Binary Edwards Curves

Daniel J. Bernstein

Tanja Lange

University of Illinois at Chicago and djb@cr.yp.to

Technische Universiteit Eindhoven tanja@hyperelliptic.org

09.05.2008

joint work with Reza Rezaeian Farashahi, Eindhoven

Harold M. Edwards

- Edwards generalized single example $x^2 + y^2 = 1 x^2y^2$ by Euler/Gauss to whole class of curves.
- Shows that after some field extensions – every elliptic curve over field k of odd characteristic is birationally equivalent to a curve of the form

$$x^2 + y^2 = a^2(1 + x^2y^2), a^5 \neq a$$

Edwards gives addition law for this generalized form, shows equivalence with Weierstrass form, proves addition law, gives theta parameterization . . . in his paper Bulletin of the AMS, 44, 393–422, 2007

Let k be a field with $2 \neq 0$. Let $d \in k$ with $d \neq 0, 1$.

$$\{(x,y) \in k \times k | x^2 + y^2 = 1 + dx^2 y^2 \}$$

Generalization covers more curves over k.

Associative operation on points

$$(x_1, y_1) + (x_2, y_2) = (x_3, y_3)$$

$$x_3 = \frac{x_1y_2 + y_1x_2}{1 + dx_1x_2y_1y_2}$$
 and $y_3 = \frac{y_1y_2 - x_1x_2}{1 - dx_1x_2y_1y_2}$

Let k be a field with $2 \neq 0$. Let $d \in k$ with $d \neq 0, 1$.

Edwards curve:

$$\{(x,y) \in k \times k | x^2 + y^2 = 1 + dx^2 y^2 \}$$

Generalization covers more curves over k.

Associative operation on points

$$(x_1, y_1) + (x_2, y_2) = (x_3, y_3)$$

defined by Edwards addition law

$$x_3 = \frac{x_1y_2 + y_1x_2}{1 + dx_1x_2y_1y_2}$$
 and $y_3 = \frac{y_1y_2 - x_1x_2}{1 - dx_1x_2y_1y_2}$

Neutral element is

Let k be a field with $2 \neq 0$. Let $d \in k$ with $d \neq 0, 1$.

$$\{(x,y) \in k \times k | x^2 + y^2 = 1 + dx^2 y^2 \}$$

Generalization covers more curves over k.

Associative operation on points

$$(x_1, y_1) + (x_2, y_2) = (x_3, y_3)$$

defined by Edwards addition law

ullet Neutral element is (0,1).

Let k be a field with $2 \neq 0$. Let $d \in k$ with $d \neq 0, 1$.

$$\{(x,y) \in k \times k | x^2 + y^2 = 1 + dx^2 y^2 \}$$

Generalization covers more curves over k.

Associative operation on points

$$(x_1, y_1) + (x_2, y_2) = (x_3, y_3)$$

$$x_3 = \frac{x_1y_2 + y_1x_2}{1 + dx_1x_2y_1y_2}$$
 and $y_3 = \frac{y_1y_2 - x_1x_2}{1 - dx_1x_2y_1y_2}$

- ightharpoonup Neutral element is (0,1).
- $-(x_1,y_1) =$

Let k be a field with $2 \neq 0$. Let $d \in k$ with $d \neq 0, 1$.

$$\{(x,y) \in k \times k | x^2 + y^2 = 1 + dx^2 y^2 \}$$

Generalization covers more curves over k.

Associative operation on points

$$(x_1, y_1) + (x_2, y_2) = (x_3, y_3)$$

$$x_3 = \frac{x_1y_2 + y_1x_2}{1 + dx_1x_2y_1y_2}$$
 and $y_3 = \frac{y_1y_2 - x_1x_2}{1 - dx_1x_2y_1y_2}$

- ightharpoonup Neutral element is (0,1).
- $-(x_1,y_1)=(-x_1,y_1).$

Let k be a field with $2 \neq 0$. Let $d \in k$ with $d \neq 0, 1$.

$$\{(x,y) \in k \times k | x^2 + y^2 = 1 + dx^2 y^2 \}$$

Generalization covers more curves over k.

Associative operation on points

$$(x_1, y_1) + (x_2, y_2) = (x_3, y_3)$$

$$x_3 = \frac{x_1y_2 + y_1x_2}{1 + dx_1x_2y_1y_2}$$
 and $y_3 = \frac{y_1y_2 - x_1x_2}{1 - dx_1x_2y_1y_2}$

- ightharpoonup Neutral element is (0,1).
- $-(x_1,y_1)=(-x_1,y_1).$
- (0,-1) has order 2; (1,0) and (-1,0) have order 4.

Relationship to elliptic curves

- Every elliptic curve with point of order 4 is birationally equivalent to an Edwards curve.
- Let $P_4 = (u_4, v_4)$ have order 4 and shift u s.t. $2P_4 = (0, 0)$. Then Weierstrass form:

$$v^2 = u^3 + (v_4^2/u_4^2 - 2u_4)u^2 + u_4^2u.$$

- Define $d = 1 (4u_4^3/v_4^2)$.
- The coordinates $x = v_4 u/(u_4 v), \ y = (u u_4)/(u + u_4)$ satisfy

$$x^2 + y^2 = 1 + dx^2 y^2.$$

- Inverse map $u = u_4(1+y)/(1-y), \ v = v_4u/(u_4x)$.
- Finitely many exceptional points. Exceptional points have $v(u + u_4) = 0$.
- Addition on Edwards and Weierstrass corresponds.

- Neutral element of addition law is affine point, this avoids special routines (for (0,1) one of the inputs or the result).
- Addition law is symmetric in both inputs.

$$P + Q = \left(\frac{x_1y_2 + y_1x_2}{1 + dx_1x_2y_1y_2}, \frac{y_1y_2 - x_1x_2}{1 - dx_1x_2y_1y_2}\right).$$

- Neutral element of addition law is affine point, this avoids special routines (for (0,1) one of the inputs or the result).
- Addition law is symmetric in both inputs.

$$P + Q = \left(\frac{x_1y_2 + y_1x_2}{1 + dx_1x_2y_1y_2}, \frac{y_1y_2 - x_1x_2}{1 - dx_1x_2y_1y_2}\right).$$

- Neutral element of addition law is affine point, this avoids special routines (for (0,1) one of the inputs or the result).
- Addition law is symmetric in both inputs.

$$P + Q = \left(\frac{x_1y_2 + y_1x_2}{1 + dx_1x_2y_1y_2}, \frac{y_1y_2 - x_1x_2}{1 - dx_1x_2y_1y_2}\right).$$

- No reason that the denominators should be 0.
- Addition law produces correct result also for doubling.

- Neutral element of addition law is affine point, this avoids special routines (for (0,1) one of the inputs or the result).
- Addition law is symmetric in both inputs.

$$P + Q = \left(\frac{x_1y_2 + y_1x_2}{1 + dx_1x_2y_1y_2}, \frac{y_1y_2 - x_1x_2}{1 - dx_1x_2y_1y_2}\right).$$

- No reason that the denominators should be 0.
- Addition law produces correct result also for doubling.
- Unified group operations!

- Neutral element of addition law is affine point, this avoids special routines (for (0,1) one of the inputs or the result).
- Addition law is symmetric in both inputs.

$$P + Q = \left(\frac{x_1y_2 + y_1x_2}{1 + dx_1x_2y_1y_2}, \frac{y_1y_2 - x_1x_2}{1 - dx_1x_2y_1y_2}\right).$$

- No reason that the denominators should be 0.
- Addition law produces correct result also for doubling.
- Unified group operations!
- Having addition law work for doubling removes some checks from the code.

Complete addition law

- If d is not a square in k, then there are no points at infinity on the blow-up of the curve.
- If d is not a square, the only exceptional points of the birational equivalence are P_{∞} corresponding to (0,1) and (0,0) corresponding to (0,-1).
- If d is not a square the denominators $1 + dx_1x_2y_1y_2$ and $1 dx_1x_2y_1y_2$ are never 0; addition law is complete.
- Edwards addition law allows omitting all checks
 - Neutral element is affine point on curve.
 - Addition works to add P and P.
 - Addition works to add P and -P.
 - Addition just works to add P and any Q.
- Only complete addition law in the literature.

Fast addition law

- Very fast point addition 10M + 1S + 1D. (Even faster with Inverted Edwards coordinates.)
- Dedicated doubling formulas need only 3M + 4S.
- Fastest scalar multiplication in the literature.
- For comparison: IEEE standard P1363 provides "the fastest arithmetic on elliptic curves" by using Jacobian coordinates on Weierstrass curves.
 - Point addition 12M + 4S.
 - Doubling formulas need only 4M + 4S.
- ▶ For more curve shapes, better algorithms (even for Weierstrass curves) and many more operations (mixed addition, re-addition, tripling, scaling,...) see

www.hyperelliptic.org/EFD

for the Explicit-Formulas Database.

Edwards Curves – a new star(fish) is born

lecture circuit:

Hoboken

Turku

Warsaw

Fort Meade, Maryland

Melbourne

Ottawa (SAC)

Dublin (ECC)

Bordeaux

Bristol

Magdeburg

Seoul

Malaysia (Asiacrypt)

Madras

Bangalore (AAECC)

•

One year passes ...

D. J. Bernstein & T. Lange

Exceptions, $2 \neq 0 \dots$

Fix a field k of characteristic different from 2. Fix $c, d \in k$ such that $c \neq 0$, $d \neq 0$, and $dc^4 \neq 1$. Consider the Edwards addition law

$$(x_1, y_1), (x_2, y_2) \mapsto \left(\frac{x_1 y_2 + y_1 x_2}{c(1 + dx_1 x_2 y_1 y_2)}, \frac{y_1 y_2 - x_1 x_2}{c(1 - dx_1 x_2 y_1 y_2)}\right)$$

$$x^2 + y^2 = a^2(1 + x^2y^2), a^5 \neq a$$
 describes an elliptic curve over field k of odd characteristic.

Theorem 2.1. Let k be a field in which $2 \neq 0$. Let E be an elliptic curve over k such that the group E(k) has an element of order 4. Then

How can there be an incomplete set of complete curves???

How to design a worthy binary partner?

Our wish-list early February 2008:

A binary Edwards curve should

- be elliptic.
- look like an Edwards curve.
- have a complete addition law.
- cover most (all?) ordinary binary elliptic curves.
- have an easy to compute negation.
- have efficient doublings.
- have efficient additions.

How to design a worthy binary partner?

Our wish-list early February 2008:

A binary Edwards curve should

- be elliptic.
- look like an Edwards curve.
- have a complete addition law.
- cover most (all?) ordinary binary elliptic curves.
- have an easy to compute negation.
- have efficient doublings.
- have efficient additions.
- be found before the CHES deadline, February 29th.

Newton Polygons, odd characteristic

Short Weierstrass

$$y^2 = x^3 + ax + b$$

Montgomery

$$by^2 = x^3 + ax^2 + x$$

Jacobi quartic

$$y^2 = x^4 + 2ax^2 + 1$$

Hessian

$$x^3 + y^3 + 1 = 3dxyz$$

Edwards

$$x^2 + y^2 = 1 + dx^2y^2$$

The design choices

• Want x-degree ≤ 2 , y-degree ≤ 2 , i.e.

$$F(x,y) = \sum_{i=0}^{2} \sum_{j=0}^{2} a_{ij} x^{i} y^{j}.$$

- Want symmetric formulas, i.e. $a_{ij} = a_{ji}$.
- ▶ Want elliptic, i.e. (1,1) needs to be an interior point. This means $a_{22} \neq 0$ or $a_{12} = a_{21} \neq 0$.
- If $a_{22} = 0$ and $a_{12} = a_{21} \neq 0$ then there are three non-singular points at infinity \Rightarrow addition law cannot be complete (for sufficiently large fields).
- Thus largest degree term x^2y^2 (scale by a_{22}).

Binary Edwards curves?

$$a_{00} + a_{10}(x+y) + a_{11}xy + a_{20}(x^2+y^2) + a_{21}xy(x+y) + x^2y^2$$

Study projective equation

$$a_{00}Z^4 + a_{10}(X+Y)Z^3 + a_{11}XYZ^2 + a_{20}(X^2+Y^2)Z^2 + a_{21}XY(X+Y)Z + X^2Y^2 = 0$$
 to find points at infinity ($Z=0$): $0+X^2Y^2=0 \Rightarrow (1:0:0)$ and $(0:1:0)$.

• When are these points singular? (Then make sure that blow-up needs field extension.) Study (1:0:0):

$$G(y,z) = a_{00}z^4 + a_{10}(1+y)z^3 + a_{11}yz^2 + a_{20}(1+y^2)z^2 + a_{21}y(1+y)z + y^2$$

$$G_y(y,z) = a_{10}z^3 + a_{11}z^2 + a_{21}z$$

$$G_z(y,z) = a_{10}(1+y)z^2 + a_{21}y(1+y)$$

Both derivatives vanish at (0,0), point is singular.

Blow-up

$$\overline{a_{00}}z^4 + a_{10}(1+y)z^3 + a_{11}yz^2 + a_{20}(1+y^2)z^2 + a_{21}y(1+y)z + y^2$$
Use $y = uz$ to obtain

$$a_{00}z^4 + a_{10}(1+uz)z^3 + a_{11}uz^3 + a_{20}(1+u^2z^2)z^2 + a_{21}u(1+uz)z^2 + u^2z^2$$

and divide by z^2 to obtain

$$H(u,z) = a_{00}z^2 + a_{10}(1+uz)z + a_{11}uz + a_{20}(1+u^2z^2) + a_{21}u(1+uz) + u^2.$$

Points with z = 0 on blow-up:

$$H(u,0) = a_{20} + a_{21}u + u^2$$

Point is defined over k if $u^2 + a_{21}u + a_{20}$ is reducible.

Want that blow-up is defined only over quadratic extension, so in particular $a_{20}, a_{21} \neq 0$.

Then $H_u(u,z) = a_{10}z^2 + a_{11}z + a_{21}$ is nonzero in z=0, so blow-up is non-singular.

Scale curve by $x \rightarrow a_{21}x, y \rightarrow a_{21}y$ to get $a_{21} = 1$.

Some choices

$$F(x,y) = a_{00} + a_{10}(x+y) + a_{11}xy + a_{20}(x^2+y^2) + xy(x+y) + x^2y^2$$

$$F_x(x,y) = a_{10} + a_{11}y + y^2$$

$$F_y(x,y) = a_{10} + a_{11}x + x^2$$

At most one of a_{10} and a_{00} can be 0.

Symmetry enforces that with (x,y) also (y,x) is on curve. Simplest possible negation: -(x,y)=(y,x). There are other choices, several with surprisingly expensive negation.

We want an ordinary binary curve, i.e. one with a point of order 2. So there should be two points fixed under negation.

Fixed points are (α, α) and $(\alpha + \sqrt{a_{11}}, \alpha + \sqrt{a_{11}})$, where

 $\alpha, \alpha + \sqrt{a_{11}}$ are the solutions of $a_{00} + a_{11}x^2 + x^4$.

To have two different solutions request $a_{11} \neq 0$.

Most convenient choices are $a_{00} = 0, a_{11} = 1$, neutral element (0,0), point of order 2 is (1,1).

Binary Edwards curves

Let $d_1 \neq 0$ and $d_2 \neq d_1^2 + d_1$ then

$$E_{B,d_1,d_2}: d_1(x+y) + d_2(x^2+y^2) = xy + xy(x+y) + x^2y^2,$$

is a binary Edwards curve with parameters d_1, d_2 . Map $(x, y) \mapsto (u, v)$ defined by

$$u = d_1(d_1^2 + d_1 + d_2)(x+y)/(xy + d_1(x+y)),$$

$$v = d_1(d_1^2 + d_1 + d_2)(x/(xy + d_1(x+y)) + d_1 + 1)$$

is a birational equivalence from E_{B,d_1,d_2} to the elliptic curve

$$v^{2} + uv = u^{3} + (d_{1}^{2} + d_{2})u^{2} + d_{1}^{4}(d_{1}^{4} + d_{1}^{2} + d_{2}^{2}),$$

an ordinary elliptic curve in Weierstrass form.

Properties of binary Edwards curves

$$E_{B,d_1,d_2}: d_1(x+y) + d_2(x^2+y^2) = xy + xy(x+y) + x^2y^2$$

 $(x_3, y_3) = (x_1, y_1) + (x_2, y_2)$ with

$$x_3 = \frac{d_1(x_1 + x_2) + d_2(x_1 + y_1)(x_2 + y_2) + (x_1 + x_1^2)(x_2(y_1 + y_2 + 1) + y_1y_2)}{d_1 + (x_1 + x_1^2)(x_2 + y_2)},$$

$$y_3 = \frac{d_1(y_1 + y_2) + d_2(x_1 + y_1)(x_2 + y_2) + (y_1 + y_1^2)(y_2(x_1 + x_2 + 1) + x_1x_2)}{d_1 + (y_1 + y_1^2)(x_2 + y_2)}.$$

if denominators are nonzero.

- Neutral element is (0,0).
- \bullet (1,1) has order 2.
- -(x,y) = (y,x).
- $(x_1, y_1) + (1, 1) = (x_1 + 1, y_1 + 1).$

D. J. Bernstein & T. Lange

cr.yp.to/papers.html#edwards2

Edwards curves over finite fields

- Addition law for curves with $Tr(d_2) = 1$ is complete.
- Denominators $d_1+(x_1+x_1^2)(x_2+y_2)$ and $d_1+(y_1+y_1^2)(x_2+y_2)$ are nonzero: If $x_2+y_2=0$ then the denominators are $d_1\neq 0$. Otherwise $d_1/(x_2+y_2)=x_1+x_1^2$ and

$$\frac{d_1}{x_2 + y_2} = \frac{d_1(x_2 + y_2)}{x_2^2 + y_2^2} = \frac{d_2(x_2^2 + y_2^2) + x_2y_2 + x_2y_2(x_2 + y_2) + x_2^2y_2^2}{x_2^2 + y_2^2}$$

$$= d_2 + \frac{x_2y_2 + x_2y_2(x_2 + y_2) + y_2^2}{x_2^2 + y_2^2} + \frac{y_2^2 + x_2^2y_2^2}{x_2^2 + y_2^2}$$

$$= d_2 + \frac{y_2 + x_2y_2}{x_2 + y_2} + \frac{y_2^2 + x_2^2y_2^2}{x_2^2 + y_2^2}$$

$$= d_2 + \frac{y_2 + x_2y_2}{x_2 + y_2} + \frac{y_2^2 + x_2^2y_2^2}{x_2^2 + y_2^2}$$

So $Tr(d_2) = Tr(x_1 + x_1^2) = 0$, contradiction.

Generality & doubling

- Every ordinary elliptic curve over \mathbb{F}_{2^n} is birationally equivalent to a complete binary Edwards curve if $n \geq 3$. Proof uses counting argument and Hasse bound.
- Nice doubling formulas (use curve equation to simplify)

$$x_3 = 1 + \frac{d_1 + d_2(x_1^2 + y_1^2) + y_1^2 + y_1^4}{d_1 + x_1^2 + y_1^2 + (d_2/d_1)(x_1^4 + y_1^4)},$$

$$y_3 = 1 + \frac{d_1 + d_2(x_1^2 + y_1^2) + x_1^2 + x_1^4}{d_1 + x_1^2 + y_1^2 + (d_2/d_1)(x_1^4 + y_1^4)}$$

• In projective coordinates: 2M+ 6S+3D, where the 3D are multiplications by d_1 , d_2/d_1 , and d_2 .

Operation counts

These curves are the first binary curves to offer complete addition laws. They are also surprisingly fast:

- ADD on binary Edwards curves takes 21M+1S+4D, mADD takes 13M+3S+3D.
- Latest results (today, 4 a.m.) ADD in 18M+2S+7D.
- Differential addition (P + Q given P, Q, and Q P) takes 8M+1S+2D; mixed version takes 6M+1S+2D.
- Differential addition+doubling (typical step in Montgomery ladder) takes 8M+4S+2D; mixed version takes 6M+4S+2D.

See our preprint (ePrint 2008/171) or

cr.yp.to/papers.html#edwards2

for full details, speedups for $d_1 = d_2$, how to choose small coefficients, affine formulas, . . .

Comparison with other doubling formulas

Assume curves are chosen with small coefficients.

System	Cost of doubling
Projective	7M+4S; see HEHCC
Jacobian	4M+5S; see HEHCC
Lopez-Dahab	3M+5S; Lopez-Dahab
Edwards	2M+6S; new, complete
Lopez-Dahab $a_2 = 1$	2M+5S; Kim-Kim

Explicit-Formulas Database

www.hyperelliptic.org/EFD

for characteristic 2 is in preparation; our paper already has some speed-ups for Lopez-Dahab coordinates.

Happy End!

D. J. Bernstein & T. Lange