
Sorting: an update

Daniel J. Bernstein

Sorting arrays of secret integers

Cryptosystems that use a sorting subroutine:
• Classic McEliece: various deployments
• NTRU-HPS: another candidate for ISO
• NTRU Prime: now in 13 SSH implementations
• LESS: candidate for NIST
• PERK: candidate for NIST
• CTIDH: non-interactive key exchange
• More that I’ve noticed: Round2, LEDA,

BIG QUAKE, GeMSS, PKP-DSS, WAVE

Daniel J. Bernstein 2 Sorting: an update

https://classic.mceliece.org
https://mceliece.org
https://info.isl.ntt.co.jp/crypt/ntru/index.html
https://ntruprime.cr.yp.to
https://ssh-comparison.quendi.de/comparison/kex.html
https://less-project.com
https://pqc-perk.org
https://ctidh.isogeny.org
https://eprint.iacr.org/2017/1183
https://www.ledacrypt.org/
https://bigquake.inria.fr/documentation/
https://web.archive.org/web/20250211153605/https://www-polsys.lip6.fr/Links/NIST/GeMSS.html
https://eprint.iacr.org/2018/714
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/round-1/spec-files/wave-spec-web.pdf

Why do cryptosystems sort?

Typical applications inside cryptographic primitives:
• Insert bottom bits 1, 1, . . . , 1, 1, 0, 0, . . . , 0, 0

into a random array. Sort the array to generate
a random vector with exactly that many 1s.

• Sort randomness on top of 0, 1, 2, 3, . . .
to generate a random permutation.

• Sort a permutation on top of some data
to apply the permutation to the data.

Also many higher-level security protocols:
shuffling votes, shuffling network packets, etc.

Daniel J. Bernstein 3 Sorting: an update

Why do cryptosystems sort?

Typical applications inside cryptographic primitives:
• Insert bottom bits 1, 1, . . . , 1, 1, 0, 0, . . . , 0, 0

into a random array. Sort the array to generate
a random vector with exactly that many 1s.

• Sort randomness on top of 0, 1, 2, 3, . . .
to generate a random permutation.

• Sort a permutation on top of some data
to apply the permutation to the data.

Also many higher-level security protocols:
shuffling votes, shuffling network packets, etc.

Daniel J. Bernstein 3 Sorting: an update

Why do cryptosystems sort?

Typical applications inside cryptographic primitives:
• Insert bottom bits 1, 1, . . . , 1, 1, 0, 0, . . . , 0, 0

into a random array. Sort the array to generate
a random vector with exactly that many 1s.

• Sort randomness on top of 0, 1, 2, 3, . . .
to generate a random permutation.

• Sort a permutation on top of some data
to apply the permutation to the data.

Also many higher-level security protocols:
shuffling votes, shuffling network packets, etc.

Daniel J. Bernstein 3 Sorting: an update

Why do cryptosystems sort?

Typical applications inside cryptographic primitives:
• Insert bottom bits 1, 1, . . . , 1, 1, 0, 0, . . . , 0, 0

into a random array. Sort the array to generate
a random vector with exactly that many 1s.

• Sort randomness on top of 0, 1, 2, 3, . . .
to generate a random permutation.

• Sort a permutation on top of some data
to apply the permutation to the data.

Also many higher-level security protocols:
shuffling votes, shuffling network packets, etc.

Daniel J. Bernstein 3 Sorting: an update

Is sorting secrets safe?

Most sorting algorithms have data-dependent
branches: quicksort, heapsort, mergesort, . . .

Round2 KEM says: “Radix sort
is used as constant-time sorting algorithm.”
No, radix sort has data-dependent array indices.
Can attackers deduce the secret data from branch
timings or cache timings, as in many other timing
attacks? Maybe! Unnecessary attack surface.

Daniel J. Bernstein 4 Sorting: an update

https://eprint.iacr.org/2017/1183

Is sorting secrets safe?

Most sorting algorithms have data-dependent
branches: quicksort, heapsort, mergesort, . . .
Round2 KEM says: “Radix sort
is used as constant-time sorting algorithm.”
No, radix sort has data-dependent array indices.

Can attackers deduce the secret data from branch
timings or cache timings, as in many other timing
attacks? Maybe! Unnecessary attack surface.

Daniel J. Bernstein 4 Sorting: an update

https://eprint.iacr.org/2017/1183

Is sorting secrets safe?

Most sorting algorithms have data-dependent
branches: quicksort, heapsort, mergesort, . . .
Round2 KEM says: “Radix sort
is used as constant-time sorting algorithm.”
No, radix sort has data-dependent array indices.
Can attackers deduce the secret data from branch
timings or cache timings, as in many other timing
attacks? Maybe! Unnecessary attack surface.

Daniel J. Bernstein 4 Sorting: an update

https://eprint.iacr.org/2017/1183

So cryptosystem designers shouldn’t sort?
Some lattice KEMs avoid sorting by, e.g., flipping
coins independently for each position of a vector
(and don’t have other reasons to use permutations).

But then some vectors have fewer 1s
and are more vulnerable to close-vector attacks.
Meanwhile other vectors have more 1s
and are more likely to trigger decryption failures
that leak secret keys. Some attack strategies rely on
amplifying the probability of decryption failures.
Can these attacks be pushed further? Maybe!

Daniel J. Bernstein 5 Sorting: an update

https://cr.yp.to/papers.html#lprrr
https://iacr.org/archive/crypto2003/27290225/27290225.pdf
https://eprint.iacr.org/2021/193
https://lup.lub.lu.se/search/files/143742917/thesis.pdf

So cryptosystem designers shouldn’t sort?
Some lattice KEMs avoid sorting by, e.g., flipping
coins independently for each position of a vector
(and don’t have other reasons to use permutations).
But then some vectors have fewer 1s
and are more vulnerable to close-vector attacks.

Meanwhile other vectors have more 1s
and are more likely to trigger decryption failures
that leak secret keys. Some attack strategies rely on
amplifying the probability of decryption failures.
Can these attacks be pushed further? Maybe!

Daniel J. Bernstein 5 Sorting: an update

https://cr.yp.to/papers.html#lprrr
https://iacr.org/archive/crypto2003/27290225/27290225.pdf
https://eprint.iacr.org/2021/193
https://lup.lub.lu.se/search/files/143742917/thesis.pdf

So cryptosystem designers shouldn’t sort?
Some lattice KEMs avoid sorting by, e.g., flipping
coins independently for each position of a vector
(and don’t have other reasons to use permutations).
But then some vectors have fewer 1s
and are more vulnerable to close-vector attacks.
Meanwhile other vectors have more 1s
and are more likely to trigger decryption failures
that leak secret keys. Some attack strategies rely on
amplifying the probability of decryption failures.

Can these attacks be pushed further? Maybe!

Daniel J. Bernstein 5 Sorting: an update

https://cr.yp.to/papers.html#lprrr
https://iacr.org/archive/crypto2003/27290225/27290225.pdf
https://eprint.iacr.org/2021/193
https://lup.lub.lu.se/search/files/143742917/thesis.pdf

So cryptosystem designers shouldn’t sort?
Some lattice KEMs avoid sorting by, e.g., flipping
coins independently for each position of a vector
(and don’t have other reasons to use permutations).
But then some vectors have fewer 1s
and are more vulnerable to close-vector attacks.
Meanwhile other vectors have more 1s
and are more likely to trigger decryption failures
that leak secret keys. Some attack strategies rely on
amplifying the probability of decryption failures.
Can these attacks be pushed further? Maybe!

Daniel J. Bernstein 5 Sorting: an update

https://cr.yp.to/papers.html#lprrr
https://iacr.org/archive/crypto2003/27290225/27290225.pdf
https://eprint.iacr.org/2021/193
https://lup.lub.lu.se/search/files/143742917/thesis.pdf

Constant-time sorting
Bubblesort to the rescue:

void int32_sort(int32_t *x,long long n)
{ for (long long j = n;j > 1;--j)

for (long long i = 1;i < j;++i)
crypto_int32_minmax(&x[i-1],&x[i]);

}

crypto_int32_minmax(&u,&v) from cryptoint
sets u and v to min and max of original values.

Bubblesort is an example of a sorting network:
a sequence of minmax at predictable positions.

Daniel J. Bernstein 6 Sorting: an update

https://cr.yp.to/papers.html#cryptoint

Constant-time sorting
Bubblesort to the rescue:

void int32_sort(int32_t *x,long long n)
{ for (long long j = n;j > 1;--j)

for (long long i = 1;i < j;++i)
crypto_int32_minmax(&x[i-1],&x[i]);

}

crypto_int32_minmax(&u,&v) from cryptoint
sets u and v to min and max of original values.
Bubblesort is an example of a sorting network:
a sequence of minmax at predictable positions.

Daniel J. Bernstein 6 Sorting: an update

https://cr.yp.to/papers.html#cryptoint

Speed

A faster sorting network
void int32_sort(int32_t *x,long long n)
{ if (n < 2) return;

long long t = 1; while (t < n - t) t += t;
for (long long p = t;p > 0;p >>= 1) {

for (long long i = 0;i < n - p;++i)
if (!(i & p))

crypto_int32_minmax(x+i,x+i+p);
for (long long q = t;q > p;q >>= 1)

for (long long i = 0;i < n - q;++i)
if (!(i & p))

crypto_int32_minmax(x+i+p,x+i+q);
}

}
Daniel J. Bernstein 8 Sorting: an update

What is this algorithm?

Previous slide: C translation of 1973 Knuth
“merge exchange”, which is a simplified version of
1968 Batcher “odd-even merge” sorting network.
This uses about n(log2 n)2/4 comparisons.
Bubblesort used about n2/2 comparisons.

Many sorting-network descriptions are more limited:
e.g., requiring n to be a power of 2.
Also, Wikipedia says “Sorting networks . . .
are not capable of handling arbitrarily large inputs”.

Daniel J. Bernstein 9 Sorting: an update

What is this algorithm?

Previous slide: C translation of 1973 Knuth
“merge exchange”, which is a simplified version of
1968 Batcher “odd-even merge” sorting network.
This uses about n(log2 n)2/4 comparisons.
Bubblesort used about n2/2 comparisons.
Many sorting-network descriptions are more limited:
e.g., requiring n to be a power of 2.
Also, Wikipedia says “Sorting networks . . .
are not capable of handling arbitrarily large inputs”.

Daniel J. Bernstein 9 Sorting: an update

Even faster constant-time sorting

Simple merge-exchange code

2017: Sorting subroutine from
NTRU Prime software release

2018: First djbsort software release

20260127: Latest djbsort software release

switching to AVX2

more speedups

more speedups

Daniel J. Bernstein 10 Sorting: an update

https://sorting.cr.yp.to

How big is the constant-time penalty?

Next slide compares the following libraries:
• stdsort: built-in C++ std::sort.
• herf: 2001 radixsort code from Michael Herf.
• aspas: from a 2018 paper.
• vqsort/highway: introduced by Google in 2022.
• vxsort: used by Microsoft starting in 2020.
• x86simdsort: introduced by Intel in 2022.
• far: the 2020 parent of vqsort.
• djbsort.

Comparison platform: one core of an AMD Ryzen 5
PRO 5650G (2021 CPU launch; Zen 3 microarch).

Daniel J. Bernstein 11 Sorting: an update

https://stereopsis.com/radix.html
https://github.com/vtsynergy/aspas_sort
https://github.com/google/highway
https://opensource.googleblog.com/2022/06/Vectorized%20and%20performance%20portable%20Quicksort.html
https://github.com/damageboy/vxsort-cpp
https://github.com/dotnet/runtime/pull/37159
https://github.com/intel/x86-simd-sort.git
https://www.phoronix.com/news/Intel-AVX-512-Quicksort-Numpy
https://github.com/simd-sorting/fast-and-robust

How big is the constant-time penalty?
Next slide compares the following libraries:

• stdsort: built-in C++ std::sort.

• herf: 2001 radixsort code from Michael Herf.
• aspas: from a 2018 paper.
• vqsort/highway: introduced by Google in 2022.
• vxsort: used by Microsoft starting in 2020.
• x86simdsort: introduced by Intel in 2022.
• far: the 2020 parent of vqsort.
• djbsort.

Comparison platform: one core of an AMD Ryzen 5
PRO 5650G (2021 CPU launch; Zen 3 microarch).

Daniel J. Bernstein 11 Sorting: an update

https://stereopsis.com/radix.html
https://github.com/vtsynergy/aspas_sort
https://github.com/google/highway
https://opensource.googleblog.com/2022/06/Vectorized%20and%20performance%20portable%20Quicksort.html
https://github.com/damageboy/vxsort-cpp
https://github.com/dotnet/runtime/pull/37159
https://github.com/intel/x86-simd-sort.git
https://www.phoronix.com/news/Intel-AVX-512-Quicksort-Numpy
https://github.com/simd-sorting/fast-and-robust

How big is the constant-time penalty?
Next slide compares the following libraries:

• stdsort: built-in C++ std::sort.
• herf: 2001 radixsort code from Michael Herf.

• aspas: from a 2018 paper.
• vqsort/highway: introduced by Google in 2022.
• vxsort: used by Microsoft starting in 2020.
• x86simdsort: introduced by Intel in 2022.
• far: the 2020 parent of vqsort.
• djbsort.

Comparison platform: one core of an AMD Ryzen 5
PRO 5650G (2021 CPU launch; Zen 3 microarch).

Daniel J. Bernstein 11 Sorting: an update

https://stereopsis.com/radix.html
https://github.com/vtsynergy/aspas_sort
https://github.com/google/highway
https://opensource.googleblog.com/2022/06/Vectorized%20and%20performance%20portable%20Quicksort.html
https://github.com/damageboy/vxsort-cpp
https://github.com/dotnet/runtime/pull/37159
https://github.com/intel/x86-simd-sort.git
https://www.phoronix.com/news/Intel-AVX-512-Quicksort-Numpy
https://github.com/simd-sorting/fast-and-robust

How big is the constant-time penalty?
Next slide compares the following libraries:

• stdsort: built-in C++ std::sort.
• herf: 2001 radixsort code from Michael Herf.
• aspas: from a 2018 paper.

• vqsort/highway: introduced by Google in 2022.
• vxsort: used by Microsoft starting in 2020.
• x86simdsort: introduced by Intel in 2022.
• far: the 2020 parent of vqsort.
• djbsort.

Comparison platform: one core of an AMD Ryzen 5
PRO 5650G (2021 CPU launch; Zen 3 microarch).

Daniel J. Bernstein 11 Sorting: an update

https://stereopsis.com/radix.html
https://github.com/vtsynergy/aspas_sort
https://github.com/google/highway
https://opensource.googleblog.com/2022/06/Vectorized%20and%20performance%20portable%20Quicksort.html
https://github.com/damageboy/vxsort-cpp
https://github.com/dotnet/runtime/pull/37159
https://github.com/intel/x86-simd-sort.git
https://www.phoronix.com/news/Intel-AVX-512-Quicksort-Numpy
https://github.com/simd-sorting/fast-and-robust

How big is the constant-time penalty?
Next slide compares the following libraries:

• stdsort: built-in C++ std::sort.
• herf: 2001 radixsort code from Michael Herf.
• aspas: from a 2018 paper.
• vqsort/highway: introduced by Google in 2022.

• vxsort: used by Microsoft starting in 2020.
• x86simdsort: introduced by Intel in 2022.
• far: the 2020 parent of vqsort.
• djbsort.

Comparison platform: one core of an AMD Ryzen 5
PRO 5650G (2021 CPU launch; Zen 3 microarch).

Daniel J. Bernstein 11 Sorting: an update

https://stereopsis.com/radix.html
https://github.com/vtsynergy/aspas_sort
https://github.com/google/highway
https://opensource.googleblog.com/2022/06/Vectorized%20and%20performance%20portable%20Quicksort.html
https://github.com/damageboy/vxsort-cpp
https://github.com/dotnet/runtime/pull/37159
https://github.com/intel/x86-simd-sort.git
https://www.phoronix.com/news/Intel-AVX-512-Quicksort-Numpy
https://github.com/simd-sorting/fast-and-robust

How big is the constant-time penalty?
Next slide compares the following libraries:

• stdsort: built-in C++ std::sort.
• herf: 2001 radixsort code from Michael Herf.
• aspas: from a 2018 paper.
• vqsort/highway: introduced by Google in 2022.
• vxsort: used by Microsoft starting in 2020.

• x86simdsort: introduced by Intel in 2022.
• far: the 2020 parent of vqsort.
• djbsort.

Comparison platform: one core of an AMD Ryzen 5
PRO 5650G (2021 CPU launch; Zen 3 microarch).

Daniel J. Bernstein 11 Sorting: an update

https://stereopsis.com/radix.html
https://github.com/vtsynergy/aspas_sort
https://github.com/google/highway
https://opensource.googleblog.com/2022/06/Vectorized%20and%20performance%20portable%20Quicksort.html
https://github.com/damageboy/vxsort-cpp
https://github.com/dotnet/runtime/pull/37159
https://github.com/intel/x86-simd-sort.git
https://www.phoronix.com/news/Intel-AVX-512-Quicksort-Numpy
https://github.com/simd-sorting/fast-and-robust

How big is the constant-time penalty?
Next slide compares the following libraries:

• stdsort: built-in C++ std::sort.
• herf: 2001 radixsort code from Michael Herf.
• aspas: from a 2018 paper.
• vqsort/highway: introduced by Google in 2022.
• vxsort: used by Microsoft starting in 2020.
• x86simdsort: introduced by Intel in 2022.

• far: the 2020 parent of vqsort.
• djbsort.

Comparison platform: one core of an AMD Ryzen 5
PRO 5650G (2021 CPU launch; Zen 3 microarch).

Daniel J. Bernstein 11 Sorting: an update

https://stereopsis.com/radix.html
https://github.com/vtsynergy/aspas_sort
https://github.com/google/highway
https://opensource.googleblog.com/2022/06/Vectorized%20and%20performance%20portable%20Quicksort.html
https://github.com/damageboy/vxsort-cpp
https://github.com/dotnet/runtime/pull/37159
https://github.com/intel/x86-simd-sort.git
https://www.phoronix.com/news/Intel-AVX-512-Quicksort-Numpy
https://github.com/simd-sorting/fast-and-robust

How big is the constant-time penalty?
Next slide compares the following libraries:

• stdsort: built-in C++ std::sort.
• herf: 2001 radixsort code from Michael Herf.
• aspas: from a 2018 paper.
• vqsort/highway: introduced by Google in 2022.
• vxsort: used by Microsoft starting in 2020.
• x86simdsort: introduced by Intel in 2022.
• far: the 2020 parent of vqsort.

• djbsort.
Comparison platform: one core of an AMD Ryzen 5
PRO 5650G (2021 CPU launch; Zen 3 microarch).

Daniel J. Bernstein 11 Sorting: an update

https://stereopsis.com/radix.html
https://github.com/vtsynergy/aspas_sort
https://github.com/google/highway
https://opensource.googleblog.com/2022/06/Vectorized%20and%20performance%20portable%20Quicksort.html
https://github.com/damageboy/vxsort-cpp
https://github.com/dotnet/runtime/pull/37159
https://github.com/intel/x86-simd-sort.git
https://www.phoronix.com/news/Intel-AVX-512-Quicksort-Numpy
https://github.com/simd-sorting/fast-and-robust

How big is the constant-time penalty?
Next slide compares the following libraries:

• stdsort: built-in C++ std::sort.
• herf: 2001 radixsort code from Michael Herf.
• aspas: from a 2018 paper.
• vqsort/highway: introduced by Google in 2022.
• vxsort: used by Microsoft starting in 2020.
• x86simdsort: introduced by Intel in 2022.
• far: the 2020 parent of vqsort.
• djbsort.

Comparison platform: one core of an AMD Ryzen 5
PRO 5650G (2021 CPU launch; Zen 3 microarch).

Daniel J. Bernstein 11 Sorting: an update

https://stereopsis.com/radix.html
https://github.com/vtsynergy/aspas_sort
https://github.com/google/highway
https://opensource.googleblog.com/2022/06/Vectorized%20and%20performance%20portable%20Quicksort.html
https://github.com/damageboy/vxsort-cpp
https://github.com/dotnet/runtime/pull/37159
https://github.com/intel/x86-simd-sort.git
https://www.phoronix.com/news/Intel-AVX-512-Quicksort-Numpy
https://github.com/simd-sorting/fast-and-robust

How big is the constant-time penalty?
Next slide compares the following libraries:

• stdsort: built-in C++ std::sort.
• herf: 2001 radixsort code from Michael Herf.
• aspas: from a 2018 paper.
• vqsort/highway: introduced by Google in 2022.
• vxsort: used by Microsoft starting in 2020.
• x86simdsort: introduced by Intel in 2022.
• far: the 2020 parent of vqsort.
• djbsort.

Comparison platform: one core of an AMD Ryzen 5
PRO 5650G (2021 CPU launch; Zen 3 microarch).

Daniel J. Bernstein 11 Sorting: an update

https://stereopsis.com/radix.html
https://github.com/vtsynergy/aspas_sort
https://github.com/google/highway
https://opensource.googleblog.com/2022/06/Vectorized%20and%20performance%20portable%20Quicksort.html
https://github.com/damageboy/vxsort-cpp
https://github.com/dotnet/runtime/pull/37159
https://github.com/intel/x86-simd-sort.git
https://www.phoronix.com/news/Intel-AVX-512-Quicksort-Numpy
https://github.com/simd-sorting/fast-and-robust

20 21 22 23 24 25 26 27 28 29 210 211 212 213 214 215 216 217

2 2

2 1

20

21

22

23

24

25

26

faster

y = cycles/byte to sort int32[x] on cezanne (20260127; sortbench-20260127)

stdsort
herf
aspas
vqsort
vxsort
x86simdsort
far
djbsort

Daniel J. Bernstein 12 Sorting: an update

How can n(log2 n)2/4 beat n log2 n?

Answer: well-known trends in CPU design, reflecting
fundamental hardware costs of various operations.
Every cycle, typical Intel/AMD core can do
8 “min” ops on 32-bit integers +
8 “max” ops on 32-bit integers.
That’s less hardware than a conditional branch or
loading a 32-bit integer from a random address.
far, vxsort, vqsort, x86simdsort use sorting networks
for small n; semi-vectorized quicksort for larger n.
std::sort uses insertion sort for small n;
quicksort for large n. (Heapsort if quicksort stalls.)

Daniel J. Bernstein 13 Sorting: an update

How can n(log2 n)2/4 beat n log2 n?
Answer: well-known trends in CPU design, reflecting
fundamental hardware costs of various operations.

Every cycle, typical Intel/AMD core can do
8 “min” ops on 32-bit integers +
8 “max” ops on 32-bit integers.
That’s less hardware than a conditional branch or
loading a 32-bit integer from a random address.
far, vxsort, vqsort, x86simdsort use sorting networks
for small n; semi-vectorized quicksort for larger n.
std::sort uses insertion sort for small n;
quicksort for large n. (Heapsort if quicksort stalls.)

Daniel J. Bernstein 13 Sorting: an update

How can n(log2 n)2/4 beat n log2 n?
Answer: well-known trends in CPU design, reflecting
fundamental hardware costs of various operations.
Every cycle, typical Intel/AMD core can do
8 “min” ops on 32-bit integers +
8 “max” ops on 32-bit integers.

That’s less hardware than a conditional branch or
loading a 32-bit integer from a random address.
far, vxsort, vqsort, x86simdsort use sorting networks
for small n; semi-vectorized quicksort for larger n.
std::sort uses insertion sort for small n;
quicksort for large n. (Heapsort if quicksort stalls.)

Daniel J. Bernstein 13 Sorting: an update

How can n(log2 n)2/4 beat n log2 n?
Answer: well-known trends in CPU design, reflecting
fundamental hardware costs of various operations.
Every cycle, typical Intel/AMD core can do
8 “min” ops on 32-bit integers +
8 “max” ops on 32-bit integers.
That’s less hardware than a conditional branch or
loading a 32-bit integer from a random address.

far, vxsort, vqsort, x86simdsort use sorting networks
for small n; semi-vectorized quicksort for larger n.
std::sort uses insertion sort for small n;
quicksort for large n. (Heapsort if quicksort stalls.)

Daniel J. Bernstein 13 Sorting: an update

How can n(log2 n)2/4 beat n log2 n?
Answer: well-known trends in CPU design, reflecting
fundamental hardware costs of various operations.
Every cycle, typical Intel/AMD core can do
8 “min” ops on 32-bit integers +
8 “max” ops on 32-bit integers.
That’s less hardware than a conditional branch or
loading a 32-bit integer from a random address.
far, vxsort, vqsort, x86simdsort use sorting networks
for small n; semi-vectorized quicksort for larger n.
std::sort uses insertion sort for small n;
quicksort for large n. (Heapsort if quicksort stalls.)

Daniel J. Bernstein 13 Sorting: an update

Asymptotics vs. reality
C++03 required std::sort to use “approximately
N log(N)” comparisons on average. C++11. . . 23
require “O(N log(N))” comparisons for all inputs.

Impact of this rule on int32 sorting speed on AVX2:

switching std::sort to makes it and is
bubblesort slower prohibited

djbsort faster prohibited
insertionsort if N ≤ 24 unchanged allowed
bubblesort if N ≤ 260 slower allowed
djbsort if N ≤ 260 faster allowed

Daniel J. Bernstein 14 Sorting: an update

Asymptotics vs. reality
C++03 required std::sort to use “approximately
N log(N)” comparisons on average. C++11. . . 23
require “O(N log(N))” comparisons for all inputs.
Impact of this rule on int32 sorting speed on AVX2:

switching std::sort to makes it and is
bubblesort slower prohibited

djbsort faster prohibited
insertionsort if N ≤ 24 unchanged allowed
bubblesort if N ≤ 260 slower allowed
djbsort if N ≤ 260 faster allowed

Daniel J. Bernstein 14 Sorting: an update

Asymptotics vs. reality
C++03 required std::sort to use “approximately
N log(N)” comparisons on average. C++11. . . 23
require “O(N log(N))” comparisons for all inputs.
Impact of this rule on int32 sorting speed on AVX2:

switching std::sort to makes it and is
bubblesort slower prohibited
djbsort faster prohibited

insertionsort if N ≤ 24 unchanged allowed
bubblesort if N ≤ 260 slower allowed
djbsort if N ≤ 260 faster allowed

Daniel J. Bernstein 14 Sorting: an update

Asymptotics vs. reality
C++03 required std::sort to use “approximately
N log(N)” comparisons on average. C++11. . . 23
require “O(N log(N))” comparisons for all inputs.
Impact of this rule on int32 sorting speed on AVX2:

switching std::sort to makes it and is
bubblesort slower prohibited
djbsort faster prohibited
insertionsort if N ≤ 24 unchanged allowed

bubblesort if N ≤ 260 slower allowed
djbsort if N ≤ 260 faster allowed

Daniel J. Bernstein 14 Sorting: an update

Asymptotics vs. reality
C++03 required std::sort to use “approximately
N log(N)” comparisons on average. C++11. . . 23
require “O(N log(N))” comparisons for all inputs.
Impact of this rule on int32 sorting speed on AVX2:

switching std::sort to makes it and is
bubblesort slower prohibited
djbsort faster prohibited
insertionsort if N ≤ 24 unchanged allowed
bubblesort if N ≤ 260 slower allowed

djbsort if N ≤ 260 faster allowed

Daniel J. Bernstein 14 Sorting: an update

Asymptotics vs. reality
C++03 required std::sort to use “approximately
N log(N)” comparisons on average. C++11. . . 23
require “O(N log(N))” comparisons for all inputs.
Impact of this rule on int32 sorting speed on AVX2:

switching std::sort to makes it and is
bubblesort slower prohibited
djbsort faster prohibited
insertionsort if N ≤ 24 unchanged allowed
bubblesort if N ≤ 260 slower allowed
djbsort if N ≤ 260 faster allowed

Daniel J. Bernstein 14 Sorting: an update

Security

Security benefits of sorting networks
Automatic protection against timing attacks.

Automatic protection against denial of service.
(Unlike the quicksort situation of performing very
badly for some inputs. How badly? Depends on
library. See, e.g., 2021 clang patch to std::sort.)
If a memory-safety test passes for one size-n array,
and the code doesn’t inspect array alignment etc.,
then the code is memory-safe for all size-n arrays.
(Unlike vxsort, which crashes on some inputs. Does
vxsort allow data leaks? Stack smashing? Maybe.)

Daniel J. Bernstein 16 Sorting: an update

https://reviews.llvm.org/D113413
https://cr.yp.to/2026/20260118-vxsort.sh

Security benefits of sorting networks
Automatic protection against timing attacks.
Automatic protection against denial of service.
(Unlike the quicksort situation of performing very
badly for some inputs. How badly? Depends on
library. See, e.g., 2021 clang patch to std::sort.)

If a memory-safety test passes for one size-n array,
and the code doesn’t inspect array alignment etc.,
then the code is memory-safe for all size-n arrays.
(Unlike vxsort, which crashes on some inputs. Does
vxsort allow data leaks? Stack smashing? Maybe.)

Daniel J. Bernstein 16 Sorting: an update

https://reviews.llvm.org/D113413
https://cr.yp.to/2026/20260118-vxsort.sh

Security benefits of sorting networks
Automatic protection against timing attacks.
Automatic protection against denial of service.
(Unlike the quicksort situation of performing very
badly for some inputs. How badly? Depends on
library. See, e.g., 2021 clang patch to std::sort.)
If a memory-safety test passes for one size-n array,
and the code doesn’t inspect array alignment etc.,
then the code is memory-safe for all size-n arrays.
(Unlike vxsort, which crashes on some inputs. Does
vxsort allow data leaks? Stack smashing? Maybe.)

Daniel J. Bernstein 16 Sorting: an update

https://reviews.llvm.org/D113413
https://cr.yp.to/2026/20260118-vxsort.sh

Is djbsort really constant-time?

cryptoint takes responsibility for constant-time
minmax, including defenses against current compiler
screwups. But are those defenses successful?

— Shouldn’t we fix the compiler to not screw up?
— I have a clang patch that removes many of the
branch-introducing screwups in that compiler.
Patch already adopted by Fil-C. But universal
rollout will take time; “many” is unlikely to be all;
and clang will probably keep adding new screwups.

Daniel J. Bernstein 17 Sorting: an update

https://gitlab.cr.yp.to/djb/filian/-/blob/main/patch-llvm-fewer-branches?ref_type=heads
https://fil-c.org

Is djbsort really constant-time?

cryptoint takes responsibility for constant-time
minmax, including defenses against current compiler
screwups. But are those defenses successful?
— Shouldn’t we fix the compiler to not screw up?

— I have a clang patch that removes many of the
branch-introducing screwups in that compiler.
Patch already adopted by Fil-C. But universal
rollout will take time; “many” is unlikely to be all;
and clang will probably keep adding new screwups.

Daniel J. Bernstein 17 Sorting: an update

https://gitlab.cr.yp.to/djb/filian/-/blob/main/patch-llvm-fewer-branches?ref_type=heads
https://fil-c.org

Is djbsort really constant-time?

cryptoint takes responsibility for constant-time
minmax, including defenses against current compiler
screwups. But are those defenses successful?
— Shouldn’t we fix the compiler to not screw up?
— I have a clang patch that removes many of the
branch-introducing screwups in that compiler.
Patch already adopted by Fil-C. But universal
rollout will take time; “many” is unlikely to be all;
and clang will probably keep adding new screwups.

Daniel J. Bernstein 17 Sorting: an update

https://gitlab.cr.yp.to/djb/filian/-/blob/main/patch-llvm-fewer-branches?ref_type=heads
https://fil-c.org

Another compiler modification
A 2018 paper complained that OpenSSL had “37
different functions” for constant-time computations.
Patched clang for __builtin_ct_choose.
In 2025, Trail of Bits provided and upstreamed
a patch for a similar __builtin_ct_select.

So __builtin_ct_select(a<b,a,b) is safe?
No: a<b can already generate a branch!
This is why NaCl’s coding rules say “always assume
that a comparison in C is compiled into a branch”.
What people actually need is safe comparison
operations, as in the cryptoint API.

Daniel J. Bernstein 18 Sorting: an update

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8406587
https://blog.trailofbits.com/2025/12/02/introducing-constant-time-support-for-llvm-to-protect-cryptographic-code/
https://nacl.cr.yp.to/internals.html

Another compiler modification
A 2018 paper complained that OpenSSL had “37
different functions” for constant-time computations.
Patched clang for __builtin_ct_choose.
In 2025, Trail of Bits provided and upstreamed
a patch for a similar __builtin_ct_select.
So __builtin_ct_select(a<b,a,b) is safe?

No: a<b can already generate a branch!
This is why NaCl’s coding rules say “always assume
that a comparison in C is compiled into a branch”.
What people actually need is safe comparison
operations, as in the cryptoint API.

Daniel J. Bernstein 18 Sorting: an update

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8406587
https://blog.trailofbits.com/2025/12/02/introducing-constant-time-support-for-llvm-to-protect-cryptographic-code/
https://nacl.cr.yp.to/internals.html

Another compiler modification
A 2018 paper complained that OpenSSL had “37
different functions” for constant-time computations.
Patched clang for __builtin_ct_choose.
In 2025, Trail of Bits provided and upstreamed
a patch for a similar __builtin_ct_select.
So __builtin_ct_select(a<b,a,b) is safe?
No: a<b can already generate a branch!
This is why NaCl’s coding rules say “always assume
that a comparison in C is compiled into a branch”.
What people actually need is safe comparison
operations, as in the cryptoint API.

Daniel J. Bernstein 18 Sorting: an update

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8406587
https://blog.trailofbits.com/2025/12/02/introducing-constant-time-support-for-llvm-to-protect-cryptographic-code/
https://nacl.cr.yp.to/internals.html

Analyze the binaries
C programmers+compilers screw up in many ways.
Important to run valgrind to test whether there’s
any data flow to branches or array indices
starting from an uninitialized input array.

This is part of the automatic tests in SUPERCOP,
in the new djbsort release, in libmceliece,
in libntruprime, etc.
This achieves path coverage for djbsort’s code
once the test runs cover enough array sizes.
The test suites in libmceliece etc. cover the
specific array sizes needed for those cryptosystems.

Daniel J. Bernstein 19 Sorting: an update

Analyze the binaries
C programmers+compilers screw up in many ways.
Important to run valgrind to test whether there’s
any data flow to branches or array indices
starting from an uninitialized input array.
This is part of the automatic tests in SUPERCOP,
in the new djbsort release, in libmceliece,
in libntruprime, etc.

This achieves path coverage for djbsort’s code
once the test runs cover enough array sizes.
The test suites in libmceliece etc. cover the
specific array sizes needed for those cryptosystems.

Daniel J. Bernstein 19 Sorting: an update

Analyze the binaries
C programmers+compilers screw up in many ways.
Important to run valgrind to test whether there’s
any data flow to branches or array indices
starting from an uninitialized input array.
This is part of the automatic tests in SUPERCOP,
in the new djbsort release, in libmceliece,
in libntruprime, etc.
This achieves path coverage for djbsort’s code
once the test runs cover enough array sizes.
The test suites in libmceliece etc. cover the
specific array sizes needed for those cryptosystems.

Daniel J. Bernstein 19 Sorting: an update

Take the compiler out of the loop?

The djbsort code is generated by a Python script.
Could modify this to generate assembly directly.
Maybe preferable: generate code in the Jasmin
language, which has various security features
including secret data types.

Daniel J. Bernstein 20 Sorting: an update

https://jasmin-lang.readthedocs.io/en/stable/

Verification

The correctness question

Does djbsort actually sort correctly?
What if some comparisons are missing for size-n
arrays so the code isn’t actually a sorting network?

Random-input correctness tests under valgrind
make clear that it’s close to a sorting network:

• The code is memory-safe for all size-n inputs.
• The output is correct for most size-n inputs.

But could occasional inputs be mis-sorted?
Maybe this is a problem for the application!

Daniel J. Bernstein 22 Sorting: an update

The correctness question

Does djbsort actually sort correctly?
What if some comparisons are missing for size-n
arrays so the code isn’t actually a sorting network?
Random-input correctness tests under valgrind
make clear that it’s close to a sorting network:

• The code is memory-safe for all size-n inputs.
• The output is correct for most size-n inputs.

But could occasional inputs be mis-sorted?
Maybe this is a problem for the application!

Daniel J. Bernstein 22 Sorting: an update

Verification pipeline for djbsort
C code

machine code

fully unrolled code

unrolled min-max code

yes, code works

normal compiler (once for all n)

unroll: symbolic execution (per n)

minmax: peephole optimizer (per n)

decompose: sorting verifier (per n)

Daniel J. Bernstein 23 Sorting: an update

What’s going on inside verification?
The unroll tool uses angr. See also saferewrite
for a more general unrolling tool using angr.

The minmax tool rewrites the instruction stream
from angr to recognize the original min-max
operations. In the latest release of djbsort,
the rewrite rules are verified by an SMT solver.
The decompose tool recognizes the structure of
sorting networks built from merging networks,
and applies a theorem on merge verification.
Do these tools have bugs? Does angr have bugs?
Switching to HOL Light would reduce risks.

Daniel J. Bernstein 24 Sorting: an update

https://angr.io
https://pqsrc.cr.yp.to/downloads.html

What’s going on inside verification?
The unroll tool uses angr. See also saferewrite
for a more general unrolling tool using angr.
The minmax tool rewrites the instruction stream
from angr to recognize the original min-max
operations. In the latest release of djbsort,
the rewrite rules are verified by an SMT solver.

The decompose tool recognizes the structure of
sorting networks built from merging networks,
and applies a theorem on merge verification.
Do these tools have bugs? Does angr have bugs?
Switching to HOL Light would reduce risks.

Daniel J. Bernstein 24 Sorting: an update

https://angr.io
https://pqsrc.cr.yp.to/downloads.html

What’s going on inside verification?
The unroll tool uses angr. See also saferewrite
for a more general unrolling tool using angr.
The minmax tool rewrites the instruction stream
from angr to recognize the original min-max
operations. In the latest release of djbsort,
the rewrite rules are verified by an SMT solver.
The decompose tool recognizes the structure of
sorting networks built from merging networks,
and applies a theorem on merge verification.

Do these tools have bugs? Does angr have bugs?
Switching to HOL Light would reduce risks.

Daniel J. Bernstein 24 Sorting: an update

https://angr.io
https://pqsrc.cr.yp.to/downloads.html

What’s going on inside verification?
The unroll tool uses angr. See also saferewrite
for a more general unrolling tool using angr.
The minmax tool rewrites the instruction stream
from angr to recognize the original min-max
operations. In the latest release of djbsort,
the rewrite rules are verified by an SMT solver.
The decompose tool recognizes the structure of
sorting networks built from merging networks,
and applies a theorem on merge verification.
Do these tools have bugs? Does angr have bugs?
Switching to HOL Light would reduce risks.

Daniel J. Bernstein 24 Sorting: an update

https://angr.io
https://pqsrc.cr.yp.to/downloads.html

Testing vs. verification

void int32_sort(int32_t *x,long long n)
{ for (long long j = n;j > 1;--j)

for (long long i = 1;i < j;++i)
if (i != 1 || j != 20 || n != 40)

crypto_int32_minmax(&x[i-1],&x[i]);
}

For n = 40: This passes billions of random tests.

But this is rapidly rejected by djbsort’s verification.
This code mis-sorts with probability about 2−37.
Can write tests to catch this; verification is easier!

Daniel J. Bernstein 25 Sorting: an update

Testing vs. verification

void int32_sort(int32_t *x,long long n)
{ for (long long j = n;j > 1;--j)

for (long long i = 1;i < j;++i)
if (i != 1 || j != 20 || n != 40)

crypto_int32_minmax(&x[i-1],&x[i]);
}

For n = 40: This passes billions of random tests.
But this is rapidly rejected by djbsort’s verification.

This code mis-sorts with probability about 2−37.
Can write tests to catch this; verification is easier!

Daniel J. Bernstein 25 Sorting: an update

Testing vs. verification

void int32_sort(int32_t *x,long long n)
{ for (long long j = n;j > 1;--j)

for (long long i = 1;i < j;++i)
if (i != 1 || j != 20 || n != 40)

crypto_int32_minmax(&x[i-1],&x[i]);
}

For n = 40: This passes billions of random tests.
But this is rapidly rejected by djbsort’s verification.
This code mis-sorts with probability about 2−37.

Can write tests to catch this; verification is easier!

Daniel J. Bernstein 25 Sorting: an update

Testing vs. verification

void int32_sort(int32_t *x,long long n)
{ for (long long j = n;j > 1;--j)

for (long long i = 1;i < j;++i)
if (i != 1 || j != 20 || n != 40)

crypto_int32_minmax(&x[i-1],&x[i]);
}

For n = 40: This passes billions of random tests.
But this is rapidly rejected by djbsort’s verification.
This code mis-sorts with probability about 2−37.
Can write tests to catch this; verification is easier!

Daniel J. Bernstein 25 Sorting: an update

