
Binary Edwards Curves

Daniel J. Bernstein Tanja Lange

University of Illinois at Chicago and Technische Universiteit Eindhoven

djb@cr.yp.to tanja@hyperelliptic.org

09.05.2008

joint work with Reza Rezaeian Farashahi, Eindhoven

D. J. Bernstein & T. Lange cr.yp.to/papers.html#edwards2 – p. 1



Harold M. Edwards
Edwards generalized single
example x2 + y2 = 1− x2y2 by
Euler/Gauss to whole class
of curves.

Shows that – after some field
extensions – every elliptic curve
over field k of odd characteristic
is birationally equivalent to a
curve of the form
x2 + y2 = a2(1 + x2y2), a5 6= a

Edwards gives addition law for
this generalized form, shows
equivalence with Weierstrass form, proves addition law,
gives theta parameterization . . . in his paper
Bulletin of the AMS, 44, 393–422, 2007
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How to add on an Edwards curve
Let k be a field with 2 6= 0. Let d ∈ k with d 6= 0, 1.
Edwards curve:

{(x, y) ∈ k × k|x2 + y2 = 1 + dx2y2}

y

x

OO

//

Generalization covers more curves over k.

Associative operation on points
(x1, y1) + (x2, y2) = (x3, y3)

defined by Edwards addition law

x3 =
x1y2 + y1x2

1 + dx1x2y1y2

and y3 =
y1y2 − x1x2

1− dx1x2y1y2

.
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How to add on an Edwards curve
Let k be a field with 2 6= 0. Let d ∈ k with d 6= 0, 1.
Edwards curve:

{(x, y) ∈ k × k|x2 + y2 = 1 + dx2y2}

y

x

OO

//

Generalization covers more curves over k.

Associative operation on points
(x1, y1) + (x2, y2) = (x3, y3)

defined by Edwards addition law

x3 =
x1y2 + y1x2

1 + dx1x2y1y2

and y3 =
y1y2 − x1x2

1− dx1x2y1y2

.

Neutral element is (0, 1).

−(x1, y1) =(−x1, y1).

(0,−1) has order 2; (1, 0) and (−1, 0) have order 4.
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Relationship to elliptic curves
Every elliptic curve with point of order 4 is birationally
equivalent to an Edwards curve.

Let P4 = (u4, v4) have order 4 and shift u s.t. 2P4 = (0, 0).
Then Weierstrass form:

v2 = u3 + (v2
4/u

2
4 − 2u4)u

2 + u2
4u.

Define d = 1− (4u3
4
/v2

4
).

The coordinates x = v4u/(u4v), y = (u− u4)/(u + u4)
satisfy

x2 + y2 = 1 + dx2y2.

Inverse map u = u4(1 + y)/(1− y), v = v4u/(u4x).

Finitely many exceptional points. Exceptional points
have v(u + u4) = 0.

Addition on Edwards and Weierstrass corresponds.
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Nice features of the addition law
Neutral element of addition law is affine point, this
avoids special routines (for (0, 1) one of the inputs or the
result).

Addition law is symmetric in both inputs.

P + Q =

(

x1y2 + y1x2

1 + dx1x2y1y2

,
y1y2 − x1x2

1− dx1x2y1y2

)

.
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Nice features of the addition law
Neutral element of addition law is affine point, this
avoids special routines (for (0, 1) one of the inputs or the
result).

Addition law is symmetric in both inputs.

P + Q =

(

x1y2 + y1x2

1 + dx1x2y1y2

,
y1y2 − x1x2

1− dx1x2y1y2

)

.

[2]P =

(

x1y1 + y1x1

1 + dx1x1y1y1

,
y1y1 − x1x1

1− dx1x1y1y1

)

.

No reason that the denominators should be 0.

Addition law produces correct result also for doubling.

Unified group operations!

Having addition law work for doubling removes some
checks from the code.
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Complete addition law
If d is not a square in k, then there are no points at
infinity on the blow-up of the curve.

If d is not a square, the only exceptional points of the
birational equivalence are P∞ corresponding to (0, 1)
and (0, 0) corresponding to (0,−1).

If d is not a square the denominators 1 + dx1x2y1y2 and
1− dx1x2y1y2 are never 0; addition law is complete.

Edwards addition law allows omitting all checks
Neutral element is affine point on curve.
Addition works to add P and P .
Addition works to add P and −P .
Addition just works to add P and any Q.

Only complete addition law in the literature.
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Fast addition law
Very fast point addition 10M + 1S + 1D. (Even faster
with Inverted Edwards coordinates.)

Dedicated doubling formulas need only 3M + 4S.

Fastest scalar multiplication in the literature.

For comparison: IEEE standard P1363 provides “the
fastest arithmetic on elliptic curves” by using Jacobian
coordinates on Weierstrass curves.

Point addition 12M + 4S.
Doubling formulas need only 4M + 4S.

For more curve shapes, better algorithms (even for
Weierstrass curves) and many more operations (mixed
addition, re-addition, tripling, scaling,. . . ) see

www.hyperelliptic.org/EFD
for the Explicit-Formulas Database.
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Edwards Curves – a new star(fish) is born
lecture circuit:
Hoboken
Turku
Warsaw
Fort Meade, Maryland
Melbourne
Ottawa (SAC)
Dublin (ECC)
Bordeaux
Bristol
Magdeburg
Seoul
Malaysia (Asiacrypt)
Madras
Bangalore (AAECC)
...

Madrid
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One year passes . . .

. . . I feel so odd . . .
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Exceptions,2 6= 0 . . .

How can there be an incomplete set of complete curves???
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How to design a worthy binary partner?

Our wish-list early February 2008:

A binary Edwards curve should

be elliptic.

look like an Edwards curve.

have a complete addition law.

cover most (all?) ordinary binary elliptic curves.

have an easy to compute negation.

have efficient doublings.

have efficient additions.
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be elliptic.

look like an Edwards curve.
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have an easy to compute negation.
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be found before the CHES deadline, February 29th.
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Newton Polygons, odd characteristic
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x3 + y3 + 1 = 3dxyz
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• Edwards
x2 + y2 = 1 + dx2y2
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The design choices

Want x-degree ≤ 2, y-degree ≤ 2, i.e.

F (x, y) =

2
∑

i=0

2
∑

j=0

aijx
iyj .

Want symmetric formulas, i.e. aij = aji.

Want elliptic, i.e. (1, 1) needs to be an interior point.
This means a22 6= 0 or a12 = a21 6= 0.

If a22 = 0 and a12 = a21 6= 0 then there are three
non-singular points at infinity ⇒ addition law cannot be
complete (for sufficiently large fields).

Thus largest degree term x2y2 (scale by a22).
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Binary Edwards curves?

a00 + a10(x + y) + a11xy + a20(x
2 + y2) + a21xy(x + y) + x2y2

Study projective equation
a00Z

4 + a10(X + Y )Z3 + a11XY Z2 + a20(X
2 + Y 2)Z2 +

a21XY (X + Y )Z + X2Y 2 = 0
to find points at infinity (Z = 0):
0 + X2Y 2 = 0 ⇒ (1 : 0 : 0) and (0 : 1 : 0).

When are these points singular? (Then make sure that
blow-up needs field extension.) Study (1 : 0 : 0):

G(y, z) = a00z
4+a10(1+y)z3+a11yz2+a20(1+y2)z2+a21y(1+y)z+y2

Gy(y, z) = a10z
3 + a11z

2 + a21z

Gz(y, z) = a10(1 + y)z2 + a21y(1 + y)
Both derivatives vanish at (0, 0), point is singular.
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Blow-up
a00z

4 + a10(1 + y)z3 + a11yz2 + a20(1 + y2)z2 + a21y(1 + y)z + y2

Use y = uz to obtain
a00z

4 + a10(1 + uz)z3 + a11uz3 + a20(1 + u2z2)z2 + a21u(1 +

uz)z2 + u2z2

and divide by z2 to obtain

H(u, z) = a00z
2+a10(1+uz)z+a11uz+a20(1+u2z2)+a21u(1+uz)+u2.

Points with z = 0 on blow-up:
H(u, 0) = a20 + a21u + u2

Point is defined over k if u2 + a21u + a20 is reducible.

Want that blow-up is defined only over quadratic extension,
so in particular a20, a21 6= 0.
Then Hu(u, z) = a10z

2 + a11z + a21 is nonzero in z = 0, so
blow-up is non-singular.
Scale curve by x → a21x, y → a21y to get a21 = 1.
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Some choices
F (x, y) = a00+a10(x+y)+a11xy+a20(x

2+y2)+xy(x+y)+x2y2

Fx(x, y) = a10 + a11y + y2

Fy(x, y) = a10 + a11x + x2

At most one of a10 and a00 can be 0.

Symmetry enforces that with (x, y) also (y, x) is on curve.
Simplest possible negation: −(x, y) = (y, x). There are other
choices, several with surprisingly expensive negation.

We want an ordinary binary curve, i.e. one with a point of
order 2. So there should be two points fixed under negation.
Fixed points are (α, α) and (α +

√
a11, α +

√
a11), where

α, α +
√

a11 are the solutions of a00 + a11x
2 + x4.

To have two different solutions request a11 6= 0.
Most convenient choices are a00 = 0, a11 = 1, neutral
element (0, 0), point of order 2 is (1, 1).
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Binary Edwards curves

·
·
·

·
·
·

·
·
·

·
·
·

•
•

•

•

•

•
••?

?

?

?

?

Let d1 6= 0 and d2 6= d2
1
+ d1 then

EB,d1,d2
: d1(x + y) + d2(x

2 + y2) = xy + xy(x + y) + x2y2,

is a binary Edwards curve with parameters d1, d2.
Map (x, y) 7→ (u, v) defined by

u = d1(d
2
1 + d1 + d2)(x + y)/(xy + d1(x + y)),

v = d1(d
2
1 + d1 + d2)(x/(xy + d1(x + y)) + d1 + 1)

is a birational equivalence from EB,d1,d2
to the elliptic curve

v2 + uv = u3 + (d2
1 + d2)u

2 + d4
1(d

4
1 + d2

1 + d2
2),

an ordinary elliptic curve in Weierstrass form.
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Properties of binary Edwards curves

EB,d1,d2
: d1(x + y) + d2(x

2 + y2) = xy + xy(x + y) + x2y2

(x3, y3) = (x1, y1) + (x2, y2) with

x3 =
d1(x1 + x2) + d2(x1 + y1)(x2 + y2) + (x1 + x2

1
)(x2(y1 + y2 + 1) + y1y2)

d1 + (x1 + x2
1
)(x2 + y2)

,

y3 =
d1(y1 + y2) + d2(x1 + y1)(x2 + y2) + (y1 + y2

1
)(y2(x1 + x2 + 1) + x1x2)

d1 + (y1 + y2
1
)(x2 + y2)

.

if denominators are nonzero.

Neutral element is (0, 0).

(1, 1) has order 2.

−(x, y) = (y, x).

(x1, y1) + (1, 1) = (x1 + 1, y1 + 1).
D. J. Bernstein & T. Lange cr.yp.to/papers.html#edwards2 – p. 18



Edwards curves over finite fields
Addition law for curves with Tr(d2) = 1 is complete.

Denominators d1 + (x1 + x2
1
)(x2 + y2) and

d1 + (y1 + y2
1
)(x2 + y2) are nonzero:

If x2 + y2 = 0 then the denominators are d1 6= 0.
Otherwise d1/(x2 + y2) = x1 + x2

1
and

d1

x2 + y2

=
d1(x2 + y2)

x2
2
+ y2

2

=
d2(x

2
2
+ y2

2
) + x2y2 + x2y2(x2 + y2) + x2

2
y2
2

x2
2
+ y2

2

= d2 +
x2y2 + x2y2(x2 + y2) + y2

2

x2
2

+ y2
2

+
y2
2

+ x2
2
y2
2

x2
2

+ y2
2

= d2 +
y2 + x2y2

x2 + y2

+
y2
2

+ x2
2
y2
2

x2
2
+ y2

2

So Tr(d2) = Tr(x1 + x2
1
) = 0, contradiction.
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Generality & doubling

Every ordinary elliptic curve over IF2n is birationally
equivalent to a complete binary Edwards curve if n ≥ 3.
Proof uses counting argument and Hasse bound.

Nice doubling formulas (use curve equation to simplify)

x3 = 1 +
d1 + d2(x

2
1
+ y2

1
) + y2

1
+ y4

1

d1 + x2
1

+ y2
1

+ (d2/d1)(x4
1
+ y4

1
)
,

y3 = 1 +
d1 + d2(x

2
1

+ y2
1
) + x2

1
+ x4

1

d1 + x2
1

+ y2
1

+ (d2/d1)(x4
1
+ y4

1
)

In projective coordinates:
2M+ 6S+3D, where the 3D are multiplications by d1,
d2/d1, and d2.
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Operation counts
These curves are the first binary curves to offer complete
addition laws. They are also surprisingly fast:

ADD on binary Edwards curves takes 21M+1S+4D,
mADD takes 13M+3S+3D.

Latest results (today, 4 a.m.) ADD in 18M+2S+7D.

Differential addition (P + Q given P,Q, and Q− P ) takes
8M+1S+2D; mixed version takes 6M+1S+2D.

Differential addition+doubling (typical step in
Montgomery ladder) takes 8M+4S+2D; mixed version
takes 6M+4S+2D.

See our preprint (ePrint 2008/171) or
cr.yp.to/papers.html#edwards2

for full details, speedups for d1 = d2, how to choose small
coefficients, affine formulas, . . .
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Comparison with other doubling formulas
Assume curves are chosen with small coefficients.

System Cost of doubling
Projective 7M+4S; see HEHCC
Jacobian 4M+5S; see HEHCC
Lopez-Dahab 3M+5S; Lopez-Dahab
Edwards 2M+6S; new, complete
Lopez-Dahab a2 = 1 2M+5S; Kim-Kim

Explicit-Formulas Database
www.hyperelliptic.org/EFD

for characteristic 2 is in preparation; our paper already has
some speed-ups for Lopez-Dahab coordinates.
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Happy End!
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