
Cycle counts for authenticated encryption

Daniel J. Bernstein ?

Department of Mathematics, Statistics, and Computer Science (M/C 249)
The University of Illinois at Chicago, Chicago, IL 60607–7045

djb@cr.yp.to

System Cipher Cipher MAC Total
key bits key bits

abc-v3-poly1305 128 ABC v3 Poly1305 256
aes-128-poly1305 128 10-round AES Poly1305 256
aes-256-poly1305 256 14-round AES Poly1305 384
cryptmt-v2-poly1305 256 CryptMT v2 Poly1305 384
dicing-v2-poly1305 256 DICING P2 Poly1305 384
dragon-poly1305 256 Dragon Poly1305 384
grain-128-poly1305 128 Grain-128 Poly1305 256
grain-v1-poly1305 80 Grainv1 Poly1305 208
hc-128-poly1305 128 HC-128 Poly1305 256
hc-256-poly1305 256 HC-256 Poly1305 384
lex-v1-poly1305 128 LEX v1 Poly1305 256
mickey-128-2-poly1305 128 MICKEY-128 2.0 Poly1305 256
nls 128 NLS built-in 128
nls-poly1305 128 NLS Poly1305 256
phelix 256 Phelix built-in 256
py6-poly1305 256 Py6 Poly1305 384
py-poly1305 256 Py Poly1305 384
pypy-poly1305 256 Pypy Poly1305 384
rabbit-poly1305 128 Rabbit Poly1305 256
rc4-poly1305 256 RC4 Poly1305 384
salsa20-8-poly1305 256 Salsa20/8 Poly1305 384
salsa20-12-poly1305 256 Salsa20/12 Poly1305 384
salsa20-poly1305 256 Salsa20 Poly1305 384
snow-2.0-poly1305 256 SNOW 2.0 Poly1305 384
sosemanuk-poly1305 256 SOSEMANUK Poly1305 384
trivium-poly1305 80 TRIVIUM Poly1305 208

? Date of this document: 2007.01.18. Permanent ID of this document:
be6b4df07eb1ae67aba9338991b78388.



Abstract. Exactly how much time is needed to encrypt, authenticate,
verify, and decrypt a packet? The answer depends on the machine (most
importantly, but not solely, the CPU), on the choice of authenticated-
encryption function, on the packet length, on the level of competition
for the instruction cache, on the number of keys handled in parallel, et
al. This paper reports, in graphical and tabular form, measurements of
the speeds of a wide variety of authenticated-encryption functions on a
wide variety of CPUs.

This paper reports speed measurements for the secret-key authenticated-
encryption systems listed on the first page.

I included all of the “software focus” ciphers (Dragon, HC, LEX, Phelix, Py,
Salsa20, SOSEMANUK) in phase 2 of eSTREAM, the ECRYPT Stream Cipher
Project; all of the “hardware focus” ciphers (Grain, MICKEY, Phelix, Trivium);
the remaining “software” ciphers, except for Polar Bear, which I couldn’t make
work; and the “benchmark” ciphers (AES, RC4, SNOW 2.0) for comparison.

I did not exclude ciphers for which there are claims of attacks: ABC, NLS,
Py, and RC4. For LEX, I chose version 1 (for which there is a claim of an attack)
rather than version 2 (for which there are no such claims) because I’m not aware
of functioning software for version 2 of LEX; my impression is that the versions
will have similar speeds, but speculation is no substitute for measurement.

Non-authenticating stream ciphers

Most of the stream ciphers do not include message authentication. I converted
each non-authenticating stream cipher into an authenticated-encryption system
by combining it in a standard way with Poly1305, a state-of-the-art message-
authentication code.

Here are the details: The key for the authenticated-encryption system is (r, k)
where r is a 16-byte Poly1305 key and k is a key for the non-authenticating
stream cipher F . The authenticated encryption of a message m with nonce n is
(Poly1305r(c, s), c) where (s, c) = Fk(n)⊕ (0,m), both s and 0 having 16 bytes.
Here Fk(n) is the “keystream” produced by F using key k and nonce n, and
⊕ xors its inputs after truncating the longer input to the same length as the
shorter input.

Previous eSTREAM benchmarks did not include separate authenticators;
they simply reported encryption timings for non-authenticating ciphers along
with encryption timings for authenticating ciphers. The reality is that users
need authenticated encryption, not just encryption, so they need to combine non-
authenticating ciphers with message-authentication codes, slowing down those
ciphers. How quickly do these combined systems handle legitimate packets, and
how quickly do they reject forged packets? Are they faster than ciphers with
built-in authentication? To compare the speeds of authenticating ciphers and
non-authenticating ciphers from the user’s perspective, benchmarks must take
the extra authentication time into account.



“Isn’t this a purely academic question?” one might ask. “Haven’t all the
authenticating ciphers been broken? Frogbit flunks a simple IV-diffusion test.
Courtois broke SFINKS. Cho and Piperzyk broke both versions of NLS. Wu
and Preneel broke Phelix. Okay, okay, VEST is untouched, but it’s much too
expensive for anyone to want to use.” The simplest response is that, in fact,
Phelix has not been broken. (The Wu-Preneel “attack” ignores both the concept
of a nonce and the standard definition of cipher security; the “attack” assumes
that senders repeat nonces. The same silly assumption easily “breaks” every
eSTREAM submission.) Phelix remains one of the top eSTREAM candidates.

I’m planning future work to extend my database of timings to cover other
authenticated-encryption systems. I plan to include more ciphers, for example;
I plan to include other modes of use of Poly1305; and I plan to include UMAC,
VMAC, CBC-MAC, and HMAC-SHA-1 as alternatives to Poly1305. I will also
endeavor to incorporate improved implementations of systems already covered:
for example, I’m planning a 64-bit implementation of Poly1305. But the existing
data should already be useful in comparing eSTREAM candidates.

“Why is it necessary to time authenticated encryption?” one might ask. “If
you want a table of authenticated-encryption timings, why not simply add a
table of authentication timings to a table of encryption timings?” Response: The
existing tables are deficient. This paper’s timings are much more comprehensive
than previous encryption timings. This paper systematically measures all packet
lengths in a wide range, for example, and systematically measures multiple-key
cache-miss costs. Furthermore, adding all the contributing times isn’t as easy
as it sounds; for example, if the authentication software uses more than half
of the code cache, and the encryption software uses more than half of the code
cache, authenticated encryption will need time for code-cache misses. Component
benchmarks can be interesting and informative, but whole-function benchmarks
are the simplest way to ensure that no components are forgotten.

API for authenticated-encryption systems

What does a secret-key authenticated-encryption system do for the user? It takes
keys; it encrypts and authenticates each outgoing packet; it verifies and decrypts
each incoming packet. So I specified an authenticated-encryption API with three
functions: expandkey to take a key and convert it into an “expanded key,” the
output of any desired precomputation; encrypt to authenticate and encrypt an
outgoing packet; and decrypt to verify and decrypt an incoming packet.

The encrypt function includes an authenticator in its encrypted output
packet. The decrypt function is given an encrypted packet allegedly produced
by encrypt; it rejects the packet if the authenticator is wrong. Many systems can
limit their decryption work for long packets when the authenticator is wrong.
In particular, for the Poly1305 combination described above, an authenticator
can be checked as soon as 16 bytes of keystream have been generated; if the
authenticator is wrong then one can skip the work of generating the remaining
bytes of keystream.



In contrast, in the official eSTREAM stream-cipher API, both encrypt and
decrypt put an authenticator somewhere else. It is the responsibility of the
decrypt user to verify authenticators. Having decrypt write an authenticator,
rather than read it, means that rejection of forged packets is necessarily just
as slow as decryption of legitimate packets. This doesn’t seem to have been a
problem for the authenticating stream ciphers submitted to eSTREAM, but it
unnecessarily slows down other authenticated-encryption systems.

There are many other details of the new API, but this paper can be read
without regard to those details. Example: encrypt and decrypt receive lengths
as 64-bit integers (long long in C). On many CPUs, using fewer bits for lengths
would save a few cycles, marginally shifting the graphs in this paper.

Tools for benchmarking

Previous eSTREAM speed reports use the official eSTREAM benchmarking
toolkit. The toolkit includes (1) software written by Christophe de Cannière
to measure the speeds of stream-cipher implementations that follow the official
eSTREAM stream-cipher API and (2) stream-cipher implementations collected
from cipher authors.

For the timings reported in this paper I wrote a new toolkit, ciphercycles,
available from http://cr.yp.to/streamciphers/timings.html. I also wrote a
tool to convert stream ciphers from the official eSTREAM stream-cipher API to
my new API (and in particular to add authentication to the non-authenticating
stream ciphers); the resulting implementations are included in ciphercycles.
Updates to the implementations in the official eSTREAM benchmarking toolkit
will be easily reflected in ciphercycles.

Many portions of ciphercycles are derived from BATMAN (Benchmarking
of Asymmetric Tools on Multiple Architectures, Non-Interactively), a public-
key benchmarking toolkit that I wrote for eBATS (ECRYPT Benchmarking of
Asymmetric Systems). The new speed reports produced by ciphercycles, like
the eBATS speed reports, are in a simple format designed for easy computer
processing. I’m planning future work to integrate benchmarking projects.

The timings collected by ciphercycles include (authenticated) encryption,
(verified) decryption of legitimately encrypted packets, and rejection of forged
packets. Decryption times are usually almost identical to encryption times, but
rejection times are often much smaller, for the reasons discussed above. The
official eSTREAM timings include only encryption times.

The timings collected by ciphercycles systematically cover each packet
length between 0 bytes and 8192 bytes. By superimposing graphs one can easily
see the packet-length cutoffs between different ciphers. The official eSTREAM
timings include only a few selected lengths (40 bytes, 576 bytes, 1500 bytes,
long), hiding block-size penalties and many other length-dependent effects.

The timings collected by ciphercycles include benchmarks for encryption
of short packets bouncing between multiple keys. Example: When there are 1024
active keys, how many cycles are used for encryption of a 775-byte packet under
a random choice of key, including the cache misses needed to access the key? The



official eSTREAM timings include one fuzzy “agility” number for each cipher
but are otherwise dedicated to single-key benchmarks.

The timings collected by ciphercycles also include expandkey timings, but
those timings are not reported in this paper.

Graphs

The sample graph on the left below shows timings for the abc-v3-poly1305
system on a 2137MHz Intel Core 2 Duo (6f6) computer named katana.

The horizontal axis is packet length, between 0 bytes and 8192 bytes. The
vertical axis is time, between 0 cycles and 98304 cycles. The diagonal from the
lower left corner of the graph to the upper right corner is 12 cycles per byte.

The two main lines visible on the graph are (1) roughly 8 cycles per byte for
encryption and decryption and (2) roughly 6 cycles per byte for rejection. Faint
lines are visible above the main lines; there are 15 timings for each packet length,
and initial timings are slightly slower because of cache misses. There is also a
short curve up the left side of the graph for encrypting packets of ≤ 2048 bytes
using a random key from a pool of 8192 active keys. Also plotted (in various
colors) are packet lengths of ≤ 1920 bytes for 4096 active keys, packet lengths
of ≤ 1792 bytes for 2048 active keys, etc.

The sample graph on the right shows timings for the pypy-poly1305 system
on a 3400MHz Intel Pentium 4 (f29) named shell. The spreading line shows
variance in Pypy’s stream-generation time, perhaps from cache-timing effects.
Note also the large cost of handling small packets.



abc-v3
-poly1305

aes-128
-poly1305

aes-256
-poly1305

cryptmt-v2
-poly1305

dicing-v2
-poly1305

dragon
-poly1305

hc-128
-poly1305

hc-256
-poly1305



lex-v1
-poly1305

nls

nls
-poly1305

phelix

py6
-poly1305

py
-poly1305

pypy
-poly1305

rabbit
-poly1305



rc4
-poly1305

salsa20-8
-poly1305

salsa20-12
-poly1305

salsa20
-poly1305

snow-2.0
-poly1305

sosemanuk
-poly1305

trivium
-poly1305

grain-128-poly1305, grain-v1-poly1305, mickey-128-2-poly1305: slow;
graphs omitted.



Here are the machines used (in order) for the above graphs:

• a 1343MHz AMD Athlon XP (662) x86 named lpc36;
• a 1000MHz Intel Pentium III (68a) x86 named neumann;
• a 3400MHz Intel Pentium 4 (f29) x86 named shell;
• a 900MHz Sun UltraSPARC III sparcv9 named wessel;
• a 2137MHz Intel Core 2 Duo (6f6) amd64 named katana; and
• a 2000MHz AMD Athlon 64 X2 (15,75,2) amd64 named mace.

Tables

The following table shows median cycle counts for authenticated encryption as
a function of cipher and packet length. All timings are from a 3400MHz Intel
Pentium 4 (f29) named shell. All timings are for a single active key.

0 40 402 576 1500 8192
1508 2500 5596 6916 14972 71448 abc-v3-poly1305
988 2480 10592 14064 34804 183656 aes-128-poly1305

1312 3744 20040 26828 67936 361120 aes-256-poly1305
23584 24580 29784 32172 54860 223664 cryptmt-v2-poly1305
2780 4780 17892 23364 56828 295068 dicing-v2-poly1305
3084 4868 16424 21628 51784 263348 dragon-poly1305
2576 4756 20380 27672 69676 373356 grain-128-poly1305
2984 6424 31588 43500 107824 574584 grain-v1-poly1305

49816 50596 53832 55328 63600 121700 hc-128-poly1305
90872 91432 95624 96868 106804 172288 hc-256-poly1305
1648 3172 9124 11892 27712 139332 lex-v1-poly1305
3716 5768 12804 14152 27652 135676 nls
2640 4444 8916 10008 19864 94556 nls-poly1305
1292 1736 5392 7084 16364 83640 phelix
3556 5232 8364 9464 17564 72340 py6-poly1305
9576 11880 14644 15816 25012 79164 py-poly1305

10656 14256 18752 21120 33520 114860 pypy-poly1305
1616 2652 7672 9888 23884 118276 rabbit-poly1305

17820 19048 25324 28336 44520 160832 rc4-poly1305
1496 2276 7696 9828 22084 105644 salsa20-8-poly1305
1696 2624 9080 11896 26128 133060 salsa20-12-poly1305
2080 2852 11772 15556 35784 178940 salsa20-poly1305
2276 3372 7196 8844 18076 85112 snow-2.0-poly1305
2540 3720 10796 13736 30260 153888 sosemanuk-poly1305
2096 3136 8104 10256 23272 113908 trivium-poly1305

The packet lengths I selected are 40 bytes, 576 bytes, and 1500 bytes from the
official eSTREAM timings; 0 bytes; 8192 bytes; and 402 bytes, an approximation
to the average Internet packet length.



The following table shows median cycle counts for authenticated encryption
as a function of cipher and the number of active keys. All timings are from
a 3400MHz Intel Pentium 4 (f29) named shell. All timings are for 576-byte
packets.

1 32 128 512 2048 8192 bytes
7136 7452 10772 14640 14620 15268 abc-v3-poly1305 4176

14024 14012 14112 14056 14116 14460 aes-128-poly1305 88
26628 27016 26700 27240 26948 27876 aes-256-poly1305 276
32916 33292 35736 42076 43280 41488 cryptmt-v2-poly1305 11812
23492 22984 23884 29532 29600 29840 dicing-v2-poly1305 4412
21668 21740 21872 21776 22108 22676 dragon-poly1305 300
25964 27956 27616 28716 29772 29668 grain-128-poly1305 8328
43092 43708 44100 47036 47016 48616 grain-v1-poly1305 4184
55196 55716 56172 57536 58096 59432 hc-128-poly1305 4316
90372 99280 101928 102392 102240 103376 hc-256-poly1305 8412
11960 11876 11928 11932 12296 13080 lex-v1-poly1305 248
14676 13880 13900 14308 14320 14716 nls 232
9968 9944 10008 9976 10840 10908 nls-poly1305 244
7104 7096 7120 7128 7152 7560 phelix 132
9740 9864 10344 10448 11340 12024 py6-poly1305 1140

15940 18464 18956 22604 23124 23736 py-poly1305 4212
21132 21624 24312 28920 30524 30068 pypy-poly1305 4260
10080 9928 9916 9948 10064 10732 rabbit-poly1305 152
27888 28292 28164 28624 28776 29332 rc4-poly1305 1084
9828 9892 9856 9900 9912 10324 salsa20-8-poly1305 80

11372 11608 11572 11528 11788 12180 salsa20-12-poly1305 80
15292 15420 15384 15396 15244 16008 salsa20-poly1305 80
8996 9004 8920 8836 9368 9792 snow-2.0-poly1305 124

13640 13524 13656 13556 14748 15100 sosemanuk-poly1305 468
10208 10204 10216 10204 10280 10716 trivium-poly1305 80

The “bytes” column in the above table indicates the number of bytes in an
expanded key. The penalty for handling many active keys, compared to just 1,
is usually around 2 cycles for each expanded-key byte, presumably reflecting
this machine’s cache-load bandwidth. Some systems (e.g., grain-v1-poly1305)
show a smaller penalty compared to their expanded-key size; presumably these
systems do not access the entire expanded key for a 576-byte packet.



The following table shows median cycle counts for verified decryption as a
function of cipher and machine. All timings are for 576-byte packets. All timings
are for a single active key.

lpc36 neumann shell wessel katana mace
5399 7167 7340 7291 5744 6300 abc-v3-poly1305

13144 13755 14156 25047 12112 11715 aes-128-poly1305
24961 25299 26300 42257 18016 18675 aes-256-poly1305
19187 24740 32324 32768 16584 17469 cryptmt-v2-poly1305
11083 14319 23360 15066 9504 10757 dicing-v2-poly1305
22966 23421 21848 31997 15912 18765 dragon-poly1305
28355 26482 27364 grain-128-poly1305
38591 39402 37596 grain-v1-poly1305
35389 37434 54860 51987 26088 27672 hc-128-poly1305
90863 83860 96356 116925 59584 77855 hc-256-poly1305
10550 12518 12076 14139 9592 9872 lex-v1-poly1305
9204 14110 13000 15814 7664 9045 nls
5628 8431 10136 8961 7584 7660 nls-poly1305
4149 5513 7220 12880 6112 5647 phelix
7399 8059 9360 11767 7824 9429 py6-poly1305

12405 12546 15892 21375 9832 13449 py-poly1305
14938 14906 21116 22620 13128 16321 pypy-poly1305
5996 7626 10148 11040 7552 7081 rabbit-poly1305

24494 20957 28348 31295 11944 25881 rc4-poly1305
5630 7816 9964 8144 6224 6308 salsa20-8-poly1305
6941 9416 11852 9800 7152 7376 salsa20-12-poly1305
9100 12616 15552 13045 8896 9015 salsa20-poly1305
6402 8792 8860 11203 7328 8017 snow-2.0-poly1305
7827 10332 13752 11349 8472 8367 sosemanuk-poly1305
6161 14513 10616 8568 6744 7029 trivium-poly1305

Note the impressive performance of Phelix at verified decryption (and, as
shown by the graphs, authenticated encryption). Phelix isn’t always the fastest
system, and it won’t benefit from improvements in MAC speed, but the idea of
unifying authentication and encryption in a single primitive is obviously worth
further study.

The story for NLS is different. The authenticator built into NLS is slower
than Poly1305 and should be scrapped.



The following table shows median cycle counts for rejection of a forged packet
as a function of cipher and machine. All timings are for 576-byte packets. All
timings are for a single active key.

lpc36 neumann shell wessel katana mace
2787 3821 4396 3871 4096 4400 abc-v3-poly1305
2443 3579 3796 4132 4112 3900 aes-128-poly1305
2801 3663 4104 4263 4184 4061 aes-256-poly1305

15677 19538 26356 28689 14816 15054 cryptmt-v2-poly1305
4053 4689 5680 5345 4992 5616 dicing-v2-poly1305
4770 5940 5776 5863 5104 5274 dragon-poly1305
4174 4770 5496 grain-128-poly1305
4346 5145 5716 grain-v1-poly1305

32588 34550 51256 47451 24456 25680 hc-128-poly1305
87086 79661 92176 111230 56856 74314 hc-256-poly1305
3154 4234 4496 4493 4528 4366 lex-v1-poly1305
9257 14107 13072 15803 7648 9037 nls
2822 4306 5456 4413 4592 4605 nls-poly1305
4145 5499 7236 12880 6112 5647 phelix
4601 5298 6304 6526 5712 5642 py6-poly1305
8495 9570 12264 14183 7552 9238 py-poly1305
9165 9808 13364 12850 9032 9805 pypy-poly1305
2527 3557 4376 3989 4288 4025 rabbit-poly1305

15518 16072 20968 21636 7464 17531 rc4-poly1305
2540 3657 4276 3802 4032 4022 salsa20-8-poly1305
2644 3817 4476 3959 4056 4214 salsa20-12-poly1305
2908 4137 4832 4287 4432 4284 salsa20-poly1305
3223 4562 5120 4747 4688 4680 snow-2.0-poly1305
3378 4508 5264 4771 4744 4696 sosemanuk-poly1305
3104 5499 5012 4007 4464 4411 trivium-poly1305

Phelix has to decrypt forged packets before it can reject them, and it can’t
decrypt as quickly as a separate MAC, as this table demonstrates.



Appendix: Tunings

A cipher in the official eSTREAM benchmarking toolkit can have several tunings:
several implementations in separate subdirectories of the cipher directory, and
several “variants” of each implementation.

The new toolkit automatically tries encrypting several 1536-byte packets
under each tuning. It then selects the tuning producing the smallest median
cycle count, and uses that tuning for subsequent timings. The following table
lists the selected tunings.

lpc36 neumann shell wessel katana mace
v3/1 v3/1 v3/2 v3/1 v3/1 v3/1 abc-v3-poly1305

x86-mmx-1 x86-mmx-1 x86-mmx-1 big-1 amd64-2 amd64-1 aes-128-poly1305
gladman gladman gladman gladman gladman gladman aes-256-poly1305

v2 v2 v2 v2 v2 v2 cryptmt-v2-poly1305
v2 v2 v2 v2 sse2 v2 dicing-v2-poly1305

dragon dragon dragon dragon dragon dragon dragon-poly1305
opt opt opt grain-128-poly1305
opt opt opt grain-v1-poly1305

200701a 200701a 200701b 200606 200701a 200701a hc-128-poly1305
200701 200701 200701 200701 200511 200701 hc-256-poly1305

v1 v1 v1 v1 v1 v1 lex-v1-poly1305
sync-ae/2 sync-ae/2 sync-ae/2 sync-ae/2 sync-ae/2 sync-ae/2 nls

sync/2 sync/2 sync/2 sync/2 sync/2 sync/2 nls-poly1305
i386 i386 i386 ref ref ref phelix
py6 py6 py6 py6 py6 py6 py6-poly1305
py py py py py py py-poly1305

pypy pypy pypy pypy pypy pypy pypy-poly1305
opt/4 opt/3 opt/3 opt/3 opt/3 opt/3 rabbit-poly1305
rc4/2 rc4/2 rc4/1 rc4/1 rc4/2 rc4/2 rc4-poly1305

x86-athlon x86-mmx x86-athlon sparc amd64-3 amd64-3 salsa20-8-poly1305
x86-athlon x86-mmx x86-athlon sparc amd64-3 amd64-3 salsa20-12-poly1305
x86-athlon x86-mmx x86-3 sparc amd64-3 amd64-3 salsa20-poly1305

snow-2.0 snow-2.0 snow-2.0 snow-2.0 snow-2.0 snow-2.0 snow-2.0-poly1305
sosemanuk sosemanuk sosemanuk sosemanuk sosemanuk sosemanuk sosemanuk-poly1305

trivium trivium trivium trivium trivium trivium trivium-poly1305

The underlying Poly1305 library selected the athlon implementation on
lpc36, neumann, and shell; the sparc implementation on wessel; and the 53
implementation on katana and mace.


