template-based approach
[allows] multiple machine-level
optimizations in a domain/
application specific setting and

allows the expert knowledge of
how best to optimize varying
kernels to be seamlessly
integrated in the process.”

Why thi

The acti
farther ¢
from the

e IS evolving:

t CPU time):
directly

ners,

ific tools.

ost all code):
ation turned off:
1zation

5tS.

2013 Wang—Zhang—Zhang-Y
"AUGEM: automatically generate
high performance dense linear
algebra kernels on x86 CPUs":

“Many DLA kernels in ATLAS
are manually implemented in

assembly by domain experts ...

Our template-based approach
[allows] multiple machine-level
optimizations in a domain/
application specific setting and

allows the expert knowledge of
how best to optimize varying
kernels to be seamlessly
integrated in the process.”

Why this is happe

The actual machir
farther and farthet
from the source m

g

1e):

le):
ed off;

2013 Wang—Zhang—Zhang-Y]
"AUGEM: automatically generate

h

igh performance dense linear

algebra kernels on x86 CPUs":

“Many DLA kernels in ATLAS
are manually implemented in

assembly by domain experts ...

Our template-based approach

[allows] multiple machine-level

O
d
d

otimizations in a domain/
oplication specific setting and

lows the expert knowledge of

how best to optimize varying

kernels to be seamlessly

integrated in the process.”

Why this is happening

The actual machine is evolv
farther and farther away
from the source machine.

2013 Wang—Zhang—Zhang-Y Why this is happening
"AUGEM: automatically generate

The actual machine is evolving

high performance dense linear farther and farther away

algebra kernels on x86 CPUs": .
from the source machine.

“Many DLA kernels in ATLAS
are manually implemented in

assembly by domain experts ...

Our template-based approach
[allows] multiple machine-level
optimizations in a domain/
application specific setting and

allows the expert knowledge of
how best to optimize varying
kernels to be seamlessly
integrated in the process.”

2013 Wang—Zhang—Zhang-Y Why this is happening
"AUGEM: automatically generate

The actual machine is evolving

high performance dense linear farther and farther away

algebra kernels on x86 CPUs": .
from the source machine.

“Many DLA kernels in ATLAS

| | Minor optimization challenges:
are manually implemented in

| e Pipelining.
assembly by domain experts
e Superscalar processing.

Our template-based approach

[allows] multiple machine-level Major optimization challenges:
optimizations in a domain/ e Vectorization.

application specific setting and e Many threads; many cores.
allows the expert knowledge of e The memory hierarchy;

how best to optimize varying the ring; the mesh.

kernels to be seamlessly e Larger-scale parallelism.
integrated in the process.” e Larger-scale networking.

ang—/hang—/hang-Yi
A: automatically generate
formance dense linear

kernels on x86 CPUs":

DLA kernels in ATLAS

ually implemented in
/ by domain experts . ..

plate-based approach
multiple machine-level
tions in a domain/

on specific setting and
e expert knowledge of
t to optimize varying
0 be seamlessly

d in the process.”

Why this is happening

The actual machine is evolving
farther and farther away
from the source machine.

Minor optimization challenges:
e Pipelining.
e Superscalar processing.

Major optimization challenges:
e Vectorization.
e Many threads; many cores.
e [he memory hierarchy;

the ring; the mesh.

e Larger-scale parallelism.

e Larger-scale networking.

CPU des
fo 8
I X
A 7
| 2
A 7

Gates &
product
of intege

r—/hang—Yi

tically generate

dense linear
x86 CPUs'":

Is in ATLAS
smented In

In experts ...

d approach
1achine-level
domain/

c setting and
<nowledge of
1ze varying
lessly
)rocess."

Why this is happening

The actual machine is evolving

farther and farther away

from the source machine.

Minor optimization challenges:
e Pipelining.

e Superscalar processing.

Major optimization challenges:

e \Vectorization.

e Many threads; many cores.

e [he memory hierarchy;

the ring; t
e Larger-sca
e Larger-sca

NE€ MESN.

e parallelism.

e networking.

CPU design in a n

¢>g><

N
%K/
'

\ﬁ/ A

Y TE Y

he b ha

Gates x:a,b—1
product hg + 2hy -
of integers fo + 2f

Y| Why this is happening CPU design in a nutshell

1erate L .
The actual machine is evolving
ar

farther and farther away ¢)ﬁ ><)ﬁ ¢

> IR .
from the source machine. ﬁ
A

\S U iﬁi\

> <= >

Minor optimization challenges: A A

] C
e Pipelining. / /

A

e Superscalar processing.

h P P g /u\

/el Major optimization challenges: ﬁ A ﬁ
e Vectorization. X X

nd e Many threads; many cores. v v ! !

of e The memory hierarchy; ho h1 h3 h

g the ring; the mesh. Gates n: a,b+— 1 — ab com
e Larger-scale parallelism. oroduct hg + 2hy + 4hy + 8
e Larger-scale networking.

of integers fo + 2f1, g0 + 2g

Why this is happening

The actual machine is evolving
farther and farther away
from the source machine.

Minor optimization challenges:
e Pipelining.
e Superscalar processing.

Major optimization challenges:
e Vectorization.
e Many threads; many cores.
e [he memory hierarchy;

the ring; the mesh.

e Larger-scale parallelism.

e Larger-scale networking.

CPU design in a nutshell

Exgoxglxil
U
v
W/\Q\ﬁ
\ \
Cov b

Gates = : a, b— 1 — ab computing
product hg + 2h1 + 4hy + 8h3
of integers fy + 2f1, go + 2g1.

s 1S happening

1al machine is evolving
nd farther away
» source machine.

otimization challenges:

1ng.
scalar processing.

otimization challenges:
1zation.

threads; many cores.
iemory hierarchy;

g; the mesn.

-scale parallelism.

-scale networking.

CPU design in a nutshell

¢>&><m

AN u

A

> <= >

A

/NN

o

y y

Y Y
ho hi hy ho

Gates = : a, b— 1 — ab computing
product hg + 2h1 + 4hy + 8h3
of integers fy + 2f1, go + 2g41.

Electrici
percolat
It fo, A1,
then ho,

a few m

ning

1e Is evolving
- away
achine.

n challenges:

essing.
1 challenges:
nany cores.

rarchy;
sh.

allelism.
yorking.

CPU design in a nutshell

Exgoxglxil
U
%
W/\Q\ﬁ
\ \

Coro

Gates = : a, b— 1 — ab computing
product hg + 2h1 + 4hy + 8h3
of integers fy + 2f1, go + 2g1.

Electricity takes ti
percolate through
|t fo, fl,go, g1 are€
then hqg, hy, hy, h3
a few moments la

ing

CS.

SICH

CPU design in a nutshell

¢>&><m

;T
i/
N

Dol

Y jf Y TE

hp h1 h3 h

Gates = : a, b— 1 — ab computing
product hg + 2h1 + 4hy + 8h3
of integers fo + 2f1, go + 2g41.

Electricity takes time to
percolate through wires and
If fo, f1, g0, g1 are stable
then hg, h1, ho, h3 are stable
a few moments later.

CPU design in a nutshell Electricity takes time to

percolate through wires and gates.

?xgoxglxil If £y, fi, o, g1 are stable
A A A A then hg, h1, hy, h3 are stable
[N a few moments later.
A a a a a
i /
N
a a a
| |
A A
Y \L Y d/

Gates = : a, b— 1 — ab computing
product hg + 2h1 + 4hy + 8h3
of integers fy + 2f1, go + 2g1.

CPU design in a nutshell

?xgoxglxz
U
v
W/\Q\ﬁ
\ \
Cov b

Gates = : a, b— 1 — ab computing
product hg + 2h1 + 4hy + 8h3
of integers fy + 2f1, go + 2g1.

Electricity takes time to
percolate through wires and gates.
If fo, f1, g0, g1 are stable

then hg, hy1, ho, h3 are stable
a few moments later.

Build circuit with more gates
to multiply (e.g.) 32-bit integers:

(Details omitted.)

S1gn In a nutshell

0 g1 N
> X
A

I
A

Y

hs ho

> <= >

Q
v

XS
AN

- a,b+— 1 — ab computing
hg + 2h1 + 4hy 4 8h3
rs fo + 2f1, g0 + 2471.

Electricity takes time to

percolate through wires and gates.

If fo, f1, g0, g1 are stable
then hg, h1, ho, h3 are stable
a few moments later.

Build circuit with more gates
to multiply (e.g.) 32-bit integers:

(Details omitted.)

Build cir
32-bit In
given 4-
and 32-1

reg
re

utshell

— ab computing
+ 4hy + 8h3

1, 80 + 241

Electricity takes time to

percolate through wires and gates.

If fo, f1, g0, g1 are stable
then hg, hy1, ho, h3 are stable
a few moments later.

Build circuit with more gates
to multiply (e.g.) 32-bit integers:

(Details omitted.)

Build circuit to co
32-bit integer r;

given 4-bit integer
and 32-bit integer

registet
read

puting

Electricity takes time to

percolate through wires and gates.

If fo, f1, g0, g1 are stable
then hg, h1, ho, h3 are stable
a few moments later.

Build circuit with more gates
to multiply (e.g.) 32-bit integers:

(Details omitted.)

Build circuit to compute
32-bit Integer r;
given 4-bit integer |

and 32-bit integers rg, r1, . ..

register
read

Electricity takes time to

percolate through wires and gates.

If fo, f1, g0, g1 are stable
then hg, hy1, ho, h3 are stable
a few moments later.

Build circuit with more gates
to multiply (e.g.) 32-bit integers:

(Details omitted.)

Build circuit to compute
32-bit integer r;

given 4-bit integer |

and 32-bit integers rg, 1, ..., r15:

register
read

Electricity takes time to

percolate through wires and gates.

If fo, f1, g0, g1 are stable
then hg, hy1, ho, h3 are stable
a few moments later.

Build circuit with more gates
to multiply (e.g.) 32-bit integers:

(Details omitted.)

Build circuit to compute
32-bit integer r;

given 4-bit integer |

and 32-bit integers rg, 1, ..., r15:

register
read

Build circuit for “register write":
M0, -1 15,5, 1+ ry, ..., I1c

I, I
where ri = rj except r; = s.

Electricity takes time to

percolate through wires and gates.

If fo, f1, g0, g1 are stable
then hg, hy1, ho, h3 are stable
a few moments later.

Build circuit with more gates
to multiply (e.g.) 32-bit integers:

(Details omitted.)

Build circuit to compute
32-bit integer r;

given 4-bit integer |

and 32-bit integers rg, 1, ..., r15:

register
read

Build circuit for “register write":
M0, -1 15,5, 1+ ry, ..., I1c
where r] = rj except rl =s.

J
Build circuit for addition. Etc.

ty takes time to

e through wires and gates.

0y, g1 are stable
hi, ho, h3 are stable
oments later.

cuit with more gates
ply (e.g.) 32-bit integers:

omitted.)

Build circuit to compute
32-bit Integer r;
given 4-bit integer |

and 32-bit integers rg, 1, ..., r15:

register
read

Build circuit for “register write":

M0, .-, M5, S, 1+ Fy, ..., I1c
I, I _

where ri = rj except r; = s.

Build circuit for addition. Etc.

o, ..., r

where ré

regils
rea

me to

wires and gates.

stable
are stable

er.

more gates
32-bit integers:

Build circuit to compute
32-bit integer r;
given 4-bit integer |

and 32-bit integers rg, 11, ..., rs:

register
read

Build circuit for “register write":

n, ..., rs,S, i —ry, ..., e
' . I
where ri = rj except r; = s.

Build circuit for addition. Etc.

where r, = rp exce

register|reg
read | r

registe
write

gates.

gers:

Build circuit to compute
32-bit Integer r;
given 4-bit integer |

and 32-bit integers rg, r1, . . ., rs:

register
read

Build circuit for “register write":

n, ..., M5, S, 0 — 1y, ..., e
r_ . I
where ri = rj except r; =s.

Build circuit for addition. Etc.

n, ..., rs, i, j, k— ry, ..., r
) I .
where r, = ry except r; = r;.

registerregister
read | read

register
write

Build circuit to compute
32-bit integer r;
given 4-bit integer |

and 32-bit integers rg, r1, ..., rs:

register
read

Build circuit for “register write":

n, ..., rs,S, i —ry, ..., e
' . I
where ri = rj except r; = s.

Build circuit for addition. Etc.

n, ..., rs, i j, k—ry, ..., e
r_ I
where r, = ry except r; = rjry:

registerregister
read | read

register
write

cuit to compute n, ..., rs, i, j, k—ry, ..., e Add mo
teger r; where r, = ry except r; = rirj:

e . More ari
bit Integer | replace |
oIt Integers g, 1, - - -, re: regiSterregiSter (></

read | read S

|1ster
2ad

cuit for “register write" : .
e register

15, S, | —> I’O r15 .

— rj except rI{ — §S. erte

cuit for addition. Etc.

egister write';

/ /
(I s

pt rl =s.
Idition. Etc.

n, ..., rs, i j, k—ry, ..., e
r_ I
where r, = ry except r; = rjry:

registeriregister
read | read

register
write

Add more flexibilit

More arithmetic:

replace (7, J, k) wil
(“x",1i,J, k) anc
(“4+",1,J, k) and r

te”:

LC.

n, ..., rs, i, j, k—ry, ..., e
I I
where r, = ry except r; = rjr:

registeriregister
read | read

register
write

Add more flexibility.

More arithmetic:

replace (1, Jj, k) with

(“x",1i,Jj, k) ana

(“4",1,J, k) anc

more optio

n, ..., rs, i j, k—ry, ..., e Add more flexibility.

where r! = r) except r! = rir,: . .
¢~ PU T =TTk More arithmetic:

_ _ replace (1, Jj, k) with
reg|5ter reg|Ster (“x",1i,j, k) anc

read read (“4+",1i,J, k) and more options.

register
write

n, ..., rs, i j, k—ry, ..., e Add more flexibility.

where r! = r) except r! = rir,: . .
¢~ PU T =TTk More arithmetic:

_ _ replace (1, Jj, k) with
reg|5ter reg|Ster (“x",1i,j, k) anc

read read (“4+",1i,J, k) and more options.

“Instruction fetch:
p > Op, ip, jp, kp, P

register
write

n, ..., rs, i j, k—ry, ..., e
r_ I
where r, = ry except r; = rjry:

registeriregister
read | read

register
write

Add more flexibility.

More arithmetic:
replace (1, Jj, k) with
(“x",1i,J, k) anc

(“4+",1i,j, k) and more options.

“Instruction fetch:
p > Op, ip, jp, kp, P

“Instruction decode’:

decompression of compressed
" " /

format for op, Ip, jp, kp, P’

n, ..., rs, i j, k—ry, ..., e
r_ I
where r, = ry except r; = rjry:

registeriregister
read | read

register
write

Add more flexibility.

More arithmetic:
replace (1, Jj, k) with
(“x",1i,J, k) anc

(“4+",1i,j, k) and more options.

“Instruction fetch":
. - /
P Op,ip,Jp, Kp, P

“Instruction decode’:

decompression of compressed
" " /

format for op, Ip, jp, kp, P’

More (but slower) storage:
“load” from and “store” to
larger "RAM" arrays.

, . /
15,/,./,ka0 I’15
= ry except ri = rjry:

terregister
d | read

egister
write

Add more flexibility.

More arithmetic:
replace (1, J, k) with
(“x",i,Jj, k) ana

(“4",1,j, k) and more options.

“Instruction fetch":
" " ,
P Op,lp, Jp, Kp, P

“Instruction decode”:

decompression of compressed
. /

format for op, Ip, jp, kp, P’

More (but slower) storage:
“load” from and “store” to
larger "RAM" arrays.

Build “fl
storing (

Hook (f
flip-flops

Hook oL
Into the

At each
flip-flops
with the

Clock ne
for elect
all the w
from flig

/ /
RO IRERRLT:

pt rl = rjry:
Y|1ster
ead

"

Add more flexibility.

More arithmetic:
replace (1, J, k) with
(“x",1i,J, k) anc

(“4+",1,j, k) and more options.

“Instruction fetch":

p > Op, ip, jp, kp, P

“Instruction decode’:

decompression of compressed
" " /

format for op, Ip, jp, kp, P’

More (but slower) storage:
“load” from and “store” to
larger "RAM" arrays.

Build “flip-flops”
storing (p, ro, . . .,

Hook (p, o, ..., N
flip-flops into circt

Hook outputs (p,
into the same flip-

At each “clock tic
flip-tlops are overv
with the outputs.

Clock needs to be
for electricity to p
all the way throug
from flip-flops to f

15

Add more flexibility.

More arithmetic:
replace (1, J, k) with
(“x",i,Jj, k) ana

(“4+",1,j, k) and more options.

“Instruction fetch":
" " ,
P Op,lp, Jp, Kp, P

“Instruction decode”:

decompression of compressed
. /

format for op, Ip, jp, kp, P’

More (but slower) storage:
“load” from and “store” to
larger "RAM" arrays.

Build “flip-flops”
storing (p, rg, ..., 5).

Hook (p, n, ..., r15)
flip-tlops into circuit inputs.

Hook outputs (p, ry, .. ., 11
into the same flip-flops.

At each “clock tick™,
flip-tlops are overwritten
with the outputs.

Clock needs to be slow enol
for electricity to percolate
all the way through the circ
from flip-flops to flip-flops.

Add more flexibility.

More arithmetic:
replace (1, j, k) with
(“x",1i,J, k) anc

(“4+",1,j, k) and more options.

“Instruction fetch":

p > Op, ip, jp, kp, P

“Instruction decode”:

decompression of compressed
" " /

format for op, Ip, jp, kp, P’

More (but slower) storage:
“load” from and “store” to
larger "RAM" arrays.

Build “flip-flops”
storing (p, rg, ..., s5).

Hook (p, n, ..., r15)
flip-tlops into circuit inputs.

Hook outputs (p, 1, ..., ris)
into the same flip-flops.

At each “clock tick™,
flip-flops are overwritten
with the outputs.

Clock needs to be slow enough
for electricity to percolate
all the way through the circuit,
from flip-flops to flip-flops.

re flexibility.
thmetic:

i, J, k) with
j, k) anc

j, k) and more options.

tion fetch™:

ipy Jp, kp, P’

tion decode™:

ession of compressed
or Op, ip, jp, kp, P’

ut slower) storage:

rom and ‘‘store’ to
RAM™ arrays.

Build “flip-flops”
storing (p, g, ..., 5).

Hook (p, n, ..., r15)
flip-tlops into circuit inputs.

Hook outputs (p', 1, . .., ris)
into the same flip-flops.

At each “clock tick™,
flip-tlops are overwritten
with the outputs.

Clock needs to be slow enough
for electricity to percolate
all the way through the circuit,
from flip-flops to flip-flops.

Now ha\

regist
reac

/

Ié

\

Further
but orth

nore options.

Y .

e :
compressed

> kp, P

storage:
store’ to

YS.

Build “flip-flops”
storing (p, rg, ..., s5).

Hook (p, mn, ..., r15)
flip-tlops into circuit inputs.

Hook outputs (p, 1, ..., ris)
into the same flip-flops.

At each “clock tick™,
flip-flops are overwritten
with the outputs.

Clock needs to be slow enough
for electricity to percolate
all the way through the circuit,
from flip-flops to flip-flops.

Now have semi-fle

flip-flops

INsn
fetch

Insn
decode

register
read

register
read

X

register
write

Further flexibility |
but orthogonal to

Build “flip-flops” Now have semi-flexible CPU

storing (p, rg, ..., 5). flip-flops

Insn
Hook (p, n, ..., r15) fetch
flip-tlops into circuit inputs.

Insn
Hook outputs (p', 1, . .., ris) decode
into the same flip-flops. register|register

y C read | read

At each “clock tick”,

flip-tlops are overwritten ><

with the outputs.

register
Clock needs to be slow enough write

for electricity to percolate
all the way through the circuit, Further flexibility is useful
from flip-flops to flip-flops. but orthogonal to this talk.

Build “flip-flops” Now have semi-flexible CPU:

storing (p, rg, ..., rs). flip-flops

Insn
Hook (p, n, ..., r15) fetch
flip-tlops into circuit inputs.

Insn
Hook outputs (p, 1, ..., ris) decode
into the same flip-flops. register|register

) L read | read

At each “clock tick’,

flip-flops are overwritten ><

with the outputs.

register
Clock needs to be slow enough write

for electricity to percolate
all the way through the circuit, Further flexibility is useful
from flip-flops to flip-flops. but orthogonal to this talk.

Ip-flops”
P, 1, ..., H5).

, 10y - -y F15)
 Into circuit inputs.

tputs (p', ry, ..., 11s)
same flip-flops.

“clock tick”,
, are overwritten
outputs.

eds to be slow enough
ricity to percolate
ray through the circuit,
-flops to flip-flops.

Now have semi-flexible CPU:

flip-flops

INsn
fetch

Insn
decode

registerjregister
read | read

X

register
write

Further flexibility is useful
but orthogonal to this talk.

"Pipelin
fli

r15)-

5)

11t inputs.

/ /
rys -0 1)
flops.

k11 |
vritten

slow enough
ercolate
h the circuit,
lip-flops.

Now have semi-flexible CPU:

flip-flops

INsn
fetch

Insn
decode

registerjregister
read | read

X

register
write

Further flexibility is useful
but orthogonal to this talk.

“Pipelining” allow

flip-flops

Insn
fetch
tlip-flops

Insn
decode

flip-flops

registerjregister
read | read

flip-flops

|-

tlip-flops

register
write

1igh

It

Now have semi-flexible CPU:

flip-flops

INsn
fetch

Insn
decode

registerjregister
read | read

X

register
write

Further flexibility is useful
but orthogonal to this talk.

“Pipelining” allows faster cls

f

Ip-tlops

INsn
fetch

lip-flops

Insn
decode

f

lip-flops

register
read

register
read

lip-tlops

X

tlip-flops

register
write

stage

stag

stage

stag

stag

Now have semi-flexible CPU: "Pipelining” allows faster clock:

flip-flops fioflops
Insn Insn
fetch fatch stage 1
insn tlip-flops
decode nsn
t 2
decode >tage

register|register

read | read flip-flops

registerjregister

tage 3
>< read | read >LABE
flip-tlops

register stage 4
write

flip-flops
Further flexibility is useful register ctage 5
but orthogonal to this talk. write

/e semi-flexible CPU:
p-flops

INsn
fetch

Insn
ecode

erregister
I | read

gister
write

flexibility is useful
ogonal to this talk.

tlip-tlops

INsn
fetch

tlip-flops

Insn
decode

flip-flops

register
read

register
read

flip-

lops

X

tlip-flops

regi

write

ster

“Pipelining” allows faster clock:

stage 1

stage 2

stage 3

stage 4

stage 5

Goal: St
one tick

Instructi
reads ne

feeds p’

After ne
Instructi
uncompl
while ins

reads an

Some ex
Also ext
preserve
e.g., sta

xible CPU:

s useful
this talk.

“Pipelining” allows faster clock:

flip-flops

INsn
fetch

tlip-flops

Insn
decode

flip-flops

registerjregister
read | read

flip-flops

X

flip-flops

register
write

stage 1

stage 2

stage 3

stage 4

stage 5

Goal: Stage n har
one tick after stag

Instruction fetch
reads next Instruci

feeds p’ back, sen

After next clock ti
Instruction decode

uncompresses this
while instruction f
reads another inst

Some extra flip-flc
Also extra area to
preserve instructio
e.g., stall on read-

“Pipelining” allows faster clock: Goal: Stage n handles instrt

flip-flops one tick after stage n — 1.
#er]tinh stage 1 Instruction fetch
m reads next instruction,
ip-flops
| feeds p’ back, sends instruct
INSnN . 2
decode -k .
I After next clock tick,
IP-TIOPS . .
| : p_ instruction decode
register|register .o :
fead fead stage 3 uncompresses this instructio
fio-flops while instruction fetch

>< reads another instruction.
stage 4

Some extra flip-flop area.

flip-flops
register Also extra area to
I
write stage 5 preserve Instruction semanti

e.g., stall on read-after-write

“Pipelining” allows faster clock:

flip-flops

INsn
fetch

tlip-flops

Insn
decode

flip-flops

registerjregister
read | read

flip-flops

X

flip-flops

register
write

stage 1

stage 2

stage 3

stage 4

stage 5

Goal: Stage n handles instruction
one tick after stage n — 1.

Instruction fetch
reads next instruction,

feeds p’ back, sends instruction.

After next clock tick,
Instruction decode

uncompresses this instruction,
while instruction fetch
reads another instruction.

Some extra flip-flop area.

Also extra area to

preserve Instruction semantics:
e.g., stall on read-after-write.

ing” allows faster clock: Goal: Stage n handles instruction “Supers
p-flops one tick after stage n — 1. B
insn stage 1 Instruction fetch
fetch | |
7 reads next instruction, —
D-Tlops .
. feeds p’ back, sends instruction.
INSN 9
ecode stage . d
- After next clock tick, B
-TIOPS . .
- p. instruction decode _
erregister stage 3 . . register|re
U | read g uncompresses this instruction, ead
o-flops while instruction fetch .
>< reads another instruction.

stage 4 —
flops Some extra flip-flop area.
gister Also extra area to r_e
rite stage > preserve instruction semantics: ‘
' e.g., stall on read-after-write. -

s faster clock:

stage 1

stage 2

stage 3

stage 4

stage 5

Goal: Stage n handles instruction
one tick after stage n — 1.

Instruction fetch
reads next instruction,

feeds p’ back, sends instruction.

After next clock tick,
Instruction decode

uncompresses this instruction,
while instruction fetch
reads another instruction.

Some extra flip-flop area.

Also extra area to

preserve instruction semantics:
e.g., stall on read-after-write.

“Superscalar” pro

flip-flops

INsn
fetch

INSI
fetc

flip-1

lops

Insn
decode

INSI
deco

flip-

lops

register
read

register
read

regis
rea

flip-

lops

>< |

flip-

flops

register
write

regis

writ

ock:

Goal: Stage n handles instruction
one tick after stage n— 1.

Instruction fetch
reads next instruction,

feeds p’ back, sends instruction.

After next clock tick,

Instruction decode

uncompresses this instruction,
while instruction fetch
reads another instruction.

Some extra flip-flop area.

Also extra area to

preserve instruction semantics:
e.g., stall on read-after-write.

“Superscalar” processing:

flip-f

ops

INsn
fetch

Insn
fetch

flip-

lops

Insn
decode

Insn
decode

flip-

lops

register
read

register
read

register
read

register
read

flip-

lops

Pl

flip-flops

register
write

register
write

Goal: Stage n handles instruction
one tick after stage n — 1.

Instruction fetch
reads next instruction,

feeds p’ back, sends instruction.

After next clock tick,
Instruction decode

uncompresses this instruction,
while instruction fetch
reads another instruction.

Some extra flip-flop area.

Also extra area to

preserve Iinstruction semantics:
e.g., stall on read-after-write.

“Superscalar’ processing:

tlip-tlops

INsn
fetch

INsn
fetch

flip-1

lops

Insn
decode

Insn
decode

flip-

lops

register
read

register
read

register
read

register
read

flip-

lops

Pl

flip-

flops

register
write

register
write

age n handles instruction
after stage n — 1.

on fetch
xt Instruction,
back, sends instruction.

xt clock tick,

on decode

esses this instruction,
truction fetch

other instruction.

tra flip-tlop area.

ra area to

Instruction semantics:
| on read-after-write.

“Superscalar” processing:

f

ip-flops

INsn
fetch

Insn
fetch

flip-flops

Insn
decode

Insn
decode

flip-

lops

“Vector

Expand
INto N-ve

ARM “}

register
read

register
read

register
read

register
read

flip-

lops

Pl

flip-flops

register
write

register
write

Inte
Inte

AN
AN

GPUs h:

dles instruction

en—1.

on,
ds instruction.

ck,

Instruction,
etch
ruction.

p area.

n semantics:
after-write.

“Superscalar’ processing:

tlip-tlops

INsn
fetch

INsn
fetch

flip-1

lops

Insn
decode

Insn
decode

flip-

lops

register
read

register
read

register
read

register
read

flip-

lops

Pl

flip-

flops

register

register
write

write

“Vector” processir

Expand each 32-b
iInto n-vector of 3.
ARM “NEON" ha

Inte
Inte

"AVX2" has
"AVX-512" |

GPUs have larger

Iction

on.

CS.

“Superscalar” processing:

flip-f

ops

INsn
fetch

Insn
fetch

flip-

lops

Insn
decode

Insn
decode

flip-

lops

register
read

register
read

register
read

register
read

flip-

lops

Pl

flip-flops

register
write

register
write

“Vector’ processing:

Expand each 32-bit integer

into n-vector of 32-bit integ
ARM “NEON" has n = 4;

Inte
Inte

"AVX2" has n = 8;
"AVX-512" has n =16

GPUs have larger n.

“Superscalar’ processing:

tlip-tlops

INsn
fetch

INsn
fetch

flip-1

lops

Insn
decode

Insn
decode

flip-

lops

register
read

register
read

register
read

register
read

flip-

lops

X

flip-

flops

register
write

register
write

“Vector’ processing:

Expand each 32-bit integer

into n-vector of 32-bit integers.
ARM “NEON" has n = 4;

Inte
Inte

"AVX2" has n = 3;
"AVX-512" has n = 16;

GPUs have larger n.

“Superscalar’ processing:

tlip-tlops

INsn
fetch

INsn
fetch

flip-1

lops

Insn
decode

Insn
decode

flip-

lops

register
read

register
read

register
read

register
read

flip-

lops

X

flip-

flops

register
write

register

write

“Vector’ processing:

Expand each 32-bit integer
into n-vector of 32-bit integers.
ARM “NEON" has n = 4;
"AVX2" has n = 8;
"AVX-512" has n = 16;

GPUs have larger n.

Inte

Inte

nx speedup if

nx arithmetic circuits,
nx read/write circuits.
Benefit: Amortizes insn circuits.

“Superscalar’ processing:

tlip-tlops

INsn
fetch

INsn
fetch

flip-1

lops

Insn
decode

Insn
decode

flip-

lops

register
read

register
read

register
read

register
read

flip-

lops

X

flip-

flops

register
write

register

write

“Vector’ processing:

Expand each 32-bit integer
into n-vector of 32-bit integers.
ARM “NEON" has n = 4;
"AVX2" has n = 8;
"AVX-512" has n = 16;

GPUs have larger n.

Inte

Inte

nx speedup if

nx arithmetic circuits,
nx read/write circuits.
Benefit: Amortizes insn circuits.

Huge effect on higher-level
algorithms and data structures.

calar” processing:

~ flip-flops

INsn
fetch

Insn
fetch

~ flip-

lops

Insn
ecode

Insn
decode

~ flip-

lops

gister
read

register
read

register
read

~ flip-

lops

- X

flip-flops

gister
write

register
write

“Vector’ processing:

Expand each 32-bit integer
into n-vector of 32-bit integers.
ARM “NEON" has n = 4;

Intel “AVX2" has n = 8;

Intel “AVX-512" has n = 16;

GPUs have larger n.

nx speedup if
nXx arithmetic circuits,
nx read/write circuits.

Benefit: Amortizes insn circuits.

Huge effect on higher-level
algorithms and data structures.

Network

How exf

Input: a
Each nu

represen

Output:
IN INCrea
represen
same mi

Cessing:

register
read

Ler

“Vector’ processing:

Expand each 32-bit integer

into n-vector of 32-bit integers.
ARM “NEON" has n = 4;

Inte
Inte

"AVX2" has n = 3;
"AVX-512" has n = 16;

GPUs have larger n.

nx speedup if

nx arithmetic circuits,

nx read/write circuits.

Benefit: Amortizes insn circuits.

Huge effect on higher-level

algorithms and data structures.

Network on chip:

How expensive Is

Input: array of nr
Each number in {
represented In bin;

Output: array of 1
In Increasing order
represented In bin:
same multiset as |

“Vector’ processing:

Expand each 32-bit integer
into n-vector of 32-bit integers.
ARM “NEON" has n = 4;

Intel “AVX2" has n = 8;

Intel “AVX-512" has n = 16;

GPUs have larger n.

nx speedup if
nXx arithmetic circuits,
nx read/write circuits.

Benefit: Amortizes insn circuits.

Huge effect on higher-level
algorithms and data structures.

Network on chip: the mesh

How expensive is sorting?

Input: array of n numbers.
Each number In {1, 2.nN
represented in binary.

Output: array of n numbers
in Increasing order,
represented In binary:;

same multiset as input.

“Vector’ processing:

Expand each 32-bit integer
into n-vector of 32-bit integers.
ARM “NEON" has n = 4;

Intel “AVX2" has n = 8;

Intel “AVX-512" has n = 16;

GPUs have larger n.

nx speedup if
nx arithmetic circuits,
nx read/write circuits.

Benefit: Amortizes insn circuits.

Huge effect on higher-level
algorithms and data structures.

Network on chip: the mesh

How expensive is sorting?

Input: array of n numbers.
Each number In {1, 2. ..., n2},
represented in binary.

Output: array of n numbers,
In Increasing order,
represented In binary;

same multiset as input.

“Vector’ processing:

Expand each 32-bit integer
into n-vector of 32-bit integers.
ARM “NEON" has n = 4;

Intel “AVX2" has n = 8;

Intel “AVX-512" has n = 16;

GPUs have larger n.

nx speedup if
nx arithmetic circuits,
nx read/write circuits.

Benefit: Amortizes insn circuits.

Huge effect on higher-level
algorithms and data structures.

Network on chip: the mesh

How expensive is sorting?

Input: array of n numbers.
Each number In {1, 2. ..., n2},
represented in binary.

Output: array of n numbers,
In Increasing order,
represented In binary;

same multiset as input.

Metric: seconds used by
circuit of area nito(l),

For simplicity assume n = 4k

" processing:

each 32-bit integer
actor of 32-bit integers.
\[EON" has n = 4;
VX2" has n = 8;
VX-512" has n = 16;

wve larger n.

dup if
metic circults,
/write circuits.

Amortizes insh circuits.

ect on higher-level
ns and data structures.

Network on chip: the mesh

How expensive is sorting?

Input: array of n numbers.
Each number in {1, 2. ..., nz},
represented in binary.

Output: array of n numbers,
in Increasing order,
represented In binary;

same multiset as input.

Metric: seconds used by
circuit of area nito(l),

For simplicity assume n = 4k

Spread ¢
square n
each of
with nec

K—X—X—X—X—X—X—X—X—X
K —X—X—X—X—X—X—X—X—X

X
X
X
X
X
X
X
X
X
X

\g:

t Integer
-bit integers.
s n=4;

n = 8;

as n = 16;

n.

uits,
“ulits.

S INSN CIrcults.

her-level
ta structures.

Network on chip: the mesh

How expensive is sorting?

Input: array of n numbers.
Each number In {1, 2. ..., nz},
represented in binary.

Output: array of n numbers,
In Increasing order,
represented In binary;

same multiset as input.

Metric: seconds used by
circuit of area nito(l),

For simplicity assume n = 4k

Spread array acros
square mesh of n :
each of area n°(1)
with near-neighbo

X—X—X

X
X

K —X—X—X— X —X—X—X—X—X
X—X—X—X—X—X—X—X—X—X

>
>
>
>
>
>
>
>
>
>

X—X—X—X—XK—X—X—X—X
X—X—X—X—X—X—X—X
K—X—X—X—X—X—X—X

Network on chip: the mesh Spread array across

How expensive is sorting? square mesh of n small cells

each of area n°(1),

ers.
Input: array of n numbers. with near-neighbor wiring:
; 2
Each number in {1,2,...,n°}, VARV VIV VIV
'_ represented in binary. VRIS SN
Output: array of n numbers, XXX X X XXX
In Increasing order, XXX X=X X X=X
represented In binary; X=X —X——X—X—X—X—X—
same multiset as input. XXX X=X XXX
| XX — X —X—X—X—X—X—
uits. Metric: seconds used by
circuit of area n .
XX — X —X—X—X—X—X—
es. For simplicity assume n = 4k NV R SR N R T

Network on chip: the mesh Spread array across

How expensive is sorting? square mesh of n small cells,

each of area n°1),
Input: array of n numbers. with near-neighbor wiring:

Each number iIn {1, 2. ..., nz},
represented in binary.

K—X—X—X—X—X

K—X—X—X—X

Output: array of n numbers,

In Increasing order,

represented In binary;

same multiset as input.

Metric: seconds used by

circuit of area nlto(l).

K —X—X—X—X—X—X—X—X—X
X—X—X—X—X—X—X—X—X—X
X—X—X—X—XK—X—X—X—X
X—X—X—X—X—X—X—X
K —X—X—X—X—X—X—X
K —X—X—X—X—X—X—X
X—X—X—X—X—X—X—X
K—X—X—X—X—X—X—X
X—X—X—X—X—X—X—X—X—X

For simplicity assume n = 4k

K —X— X —X— XK —X—X—X—X—X

~on chip: the mesh

ensive Is sorting?

rray of n numbers.
mber in {1,2,..., nz},
ted in binary.

array of n numbers,
sing order,

ted in binary;

iltiset as input.

seconds used by
f area nito(l)

licity assume n = 4.

Spread array across

square mesh of n small cells,

each of area no(l),

with near-neighbor wiring:

K —X—X—X—X—X—X—X

X

X

X

X

X

X

X—X—X—X—X—X—X—X—X
X—X—X—X—XK—X—X—X—X
X—X—X—X—X—X—X—X

HX—X—X—X—X—X—X—X

X—X—X—X—X—X—X—X

K—X—X—X—X—X—X—X

K —X—X—X—X—X—X—X

K —X—X—X—X—X—X—X

K —X—X—X—X—X—X—X—X—X

X —X—X—X—X—X—X—X—X—X

Sort row

N n0.5—|—<

e Sort e
314
131

e Sort a
131,
113

e Repea
equals

the mesh

sorting?
yumbers.
1,2,...,n°},
ary.

1 numbers,

Ary;
nput.

sed by
o(1)

me n = 4K

Spread array across

square mesh of n small cells,
each of area no(l),

with near-neighbor wiring:

K—X—X—X—X—X

K—X—X—X—X

K —X—X—X—X—X—X—X—X—X
X—X—X—X—X—X—X—X—X—X
X—X—X—X—XK—X—X—X—X
X—X—X—X—X—X—X—X

K —X—X—X—X—X—X—X
K—X—X—X—X—X—X—X
X—X—X—X—X—X—X—X
K—X—X—X—X—X—X—X

X —X—X—X—X—X—X—X—X—X

K —X— X —X—XK—X—X—X—X—X

0.5 ¢

Sort row of n ¢

in n0-5To(1) secon

e Sort each pair ir
31415926
13145926

e Sort alternate p:
13145926
113452906

e Repeat until nur
equals row lengt

Spread array across

square mesh of n small cells,
each of area no(l),

with near-neighbor wiring:

K —X—X—X—X—X

X—X—X—X—X

X —X—X—X—X—X—X—X—X—X
X —X—X—X—X—X—X—X—X—X
X—X—X—X—X—X—X—X—X
HX—X—X—X—X—X—X—X
X—X—X—X—X—X—X—X
X—X—X—X—X—X—X—X

K —X—X—X—X—X—X—X

K —X—X—X—X—X—X—X

K —X—X—X— X —X—X—X—X—X

K —X—X—X—X—X—X—X—X—X

Sort row of n®> cells

0.5+0(1)

N N seconds:

e Sort each pair in parallel.
31415926+
13145926

e Sort alternate pairs in par
13145926 +—

11345296

e Repeat until number of st
equals row length.

Spread array across

square mesh of n small cells,

each of area no(l),

with near-neighbor wiring:

K —X—X—X—X—X

X

X

X

X

X

X —X—X—X—X—X—X—X—X—X
HX—X—X—X—X—X—X—X—X—X
X—X—X—X—XK—X—X—X—X
X—X—X—X—X—X—X—X

K—X—X—X—X—X—X—X

X—X—XK—XK—XK—X—X—X

X—X—X—X—X—X—X—X

HX—X—X—X—X—X—X—X

X —X—X—X—X—X—X—X—X—X

K —X— X —X—X—X—X—X—X—X

Sort row of n> cells
in n0-5to(1) seconds:

e Sort each pair in parallel.
31415926+~
13145926

e Sort alternate pairs in parallel.
13145926 +—

11345296

e Repeat until number of steps
equals row length.

Spread array across

square mesh of n small cells,

each of area no(l),

with near-neighbor wiring:

K —X—X—X—X—X

X

X

X

X

X

X —X—X—X—X—X—X—X—X—X
HX—X—X—X—X—X—X—X—X—X
X—X—X—X—XK—X—X—X—X
X—X—X—X—X—X—X—X

K—X—X—X—X—X—X—X

X—X—XK—XK—XK—X—X—X

X—X—X—X—X—X—X—X

HX—X—X—X—X—X—X—X

X —X—X—X—X—X—X—X—X—X

K —X— X —X—X—X—X—X—X—X

Sort row of n> cells
in n0-5to(1) seconds:

e Sort each pair in parallel.
31415926+~
13145926

e Sort alternate pairs in parallel.
13145926 +—

11345296

e Repeat until number of steps
equals row length.

Sort each row, in parallel,

0.540(1)

In a total of n seconds.

Irray across

1esh of n small cells,

area no(l),

r-neighbor wiring:

K—X—X—X—X

X

X

X

X

X

HX—X—X—X—X—X—X—X

X—X—X—X—X—X—X—X

X—X—X—X—X—X—X—X

K —X—X—X—X—X—X—X

X—X—X—X—X—X—X—X

K —X—X—X—X—X—X—X—X—X

X —X—X—X—X—X—X—X—X—X

Sort row of n®> cells

0.5+0(1)

N N seconds:

e Sort each pair in parallel.
31415926+
13145926

e Sort alternate pairs in parallel.

13145926 +—
11345296

e Repeat until number of steps
equals row length.

Sort each row, in parallel,

0.54+0(

In a total of n 1) seconds.

Sort all

N n0.5—|—<

e Recur:

In par:
e Sort e
e Sort e
e Sort e
e Sort e

With pre
left-to-ri
for each
that this

S
small cells,

r Wiring:

(—X—X

X
X

K—X—X—X—X—X—X—X
X—X—X—X—X—X—X—X
HX—X—X—X—X—X—X—X—X—X

K —X— X —X—X—X—X—X—X—X

Sort row of n®> cells
in n0-5to(1) seconds:

e Sort each pair in parallel.
31415926+~
13145926

e Sort alternate pairs in parallel.

1314592606 +—
11345296

e Repeat until number of steps
equals row length.

Sort each row, in parallel,

0.540(1)

In a total of n seconds.

Sort all n cells

in n0-5to(1) secon

e Recursively sort

in parallel, if n>

e Sort eac
e Sort eac
e Sort eac
e Sort eac

n colum
N row In

n colum

N row In

With proper choic
left-to-right /right-
for each row, can

that this sorts whe

Sort row of n®> cells

0.540(1)

N N seconds:

e Sort each pair in parallel.
31415926+
13145926

e Sort alternate pairs in parallel.

13145926 +—
11345296

e Repeat until number of steps
equals row length.

Sort each row, in parallel,

0.54+0(

In a total of n 1) seconds.

Sort all n cells

0.5+0(1)

N N seconds:

e Recursively sort quadrants
in parallel, if n > 1.

e Sort each column in parall

e Sort each row in parallel.

e Sort each column in parall

e Sort each row in parallel.

With proper choice of
left-to-right /right-to-left
for each row, can prove
that this sorts whole array.

Sort row of n®> cells
in n0-5to(1) seconds:

e Sort each pair in parallel.
31415926+~
13145926

e Sort alternate pairs in parallel.

1314592606 +—
11345296

e Repeat until number of steps
equals row length.

Sort each row, in parallel,

0.540(1)

In a total of n seconds.

Sort all n cells
in n0-5to(1) seconds:

e Recursively sort quadrants

in parallel, if n > 1.

e Sort eac
e Sort eac
e Sort eac
e Sort eac

n column in parallel.
n row In parallel.

n column in parallel.

n row In parallel.

With proper choice of
left-to-right /right-to-left
for each row, can prove

that this sorts whole array.

of n%° cells
(1) seconds:

ach pair in parallel.
15926 +—
415926

lternate pairs in parallel.

415926 +—
415296

t until number of steps
row length.

h row, In parallel,

0.54+0(

[of n 1) seconds.

Sort all n cells

N n

0.5+0(1)

seconds:

e Recursively sort quadrants

in parallel, if n > 1.

e Sort eac
e Sort eac
e Sort eac
e Sort eac

n column in parallel.

n row In parallel.

n column in parallel.

n row In parallel.

With proper choice of
left-to-right /right-to-left
for each row, can prove

that this sorts whole array.

For exar
this 8 X

(

~N O P O W N o1 W
~ B OO DD W W W =
N AN A A

| N

o||s
1s:

' parallel.
—

aIrs In parallel.

—

nber of steps
h.

parallel,
o(1) seconds.

Sort all n cells
in n0-5to(1) seconds:

e Recursively sort quadrants
in parallel, if n > 1.

e Sort each column in parallel.

e Sort each row in parallel.

e Sort each column in parallel.

e Sort each row in parallel.

With proper choice of
left-to-right /right-to-left
for each row, can prove
that this sorts whole array.

For example, assu
this 8 x 8 array Is

5

~N OO0 = O W N 61 W
~ =B O DD W W W =
© O ©O© OO o o O H
~ 1 W OO W H OO =
~ O O H N O O

0
i
2
7
1
0
2
5

Sort all n cells For example, assume that

in n9-52(1) seconds: this 8 x 8 array Is in cells:
e Recursively sort quadrants 31 415 9 26
in parallel, it n > 1. 5 35 8 0 7 O 3
e Sort each column in parallel. > 38 46 2 6 4
el e Sort each row in p.araIIeI. 1383027095
e Sort each column in parallel.
. 0 2 88 4197
e Sort each row in parallel.
1 6 9 3 9 9 37
eps With pr.oper c-hoice of 5 1058920 0
left-to-right /right-to-left
¢ 7 4 9 4 4 5 9 2
or each row, can prove

that this sorts whole array.

Sort all n cells For example, assume that

in n9-5t0(1) seconds: this 8 x 8 array Is in cells:
e Recursively sort quadrants 31 415 9 2 6
in parallel, if n > 1. 5 35 8 0 7 0 3
e Sort each column in parallel. > 38 46 2 6 4
| llel.
e Sort each row in p.ara e 3138139270 5
e Sort each column in parallel.
. 0 2 88 4197
e Sort each row in parallel.
1 6 9 3 9 9 37
With prf)per c.hoice of 5 1058920 9
left-to-right /right-to-left
7 4 9 4 45 9 2
for each row, can prove

that this sorts whole array.

n cells

(1) seconds:

sively sort quadrants
allel, if n > 1.

dC
dC
dC
dC

n row In parallel.

n row In parallel.

bper choice of
ght /right-to-left
row, can prove

, sorts whole array.

For example, assume that
this 8 x 8 array Is in cells:

n column in parallel.

n column in parallel.

31 415 9 26
5 353 9 7 9 3
2 3 3 46 2 6 4
33 8 3 2 7 95
0 2 8 3 4 1 9 7
1 6 9 3 9 9 3 7
51 05 8 2009
(4 9 4 4 5 9 2

Recursiv
top —,

N DY |

) SN | TN

(

O ~N A RO W W =
O O Hh R OO A W =

1s:

quadrants
> 1.

n in parallel.

 parallel.

n in parallel.

 parallel.

e of
to-left
prove

le array.

For example, assume that
this 8 x 8 array Is in cells:

31 415 9 26
b 353 9 7 9 3
2 3 3 4606 2 6 4
33 8 3 2 7 95
0 2 8 3 41 9 7
1 6 9 3 9 9 37
5 1 05 8 2009
74 9 4 45 9 2

Recursively sort gt
top —, bottom <+

11 2 3[2 2
3 3 3 3|4 5
3 4 4 5|6 6
58 8 8|9 0
1 10 0|2 2
4 4 3 2|5 4
76 5 5|9 8
0 90 8 8|9 ¢

S,

= M O ~ OO0 O ~ O
(Qv]

S N O~ O|H < ~ O
(Qv]

®

> |l | ® o ol & o0 o

Mm N < © Ol 1O O O
o

(Vp)

VJﬁ M M IO 00| O AN IO o

= 0

929 i & 0|0 o b ®©
C T |l m + 0= <+ © o
-

O

9 a

L o7 ® »m v~ < ~ O
4

£

T = |©®m < 1O~ N~ A

=i

v . |N O © oo mo o
mm O~ N M~ 4 O N O
5 v

T 2| oo N o o <
o S

O g |H 0o ™M o m 1o <
2 ©
mx45oooooo909
(QV]

5 0 |—= O o N © — <
» U

O = |l 1O AN MO O = 1O I~

L.

el.

el.

Recursively sort quadrants,

top —, bottom <+

1 1 2 312 2 2 3

33 3 3|45 56

34 4 5]6 6 7 7

b 83 3|9 9 9 9
1 1002 2 10
4 4 3 2|5 4 4 3
/(6 5 5|9 8 7 7
9 9 3 3/9 9 99

For example, assume that

this 8 x 8 array Is in cells:

31415 9 26
b 353 9 7 9 3

2 3 3 4606 2 6 4

33383 27 95

0 2 8 38 4 1 9 7

1 6 9 3 9 9 37
5 1 05 8 2009

(4 9 4 4 5 9 2

L

)
3
3
3
)
)
)

%”1

(QV]

mqra — - N O 0O
o

| -

%n11334579

b

- M O ~ OO0 O ~ O

(qv]

S N O~ O|H < ~ O

« .

W% N O O OOlN < 0o o

Mm N < © Ol 1O O O
o

(Vp)

VJﬁ M M IO 00| O AN IO o

= 0

9 'l o 0|l » 10 ©

C T |l <+ 0= <+ © o

-

O

9 a
O |m ™ m» v+ < ~ O

o 5

o s

Mhak © O < 1O~ N~ O
0,

4

eM N OO OO M O O

E 'l o~ &~ 4 & & 1

5 v

T 2| oo N o o <
o S

O g |H 0o < ™M o m 1o <

2

— N (N < O ©O 00 Oy O) |

m N N OO OO O

O O N M ™M IO O 0O

S L o o o < 1O 0 ©

U (O

V5 | A oo & < © 0o o

T o

nwn11334579

p

- M O ~ Ol ™ ~ O

QY]

S N O~ O+ < ~ O

Q]

©

> |l | o ola & o0 o

Mm N < © ol I O O
o

wn

S DM MmO 0O N 1 ©

= 0

P9 't & 0|0 » b ®©

65|

= N <+ O < © O

O

O o

L o|w ®mmuw~ < ~ O
4

o s

T = O O < 1O~ N~ O

S o

v O |l o © o o m o o

mn

O M M O N~ N~ O O
— N < IO~ N~ O O
n N N < 1O © 0O O O
m N N < 1O O O O O
. O N M M 1 IO 0O
S 2 o m o < 100 0 ©
C (T
V' 5 |7 4 o - < © 0o o
Y o
%n11334579
r
c M O ~ OO0 O ~ O
0
= N IO~ O|lH S ~ O
O
R
> | |V 1w o ola &+ © O
Mm N < © Ol 1O O O
O
Vg
VJﬁ M M IO 00O AN IO o
= 0
P9 'l cd v & 0|0 » b ®
= .
W% — N <t Ol < O o
O o
%mO — M M WO H <~ O
4

O M M © ~ N~ O O
— NS OO~ N~ O O
- N N < 1O © 0 O O
m N N 1O © O O O
O O N M ™M IO O 0O
S L o o o < 1O 0 ©
U (O
V5 |m A oo & < © 0o o
T o
nwn11334579
¥
c M © ~ OO O ~ O
QY]
S N O~ Ol < ~ O
Q]
T
> | |V w o ol 0o o
Mm N < © ol I O O
O
wn
S DM MmO 0O N 1 ©
= 0O
P9 'l & 0|0 o b ®©
= .
WH — N < 0O H <t © O
O o
Damo — N M WOt~ O
4

)
5
|
3
)
3
)
3

O 5 -/ | \N | VT k) | N [I™ | W | I
U (@©
V ¢ lolcn|mm|wo|<|0|0 |
£ 0
O £ lom|m|lo|lgt|o|~|o
U) @©
O M M O~ M~ O O
— AN < O~ N~ O O
- N AN < 1O © 0 O O
m N AN < 1O © O O O
. O N M M 1 IO 0O
S 2 o m o < 10 0 ©
C (T
V' 5 |7 4 o - < © 0o o
© o
%wn — = N M < IO M~ O
¥
c M O ~ OO0 ™ ~ O
0
S N IO~ O|lH S ~ O
O
T .
>l |V w o ol v ©o o
Mm N < © Ol 1O O O
O
Vg
Y M M IO 00O AN IO o
> 0
D o

Sort each row in

alternately <, —:

00011 1

322 2 2 2

3 3 3 3 3 4

6 55 5 4 3

4 4 4 5 6 6

087 7 6 5

7 8 88 9 9

0 9 99 9 ¢

Sort each column

in parallel:

111107012 (2]1(0
111121212223

313(3(3(4|4/4|3

31413|3|5]|5|5|6

41414156677

b16(5(5|9|8|7 |7
7181839191919
919|1818[(9]9]9]9

j1adrants,

2
5

9

9

1

9

9

—= N[|| | ~|W | |00
m N | |||~ ||
(O
(-
W N | OO O | O
m g — ([N | [0 | O
>
M Y ol |||~ |0]|o
(O
V c locd|lm|wo| |0 |0 |
£ o
o x Ol ||t ||~
V)
O M M O© ~~ ~ O O
— ANt OO~ N~ O O
- N AN < OO 0 o O
m N AN OO O O O
O O N M M 1 IO 0O
S 2L o m o < 10 0 ©
W (©
V' 5 |7 4 o - < © 0o o
© o
%w = —N = N N T O M~ O

—= N lH |t | OO~ |0
ﬂra N[l || | ~|WO | |00
(@]
o - |H|lN|ISS | ||l oo
C
W N gt O|lO ||
O ¥ Il N|O| 1| |~|]0 |
>
M O ol |m|w||~]|0|o
(O
V c locd|lmm|wo||0 |0 |
£ O
o = Ol ||t ||~
V) (O
O M M O© ~~ ~ O O
— N < O~ I~ O O
- N N < OO 0 O O
m N N OO O O O
O O N M ™M IO O 0O
S L o o o < 1O 0 ©
M (T
V5 | A oo & < © 0o o
o
nmuu I= — = NN < O M~ O

ol

O =
U (v
Vv 5 o o - 0o 0o o o
o
%n03346799
= N | |||~ | |00
© N | = || O|~|O| |00
Qv
Q0 - A |lN|[F | Nn|lO|v || o
= 7
= | H|lN|n |||l |o|o
z |
O — | AN | [WO|[WO|M~]|00 |
>
Mm ol ol |~
(qv]
V c om0 |0 |
£ O
O £ |loln|lm|lo|ld|lo~|o
V) @©
O M M © ~ ~ O O
— N < IO~ N~ O O
- N AN < IO © 0 O o
m N AN < IO © O O O
. O N M M 1 IO 0O
-

)
)
5
3
:

)
3
3

— | — (N O <5 O O Oy 0O |
m — AN " S O O O O
O — N ™M O IO N~ 0 O
S L o o < 1O~ 0 O
U (v
Vv 5 o o s 0 o o o
T o
nwn O M N I © ~ O O
—= Nl | ||~ | |00
© N|—= |||~ |O| |00
(Qv]
o - ANt ||l |lwv|o|o
-
W |l N |t |lOo|O ||
O ¥ — AN |||~ |
>
Mm ola|m|w|t|~]|0]|
(@v]
V c om0 |0 |
£ O
O £ oo |||~
V) @
O M M © ~ ~ O O
— AN S OO~~~ O O

— AN OO < IO ™~ 00 O

— AN M <t IO~ 00 O

n — AN M < 1O O O

m — AN M St © O O O

. — N ™M 1O 1O N~ 0 O

S L o »m < 0~ 0 o
W (©

Vv 5 o o - 10 0o o o
© o

%w c |[©O MO O < O© ~ O O

= N |||~ ||

m N | |||~ |]|

(O
(-

W AN |||l oo

m g — ([N | [0 | O
>

M Y ol |||~ 0|
(O

V c locdd|lm|wo| |0 |0 |
£ o

O X lolm|lm|loo|it|lo|~|o
V)

— N M < O~ 0 O
— N M < O~ 0 O
n — N M < 0O O o O
m — AN MM St O O O O
O — N ™M O IO N~ 0 O
S L o o < 1O~ 0 o
U (O
v 5 o o s 0 o o o
T o
nwn O M MO < © &~ O O
—= N[l |||~ |O |00
© N[H |||~ | |©
gV
o - HlN|[S | M|l || oo
-
W .l |t |lo|o oo
O Y Il N|O |||~ |]0 |
>,
Mm olN|m|w|t|~]0]|o
Q)
V o lolnn|mm|w|< |00 |
£ o
O £ ool |~
V) @@

)
)
5
)
:

3
)

C \—/ \—r’ N \") ~N =) | ™= NS F)
(@]
VD v ol | |wv|o|0 |
+ @)
O Ol N| M |<T | |©O© |00 | D
A
— AN O < IO ™~ 00 O
— AN M <t IO~ 00 O
n — AN Nt OO O O
m — AN Nt O O O O
. — N ™M 1O 1O N~ 0 O
S 2 o m & 1O~ 0 O
W (©
Vv 5 o o - 10 0o o o
© o
%w c |[© MO O < O© ~ O O
— N[|| | ~|W | |00
m N | |||~ ||
(O
-
W — | N | gl |lo|o
m g — ([N | [N | O
C

Sort each row in

(— or — as desire

00011 1

2 2 2 2 2 9

3 3 3 3 3 3

4 4 4 4 4 4

555 5 5 5

6 6 7 7 7 7

8 8 8 8 8

0 9 99 9 ¢

Sort each column

in parallel:

0001|1111

312222222

31313133333

4445|4444

6/5/5|5/6|5]5]|5

(18|7|7|6|6|7|7
918|18|18[9]9|8]|8
9191919191999

arallel,

3

3

9
8

9
8

= — || v ol | oo
m — N M Tt O~
S o
o8P | HlN|m| ||~ o
cC .=
T Y AN |||~ O
S ©
O v || N | |wv|~|00 |
ha
S ol | g |lwv|~]|0|o
)
VD v ol | |wv|o|0 |
._HO
O OIN M |<T | |©O© |00 | D
A+
— AN O < IO ™~ 00 O
— AN M <t IO~ 00 O
n — AN M S 1O O O
m — AN M St O O O O
. — N ™M 1O 1O N~ 0 O
S L o m 0~ 0 o
W (©
Vv 5 o o - 0o 0o o o
© o
S c|omm<s o~ o O

= — N MmOl |o | o
© — N M| T |O |~ O
2 5
O 5 || N OO~ |O
c .=
T Y AN M| ||~ |00 O
s
O n |H| N[|O|N~]|00|OD
ha
C 4 Ol N M| |||]|
(O
V L ol |||l ||
+ O
® O N M| T |WO|O |0 |D
n 4
— AN M T IO M~ 00 O
— AN O T O M~ 00 O
- — AN N T O O O O
m — NN T O O O O
O — N ™M 1O IO N~ 0 O
S L o o < 1O~ 0 o
U (O
Vv 5 o o s 0 0o o o
T o
nwn O M MO < © &~ O O

[

| - v/ O o
| WV = ee
n 22 b ox X
S S ® D =
hanqra o = o
O o0 o U 0O =2
d, — N Mmool |o | o
m — N Mt O~
2 5
O 5 |V | N OO~ |O
cC .=
.W% — | N[| O~ | O
=<
O v |m| N | |wv|~|00 |
ha
O Ol N M| | O~ | O
s 1
VD ¢ ol | |wv|o|0 |
._HO
%% Ol N M |<T | |©O© |00 | D
— AN O < IO ™~ 00 O
— AN 0N < IO~ 00 O
- — AN N < OO O O
m — N 0N <t O O O O
. — N ™M 1O 1O N~ 0 O
hd p— 4 gy, 1 A WA g,y N V. U . N

© 00 ~N O A W N M

© 00 ~N O M W N M

Sort each row in parallel, Chips are in fact €

< or — as desired: towards having thi
00011111 parallelism and co
2 2 2. 2 2 2 2 3 GPUs: parallel +
33 3 3 3 3 3 3 Old Xeon Phi: pa
A 4 4 4 4 4 4 5 New Xeon Phi: pz
b 555 55 6 6
6 6 7 7 7 7 [3
8 8 88 389 9 9
999 9 9 9 9 9

Sort each row in parallel, Chips are in fact evolving

<— or — as desired: towards having this much
000711111 parallelism and communicat
2 2 2 2. 2 2 2 3 GPUs: parallel + global RA
33 3 3 3 3 3 3 Old Xeon Phi: parallel + rir
4 4 4 4 4 4 4 5 New Xeon Phi: parallel 4 n
5 55 5 5 5 6 6

6 6 7 7 7 7 7 8

8 8 3 88 9 9 9

9 99 9 9 9 9 9

Sort each row in parallel, Chips are in fact evolving

<— or — as desired: towards having this much
00011111 parallelism and communication.
2 2 2 2 2 2 2 3 GPUs: parallel + global RAM.
33 3 3 3 3 3 3 Old Xeon Phi: parallel + ring.
4 4 4 4 4 4 4 5 New Xeon Phi: parallel + mesh.
b 55 5 5 5 6 6

6 6 7 7 7 7 7 8

8 383 8 8 9 99

99 99 9 9 99

Sort each row in parallel, Chips are in fact evolving

<— or — as desired: towards having this much
00011111 parallelism and communication.

2 2 2 2 2 2 2 3 GPUs: parallel + global RAM.
33 3 3 3 3 3 3 Old Xeon Phi: parallel + ring.

4 4 4 4 4 4 4 5 New Xeon Phi: parallel + mesh.
5 5 5 5 5 5 6 6 Algorithm designers

6 6 7 7 7 7 7 8 don't even get the right exponent
3 88889 9 0 without taking this into account.
99 9 99 9 99

Sort each row in parallel, Chips are in fact evolving

< or — as desired: towards having this much
00011111 parallelism and communication.

2 2 2 2 2 2 2 3 GPUs: parallel + global RAM.

3 3 3 3 3 3 3 3 Old Xeon Phi: parallel + ring.

A 4 4 4 4 4 4 5 New Xeon Phi: parallel + mesh.
5 5 5 5 5 5 6 6 Algorithm designers

6 6 7 7 7 7 7 8 don't even get the right exponent
3 88889 9 0 without taking this into account.
O 9999 9 9 9 Shock waves into high levels of

domain-specific algorithm design:
e.g., for “NFS" factorization,
replace “sieving” with “ECM" .

h row in parallel, Chips are in fact evolving The futl
, as desired: towaljdls. havmj this muc-h | At this |
1 1 1 1 1 parallelism and communication. say, “BL
) 2 2 2 2 3 GPUs: parallel + global RAM. P, and 2
' 3 3 3 3 3 Old Xeon Phi: parallel + ring. will proc
4 4 4 4 5 New Xeon Phi: parallel + mesh. No, the
- . . would h.
. 5 5 5 6 6 Algorithm designers
. , . (much r
7 7 7 7 8 don’'t even get the right exponent
' without taking this into account we have
> 8 3 9 99 | be unrel
) 0 9 9 0 O Shock waves into high levels of alternat
' domain-specific algorithm design: class of
e.g., for “NFS" factorization, far bette
replace “sieving” with "ECM" .

arallel Chips are in fact evolving The future of com

| towards having this much At this point man

parallelism and communication. .
say, "But he shou,

GPUs: parallel + global RAM. P and an optimiz
Old Xeon Phi: parallel + ring. will produce Q.”
New Xeon Phi: parallel + mesh. “No, the optimizii

would have to be

Algorithm designers
(much more so th

don’'t even get the right exponent
we have now) tha

be unreliable.” | F

without taking this into account.

O O | N|O | P~ WD
O O | 0| O |G|l W W | K

Shock waves into high levels of alternative to proy
domain-specific algorithm design: class of software v
e.g., for “NFS" factorization, far better. . ..

replace “sieving” with "ECM".

Chips are in fact evolving
towards having this much

parallelism and communication.

GPUs: parallel + global RAM.
Old Xeon Phi: parallel + ring.

New Xeon Phi: parallel + mesh.

Algorithm designers

don’'t even get the right exponent

without taking this into account.

Shock waves into high leve

domain-specific algorithm ¢

s of
esign:

e.g., for “NFS" factorization,

replace “sieving” with "ECM" .

The future of compilers

At this point many readers |
say, "But he should only wr
P, and an optimizing compi
will produce Q.” To this | s:
“No, the optimizing compile
would have to be so complic
(much more so than anythir
we have now) that it will in
be unreliable.” | have anoth
alternative to propose, a ne
class of software which will
far better. . . .

Chips are in

fact evolving

towards having this much

parallelism and communication.

GPUs: para
Old Xeon P

lel 4+ global RAM.

ni: parallel 4 ring.

New Xeon Phi: parallel + mesh.

Algorithm designers

don't even get the right exponent

without taking this into account.

Shock waves into high levels of

domain-specific algorithm design:

e.g., for “NFS" factorization,

replace “sieving” with "ECM".

The future of compilers

At this point many readers will
say, "“But he should only write
P, and an optimizing compiler
will produce Q.”" To this | say,
“No, the optimizing compiler
would have to be so complicated
(much more so than anything
we have now) that it will in fact
be unreliable.” | have another
alternative to propose, a new
class of software which will be
far better. . ..

e in fact evolving
having this much

sm and communication.

varallel + global RAM.

n Phi:

parallel + ring.

on Phi: parallel + mesh.

m designers

en get the right exponent

taking this into account.

aves Into high leve

specific algorithm ¢

s of
esign:

“NFS" factorization,
‘sieving” with “ECM" .

The future of compilers

At this point many readers will
say, "But he should only write
P, and an optimizing compiler
will produce Q.”" To this | say,
“No, the optimizing compiler
would have to be so complicated
(much more so than anything
we have now) that it will in fact
be unreliable.” | have another
alternative to propose, a new
class of software which will be
far better. . . .

For 15 y
trying tc
compilet
quality c
of the M
are cons
than any
compilin
to prod
various
coder ik
them in
automat
ago, sev
at a typ

volving
S much

mmunication.

global RAM.
allel 4+ ring.
irallel + mesh.

rs
' right exponent
s Into account.

high levels of

ocorithm design:
ctorization,
vith “ECM™ .

The future of compilers

At this point many readers will
say, "“But he should only write
P, and an optimizing compiler
will produce Q.” To this | say,
“No, the optimizing compiler
would have to be so complicated
(much more so than anything
we have now) that it will in fact
be unreliable.” | have another
alternative to propose, a new
class of software which will be
far better. . ..

For 15 years or so
trying to think of
compiler that real
quality code. For
of the Mix prograi
are considerably n
than any of today
compiling scheme:s
to produce. I've ti
various techniques
coder like myself
them into some s)
automatic system.
ago, several stude
at a typical sampl

on.

g,
1esh.

onent
ount.

; of
2SIgN:;

1"

The future of compilers

At this point many readers will
say, "But he should only write
P, and an optimizing compiler
will produce Q.”" To this | say,
“No, the optimizing compiler
would have to be so complicated
(much more so than anything
we have now) that it will in fact
be unreliable.” | have another
alternative to propose, a new
class of software which will be
far better. . . .

For 15 years or so | have be
trying to think of how to wr
compiler that really produce
quality code. For example, |
of the Mix programs in my |
are considerably more efficie
than any of today’s most vi:
compiling schemes would be
to produce. I've tried to stu
various techniques that a ha
coder like myself uses, and 1
them into some systematic .
automatic system. A few ye
ago, several students and | |
at a typical sample of FOR'|

The future of compilers

At this point many readers will
say, "“But he should only write
P, and an optimizing compiler
will produce Q.” To this | say,
“No, the optimizing compiler
would have to be so complicated
(much more so than anything
we have now) that it will in fact
be unreliable.” | have another
alternative to propose, a new
class of software which will be
far better. . ..

For 15 years or so | have been
trying to think of how to write a
compiler that really produces top
quality code. For example, most
of the Mix programs in my books
are considerably more efficient
than any of today’s most visionary
compiling schemes would be able
to produce. I've tried to study the
various techniques that a hand-
coder like myself uses, and to fit
them into some systematic and
automatic system. A few years

ago, several students and | looked
at a typical sample of FORTRAN

ire of compilers

boint many readers will
t he should only write
n optimizing compiler
luce Q.” To this | say,

2 optimizing compiler
qve to be so complicated
nore so than anything
now) that it will in fact
lable.” | have another
ve to propose, a new
software which will be

>J

For 15 years or so | have been
trying to think of how to write a
compiler that really produces top
quality code. For example, most
of the Mix programs in my books
are considerably more efficient
than any of today’s most visionary
compiling schemes would be able
to produce. |'ve tried to study the
various techniques that a hand-
coder like myself uses, and to fit
them into some systematic and
automatic system. A few years

ago, several students and | looked
at a typical sample of FORTRAN

program
hard to
could pr
compete
optimize
found ol
up agair
compilel
with the
Know pr
whether
etc. An
good lar
such a ¢

pilers

v readers will
'd only write
ing compiler

[o this | say,

1g compiler

so complicated
an anything

t it will in fact
ave another

)OoSse, a hew
vhich will be

For 15 years or so | have been
trying to think of how to write a
compiler that really produces top
quality code. For example, most
of the Mix programs in my books
are considerably more efficient
than any of today’s most visionary
compiling schemes would be able
to produce. I've tried to study the
various techniques that a hand-
coder like myself uses, and to fit
them into some systematic and
automatic system. A few years

ago, several students and | looked
at a typical sample of FORTRAN

programs [51], anc
hard to see how a
could produce coc
compete with our
optimized object
found ourselves al
up against the sar
compiler needs to
with the programr
know properties o
whether certain ce
etc. And we coulc
good language in

such a dialog.

will

te

Y,

r

“ated

18
fact

er

be

For 15 years or so | have been
trying to think of how to write a
compiler that really produces top
quality code. For example, most
of the Mix programs in my books
are considerably more efficient
than any of today’s most visionary
compiling schemes would be able
to produce. |'ve tried to study the
various techniques that a hand-
coder like myself uses, and to fit
them into some systematic and
automatic system. A few years

ago, several students and | looked
at a typical sample of FORTRAN

programs [51], and we all tr
hard to see how a machine

could produce code that wo
compete with our best hana
optimized object programes.

found ourselves always runn
up against the same probler,
compiler needs to be in a di
with the programmer; it nee
know properties of the data,
whether certain cases can al
etc. And we couldn’t think

good language in which to |
such a dialog.

For 15 years or so | have been
trying to think of how to write a
compiler that really produces top
quality code. For example, most
of the Mix programs in my books
are considerably more efficient
than any of today’s most visionary
compiling schemes would be able
to produce. I've tried to study the
various techniques that a hand-
coder like myself uses, and to fit
them into some systematic and
automatic system. A few years

ago, several students and | looked
at a typical sample of FORTRAN

programs [51], and we all tried
hard to see how a machine

could produce code that would
compete with our best hand-
optimized object programs. We
found ourselves always running
up against the same problem: the
compiler needs to be in a dialog
with the programmer; it needs to
know properties of the data, and
whether certain cases can arise,
etc. And we couldn’t think of a
good language in which to have
such a dialog.

ears or so | have been

) think of how to write a

- that really produces top
ode. For example, most
lix programs in my books
iderably more efficient

/ of today’s most visionary
g schemes would be able
ice. l've tried to study the
fechniques that a hand-

e myself uses, and to fit
‘0 some systematic and

ic system. A few years

eral students and | looked
ical sample of FORTRAN

programs [51], and we all tried
hard to see how a machine

could produce code that would
compete with our best hand-
optimized object programs. We
found ourselves always running
up against the same problem: the
compiler needs to be in a dialog
with the programmer; it needs to
know properties of the data, and
whether certain cases can arise,
etc. And we couldn’t think of a
good language in which to have
such a dialog.

For som
me) haa
optimize
always r
the-scen
In the
the prog
to know
lifted frc
ran acro
[42] tha
should ¢t
optimizi
Its optin
languag

| have been
how to write a
'y produces top
example, most
ns in my books
10ore efficient
'S most visionary
5 would be able
ried to study the
' that a hand-
1ses, and to fit
stematic and

A few years
nts and | looked
e of FORTRAN

programs [51], and we all tried
hard to see how a machine

could produce code that would
compete with our best hand-
optimized object programs. We
found ourselves always running
up against the same problem: the
compiler needs to be in a dialog
with the programmer; it needs to
know properties of the data, and
whether certain cases can arise,
etc. And we couldn’t think of a
good language in which to have
such a dialog.

For some reason v
me) had a mental
optimization, nam
always regarded it
the-scenes activity
In the machine lar
the programmer s
to know. This vel
lifted from my eye
ran across a rema
[42] that, ideally, .
should be designe
optimizing compil
Its optimizations |
language. Of cout

en
Ite a
s top
nost
books

sionary
 able
dy the
nd-

o fit
and
ars
ooked
"RAN

programs [51], and we all tried
hard to see how a machine

could produce code that would
compete with our best hand-
optimized object programs. We
found ourselves always running
up against the same problem: the
compiler needs to be in a dialog
with the programmer; it needs to
know properties of the data, and
whether certain cases can arise,
etc. And we couldn’t think of a
good language in which to have
such a dialog.

For some reason we all (esp
me) had a mental block abc
optimization, namely that w
always regarded it as a behi
the-scenes activity, to be do
In the machine language, wi
the programmer isn’t suppo:
to know. This veil was first
lifted from my eyes ... whe
ran across a remark by Hoai
[42] that, ideally, a language
should be designed so that :
optimizing compiler can des
Its optimizations in the sour
language. Of course! . ..

programs [51], and we all tried
hard to see how a machine

could produce code that would
compete with our best hand-
optimized object programs. We
found ourselves always running
up against the same problem: the
compiler needs to be in a dialog
with the programmer; it needs to
know properties of the data, and
whether certain cases can arise,
etc. And we couldn’t think of a
good language in which to have
such a dialog.

For some reason we all (especially
me) had a mental block about
optimization, namely that we
always regarded it as a behind-
the-scenes activity, to be done
In the machine language, which
the programmer isn’'t supposed
to know. This veil was first
lifted from my eyes ... when |
ran across a remark by Hoare
[42] that, ideally, a language
should be designed so that an
optimizing compiler can describe
Iits optimizations in the source
language. Of course! . ..

s [51], and we all tried
see how a machine
oduce code that would

> with our best hand-

d object programs. We
irselves always running
st the same problem: the
- needs to be in a dialog
' programmer; it needs to
operties of the data, and
certain cases can arise,

1 we couldn't think of a
1guage in which to have
lalog.

For some reason we all (especially
me) had a mental block about
optimization, namely that we
always regarded it as a behind-
the-scenes activity, to be done
In the machine language, which
the programmer isn't supposed
to know. This veil was first
lifted from my eyes ... when |
ran across a remark by Hoare
[42] that, ideally, a language
should be designed so that an
optimizing compiler can describe
Its optimizations in the source
language. Of course! . ..

The tim
for prog.
systems
using su
his beau
possibly
then he
transfori
efficient
much m
than a c
one. ...
certainly
exciting
become:

1 we all tried
machine

le that would
best hand-
rograms. We
ways running
ne problem: the
be in a dialog
ner: it needs to
f the data, and
)SES can arise,
In't think of a
which to have

For some reason we all (especially
me) had a mental block about
optimization, namely that we
always regarded it as a behind-
the-scenes activity, to be done
In the machine language, which
the programmer isn’'t supposed
to know. This veil was first
lifted from my eyes ... when |
ran across a remark by Hoare
[42] that, ideally, a language
should be designed so that an
optimizing compiler can describe
Iits optimizations in the source
language. Of course! . ..

The time is clearly
for program-manip
systems ... The pi
using such a syste
his beautifully-stri
possibly inefficient
then he will intera
transformations tf
efficient. Such a s
much more power
than a completely
one. ... As [say,

certainly isn't my
exciting | hope th:
becomes aware of

ed

uld

We
Ing

n: the
alog
ds to
~and
ISe,
of a
1ave

For some reason we all (especially
me) had a mental block about
optimization, namely that we
always regarded it as a behind-
the-scenes activity, to be done
In the machine language, which
the programmer isn't supposed
to know. This veil was first
lifted from my eyes ... when |
ran across a remark by Hoare
[42] that, ideally, a language
should be designed so that an
optimizing compiler can describe
Iits optimizations in the source
language. Of course! . ..

The time is clearly ripe

for program-manipulation
systems ... The programme;
using such a system will wri
his beautifully-structured, b
possibly inefficient, program
then he will interactively spe
transformations that make i
efficient. Such a system wil
much more powerful and rel
than a completely automati
one. ... As | say, this idea
certainly isn’'t my own; it is
exciting | hope that everyon
becomes aware of its possib.

For some reason we all (especially
me) had a mental block about
optimization, namely that we
always regarded it as a behind-
the-scenes activity, to be done
In the machine language, which
the programmer isn't supposed
to know. This veil was first
lifted from my eyes ... when |
ran across a remark by Hoare
[42] that, ideally, a language
should be designed so that an
optimizing compiler can describe
Iits optimizations in the source
language. Of course! . ..

The time is clearly ripe

for program-manipulation
systems ... The programmer
using such a system will write
his beautifully-structured, but
possibly inefficient, program P;
then he will interactively specify
transformations that make it
efficient. Such a system will be
much more powerful and reliable
than a completely automatic
one. ... As | say, this idea
certainly isn't my own, it Is so
exciting | hope that everyone soon
becomes aware of its possibilities.

