
Cycle counts for authenticated encryption

Daniel J. Bernstein ?

Department of Mathematics, Statistics, and Computer Science (M/C 249)
The University of Illinois at Chicago, Chicago, IL 60607–7045

djb@cr.yp.to

System Cipher Cipher MAC Total
key bits key bits

abc-v3-poly1305 128 ABC v3 Poly1305 256
aes-128-poly1305 128 10-round AES Poly1305 256
aes-256-poly1305 256 14-round AES Poly1305 384
cryptmt-v3-poly1305 256 CryptMT 3 Poly1305 384
dicing-p2-poly1305 256 DICING P2 Poly1305 384
dragon-poly1305 256 Dragon Poly1305 384
grain-128-poly1305 128 Grain-128 Poly1305 256
grain-v1-poly1305 80 Grainv1 Poly1305 208
hc-128-poly1305 128 HC-128 Poly1305 256
hc-256-poly1305 256 HC-256 Poly1305 384
lex-v1-poly1305 128 LEX v1 Poly1305 256
mickey-128-2-poly1305 128 MICKEY-128 2.0 Poly1305 256
nls-ae 128 NLS built-in 128
nls-poly1305 128 NLS Poly1305 256
phelix 256 Phelix built-in 256
py6-poly1305 256 Py6 Poly1305 384
py-poly1305 256 Py Poly1305 384
pypy-poly1305 256 Pypy Poly1305 384
rabbit-poly1305 128 Rabbit Poly1305 256
rc4-poly1305 256 RC4 Poly1305 384
salsa20-8-poly1305 256 Salsa20/8 Poly1305 384
salsa20-12-poly1305 256 Salsa20/12 Poly1305 384
salsa20-poly1305 256 Salsa20 Poly1305 384
snow-2.0-poly1305 256 SNOW 2.0 Poly1305 384
sosemanuk-poly1305 256 SOSEMANUK Poly1305 384
trivium-poly1305 80 TRIVIUM Poly1305 208

? Date of this document: 2007.01.13. Permanent ID of this document:
be6b4df07eb1ae67aba9338991b78388.



Abstract. How much time is needed to encrypt, authenticate, verify,
and decrypt a packet? The answer depends on the machine (most im-
portantly, but not solely, the CPU), on the choice of authenticated-
encryption function, on the packet length, on the level of competition
for the instruction cache, on the number of keys handled in parallel, et
al. This paper reports, in graphical and tabular form, measurements of
the speeds of a wide variety of authenticated-encryption functions on a
wide variety of CPUs.

This paper reports speed measurements for the secret-key authenticated-
encryption systems listed on the first page.

I included all of the “software focus” ciphers (Dragon, HC, LEX, Phelix, Py,
Salsa20, SOSEMANUK) in phase 2 of eSTREAM, the ECRYPT Stream Cipher
Project; all of the “hardware focus” ciphers (Grain, MICKEY, Phelix, Trivium);
the remaining “software” ciphers, except for Polar Bear, which I couldn’t make
work; and the “benchmark” ciphers (AES, RC4, SNOW 2.0) for comparison.

I did not exclude ciphers for which there are claims of attacks: ABC, NLS,
Py, and RC4. For LEX, I chose version 1 (for which there is a claim of an attack)
rather than version 2 (for which there are no such claims) because I’m not aware
of functioning software for version 2 of LEX; my impression is that the versions
will have similar speeds, but speculation is no substitute for measurement.

Non-authenticating stream ciphers

Most of the stream ciphers do not include message authentication. I converted
each non-authenticating stream cipher into an authenticated-encryption system
by combining it in a standard way with Poly1305, a state-of-the-art message-
authentication code.

Here are the details: The key for the authenticated-encryption system is
(r, k) where r a 16-byte Poly1305 key and k is a key for the non-authenticating
stream cipher F . The authenticated encryption of a message m with nonce n is
(Poly1305r(c, s), c) where (s, c) = Fk(n)⊕ (0,m), both s and 0 having 16 bytes.
Here Fk(n) is the “keystream” produced by F using key k and nonce n, and
⊕ xors its inputs after truncating the longer input to the same length as the
shorter input.

Previous eSTREAM benchmarks did not include separate authenticators;
they simply reported encryption timings for non-authenticating ciphers along
with encryption timings for authenticating ciphers. The reality is that users
need authenticated encryption, not just encryption, so they need to combine non-
authenticating ciphers with message-authentication codes, slowing down those
ciphers. How quickly do these combined systems handle legitimate packets, and
how quickly do they reject forged packets? Are they faster than ciphers with
built-in authentication? To compare the speeds of authenticating ciphers and
non-authenticating ciphers from the user’s perspective, benchmarks must take
the extra authentication time into account.



“Isn’t this a purely academic question?” one might ask. “Haven’t all the
authenticating ciphers been broken? Frogbit flunks a simple IV-diffusion test.
Courtois broke SFINKS. Cho and Piperzyk broke both versions of NLS. Wu
and Preneel broke Phelix. Okay, okay, VEST is untouched, but it’s much too
expensive for anyone to want to use.” The simplest response is that, in fact,
Phelix has not been broken. (The Wu-Preneel “attack” ignores both the concept
of a nonce and the standard definition of cipher security; the “attack” assumes
that senders repeat nonces. The same silly assumption easily “breaks” every
eSTREAM submission.) Phelix remains one of the top eSTREAM submissions.

I’m planning future work to extend my database of timings to cover other
authenticated-encryption systems. I plan to include more ciphers, for example;
I plan to include other modes of use of Poly1305; and I plan to include UMAC,
VMAC, CBC-MAC, and HMAC-SHA-1 as alternatives to Poly1305. I will also
endeavor to incorporate improved implementations of systems already covered:
for example, I’m planning a 64-bit implementation of Poly1305. But the existing
data should already be useful in comparing eSTREAM candidates.

“Why is it necessary to time authenticated encryption?” one might ask. “If
you want a table of authenticated-encryption timings, why not simply add a
table of authentication timings to a table of encryption timings?” Response: The
existing tables are deficient. This paper’s timings are much more comprehensive
than previous encryption timings. This paper systematically measures all packet
lengths in a wide range, for example, and systematically measures multiple-key
cache-miss costs. Furthermore, adding all the contributing times isn’t as easy
as it sounds; for example, if the authentication software uses more than half
of the code cache, and the encryption software uses more than half of the code
cache, authenticated encryption will need time for code-cache misses. Component
benchmarks can be interesting and informative, but whole-function benchmarks
are the simplest way to ensure that no components are forgotten.

API for authenticated-encryption systems

What does a secret-key authenticated-encryption system do for the user? It
takes keys; it encrypts and authenticates each outgoing packet; it verifies and
decrypts each incoming packet. So I specified an authenticated-encryption API
with three functions: makekey to generate a key (and an “expanded key,” the
output of any desired precomputation); encrypt to authenticate and encrypt an
outgoing packet; and decrypt to verify and decrypt an incoming packet.

The encrypt function includes an authenticator in its encrypted output
packet. The decrypt function is given an encrypted packet allegedly produced
by encrypt; it rejects the packet if the authenticator is wrong. Many systems can
limit their decryption work for long packets when the authenticator is wrong.
In particular, for the Poly1305 combination described above, an authenticator
can be checked as soon as 16 bytes of keystream have been generated; if the
authenticator is wrong then one can skip the work of generating the remaining
bytes of keystream.



In contrast, in the official eSTREAM stream-cipher API, both encrypt and
decrypt put an authenticator somewhere else. It is the responsibility of the
decrypt user to verify authenticators. Having decrypt write an authenticator,
rather than read it, means that rejection of forged packets is necessarily just
as slow as decryption of legitimate packets. This doesn’t seem to have been a
problem for the authenticating stream ciphers submitted to eSTREAM, but it
unnecessarily slows down other authenticated-encryption systems.

There are many other details of the new API, but this paper can be read
without regard to those details. Example: encrypt and decrypt receive lengths
as 64-bit integers (long long in C). On many CPUs, using fewer bits for lengths
would save a few cycles, marginally shifting the graphs in this paper.

Tools for benchmarking

Previous eSTREAM speed reports use the official eSTREAM benchmarking
toolkit. The toolkit includes (1) software written by Christophe de Cannière
to measure the speeds of stream-cipher implementations that follow the official
eSTREAM stream-cipher API and (2) stream-cipher implementations collected
from cipher authors.

To collect the timings reported in this paper I wrote a new benchmarking
toolkit, ciphercycles, available from http://cr.yp.to/streamciphers.html.
I wrote a separate tool to convert stream ciphers from the official eSTREAM
stream-cipher API to my new API (and in particular to add authentication
to the non-authenticating stream ciphers); the resulting implementations are
included in the toolkit. Subsequent updates to the implementations in the official
eSTREAM benchmarking toolkit will be easy to reflect in ciphercycles.

Many portions of ciphercycles are derived from BATMAN (Benchmarking
of Asymmetric Tools on Multiple Architectures, Non-Interactively), a public-
key benchmarking toolkit that I wrote for eBATS (ECRYPT Benchmarking of
Asymmetric Systems). The new speed reports produced by ciphercycles, like
the eBATS speed reports, are in a simple format designed for easy computer
processing. I’m planning future work to integrate benchmarking projects.

The timings collected by ciphercycles include (authenticated) encryption,
(verified) decryption of legitimately encrypted packets, and rejection of forged
packets. Decryption times are usually almost identical to encryption times, but
rejection times are often much smaller, for the reasons discussed above. The
official eSTREAM timings include only encryption times.

The timings collected by ciphercycles systematically cover each packet
length between 0 bytes and 8192 bytes. By superimposing graphs one can easily
see the packet-length cutoffs between different ciphers. The official eSTREAM
timings include only a few selected lengths (40 bytes, 576 bytes, 1500 bytes,
long), hiding block-size penalties and many other length-dependent effects.

The timings collected by ciphercycles include benchmarks for encryption
of short packets bouncing between multiple keys: for example, when there are
1024 active keys, how many cycles are used for encryption of a 775-byte packet
under a random choice of key, including the cache misses needed to access the



key? The official eSTREAM timings include one fuzzy “agility” number for each
cipher but are otherwise dedicated to single-key benchmarks.

The timings collected by ciphercycles also include makekey timings, but
those timings are not reported in this paper.

Graphs

The sample graph on the left below shows timings for the abc-v3-poly1305
system on a 900MHz AMD Athlon (622) computer named thoth.

The horizontal axis is packet length, between 0 bytes and 8192 bytes. The
vertical axis is time, between 0 cycles and 98304 cycles. The diagonal from the
lower left corner of the graph to the upper right corner is 12 cycles per byte.

The two main lines visible on the graph are (1) roughly 7 cycles per byte for
encryption and decryption and (2) roughly 3 cycles per byte for rejection. Faint
lines are visible above the main lines; there are 15 timings for each packet length,
and initial timings are slightly slower because of cache misses. There is also a
short curve up the left side of the graph for encrypting packets of ≤ 1024 bytes
using a random key from a pool of 1024 active keys. Also plotted, and faintly
visible, are packet lengths of ≤ 960 bytes for 512 active keys, packet lengths of
≤ 896 bytes for 256 active keys, etc.

The sample graph on the right shows timings for the pypy-poly1305 system
on a 2137MHz Intel Core 2 Duo (6f6) computer named katana. The spreading
line shows variance in Pypy’s stream-generation time, perhaps from cache-timing
effects. Note also the large cost of handling small packets.



abc-v3
-poly1305

aes-128
-poly1305

aes-256
-poly1305

cryptmt-v3
-poly1305

dicing-p2
-poly1305

dragon
-poly1305

hc-128
-poly1305

hc-256
-poly1305



lex-v1
-poly1305

nls-ae

nls
-poly1305

phelix

py6
-poly1305

py
-poly1305

pypy
-poly1305

rabbit
-poly1305



rc4
-poly1305

salsa20-8
-poly1305

salsa20-12
-poly1305

salsa20
-poly1305

snow-2.0
-poly1305

sosemanuk
-poly1305

trivium
-poly1305

Graphs for grain-128-poly1305, grain-v1-poly1305, mickey-128-2-poly1305
are omitted. All three systems are very slow.



Here are the machines used (in order) for the above graphs:

• a 900MHz AMD Athlon (622) named thoth;
• an 800MHz Pentium M (6d8) named atlas;
• a 900MHz Sun UltraSPARC III named wessel;
• a 2137MHz Intel Core 2 Duo (6f6) named katana;
• a 2000MHz AMD Athlon 64 X2 (15,75,2) named mace; and
• a 533MHz Motorola PowerPC G4 7410 named gggg.

Tables

The following table shows median cycle counts for authenticated encryption as
a function of cipher and packet length. All timings are from a 900MHz AMD
Athlon (622) named thoth. All timings are for a single active key.

0 40 402 576 1500 8192
946 1635 4341 5525 12654 64314 abc-v3-poly1305
957 3330 20623 28023 71473 393518 aes-128-poly1305
987 3442 21013 28627 73239 402759 aes-256-poly1305

21983 22678 27482 29679 33653 121893 cryptmt-v3-poly1305
2454 3446 9865 12581 28885 145413 dicing-p2-poly1305
3229 4747 17031 22634 53741 277644 dragon-poly1305
2280 4263 20739 28413 70373 385986 grain-128-poly1305
2399 5149 27917 38740 96765 526804 grain-v1-poly1305

33936 34635 37388 38666 45759 96712 hc-128-poly1305
90598 91359 95181 97045 106890 179098 hc-256-poly1305
1195 2269 7795 10270 24266 124971 lex-v1-poly1305
2300 3740 9410 11043 23220 118608 nls-ae
1374 2539 6001 6811 14226 70396 nls-poly1305
743 1025 3326 4356 10109 51716 phelix

2866 3749 6518 7724 14674 64486 py6-poly1305
7274 9181 11946 13187 20124 69881 py-poly1305
8561 10658 14231 15825 25065 91266 pypy-poly1305
697 1310 4552 5905 14302 73521 rabbit-poly1305

14085 14999 21367 24316 40761 158469 rc4-poly1305
662 1216 4227 5511 12716 64672 salsa20-8-poly1305
781 1342 5071 6708 15547 79788 salsa20-12-poly1305

1007 1563 6693 9016 21078 109477 salsa20-poly1305
1512 2197 5416 6887 15032 74002 snow-2.0-poly1305
1405 2037 5992 7554 16703 87773 sosemanuk-poly1305
1217 1755 4919 6258 14328 71471 trivium-poly1305

The packet lengths I selected are 40 bytes, 576 bytes, and 1500 bytes from the
official eSTREAM timings; 0 bytes; 8192 bytes; and 402 bytes, an approximation
to the average Internet packet length.



The following table shows median cycle counts for authenticated encryption
as a function of cipher and the number of active keys. All timings are from a
900MHz AMD Athlon (622) named thoth. All timings are for 576-byte packets.

1 4 16 64 256 1024 bytes
5652 6437 20967 26962 29155 28836 abc-v3-poly1305 33872

28066 28040 28126 28129 28409 28559 aes-128-poly1305 276
28783 28636 28662 28788 29031 29426 aes-256-poly1305 276
29703 29703 31326 35937 37842 38501 cryptmt-v3-poly1305 4392
12538 12538 14951 14723 18080 18992 dicing-p2-poly1305 4412
22619 22582 21335 22441 22413 22920 dragon-poly1305 300
28563 28519 28629 29458 31558 32564 grain-128-poly1305 8328
38722 38766 38693 39587 41223 42613 grain-v1-poly1305 4184
38619 38681 40787 40823 46322 48922 hc-128-poly1305 4316
97370 97290 103092 108715 115247 119621 hc-256-poly1305 8412
10338 10326 10316 10298 10569 10926 lex-v1-poly1305 248
11030 11086 11033 11149 11139 11429 nls-ae 232
6859 6855 6857 6944 6919 7120 nls-poly1305 244
4357 4357 4412 4386 4514 4415 phelix 132
7731 7727 7787 8095 8372 10195 py6-poly1305 1140

13371 13380 14560 17433 20995 23702 py-poly1305 4212
15804 17163 16907 18252 25976 26964 pypy-poly1305 4260
5906 5921 5921 5985 6071 6217 rabbit-poly1305 152

24322 24280 24369 24792 26147 26456 rc4-poly1305 1084
5521 5530 5530 5583 5599 5622 salsa20-8-poly1305 80
6729 6708 6709 6708 6942 6973 salsa20-12-poly1305 80
9026 9019 9020 9066 9303 9311 salsa20-poly1305 80
6871 6884 7008 7104 7004 7355 snow-2.0-poly1305 124
7602 8230 8765 8791 9392 9706 sosemanuk-poly1305 468
6237 6242 6276 6273 6359 6466 trivium-poly1305 80

The “bytes” column in the above table indicates the number of bytes in an
expanded key. The penalty for handling 1024 active keys, compared to just 1, is
usually around 2 cycles for each expanded-key byte, presumably reflecting this
machine’s cache-load bandwidth. Grain shows a smaller penalty compared to its
expanded-key size; presumably Grain does not access the entire expanded key
for a 576-byte packet.



The following table shows median cycle counts for verified decryption as a
function of cipher and machine. All timings are for 576-byte packets. All timings
are for a single active key.

thoth atlas wessel katana mace gggg
5493 5453 7275 5656 6058 11920 abc-v3-poly1305

28114 22903 37371 14560 15388 25520 aes-128-poly1305
28594 20964 42039 17840 18526 29424 aes-256-poly1305
30090 29323 41915 13032 18157 39408 cryptmt-v3-poly1305
12546 11854 14582 9384 10745 19472 dicing-p2-poly1305
22372 19234 29724 15768 18838 25776 dragon-poly1305
28497 22713 48608 grain-128-poly1305
38660 35248 50912 grain-v1-poly1305
38302 36708 52004 26000 28001 43216 hc-128-poly1305
97446 83339 119769 58760 78089 94480 hc-256-poly1305
10348 9400 14095 9088 9929 16192 lex-v1-poly1305
10866 10683 15724 7688 9346 10960 nls-ae
6750 7453 8989 7936 7828 13584 nls-poly1305
4371 4773 12908 6152 5718 10032 phelix
7742 7688 11775 7920 9475 14800 py6-poly1305

13262 11051 21369 10608 13563 21472 py-poly1305
15882 16548 22560 13792 16305 22080 pypy-poly1305
6045 6623 11051 7456 7081 19696 rabbit-poly1305

24418 18112 31312 11912 25761 24384 rc4-poly1305
5570 6543 8001 6224 6304 16496 salsa20-8-poly1305
6734 7867 9708 7064 7236 10880 salsa20-12-poly1305
9045 10633 12984 8904 9019 11808 salsa20-poly1305
6892 7185 10773 7160 8098 14416 snow-2.0-poly1305
7379 8161 11537 8632 8357 15216 sosemanuk-poly1305
6333 6536 8531 6672 7034 18656 trivium-poly1305



The following table shows median cycle counts for rejection of a forged packet
as a function of cipher and machine. All timings are for 576-byte packets. All
timings are for a single active key.

thoth atlas wessel katana mace gggg
2854 3206 3873 4184 4212 9168 abc-v3-poly1305
2858 3109 4107 4024 4010 9088 aes-128-poly1305
2919 3068 4241 4104 4052 9216 aes-256-poly1305

23882 22687 37791 11232 15721 34800 cryptmt-v3-poly1305
4377 4223 5340 4848 5573 10640 dicing-p2-poly1305
5137 5017 5564 5008 5258 10336 dragon-poly1305
4196 4191 11712 grain-128-poly1305
4313 4463 11200 grain-v1-poly1305

35466 34312 47536 24472 26002 39984 hc-128-poly1305
92778 79852 113603 56240 74321 90176 hc-256-poly1305
3156 3353 4498 4352 4465 9488 lex-v1-poly1305

10876 10648 15650 7712 9347 10944 nls-ae
3287 3605 4444 4448 4766 9440 nls-poly1305
4368 4774 12914 6144 5717 10032 phelix
4778 4935 6539 5824 5694 11040 py6-poly1305
9194 7858 14172 8256 9295 16208 py-poly1305

10466 11023 12858 9256 9873 15424 pypy-poly1305
2650 3112 3987 4160 4024 9792 rabbit-poly1305

15984 10584 21629 11096 17582 17808 rc4-poly1305
2567 3057 3749 4048 4018 9536 salsa20-8-poly1305
2683 3205 3901 4168 4216 8880 salsa20-12-poly1305
2917 3488 4225 4312 4288 8944 salsa20-poly1305
3374 3781 4667 4552 4792 9888 snow-2.0-poly1305
3242 3785 4769 4664 4695 9824 sosemanuk-poly1305
3128 3447 4019 4376 4418 10688 trivium-poly1305



Appendix: Tunings

A cipher in the official eSTREAM benchmarking toolkit can have several tunings:
several implementations in separate subdirectories of the cipher directory, and
several “variants” of each implementation.

The new toolkit automatically tries encrypting several 1536-byte packets
under each tuning. It then selects the tuning producing the smallest median
cycle count, and uses that tuning for subsequent timings. The following table
lists the selected tunings.

thoth atlas wessel katana mace gggg
1 1 1 1 1 1 abc-v3-poly1305

ref ref ref ref ref ref aes-128-poly1305
ref ref ref ref ref ref aes-256-poly1305

1 1 1 1 1 1 cryptmt-v3-poly1305
1 1 1 1 1 1 dicing-p2-poly1305
1 1 1 1 1 1 dragon-poly1305

opt opt opt grain-128-poly1305
opt opt opt grain-v1-poly1305

1 1 1 1 1 1 hc-128-poly1305
1 1 1 1 1 1 hc-256-poly1305
1 1 1 1 1 1 lex-v1-poly1305
2 2 2 2 2 2 nls-ae
2 2 2 2 2 2 nls-poly1305

i386 i386 ref ref ref ref phelix
1 1 1 1 1 1 py6-poly1305
1 1 1 1 1 1 py-poly1305
1 1 1 1 1 1 pypy-poly1305

opt/3 opt/4 opt/3 opt/3 opt/4 opt/3 rabbit-poly1305
2 2 1 2 2 1 rc4-poly1305

x86-athlon x86-3 sparc amd64-3 amd64-3 ref salsa20-8-poly1305
x86-athlon x86-pm sparc amd64-3 amd64-3 ppc-altivec salsa20-12-poly1305
x86-athlon x86-pm sparc amd64-3 amd64-3 ppc-altivec salsa20-poly1305

1 1 1 1 1 1 snow-2.0-poly1305
1 1 1 1 1 1 sosemanuk-poly1305
1 1 1 1 1 1 trivium-poly1305

I’m surprised by some of the selections of “ref” in this table; I’m investigating.


