
The McEliece cryptosystem

Daniel J. Bernstein

Some reasons to study McEliece
Among all public-key encryption systems, the
McEliece system has the strongest security
track record. Minimizes security risks.
McEliece is already deployed in end-to-end
secure-messaging systems, Adva’s high-speed
optical networks, Crypto4A’s hardware security
modules, and the Mullvad and Rosenpass VPNs.
Easy-to-use software library libmceliece has already
been integrated into Debian and Ubuntu.
More environments: Bouncy Castle (Java and C#),
Python, Rust, M4, FPGAs, McTiny, McOutsourcing.
Integrations: PQClean, liboqs, Node.js, OpenSSH.

Daniel J. Bernstein, The McEliece cryptosystem, https://mceliece.org 2

https://textbrowser.github.io/smoke/
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/jgevyeKehcM/m/TEhAwE11BgAJ
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/jgevyeKehcM/m/TEhAwE11BgAJ
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/jgevyeKehcM/m/3lv2g2NYAwAJ
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/jgevyeKehcM/m/3lv2g2NYAwAJ
https://mullvad.net/en/blog/2023/4/6/stable-quantum-resistant-tunnels-in-the-app/
https://rosenpass.eu/
https://lib.mceliece.org
https://packages.debian.org/en/sid/libmceliece-dev
https://packages.ubuntu.com/noble/libmceliece-dev
https://bouncycastle.org/
https://github.com/ondesmartenot/pymceliece
https://github.com/Colfenor/classic-mceliece-rust
https://github.com/pqcryptotw/mceliece-arm-m4
https://caslab.csl.yale.edu/code/pqc-classic-mceliece/
https://mctiny.org/
https://github.com/devillegna/McOutsourcing
https://github.com/PQClean/PQClean
https://openquantumsafe.org/liboqs/
https://github.com/tniessen/node-mceliece-nist
https://blog.josefsson.org/2023/12/10/classic-mceliece-goes-to-ietf-and-openssh/
https://mceliece.org

One way to invent the McEliece system
0. Start with modern lattice-based cryptography.

1. Choose modulus 2. Bad: slower in software.
Good: simpler; easier analysis; much more stability
against cryptanalysis; nicer for hardware.
2. Then switch to a more powerful decoder.
Bad: more complicated decoding algorithm.
Good: much better security vs. ciphertext size.
3. Then travel back in time to publish in 1978.
Good: allows half century of security analysis and
half century of implementation improvements.

Daniel J. Bernstein, The McEliece cryptosystem, https://mceliece.org 3

https://mceliece.org

One way to invent the McEliece system
0. Start with modern lattice-based cryptography.
1. Choose modulus 2. Bad: slower in software.
Good: simpler; easier analysis; much more stability
against cryptanalysis; nicer for hardware.

2. Then switch to a more powerful decoder.
Bad: more complicated decoding algorithm.
Good: much better security vs. ciphertext size.
3. Then travel back in time to publish in 1978.
Good: allows half century of security analysis and
half century of implementation improvements.

Daniel J. Bernstein, The McEliece cryptosystem, https://mceliece.org 3

https://mceliece.org

One way to invent the McEliece system
0. Start with modern lattice-based cryptography.
1. Choose modulus 2. Bad: slower in software.
Good: simpler; easier analysis; much more stability
against cryptanalysis; nicer for hardware.
2. Then switch to a more powerful decoder.
Bad: more complicated decoding algorithm.
Good: much better security vs. ciphertext size.

3. Then travel back in time to publish in 1978.
Good: allows half century of security analysis and
half century of implementation improvements.

Daniel J. Bernstein, The McEliece cryptosystem, https://mceliece.org 3

https://mceliece.org

One way to invent the McEliece system
0. Start with modern lattice-based cryptography.
1. Choose modulus 2. Bad: slower in software.
Good: simpler; easier analysis; much more stability
against cryptanalysis; nicer for hardware.
2. Then switch to a more powerful decoder.
Bad: more complicated decoding algorithm.
Good: much better security vs. ciphertext size.
3. Then travel back in time to publish in 1978.
Good: allows half century of security analysis and
half century of implementation improvements.

Daniel J. Bernstein, The McEliece cryptosystem, https://mceliece.org 3

https://mceliece.org

The general framework
System parameters: n, q, r ∈ {1, 2, 3, . . .}.
Public key determines K0, . . . , Kn−1 ∈ (Z/q)r .
Notation: Z/q is the ring of integers mod q;
(Z/q)r = {(u0, . . . , ur−1) : each ui ∈ Z/q};
a, b ∈ X means a ∈ X and b ∈ X .

Ciphertext: C = s0K0 + · · · + sn−1Kn−1 ∈ (Z/q)r

where s0, . . . , sn−1 ∈ Z are small secrets.
Ciphertext has r log2 q bits.
This covers “code-based” and “lattice-based”
encryption. Let’s call this cola encryption.

Daniel J. Bernstein, The McEliece cryptosystem, https://mceliece.org 4

https://mceliece.org

The general framework
System parameters: n, q, r ∈ {1, 2, 3, . . .}.
Public key determines K0, . . . , Kn−1 ∈ (Z/q)r .
Notation: Z/q is the ring of integers mod q;
(Z/q)r = {(u0, . . . , ur−1) : each ui ∈ Z/q};
a, b ∈ X means a ∈ X and b ∈ X .
Ciphertext: C = s0K0 + · · · + sn−1Kn−1 ∈ (Z/q)r

where s0, . . . , sn−1 ∈ Z are small secrets.
Ciphertext has r log2 q bits.

This covers “code-based” and “lattice-based”
encryption. Let’s call this cola encryption.

Daniel J. Bernstein, The McEliece cryptosystem, https://mceliece.org 4

https://mceliece.org

The general framework
System parameters: n, q, r ∈ {1, 2, 3, . . .}.
Public key determines K0, . . . , Kn−1 ∈ (Z/q)r .
Notation: Z/q is the ring of integers mod q;
(Z/q)r = {(u0, . . . , ur−1) : each ui ∈ Z/q};
a, b ∈ X means a ∈ X and b ∈ X .
Ciphertext: C = s0K0 + · · · + sn−1Kn−1 ∈ (Z/q)r

where s0, . . . , sn−1 ∈ Z are small secrets.
Ciphertext has r log2 q bits.
This covers “code-based” and “lattice-based”
encryption. Let’s call this cola encryption.

Daniel J. Bernstein, The McEliece cryptosystem, https://mceliece.org 4

https://mceliece.org

A cola example: ntruhps2048509

System parameters: (n, q, r) = (1018, 2048, 508).
Public key determines K0, . . . , K1017 ∈ (Z/2048)508.
Ciphertext: C = s0K0 + · · · + s1017K1017
for secrets s0, . . . , s1017 ∈ {−1, 0, 1}.
Ciphertext has 508 log2 2048 = 5588 bits,
i.e., 5588/8 = 698.5 bytes, sent in 699 bytes.
(Exercise: What are n, q, r for kyber512?)

Daniel J. Bernstein, The McEliece cryptosystem, https://mceliece.org 5

https://mceliece.org

Lattice attacks

Attacker sees C , K0, . . . , Kn−1 ∈ (Z/q)r .
Easy linear-algebra computation finds big
t0, . . . , tn−1 ∈ Z with C = t0K0 + · · · + tn−1Kn−1.

Note: (t0 − s0)K0 + · · · + (tn−1 − sn−1)Kn−1 = 0;
i.e., (t0 − s0, . . . , tn−1 − sn−1) ∈ L where
L = {(v0, . . . , vn−1) : v0K0 + · · · + vn−1Kn−1 = 0}.
Attack problem is now a “close-vector problem”:
find v in lattice L with v ≈ (t0, . . . , tn−1).

Daniel J. Bernstein, The McEliece cryptosystem, https://mceliece.org 6

https://mceliece.org

Lattice attacks

Attacker sees C , K0, . . . , Kn−1 ∈ (Z/q)r .
Easy linear-algebra computation finds big
t0, . . . , tn−1 ∈ Z with C = t0K0 + · · · + tn−1Kn−1.
Note: (t0 − s0)K0 + · · · + (tn−1 − sn−1)Kn−1 = 0;
i.e., (t0 − s0, . . . , tn−1 − sn−1) ∈ L where
L = {(v0, . . . , vn−1) : v0K0 + · · · + vn−1Kn−1 = 0}.

Attack problem is now a “close-vector problem”:
find v in lattice L with v ≈ (t0, . . . , tn−1).

Daniel J. Bernstein, The McEliece cryptosystem, https://mceliece.org 6

https://mceliece.org

Lattice attacks

Attacker sees C , K0, . . . , Kn−1 ∈ (Z/q)r .
Easy linear-algebra computation finds big
t0, . . . , tn−1 ∈ Z with C = t0K0 + · · · + tn−1Kn−1.
Note: (t0 − s0)K0 + · · · + (tn−1 − sn−1)Kn−1 = 0;
i.e., (t0 − s0, . . . , tn−1 − sn−1) ∈ L where
L = {(v0, . . . , vn−1) : v0K0 + · · · + vn−1Kn−1 = 0}.
Attack problem is now a “close-vector problem”:
find v in lattice L with v ≈ (t0, . . . , tn−1).

Daniel J. Bernstein, The McEliece cryptosystem, https://mceliece.org 6

https://mceliece.org

NP-hardness myths for lattice encryption
Standard conjectures: “the polynomial hierarchy
does not collapse”; in particular, P ̸= NP; so, for
every NP-hard problem, every poly-time algorithm
fails to solve some example of the problem.

Fact: The general problem of finding v ∈ L
with v ≈ t is NP-hard. (1981 van Emde Boas)
Common mistake: “Attacking lattice encryption
is an example of this problem, so it’s NP-hard.”
No, there’s no reason to think attacking lattice
encryption is NP-hard. Fact: Every problem broken
in poly time is an example of an NP-hard problem.

Daniel J. Bernstein, The McEliece cryptosystem, https://mceliece.org 7

https://mceliece.org

NP-hardness myths for lattice encryption
Standard conjectures: “the polynomial hierarchy
does not collapse”; in particular, P ̸= NP; so, for
every NP-hard problem, every poly-time algorithm
fails to solve some example of the problem.
Fact: The general problem of finding v ∈ L
with v ≈ t is NP-hard. (1981 van Emde Boas)

Common mistake: “Attacking lattice encryption
is an example of this problem, so it’s NP-hard.”
No, there’s no reason to think attacking lattice
encryption is NP-hard. Fact: Every problem broken
in poly time is an example of an NP-hard problem.

Daniel J. Bernstein, The McEliece cryptosystem, https://mceliece.org 7

https://mceliece.org

NP-hardness myths for lattice encryption
Standard conjectures: “the polynomial hierarchy
does not collapse”; in particular, P ̸= NP; so, for
every NP-hard problem, every poly-time algorithm
fails to solve some example of the problem.
Fact: The general problem of finding v ∈ L
with v ≈ t is NP-hard. (1981 van Emde Boas)
Common mistake: “Attacking lattice encryption
is an example of this problem, so it’s NP-hard.”
No, there’s no reason to think attacking lattice
encryption is NP-hard. Fact: Every problem broken
in poly time is an example of an NP-hard problem.

Daniel J. Bernstein, The McEliece cryptosystem, https://mceliece.org 7

https://mceliece.org

Lattice gaps
Picture from 2005 Aharanov–Regev:

due to Ajtai et al. [6] obtains a 2O(n log logn/ logn)-approximation factor for both problems; it is based on the

deterministic polynomial time 2O(n(log logn)2/ logn)-approximation algorithm by Schnorr [27].

The complexity of lattice problems in the range of polynomial approximation factors is of particular

interest. For example, Ajtai’s seminal work [3] is based on the hardness of approximation in this region (see

also [5, 25]). A sequence of incomparable results gave upper bounds on the complexity of lattice problems

in the polynomial approximation region. Banaszczyk [7] showed that GapCVPn is in NP ∩ coNP, improving

on the previous result of GapCVPn1.5 ∈ NP ∩ coNP by Lagarias, Lenstra and Schnorr [22]. We note that

containment in NP is trivial, and the difficult part is showing the containment in coNP, i.e., showing the

existence of a succinct proof that a vector is far from any lattice point. Goldreich and Goldwasser [14] gave

an upper bound on the complexity of the harder problem GapCVP√
n/ logn

, but their upper bound is weaker:

they showed containment in NP ∩ coAM, which means that instead of showing the existence of a succinct

proof that a vector is far from any lattice point, they gave an interactive proof of two rounds to that effect.

In another result, the current authors showed [2] that a certain special case of GapCVP√
n is in NP∩ coQMA,

where the latter class is the quantum analogue of coNP. Essentially, this says that there exists a succinct

quantum proof that a vector is far from the lattice. See [2] for more details.

In this paper we prove the following theorem, which essentially subsumes all three results mentioned

above.

Theorem 1.1 There exists c > 0 such that GapCVPc
√
n is in NP ∩ coNP.

Of the three results, the only result that Theorem 1.1 does not completely subsume is that of Goldreich and

Goldwasser [14]. Indeed, for gaps between
√
n/ logn and

√
n our result does not apply, and so containment

in NP ∩ coNP is not known to hold.

There is a known approximation preserving reduction from GapSVP to GapCVP [15], which we include

for completeness in Appendix A. Using this reduction, we obtain the following corollary.

Corollary 1.2 There exists c > 0 such that GapSVPc
√
n is in NP ∩ coNP.

We summarize the current complexity of lattice problems as a function of the approximation ratio β in

Figure 1.

1 2(log n)
1/2−ε

n1/ log log n
√
n/ log n

√
n 2n log logn/ logn

BPPSVP CVP
hard

NP ∩ coAM NP ∩ coNP

2n(log logn)
2/ logn

P
hard

Figure 1: The complexity of lattice problems (some constants omitted)

1.1 Proof Overview

As mentioned before, the containment in NP is trivial and it suffices to prove, e.g., that GapCVP100
√
n is in

coNP. To show this we construct an NP verifier that given a polynomial witness, verifies that v is far from

the lattice. There are three steps to this proof.

1. Define f

In this part we define a function f : Rn → R+ that is periodic over the lattice L, i.e., for all x ∈ Rn

and y ∈ L we have f(x) = f(x + y). For any lattice L, the function f satisfies the following two

properties: it is non-negligible (i.e., larger than some 1/poly(n)) for any point that lies within distance√
logn from a lattice point, and is exponentially small at distance ≥ √

n from the lattice. Note that

f(v) indicates whether v is far or close to the lattice.

2

Right side, large “gap”: t is particularly close to L;
fast algorithms find closest vector.
Left side, small “gap”: t is far from L; NP-hard.
Middle: the standard conjectures imply that the
problem is not NP-hard for, e.g., “gap”

√
n.

Daniel J. Bernstein, The McEliece cryptosystem, https://mceliece.org 8

https://cims.nyu.edu/~regev/papers/cvpconp.pdf
https://mceliece.org

Lattice gaps
Picture from 2005 Aharanov–Regev:

due to Ajtai et al. [6] obtains a 2O(n log logn/ logn)-approximation factor for both problems; it is based on the

deterministic polynomial time 2O(n(log logn)2/ logn)-approximation algorithm by Schnorr [27].

The complexity of lattice problems in the range of polynomial approximation factors is of particular

interest. For example, Ajtai’s seminal work [3] is based on the hardness of approximation in this region (see

also [5, 25]). A sequence of incomparable results gave upper bounds on the complexity of lattice problems

in the polynomial approximation region. Banaszczyk [7] showed that GapCVPn is in NP ∩ coNP, improving

on the previous result of GapCVPn1.5 ∈ NP ∩ coNP by Lagarias, Lenstra and Schnorr [22]. We note that

containment in NP is trivial, and the difficult part is showing the containment in coNP, i.e., showing the

existence of a succinct proof that a vector is far from any lattice point. Goldreich and Goldwasser [14] gave

an upper bound on the complexity of the harder problem GapCVP√
n/ logn

, but their upper bound is weaker:

they showed containment in NP ∩ coAM, which means that instead of showing the existence of a succinct

proof that a vector is far from any lattice point, they gave an interactive proof of two rounds to that effect.

In another result, the current authors showed [2] that a certain special case of GapCVP√
n is in NP∩ coQMA,

where the latter class is the quantum analogue of coNP. Essentially, this says that there exists a succinct

quantum proof that a vector is far from the lattice. See [2] for more details.

In this paper we prove the following theorem, which essentially subsumes all three results mentioned

above.

Theorem 1.1 There exists c > 0 such that GapCVPc
√
n is in NP ∩ coNP.

Of the three results, the only result that Theorem 1.1 does not completely subsume is that of Goldreich and

Goldwasser [14]. Indeed, for gaps between
√
n/ logn and

√
n our result does not apply, and so containment

in NP ∩ coNP is not known to hold.

There is a known approximation preserving reduction from GapSVP to GapCVP [15], which we include

for completeness in Appendix A. Using this reduction, we obtain the following corollary.

Corollary 1.2 There exists c > 0 such that GapSVPc
√
n is in NP ∩ coNP.

We summarize the current complexity of lattice problems as a function of the approximation ratio β in

Figure 1.

1 2(log n)
1/2−ε

n1/ log log n
√
n/ log n

√
n 2n log logn/ logn

BPPSVP CVP
hard

NP ∩ coAM NP ∩ coNP

2n(log logn)
2/ logn

P
hard

Figure 1: The complexity of lattice problems (some constants omitted)

1.1 Proof Overview

As mentioned before, the containment in NP is trivial and it suffices to prove, e.g., that GapCVP100
√
n is in

coNP. To show this we construct an NP verifier that given a polynomial witness, verifies that v is far from

the lattice. There are three steps to this proof.

1. Define f

In this part we define a function f : Rn → R+ that is periodic over the lattice L, i.e., for all x ∈ Rn

and y ∈ L we have f(x) = f(x + y). For any lattice L, the function f satisfies the following two

properties: it is non-negligible (i.e., larger than some 1/poly(n)) for any point that lies within distance√
logn from a lattice point, and is exponentially small at distance ≥ √

n from the lattice. Note that

f(v) indicates whether v is far or close to the lattice.

2

Right side, large “gap”: t is particularly close to L;
fast algorithms find closest vector.

Left side, small “gap”: t is far from L; NP-hard.
Middle: the standard conjectures imply that the
problem is not NP-hard for, e.g., “gap”

√
n.

Daniel J. Bernstein, The McEliece cryptosystem, https://mceliece.org 8

https://cims.nyu.edu/~regev/papers/cvpconp.pdf
https://mceliece.org

Lattice gaps
Picture from 2005 Aharanov–Regev:

due to Ajtai et al. [6] obtains a 2O(n log logn/ logn)-approximation factor for both problems; it is based on the

deterministic polynomial time 2O(n(log logn)2/ logn)-approximation algorithm by Schnorr [27].

The complexity of lattice problems in the range of polynomial approximation factors is of particular

interest. For example, Ajtai’s seminal work [3] is based on the hardness of approximation in this region (see

also [5, 25]). A sequence of incomparable results gave upper bounds on the complexity of lattice problems

in the polynomial approximation region. Banaszczyk [7] showed that GapCVPn is in NP ∩ coNP, improving

on the previous result of GapCVPn1.5 ∈ NP ∩ coNP by Lagarias, Lenstra and Schnorr [22]. We note that

containment in NP is trivial, and the difficult part is showing the containment in coNP, i.e., showing the

existence of a succinct proof that a vector is far from any lattice point. Goldreich and Goldwasser [14] gave

an upper bound on the complexity of the harder problem GapCVP√
n/ logn

, but their upper bound is weaker:

they showed containment in NP ∩ coAM, which means that instead of showing the existence of a succinct

proof that a vector is far from any lattice point, they gave an interactive proof of two rounds to that effect.

In another result, the current authors showed [2] that a certain special case of GapCVP√
n is in NP∩ coQMA,

where the latter class is the quantum analogue of coNP. Essentially, this says that there exists a succinct

quantum proof that a vector is far from the lattice. See [2] for more details.

In this paper we prove the following theorem, which essentially subsumes all three results mentioned

above.

Theorem 1.1 There exists c > 0 such that GapCVPc
√
n is in NP ∩ coNP.

Of the three results, the only result that Theorem 1.1 does not completely subsume is that of Goldreich and

Goldwasser [14]. Indeed, for gaps between
√
n/ logn and

√
n our result does not apply, and so containment

in NP ∩ coNP is not known to hold.

There is a known approximation preserving reduction from GapSVP to GapCVP [15], which we include

for completeness in Appendix A. Using this reduction, we obtain the following corollary.

Corollary 1.2 There exists c > 0 such that GapSVPc
√
n is in NP ∩ coNP.

We summarize the current complexity of lattice problems as a function of the approximation ratio β in

Figure 1.

1 2(log n)
1/2−ε

n1/ log log n
√
n/ log n

√
n 2n log logn/ logn

BPPSVP CVP
hard

NP ∩ coAM NP ∩ coNP

2n(log logn)
2/ logn

P
hard

Figure 1: The complexity of lattice problems (some constants omitted)

1.1 Proof Overview

As mentioned before, the containment in NP is trivial and it suffices to prove, e.g., that GapCVP100
√
n is in

coNP. To show this we construct an NP verifier that given a polynomial witness, verifies that v is far from

the lattice. There are three steps to this proof.

1. Define f

In this part we define a function f : Rn → R+ that is periodic over the lattice L, i.e., for all x ∈ Rn

and y ∈ L we have f(x) = f(x + y). For any lattice L, the function f satisfies the following two

properties: it is non-negligible (i.e., larger than some 1/poly(n)) for any point that lies within distance√
logn from a lattice point, and is exponentially small at distance ≥ √

n from the lattice. Note that

f(v) indicates whether v is far or close to the lattice.

2

Right side, large “gap”: t is particularly close to L;
fast algorithms find closest vector.
Left side, small “gap”: t is far from L; NP-hard.

Middle: the standard conjectures imply that the
problem is not NP-hard for, e.g., “gap”

√
n.

Daniel J. Bernstein, The McEliece cryptosystem, https://mceliece.org 8

https://cims.nyu.edu/~regev/papers/cvpconp.pdf
https://mceliece.org

Lattice gaps
Picture from 2005 Aharanov–Regev:

due to Ajtai et al. [6] obtains a 2O(n log logn/ logn)-approximation factor for both problems; it is based on the

deterministic polynomial time 2O(n(log logn)2/ logn)-approximation algorithm by Schnorr [27].

The complexity of lattice problems in the range of polynomial approximation factors is of particular

interest. For example, Ajtai’s seminal work [3] is based on the hardness of approximation in this region (see

also [5, 25]). A sequence of incomparable results gave upper bounds on the complexity of lattice problems

in the polynomial approximation region. Banaszczyk [7] showed that GapCVPn is in NP ∩ coNP, improving

on the previous result of GapCVPn1.5 ∈ NP ∩ coNP by Lagarias, Lenstra and Schnorr [22]. We note that

containment in NP is trivial, and the difficult part is showing the containment in coNP, i.e., showing the

existence of a succinct proof that a vector is far from any lattice point. Goldreich and Goldwasser [14] gave

an upper bound on the complexity of the harder problem GapCVP√
n/ logn

, but their upper bound is weaker:

they showed containment in NP ∩ coAM, which means that instead of showing the existence of a succinct

proof that a vector is far from any lattice point, they gave an interactive proof of two rounds to that effect.

In another result, the current authors showed [2] that a certain special case of GapCVP√
n is in NP∩ coQMA,

where the latter class is the quantum analogue of coNP. Essentially, this says that there exists a succinct

quantum proof that a vector is far from the lattice. See [2] for more details.

In this paper we prove the following theorem, which essentially subsumes all three results mentioned

above.

Theorem 1.1 There exists c > 0 such that GapCVPc
√
n is in NP ∩ coNP.

Of the three results, the only result that Theorem 1.1 does not completely subsume is that of Goldreich and

Goldwasser [14]. Indeed, for gaps between
√
n/ logn and

√
n our result does not apply, and so containment

in NP ∩ coNP is not known to hold.

There is a known approximation preserving reduction from GapSVP to GapCVP [15], which we include

for completeness in Appendix A. Using this reduction, we obtain the following corollary.

Corollary 1.2 There exists c > 0 such that GapSVPc
√
n is in NP ∩ coNP.

We summarize the current complexity of lattice problems as a function of the approximation ratio β in

Figure 1.

1 2(log n)
1/2−ε

n1/ log log n
√
n/ log n

√
n 2n log logn/ logn

BPPSVP CVP
hard

NP ∩ coAM NP ∩ coNP

2n(log logn)
2/ logn

P
hard

Figure 1: The complexity of lattice problems (some constants omitted)

1.1 Proof Overview

As mentioned before, the containment in NP is trivial and it suffices to prove, e.g., that GapCVP100
√
n is in

coNP. To show this we construct an NP verifier that given a polynomial witness, verifies that v is far from

the lattice. There are three steps to this proof.

1. Define f

In this part we define a function f : Rn → R+ that is periodic over the lattice L, i.e., for all x ∈ Rn

and y ∈ L we have f(x) = f(x + y). For any lattice L, the function f satisfies the following two

properties: it is non-negligible (i.e., larger than some 1/poly(n)) for any point that lies within distance√
logn from a lattice point, and is exponentially small at distance ≥ √

n from the lattice. Note that

f(v) indicates whether v is far or close to the lattice.

2

Right side, large “gap”: t is particularly close to L;
fast algorithms find closest vector.
Left side, small “gap”: t is far from L; NP-hard.
Middle: the standard conjectures imply that the
problem is not NP-hard for, e.g., “gap”

√
n.

Daniel J. Bernstein, The McEliece cryptosystem, https://mceliece.org 8

https://cims.nyu.edu/~regev/papers/cvpconp.pdf
https://mceliece.org

Warning: multiple gap concepts
A typical “decisional” gap problem:
you’re guaranteed that either dist(t, L) ≤ d/G or
dist(t, L) > d ; problem is to figure out which.

“Search” problem: find v ∈ L with dist(t, v) ≤ d/G
given that all other w ∈ L have dist(t, w) > d .
Suffices to solve an “approximation” problem:
find v ∈ L with dist(t, v) ≤ G dist(t, L).
If d = max{dist(u, L)} then the guarantee forces
dist(t, L) ≤ d/G so G ≤ max{dist(u, L)}/dist(t, L).
For simplicity, this talk focuses on computing
this cutoff gap: max{dist(u, L)}/dist(t, L).

Daniel J. Bernstein, The McEliece cryptosystem, https://mceliece.org 9

https://mceliece.org

Warning: multiple gap concepts
A typical “decisional” gap problem:
you’re guaranteed that either dist(t, L) ≤ d/G or
dist(t, L) > d ; problem is to figure out which.
“Search” problem: find v ∈ L with dist(t, v) ≤ d/G
given that all other w ∈ L have dist(t, w) > d .

Suffices to solve an “approximation” problem:
find v ∈ L with dist(t, v) ≤ G dist(t, L).
If d = max{dist(u, L)} then the guarantee forces
dist(t, L) ≤ d/G so G ≤ max{dist(u, L)}/dist(t, L).
For simplicity, this talk focuses on computing
this cutoff gap: max{dist(u, L)}/dist(t, L).

Daniel J. Bernstein, The McEliece cryptosystem, https://mceliece.org 9

https://mceliece.org

Warning: multiple gap concepts
A typical “decisional” gap problem:
you’re guaranteed that either dist(t, L) ≤ d/G or
dist(t, L) > d ; problem is to figure out which.
“Search” problem: find v ∈ L with dist(t, v) ≤ d/G
given that all other w ∈ L have dist(t, w) > d .
Suffices to solve an “approximation” problem:
find v ∈ L with dist(t, v) ≤ G dist(t, L).

If d = max{dist(u, L)} then the guarantee forces
dist(t, L) ≤ d/G so G ≤ max{dist(u, L)}/dist(t, L).
For simplicity, this talk focuses on computing
this cutoff gap: max{dist(u, L)}/dist(t, L).

Daniel J. Bernstein, The McEliece cryptosystem, https://mceliece.org 9

https://mceliece.org

Warning: multiple gap concepts
A typical “decisional” gap problem:
you’re guaranteed that either dist(t, L) ≤ d/G or
dist(t, L) > d ; problem is to figure out which.
“Search” problem: find v ∈ L with dist(t, v) ≤ d/G
given that all other w ∈ L have dist(t, w) > d .
Suffices to solve an “approximation” problem:
find v ∈ L with dist(t, v) ≤ G dist(t, L).
If d = max{dist(u, L)} then the guarantee forces
dist(t, L) ≤ d/G so G ≤ max{dist(u, L)}/dist(t, L).
For simplicity, this talk focuses on computing
this cutoff gap: max{dist(u, L)}/dist(t, L).

Daniel J. Bernstein, The McEliece cryptosystem, https://mceliece.org 9

https://mceliece.org

What’s the NTRU cutoff gap?

NTRU has s0, . . . , sn−1 ∈ {−1, 0, 1},
so dist(t, L) ≤ |(s0, . . . , sn−1)| ≤ n1/2.

Typically q is chosen as Θ(n). Can then show
that most vectors have distance Ω(n) from L,
so cutoff gap is Ω(n)/n1/2, i.e., Ω(n1/2).
(Exercise: Prove this gap.)
This doesn’t mean NTRU is broken! Maybe
attacking NTRU is hard without being NP-hard.

Daniel J. Bernstein, The McEliece cryptosystem, https://mceliece.org 10

https://mceliece.org

What’s the NTRU cutoff gap?

NTRU has s0, . . . , sn−1 ∈ {−1, 0, 1},
so dist(t, L) ≤ |(s0, . . . , sn−1)| ≤ n1/2.
Typically q is chosen as Θ(n). Can then show
that most vectors have distance Ω(n) from L,
so cutoff gap is Ω(n)/n1/2, i.e., Ω(n1/2).
(Exercise: Prove this gap.)

This doesn’t mean NTRU is broken! Maybe
attacking NTRU is hard without being NP-hard.

Daniel J. Bernstein, The McEliece cryptosystem, https://mceliece.org 10

https://mceliece.org

What’s the NTRU cutoff gap?

NTRU has s0, . . . , sn−1 ∈ {−1, 0, 1},
so dist(t, L) ≤ |(s0, . . . , sn−1)| ≤ n1/2.
Typically q is chosen as Θ(n). Can then show
that most vectors have distance Ω(n) from L,
so cutoff gap is Ω(n)/n1/2, i.e., Ω(n1/2).
(Exercise: Prove this gap.)
This doesn’t mean NTRU is broken! Maybe
attacking NTRU is hard without being NP-hard.

Daniel J. Bernstein, The McEliece cryptosystem, https://mceliece.org 10

https://mceliece.org

The NTRU decoder

Alice generates an NTRU secret key and a
public key determining K0, . . . , Kn−1 ∈ (Z/q)r .
The secret key determines a linear transformation φ
such that φ(K0), . . . , φ(Kn−1) are small.

Bob computes C = s0K0 + · · · + sn−1Kn−1. Alice
computes φ(C) = s0φ(K0) + · · · + sn−1φ(Kn−1),
which is small, so the reduction mod q disappears.
A fast algorithm solves for s0, . . . , sn−1.

Daniel J. Bernstein, The McEliece cryptosystem, https://mceliece.org 11

https://mceliece.org

The NTRU decoder

Alice generates an NTRU secret key and a
public key determining K0, . . . , Kn−1 ∈ (Z/q)r .
The secret key determines a linear transformation φ
such that φ(K0), . . . , φ(Kn−1) are small.
Bob computes C = s0K0 + · · · + sn−1Kn−1. Alice
computes φ(C) = s0φ(K0) + · · · + sn−1φ(Kn−1),
which is small, so the reduction mod q disappears.
A fast algorithm solves for s0, . . . , sn−1.

Daniel J. Bernstein, The McEliece cryptosystem, https://mceliece.org 11

https://mceliece.org

A cola example mod 2: bikel1

System parameters: (n, q, r) = (24646, 2, 12323).
Public key determines K0, . . . , K24645 ∈ (Z/2)12323.
Ciphertext: C = s0K0 + · · · + s24645K24645
for “weight-134” vector (s0, . . . , s24645) ∈ {0, 1};
i.e., #{i : si ̸= 0} = 134.
Ciphertext has 12323 bits ≈ 1541 bytes.
Alice generated weight-71 φ(K0), . . . , φ(K24645).
Then φ(C) = s0φ(K0) + · · · + s24645φ(K24645)
involves some reductions mod 2, but
fast statistics usually solve for s0, . . . , s24645.

Daniel J. Bernstein, The McEliece cryptosystem, https://mceliece.org 12

https://mceliece.org

What’s the BIKE cutoff gap?
BIKE takes (s0, . . . , sn−1) of weight Θ(n1/2),
so t has distance Θ(n1/4) from lattice L.
Can show that most vectors have distance Θ(n1/2)
from L, so cutoff gap is Θ(n1/4).

Compared to NTRU:
• Gap sounds smaller. More secure?
• But t sounds closer to L. Fewer s possibilities.

Less secure?
ntruhps2048509 (699-byte ciphertexts) and
bikel1 (1541-byte ciphertexts) are both
designed to have roughly 128 bits of security.

Daniel J. Bernstein, The McEliece cryptosystem, https://mceliece.org 13

https://mceliece.org

What’s the BIKE cutoff gap?
BIKE takes (s0, . . . , sn−1) of weight Θ(n1/2),
so t has distance Θ(n1/4) from lattice L.
Can show that most vectors have distance Θ(n1/2)
from L, so cutoff gap is Θ(n1/4).
Compared to NTRU:

• Gap sounds smaller. More secure?
• But t sounds closer to L. Fewer s possibilities.

Less secure?
ntruhps2048509 (699-byte ciphertexts) and
bikel1 (1541-byte ciphertexts) are both
designed to have roughly 128 bits of security.

Daniel J. Bernstein, The McEliece cryptosystem, https://mceliece.org 13

https://mceliece.org

The basic ISD attack
There are

(n
w

)
weight-w vectors s ∈ (Z/2)n.

For (n, w) = (24646, 134):
(n

w
)

≈ 21196.

Faster than searching through all s:
1962 Prange “information-set decoding”.
Basic idea: Maybe sr = sr+1 = · · · = sn−1 = 0;
probability

(r
w

)
/

(n
w

)
≈ 2−134.52.

Then C = s0K0 + · · · + sr−1Kr−1.
Solve for s0, . . . , sr−1 by linear algebra.
If this fails, permute {0, . . . , n − 1} and try again.
See https://isd.mceliece.org for 50 papers
studying ISD. Noticeable speedups, mostly in linear
algebra. No change in asymptotic attack exponent.

Daniel J. Bernstein, The McEliece cryptosystem, https://mceliece.org 14

https://isd.mceliece.org
https://mceliece.org

The basic ISD attack
There are

(n
w

)
weight-w vectors s ∈ (Z/2)n.

For (n, w) = (24646, 134):
(n

w
)

≈ 21196.
Faster than searching through all s:
1962 Prange “information-set decoding”.
Basic idea: Maybe sr = sr+1 = · · · = sn−1 = 0;
probability

(r
w

)
/

(n
w

)
≈ 2−134.52.

Then C = s0K0 + · · · + sr−1Kr−1.
Solve for s0, . . . , sr−1 by linear algebra.
If this fails, permute {0, . . . , n − 1} and try again.

See https://isd.mceliece.org for 50 papers
studying ISD. Noticeable speedups, mostly in linear
algebra. No change in asymptotic attack exponent.

Daniel J. Bernstein, The McEliece cryptosystem, https://mceliece.org 14

https://isd.mceliece.org
https://mceliece.org

The basic ISD attack
There are

(n
w

)
weight-w vectors s ∈ (Z/2)n.

For (n, w) = (24646, 134):
(n

w
)

≈ 21196.
Faster than searching through all s:
1962 Prange “information-set decoding”.
Basic idea: Maybe sr = sr+1 = · · · = sn−1 = 0;
probability

(r
w

)
/

(n
w

)
≈ 2−134.52.

Then C = s0K0 + · · · + sr−1Kr−1.
Solve for s0, . . . , sr−1 by linear algebra.
If this fails, permute {0, . . . , n − 1} and try again.
See https://isd.mceliece.org for 50 papers
studying ISD. Noticeable speedups, mostly in linear
algebra. No change in asymptotic attack exponent.

Daniel J. Bernstein, The McEliece cryptosystem, https://mceliece.org 14

https://isd.mceliece.org
https://mceliece.org

NTRU security vs. BIKE security

NTRU has 3n possible choices of s encrypted as
r log2 q ≈ (n/2) log2 n ciphertext bits.
e.g. ntruhps2048509: 31018 ≈ 21613 choices of s
encrypted as 5588 ciphertext bits.
Compared to BIKE, less information about more
choices of s. Why isn’t this a higher security level?

Answer: NTRU attacks use combinatorial searches
and linear algebra and size variations mod q.
Size variations have led to big attack speedups.

Daniel J. Bernstein, The McEliece cryptosystem, https://mceliece.org 15

https://mceliece.org

NTRU security vs. BIKE security

NTRU has 3n possible choices of s encrypted as
r log2 q ≈ (n/2) log2 n ciphertext bits.
e.g. ntruhps2048509: 31018 ≈ 21613 choices of s
encrypted as 5588 ciphertext bits.
Compared to BIKE, less information about more
choices of s. Why isn’t this a higher security level?
Answer: NTRU attacks use combinatorial searches
and linear algebra and size variations mod q.
Size variations have led to big attack speedups.

Daniel J. Bernstein, The McEliece cryptosystem, https://mceliece.org 15

https://mceliece.org

Another cola example: mceliece348864
System parameters: (n, q, r) = (3488, 2, 768).
Public key determines K0, . . . , K3487 ∈ (Z/2)768.
Ciphertext: C = s0K0 + · · · + s3487K3487
for weight-64 vector (s0, . . . , s3487) ∈ {0, 1}.
Ciphertext has 768 bits, i.e., 96 bytes.
This encrypts

(3488
64

)
≈ 2456 choices of s into just

768 bits. Alice decrypts using a more powerful
decoder than the NTRU or BIKE decoders.
This is another system designed for 128-bit security.
Prange uses

(n
64

)
/

(r
64

)
≈ 2142.78 iterations.

Daniel J. Bernstein, The McEliece cryptosystem, https://mceliece.org 16

https://mceliece.org

What’s the McEliece cutoff gap?

Normally take n ≈ 5r , weight w ≈ 0.2n/log2 n.
Now |s| = w 1/2 ∈ Θ(n1/2/(log n)1/2).
Can show that most vectors have distance
Θ(n1/2) from L. Gap is just Θ((log n)1/2).
“Polylog-gap poly-distance cola encryption”.
i.e.: t is almost as far from L as most vectors are.
This relies critically on the power of Alice’s decoder!

Daniel J. Bernstein, The McEliece cryptosystem, https://mceliece.org 17

https://mceliece.org

Summary of numerical features
Comparing PKEs (public-key encryption systems)
by orders of magnitude of |s| etc.:

PKE q ct size |s| cutoff gap
NTRU n n log n n1/2 n1/2

BIKE 2 n n1/4 n1/4

McEliece 2 n (n/log n)1/2 (log n)1/2

Can reduce NTRU gaps by having q grow somewhat
more slowly than n; but getting down to a polylog
gap requires more powerful decoder, as in McEliece.
(Exercise: GAM/LPR is also n, n log n, n1/2, n1/2.)

Daniel J. Bernstein, The McEliece cryptosystem, https://mceliece.org 18

https://mceliece.org

Summary of numerical features
Comparing PKEs (public-key encryption systems)
by orders of magnitude of |s| etc.:

PKE q ct size |s| cutoff gap
NTRU n n log n n1/2 n1/2

BIKE 2 n n1/4 n1/4

McEliece 2 n (n/log n)1/2 (log n)1/2

Can reduce NTRU gaps by having q grow somewhat
more slowly than n; but getting down to a polylog
gap requires more powerful decoder, as in McEliece.
(Exercise: GAM/LPR is also n, n log n, n1/2, n1/2.)

Daniel J. Bernstein, The McEliece cryptosystem, https://mceliece.org 18

https://mceliece.org

So McEliece is NP-hard?

Fact: No PKE has ever been proven NP-hard.
The polylog-gap poly-distance close-vector problem
is NP-hard, but this doesn’t guarantee security or
NP-hardness for the McEliece PKE:

• Maybe it’s breakable for almost all public keys.
• Maybe it’s breakable for public keys that

correspond to McEliece secret keys.
So the McEliece attack literature studies
performance of attacks against uniform random
matrices, and studies ways to distinguish Alice’s
public key from a uniform random matrix.

Daniel J. Bernstein, The McEliece cryptosystem, https://mceliece.org 19

https://mceliece.org

So McEliece is NP-hard?
Fact: No PKE has ever been proven NP-hard.

The polylog-gap poly-distance close-vector problem
is NP-hard, but this doesn’t guarantee security or
NP-hardness for the McEliece PKE:

• Maybe it’s breakable for almost all public keys.
• Maybe it’s breakable for public keys that

correspond to McEliece secret keys.
So the McEliece attack literature studies
performance of attacks against uniform random
matrices, and studies ways to distinguish Alice’s
public key from a uniform random matrix.

Daniel J. Bernstein, The McEliece cryptosystem, https://mceliece.org 19

https://mceliece.org

So McEliece is NP-hard?
Fact: No PKE has ever been proven NP-hard.
The polylog-gap poly-distance close-vector problem
is NP-hard, but this doesn’t guarantee security or
NP-hardness for the McEliece PKE:

• Maybe it’s breakable for almost all public keys.
• Maybe it’s breakable for public keys that

correspond to McEliece secret keys.

So the McEliece attack literature studies
performance of attacks against uniform random
matrices, and studies ways to distinguish Alice’s
public key from a uniform random matrix.

Daniel J. Bernstein, The McEliece cryptosystem, https://mceliece.org 19

https://mceliece.org

So McEliece is NP-hard?
Fact: No PKE has ever been proven NP-hard.
The polylog-gap poly-distance close-vector problem
is NP-hard, but this doesn’t guarantee security or
NP-hardness for the McEliece PKE:

• Maybe it’s breakable for almost all public keys.
• Maybe it’s breakable for public keys that

correspond to McEliece secret keys.
So the McEliece attack literature studies
performance of attacks against uniform random
matrices, and studies ways to distinguish Alice’s
public key from a uniform random matrix.

Daniel J. Bernstein, The McEliece cryptosystem, https://mceliece.org 19

https://mceliece.org

Stability metric #1: asymptotics

lim
K→∞

log2 AttackCostyear(K)
log2 AttackCost2024(K)

Green: McEliece.
Red: NTRU etc.
had 45% higher
security levels
in 2010
than they
have today.

19
78

20
24

∞

1.453
1.344
1.180

× A
jta

i–
K

um
ar

–S
iv

ak
um

ar

× N
gu

ye
n–

V
id

ic
k

× M
ic

ci
an

ci
o–

Vo
ul

ga
ris

× W
an

g–
Li

u–
T

ia
n–

B
i

× Zh
an

g–
Pa

n–
H

u

× La
ar

ho
ve

n

× La
ar

ho
ve

n–
de

W
eg

er

× B
ec

ke
r–

D
uc

as
–G

am
a–

La
ar

ho
ve

n

× B
er

ns
te

in

Cl
ar

k–
Ca

in
•

Le
e–

B
ric

ke
ll

•
Le

on
•

K
ro

uk
•

St
er

n
•

D
um

er
•

Co
ffe

y–
G

oo
dm

an
•

va
n

T
ilb

ur
g

•
D

um
er

•
Co

ffe
y–

G
oo

dm
an

–F
ar

re
ll

•

Ch
ab

an
ne

–C
ou

rt
ea

u
•

Ch
ab

au
d

•
va

n
T

ilb
ur

g
•

Ca
nt

ea
ut

–C
ha

ba
nn

e
•

Ca
nt

ea
ut

–C
ha

ba
ud

•
Ca

nt
ea

ut
–S

en
dr

ie
r

•

B
er

ns
te

in
–L

an
ge

–P
et

er
s

•

B
er

ns
te

in
–L

an
ge

–P
et

er
s–

va
n

T
ilb

or
g

•
Fi

ni
as

z–
Se

nd
rie

r
•

B
er

ns
te

in
–L

an
ge

–P
et

er
s

•
M

ay
–M

eu
re

r–
T

ho
m

ae
•

B
ec

ke
r–

Jo
ux

–M
ay

–M
eu

re
r

•

H
am

da
ou

i–
Se

nd
rie

r
•

M
ay

–O
ze

ro
v

•

Ca
nt

o
To

rr
es

–S
en

dr
ie

r
•

B
ot

h–
M

ay
•

B
ot

h–
M

ay
•

D
eb

ris
-A

la
za

rd
–D

uc
as

–v
an

W
oe

rd
en

•

Es
se

r–
M

ay
–Z

w
ey

di
ng

er
•

Ca
rr

ie
r–

D
eb

ris
-A

la
za

rd
–M

ey
er

-H
ilfi

ge
r–

T
ill

ic
h

•
Es

se
r

•
Es

se
r–

Zw
ey

di
ng

er
•

G
uo

–J
oh

an
ss

on
–N

gu
ye

n
•

B
er

ns
te

in
–C

ho
u

•
D

uc
as

–E
ss

er
–E

tin
sk

i–
K

irs
ha

no
va

•
N

ar
isa

da
–U

em
ur

a–
O

ka
da

–F
ur

ue
–A

ik
aw

a–
Fu

ku
sh

im
a

•

Daniel J. Bernstein, The McEliece cryptosystem, https://mceliece.org 20

https://mceliece.org

Stability metric #1: asymptotics

lim
K→∞

log2 AttackCostyear(K)
log2 AttackCost2024(K)

Green: McEliece.
Red: NTRU etc.
had 45% higher
security levels
in 2010
than they
have today.

19
78

20
24

∞

1.453
1.344
1.180

× A
jta

i–
K

um
ar

–S
iv

ak
um

ar

× N
gu

ye
n–

V
id

ic
k

× M
ic

ci
an

ci
o–

Vo
ul

ga
ris

× W
an

g–
Li

u–
T

ia
n–

B
i

× Zh
an

g–
Pa

n–
H

u

× La
ar

ho
ve

n

× La
ar

ho
ve

n–
de

W
eg

er

× B
ec

ke
r–

D
uc

as
–G

am
a–

La
ar

ho
ve

n

× B
er

ns
te

in

Cl
ar

k–
Ca

in
•

Le
e–

B
ric

ke
ll

•
Le

on
•

K
ro

uk
•

St
er

n
•

D
um

er
•

Co
ffe

y–
G

oo
dm

an
•

va
n

T
ilb

ur
g

•
D

um
er

•
Co

ffe
y–

G
oo

dm
an

–F
ar

re
ll

•

Ch
ab

an
ne

–C
ou

rt
ea

u
•

Ch
ab

au
d

•
va

n
T

ilb
ur

g
•

Ca
nt

ea
ut

–C
ha

ba
nn

e
•

Ca
nt

ea
ut

–C
ha

ba
ud

•
Ca

nt
ea

ut
–S

en
dr

ie
r

•

B
er

ns
te

in
–L

an
ge

–P
et

er
s

•

B
er

ns
te

in
–L

an
ge

–P
et

er
s–

va
n

T
ilb

or
g

•
Fi

ni
as

z–
Se

nd
rie

r
•

B
er

ns
te

in
–L

an
ge

–P
et

er
s

•
M

ay
–M

eu
re

r–
T

ho
m

ae
•

B
ec

ke
r–

Jo
ux

–M
ay

–M
eu

re
r

•

H
am

da
ou

i–
Se

nd
rie

r
•

M
ay

–O
ze

ro
v

•

Ca
nt

o
To

rr
es

–S
en

dr
ie

r
•

B
ot

h–
M

ay
•

B
ot

h–
M

ay
•

D
eb

ris
-A

la
za

rd
–D

uc
as

–v
an

W
oe

rd
en

•

Es
se

r–
M

ay
–Z

w
ey

di
ng

er
•

Ca
rr

ie
r–

D
eb

ris
-A

la
za

rd
–M

ey
er

-H
ilfi

ge
r–

T
ill

ic
h

•
Es

se
r

•
Es

se
r–

Zw
ey

di
ng

er
•

G
uo

–J
oh

an
ss

on
–N

gu
ye

n
•

B
er

ns
te

in
–C

ho
u

•
D

uc
as

–E
ss

er
–E

tin
sk

i–
K

irs
ha

no
va

•
N

ar
isa

da
–U

em
ur

a–
O

ka
da

–F
ur

ue
–A

ik
aw

a–
Fu

ku
sh

im
a

•

Daniel J. Bernstein, The McEliece cryptosystem, https://mceliece.org 20

https://mceliece.org

Stability metric #2: challenges
There are scaled-down challenges to see which
values of n academics can break. Latest records:

• n = 1284 challenge broken as title of a
Eurocrypt 2022 paper.

• n = 1347 challenge broken using the
2008 Bernstein–Lange–Peters software,
which is as fast as the 2022 software.

• n = 1409 challenge broken on a GPU cluster.
(Exercise: Find lattice-attack software from 2008.
See how slow it is compared to current software.)

Daniel J. Bernstein, The McEliece cryptosystem, https://mceliece.org 21

https://decodingchallenge.org/goppa
https://eprint.iacr.org/2021/1634
https://isd.mceliece.org/1347.html
https://eprint.iacr.org/2024/393
https://mceliece.org

Stability metric #3: bit operations

Crypto 2024 Bernstein–Chou “CryptAttackTester:
high-assurance attack analysis”: software to

• build complete attack circuits,
• predict circuit cost and probability,
• run small attacks to check accuracy.

Bit operations predicted by CryptAttackTester
to attack mceliece348864 (n = 3488):

• 2156.96: isd1, attack ideas from the 1980s.
• 2150.59: isd2, latest attacks.

Daniel J. Bernstein, The McEliece cryptosystem, https://mceliece.org 22

https://cat.cr.yp.to
https://mceliece.org

Attacking keys vs. attacking ciphertexts
Asiacrypt 2023 Couvreur–Mora–Tillich distinguish
mceliece348864 key from random using estimated
22231 operations.

State-of-the-art attacks instead
attack ciphertexts, treating public keys as random.
For each ciphertext size, speed of known attacks:

1. Fastest: Attacking NTRU/LPR/. . . ciphertexts.
2. Also fastest: Attacking NTRU/LPR/. . . keys.
3. Much slower: Attacking McEliece ciphertexts.
4. Slowest: Attacking McEliece keys.

1+2 exploit weaknesses shared by keys and
ciphertexts. (Some people praise this sharing.)

Daniel J. Bernstein, The McEliece cryptosystem, https://mceliece.org 23

https://mceliece.org

Attacking keys vs. attacking ciphertexts
Asiacrypt 2023 Couvreur–Mora–Tillich distinguish
mceliece348864 key from random using estimated
22231 operations. State-of-the-art attacks instead
attack ciphertexts, treating public keys as random.

For each ciphertext size, speed of known attacks:
1. Fastest: Attacking NTRU/LPR/. . . ciphertexts.
2. Also fastest: Attacking NTRU/LPR/. . . keys.
3. Much slower: Attacking McEliece ciphertexts.
4. Slowest: Attacking McEliece keys.

1+2 exploit weaknesses shared by keys and
ciphertexts. (Some people praise this sharing.)

Daniel J. Bernstein, The McEliece cryptosystem, https://mceliece.org 23

https://mceliece.org

Attacking keys vs. attacking ciphertexts
Asiacrypt 2023 Couvreur–Mora–Tillich distinguish
mceliece348864 key from random using estimated
22231 operations. State-of-the-art attacks instead
attack ciphertexts, treating public keys as random.
For each ciphertext size, speed of known attacks:

1. Fastest: Attacking NTRU/LPR/. . . ciphertexts.
2. Also fastest: Attacking NTRU/LPR/. . . keys.
3. Much slower: Attacking McEliece ciphertexts.
4. Slowest: Attacking McEliece keys.

1+2 exploit weaknesses shared by keys and
ciphertexts. (Some people praise this sharing.)

Daniel J. Bernstein, The McEliece cryptosystem, https://mceliece.org 23

https://mceliece.org

Attacking keys vs. attacking ciphertexts
Asiacrypt 2023 Couvreur–Mora–Tillich distinguish
mceliece348864 key from random using estimated
22231 operations. State-of-the-art attacks instead
attack ciphertexts, treating public keys as random.
For each ciphertext size, speed of known attacks:

1. Fastest: Attacking NTRU/LPR/. . . ciphertexts.
2. Also fastest: Attacking NTRU/LPR/. . . keys.
3. Much slower: Attacking McEliece ciphertexts.
4. Slowest: Attacking McEliece keys.

1+2 exploit weaknesses shared by keys and
ciphertexts. (Some people praise this sharing.)

Daniel J. Bernstein, The McEliece cryptosystem, https://mceliece.org 23

https://mceliece.org

Another McEliece security advantage
BIKE has a “quasi-cyclic” structure:
K0, . . . , Kn−1 are actually
K , xK , x 2K , . . . , x r−1K , 1, x , x 2, . . . , x r−1

for some public K ∈ (Z/2)[x]/(x r − 1).

Similar comment applies to NTRU and to
many other cola systems, but not McEliece.
Why this matters: Some cryptosystems
(e.g., the original STOC 2009 Gentry FHE system
for cyclotomics) have been broken by attacks
exploiting this structure. Crypto 2023 298.77 attack
against bikel1 also exploited this structure.

Daniel J. Bernstein, The McEliece cryptosystem, https://mceliece.org 24

https://ntruprime.cr.yp.to/latticerisks-20211031.pdf#subsection.1.1.2
https://ntruprime.cr.yp.to/latticerisks-20211031.pdf#subsection.1.1.2
https://eprint.iacr.org/2023/659
https://eprint.iacr.org/2023/659
https://mceliece.org

Another McEliece security advantage
BIKE has a “quasi-cyclic” structure:
K0, . . . , Kn−1 are actually
K , xK , x 2K , . . . , x r−1K , 1, x , x 2, . . . , x r−1

for some public K ∈ (Z/2)[x]/(x r − 1).
Similar comment applies to NTRU and to
many other cola systems, but not McEliece.

Why this matters: Some cryptosystems
(e.g., the original STOC 2009 Gentry FHE system
for cyclotomics) have been broken by attacks
exploiting this structure. Crypto 2023 298.77 attack
against bikel1 also exploited this structure.

Daniel J. Bernstein, The McEliece cryptosystem, https://mceliece.org 24

https://ntruprime.cr.yp.to/latticerisks-20211031.pdf#subsection.1.1.2
https://ntruprime.cr.yp.to/latticerisks-20211031.pdf#subsection.1.1.2
https://eprint.iacr.org/2023/659
https://eprint.iacr.org/2023/659
https://mceliece.org

Another McEliece security advantage
BIKE has a “quasi-cyclic” structure:
K0, . . . , Kn−1 are actually
K , xK , x 2K , . . . , x r−1K , 1, x , x 2, . . . , x r−1

for some public K ∈ (Z/2)[x]/(x r − 1).
Similar comment applies to NTRU and to
many other cola systems, but not McEliece.
Why this matters: Some cryptosystems
(e.g., the original STOC 2009 Gentry FHE system
for cyclotomics) have been broken by attacks
exploiting this structure. Crypto 2023 298.77 attack
against bikel1 also exploited this structure.

Daniel J. Bernstein, The McEliece cryptosystem, https://mceliece.org 24

https://ntruprime.cr.yp.to/latticerisks-20211031.pdf#subsection.1.1.2
https://ntruprime.cr.yp.to/latticerisks-20211031.pdf#subsection.1.1.2
https://eprint.iacr.org/2023/659
https://eprint.iacr.org/2023/659
https://mceliece.org

Does quasi-cyclic reduce network traffic?
Quasi-cyclic structure allows smaller public keys:
e.g., 699 bytes for ntruhps2048509 or 1541 bytes
for bikel1 vs. 261120 bytes for mceliece348864.

However, minimum network traffic comes from (1)
reusing keys for many ciphertexts and (2) choosing
McEliece. People who say network traffic is
important should support the smallest option!
Quantifying total costs shows that all of these
systems are affordable anyway, even scaled up.
What really matters is security.

Daniel J. Bernstein, The McEliece cryptosystem, https://mceliece.org 25

https://cr.yp.to/papers.html#pppqefs
https://mceliece.org

Does quasi-cyclic reduce network traffic?
Quasi-cyclic structure allows smaller public keys:
e.g., 699 bytes for ntruhps2048509 or 1541 bytes
for bikel1 vs. 261120 bytes for mceliece348864.
However, minimum network traffic comes from (1)
reusing keys for many ciphertexts and (2) choosing
McEliece. People who say network traffic is
important should support the smallest option!

Quantifying total costs shows that all of these
systems are affordable anyway, even scaled up.
What really matters is security.

Daniel J. Bernstein, The McEliece cryptosystem, https://mceliece.org 25

https://cr.yp.to/papers.html#pppqefs
https://mceliece.org

Does quasi-cyclic reduce network traffic?
Quasi-cyclic structure allows smaller public keys:
e.g., 699 bytes for ntruhps2048509 or 1541 bytes
for bikel1 vs. 261120 bytes for mceliece348864.
However, minimum network traffic comes from (1)
reusing keys for many ciphertexts and (2) choosing
McEliece. People who say network traffic is
important should support the smallest option!
Quantifying total costs shows that all of these
systems are affordable anyway, even scaled up.
What really matters is security.

Daniel J. Bernstein, The McEliece cryptosystem, https://mceliece.org 25

https://cr.yp.to/papers.html#pppqefs
https://mceliece.org

History: knapsack cryptosystems

1978 Hellman–Merkle: a cryptosystem that uses
“trapdoor knapsacks” to hide information.

1982 Shamir, 1983 Adleman, 1983
Brickell–Lagarias–Odlyzko, etc.: breaks of
practically all “knapsack” proposals.
This gave “knapsacks” a very bad reputation.
“Lattice-based cryptosystems” are knapsack-based
cryptosystems trying to avoid this reputation.

Daniel J. Bernstein, The McEliece cryptosystem, https://mceliece.org 26

https://mceliece.org

History: knapsack cryptosystems

1978 Hellman–Merkle: a cryptosystem that uses
“trapdoor knapsacks” to hide information.
1982 Shamir, 1983 Adleman, 1983
Brickell–Lagarias–Odlyzko, etc.: breaks of
practically all “knapsack” proposals.

This gave “knapsacks” a very bad reputation.
“Lattice-based cryptosystems” are knapsack-based
cryptosystems trying to avoid this reputation.

Daniel J. Bernstein, The McEliece cryptosystem, https://mceliece.org 26

https://mceliece.org

History: knapsack cryptosystems

1978 Hellman–Merkle: a cryptosystem that uses
“trapdoor knapsacks” to hide information.
1982 Shamir, 1983 Adleman, 1983
Brickell–Lagarias–Odlyzko, etc.: breaks of
practically all “knapsack” proposals.
This gave “knapsacks” a very bad reputation.
“Lattice-based cryptosystems” are knapsack-based
cryptosystems trying to avoid this reputation.

Daniel J. Bernstein, The McEliece cryptosystem, https://mceliece.org 26

https://mceliece.org

In the meantime: McEliece

1978 McEliece: “A public key cryptosystem
based on algebraic coding theory”.
Uses a powerful decoder from 1970 Goppa.
I’ll look at this decoder later.

1986 Niederreiter: space improvement, producing
the short ciphertexts that I’ve been talking about.

Daniel J. Bernstein, The McEliece cryptosystem, https://mceliece.org 27

https://mceliece.org

In the meantime: McEliece

1978 McEliece: “A public key cryptosystem
based on algebraic coding theory”.
Uses a powerful decoder from 1970 Goppa.
I’ll look at this decoder later.
1986 Niederreiter: space improvement, producing
the short ciphertexts that I’ve been talking about.

Daniel J. Bernstein, The McEliece cryptosystem, https://mceliece.org 27

https://mceliece.org

More history: NTRU
1996 Hoffstein–Pipher–Silverman preprint “NTRU:
a new high speed public key cryptosystem”:

• “In conclusion, for appropriate choice of
parameters, NTRU appears to be secure
against lattice reduction methods, including
any future progress in solving the lattice
proximity problem.”

• “NTRU bears a superficial resemblance to the
McEliece public key cryptosystem.”

1997 Coppersmith–Shamir: better lattice attacks.
1998 Hoffstein–Pipher–Silverman: bigger NTRU.

Daniel J. Bernstein, The McEliece cryptosystem, https://mceliece.org 28

https://ntru.org/f/hps96.pdf
https://mceliece.org

More history: NTRU
1996 Hoffstein–Pipher–Silverman preprint “NTRU:
a new high speed public key cryptosystem”:

• “In conclusion, for appropriate choice of
parameters, NTRU appears to be secure
against lattice reduction methods, including
any future progress in solving the lattice
proximity problem.”

• “NTRU bears a superficial resemblance to the
McEliece public key cryptosystem.”

1997 Coppersmith–Shamir: better lattice attacks.
1998 Hoffstein–Pipher–Silverman: bigger NTRU.

Daniel J. Bernstein, The McEliece cryptosystem, https://mceliece.org 28

https://ntru.org/f/hps96.pdf
https://mceliece.org

Perspectives on cola cryptography
2003 Bernstein posting that coined the phrase
“post-quantum cryptography” mentioned
“lattice-type public-key systems, such as McEliece
and NTRU”.
2017 Barak similarly summarizes “the ‘geometric’ or
‘coding/lattice’-based systems of the type first
proposed by McEliece”—but claims without
justification that “known lattice-based public-key
encryption schemes can be broken using oracle
access to an O(

√
n) approximation algorithm for

the lattice closest vector problem”. Does
“lattice-based” exclude McEliece? Why?

Daniel J. Bernstein, The McEliece cryptosystem, https://mceliece.org 29

https://archive.is/BHGOM
https://eprint.iacr.org/2017/365
https://mceliece.org

Classic McEliece

McEliece’s original security goal was one-wayness:
stopping attacker from finding random s given C .
2017 “Classic McEliece” converts this into a KEM,
adding protection against chosen-ciphertext attacks.
QROMCCASecLevel(Classic McEliece) ≥
OneWaySecLevel(1978 McEliece) − 5.
Classic McEliece is the main focus of current
McEliece deployment.

Daniel J. Bernstein, The McEliece cryptosystem, https://mceliece.org 30

https://classic.mceliece.org
https://mceliece.org

How does the decoder work?
For the rest of this talk: I’ll look at how Alice
decodes (s0, . . . , sn−1) with high weight (small gap).
System parameters: Typical

• Integer m ≥ 1. m ∈ {12, 13}
• Integer n ≥ 1 with n ≤ 2m. 2m−1 < n ≤ 2m

• Integer w ≥ 2 with mw < n. w ≈ 0.2n/log2 n
• Integer r = mw . r ≈ 0.2n
• Finite field F with #F = 2m.

For mceliece348864: m = 12; n = 3488; w = 64;
r = 768; F = (Z/2)[z]/(z12 + z3 + 1).

Daniel J. Bernstein, The McEliece cryptosystem, https://mceliece.org 31

https://mceliece.org

The McEliece secret key

Alice chooses the following secrets:
• Distinct elements α0, α1, . . . , αn−1 of F .
• Monic irreducible deg-w polynomial g ∈ F [x]:

i.e., g = xw + gw−1xw−1 + · · · + g1x + g0,
each gj ∈ F , and g is irreducible in F [x].

Note that g(αi) ̸= 0 since w ≥ 2.
Obvious secret-key format has (n + w)m bits.
There are (2m)(2m − 1) · · · (2m − n + 1) choices of α,
and about 2wm/w choices of g .

Daniel J. Bernstein, The McEliece cryptosystem, https://mceliece.org 32

https://mceliece.org

The McEliece public key
Think of the public key as a linear transformation
H : (Z/2)n → (Z/2)mw . Note that everyone can
compute the lattice {c ∈ Zn : H(c) = 0}.
Alice chooses a transformation H satisfying
the Goppa property: H(c) = 0 if and only if∑
i

ciA/(x − αi) ∈ gF [x], where A =
∏
i
(x − αi).

To avoid revealing any information other than the
lattice, Alice chooses H in systematic form. This
means H(zeropad(v)) = v for all v ∈ (Z/2)mw ,
where zeropad(v) = (v , 0, 0, . . . , 0) ∈ (Z/2)n.

Daniel J. Bernstein, The McEliece cryptosystem, https://mceliece.org 33

https://mceliece.org

The decoding algorithm
How Alice decodes a ciphertext:

• Input C ∈ (Z/2)mw .

• Interpolate B ∈ F [x] with deg B < n and
B(αi) = zeropad(C)iA′(αi)/g2(αi) for each i ,
where A′ is the derivative of A.

• Compute a, b ∈ F [x] with deg a ≤ w ,
deg(aB − bA) < n − w , and gcd{a, b} = 1.
(This is a “half-gcd” computation.)

• Compute s ∈ (Z/2)n with si = [a(αi) = 0],
i.e., si = 1 if and only if a(αi) = 0.

• Output s.

Daniel J. Bernstein, The McEliece cryptosystem, https://mceliece.org 34

https://mceliece.org

The decoding algorithm
How Alice decodes a ciphertext:

• Input C ∈ (Z/2)mw .
• Interpolate B ∈ F [x] with deg B < n and

B(αi) = zeropad(C)iA′(αi)/g2(αi) for each i ,
where A′ is the derivative of A.

• Compute a, b ∈ F [x] with deg a ≤ w ,
deg(aB − bA) < n − w , and gcd{a, b} = 1.
(This is a “half-gcd” computation.)

• Compute s ∈ (Z/2)n with si = [a(αi) = 0],
i.e., si = 1 if and only if a(αi) = 0.

• Output s.

Daniel J. Bernstein, The McEliece cryptosystem, https://mceliece.org 34

https://mceliece.org

The decoding algorithm
How Alice decodes a ciphertext:

• Input C ∈ (Z/2)mw .
• Interpolate B ∈ F [x] with deg B < n and

B(αi) = zeropad(C)iA′(αi)/g2(αi) for each i ,
where A′ is the derivative of A.

• Compute a, b ∈ F [x] with deg a ≤ w ,
deg(aB − bA) < n − w , and gcd{a, b} = 1.
(This is a “half-gcd” computation.)

• Compute s ∈ (Z/2)n with si = [a(αi) = 0],
i.e., si = 1 if and only if a(αi) = 0.

• Output s.

Daniel J. Bernstein, The McEliece cryptosystem, https://mceliece.org 34

https://mceliece.org

The decoding algorithm
How Alice decodes a ciphertext:

• Input C ∈ (Z/2)mw .
• Interpolate B ∈ F [x] with deg B < n and

B(αi) = zeropad(C)iA′(αi)/g2(αi) for each i ,
where A′ is the derivative of A.

• Compute a, b ∈ F [x] with deg a ≤ w ,
deg(aB − bA) < n − w , and gcd{a, b} = 1.
(This is a “half-gcd” computation.)

• Compute s ∈ (Z/2)n with si = [a(αi) = 0],
i.e., si = 1 if and only if a(αi) = 0.

• Output s.

Daniel J. Bernstein, The McEliece cryptosystem, https://mceliece.org 34

https://mceliece.org

Magic fact: The algorithm works

Fact: If s ∈ (Z/2)n has weight w and C = H(s)
then the algorithm outputs s.
Converse: If the algorithm outputs s ∈ (Z/2)n

and s has weight w then C = H(s).
To understand why this works,
take a course on coding theory,
or read my minicourse on this algorithm:
cr.yp.to/papers.html#goppadecoding.

Daniel J. Bernstein, The McEliece cryptosystem, https://mceliece.org 35

https://cr.yp.to/papers.html#goppadecoding
https://mceliece.org

