A one-time single-bit fault

leaks all previous
NTRU-HRSS session keys
to a chosen-ciphertext attack

D. J. Bernstein

University of lllinois at Chicago;
Ruhr University Bochum

cr.yp.to/papers.html#ntrw

Thanks to Lange for pointing
out plaintext confirmation as a
countermeasure to fault attacks.


https://cr.yp.to/papers.html#ntrw

PQ deployment and standards

2022.04: OpenSSH 9.0 uses
x25519+sntrup761 by default.


https://www.openssh.com/txt/release-9.0

PQ deployment and standards

2022.04: OpenSSH 9.0 uses
x25519+sntrup761 by default.

2022.07: NIST announces intent
to standardize Kyber (4 sigs).



https://www.openssh.com/txt/release-9.0
https://csrc.nist.gov/publications/detail/nistir/8413/final

PQ deployment and standards

2022.04: OpenSSH 9.0 uses
x25519+sntrup761 by default.

2022.07: NIST announces intent
to standardize Kyber (4 sigs).

2022.11: Google announces that
all internal Google networking
uses x25519-+ntruhrss701.


https://www.openssh.com/txt/release-9.0
https://csrc.nist.gov/publications/detail/nistir/8413/final
https://cloud.google.com/blog/products/identity-security/why-google-now-uses-post-quantum-cryptography-for-internal-comms

PQ deployment and standards

2022.04: OpenSSH 9.0 uses
x25519+sntrup761 by default.

2022.07: NIST announces intent
to standardize Kyber (4 sigs).

2022.11: Google announces that
all internal Google networking
uses x25519-+ntruhrss701.

"Kyber has high performance ...
but still lacks some clarification
from NIST about its Intellectual
Property status’, I.e., patents.


https://www.openssh.com/txt/release-9.0
https://csrc.nist.gov/publications/detail/nistir/8413/final
https://cloud.google.com/blog/products/identity-security/why-google-now-uses-post-quantum-cryptography-for-internal-comms

2010-2017 patents listed In
NTRU Prime FAQ: US590941839,
US9246675, CN107566121,
CN108173643, KR101905689,
US11050557, EP3698515.



https://ntruprime.cr.yp.to/faq.html

2010-2017 patents listed In
NTRU Prime FAQ: US590941839,
US9246675, CN107566121,
CN108173643, KR101905689,
US11050557, EP3698515.

2022.11: NIST announces licenses
for US9094189, US9246675 for
Kyber v2024 after Kyber v2024 is
defined and standardized.

No analysis of other patents.


https://ntruprime.cr.yp.to/faq.html
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/4MBurXr58Rs/m/WX3u_lU_AQAJ

2010-2017 patents listed In
NTRU Prime FAQ: US590941839,
US9246675, CN107566121,
CN108173643, KR101905689,
US11050557, EP3698515.

2022.11: NIST announces licenses
for US9094189, US9246675 for
Kyber v2024 after Kyber v2024 is
defined and standardized.

No analysis of other patents.

For deploying software to protect
users now, NTRU-HRSS is
attractive: small, fast, unpatented.


https://ntruprime.cr.yp.to/faq.html
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/4MBurXr58Rs/m/WX3u_lU_AQAJ

Is NTRU-HRSS secure?

2017 HRSS paper says: NTRU
proposal for OW-CPA encryption
has “a track record of surviving

20 years of cryptanalysis’ .


https://eprint.iacr.org/2017/667

Is NTRU-HRSS secure?

2017 HRSS paper says: NTRU
proposal for OW-CPA encryption
has “a track record of surviving
20 years of cryptanalysis’ .

Make various changes, including:
“We now show how to turn the
above OW-CPA secure encryption
into an IND-CCA2-secure KEM"™—
l.e., include extra defenses to

stop chosen-ciphertext attacks.


https://eprint.iacr.org/2017/667

Is NTRU-HRSS secure?

2017 HRSS paper says: NTRU
proposal for OW-CPA encryption
has “a track record of surviving
20 years of cryptanalysis’ .

Make various changes, including:
“We now show how to turn the
above OW-CPA secure encryption
into an IND-CCA2-secure KEM"™—
l.e., include extra defenses to

stop chosen-ciphertext attacks.

HRSS uses Fujisaki-Okamoto

(FO) transform, specifically one
of the variants from 2002 Dent.


https://eprint.iacr.org/2017/667
https://eprint.iacr.org/2002/174

Defense 1: After decrypting
ciphertext C to obtain message
m, reencrypt m and reject if # C.



Defense 1: After decrypting
ciphertext C to obtain message
m, reencrypt m and reject if # C.

This stops chosen-ciphertext
attacks that probe variants of a
legitimate C to see which variants
decrypt to the same m.



Defense 1: After decrypting
ciphertext C to obtain message
m, reencrypt m and reject if # C.

This stops chosen-ciphertext
attacks that probe variants of a
legitimate C to see which variants
decrypt to the same m.

If encryption is randomized, first

derandomize it: obtain random
bits as H(m).



Defense 1: After decrypting
ciphertext C to obtain message
m, reencrypt m and reject if # C.

This stops chosen-ciphertext
attacks that probe variants of a
legitimate C to see which variants
decrypt to the same m.

If encryption is randomized, first
derandomize it: obtain random
vits as H(m). Make sure m has

nigh entropy!



Defense 1: After decrypting
ciphertext C to obtain message
m, reencrypt m and reject if # C.

This stops chosen-ciphertext
attacks that probe variants of a
legitimate C to see which variants
decrypt to the same m.

If encryption is randomized, first
derandomize it: obtain random
vits as H(m). Make sure m has

nigh entropy! See recent collapse
of “FrodoKEM parameter sets
comfortably match their target

security levels with a large margin”.


https://cr.yp.to/papers.html#lprrr

Defense 3 (in the numbering from
ntrw's survey of attacks and
defenses): plaintext confirmation.

Instead of ciphertext E(m),
send ciphertext (E(m), H'(m))
where H' is a hash function.
Also use (E, H') in reencryption.



Defense 3 (in the numbering from
ntrw's survey of attacks and
defenses): plaintext confirmation.

Instead of ciphertext E(m),
send ciphertext (E(m), H'(m))
where H' is a hash function.
Also use (E, H') in reencryption.

This stops chosen-ciphertext
attacks that exploit structure of
the public-key encryption function
E to convert E(m) for secret m
into, e.g., E(m + 1). Attacker
has no way to convert H'(m) into
H'(m + 1) for “unstructured” H'.




Current NTRU-HRSS is different

2019 NTRU-HRSS proposal

adopts changes proposed by
2017 Saito—Xagawa—Yamakawa.

Modified proposal removes
plaintext confirmation and
relies on another defense.


https://ntru.org/f/ntru-20190330.pdf
https://eprint.iacr.org/2017/1005

Current NTRU-HRSS is different

2019 NTRU-HRSS proposal

adopts changes proposed by
2017 Saito—Xagawa—Yamakawa.

Modified proposal removes
plaintext confirmation and
relies on another defense.

Defense 4, implicit rejection (from
2017 Hoftheinz—Hovelmanns—Kiltz,
generalizing 2012 Persichetti):

instead of having a KEM reject
an invalid ciphertext C, have

it output H"(r, C) where r is a
random string stored In secret key.


https://ntru.org/f/ntru-20190330.pdf
https://eprint.iacr.org/2017/1005
https://eprint.iacr.org/2017/604
http://persichetti.webs.com/Thesis%20Final.pdf

Is implicit rejection really an
adequate substitute for plaintext
confirmation as a defense against
chosen-ciphertext attacks?



Is implicit rejection really an
adequate substitute for plaintext
confirmation as a defense against
chosen-ciphertext attacks?

SXY+HRSS answer: Here's a
proof of IND-CCA2 security from
OW-CPA + implicit rejection.



Is implicit rejection really an
adequate substitute for plaintext
confirmation as a defense against
chosen-ciphertext attacks?

SXY+HRSS answer: Here's a
proof of IND-CCA2 security from
OW-CPA + implicit rejection.

Issue 1: Proof is only in QROM;
are there non-QROM attacks?



Is implicit rejection really an
adequate substitute for plaintext
confirmation as a defense against
chosen-ciphertext attacks?

SXY+HRSS answer: Here's a
proof of IND-CCA2 security from
OW-CPA + implicit rejection.

Issue 1: Proof is only in QROM;
are there non-QROM attacks?

Issue 2: Proof is tight only in
ROM; can this be exploited?



Is implicit rejection really an
adequate substitute for plaintext
confirmation as a defense against
chosen-ciphertext attacks?

SXY+HRSS answer: Here's a
proof of IND-CCA2 security from
OW-CPA + implicit rejection.

Issue 1: Proof is only in QROM;
are there non-QROM attacks?
Issue 2: Proof is tight only in
ROM; can this be exploited?
Issue 3, my focus today: Are

there chosen-ciphertext attacks
beyond the IND-CCA2 model?



2007 Koblitz, regarding HMQV:
“Anyone working In cryptography
should think very carefully before
dropping a validation step that
had been put in to prevent
security problems. Certainly
someone with Krawczyk's
experience and expertise would
never have made such a blunder
if he hadn’'t been over-confident
because of his ‘proof’ of security.”

See also 2019 survey of failures.


https://www.math.uwaterloo.ca/~ajmeneze/anotherlook/ams.shtml
https://www.math.uwaterloo.ca/~ajmeneze/anotherlook/critper.shtml

2007 Koblitz, regarding HMQV:
“Anyone working In cryptography
should think very carefully before
dropping a validation step that
had been put in to prevent
security problems. Certainly
someone with Krawczyk's
experience and expertise would
never have made such a blunder
if he hadn’'t been over-confident
because of his ‘proof’ of security.”

See also 2019 survey of failures.

Should think very carefully before
dropping plaintext confirmation.


https://www.math.uwaterloo.ca/~ajmeneze/anotherlook/ams.shtml
https://www.math.uwaterloo.ca/~ajmeneze/anotherlook/critper.shtml

10
2018 Bernstein—Persichetti:

implicit rejection “produces

random-looking session keys” for

invalid ciphertexts, “so it hides
the pattern of valid ciphertexts’;
plaintext confirmation “stops

an earlier stage of the attack’;
current proofs do not “show

any advantages for the dual-
defense construction” but it
“seems difficult to justify a
recommendation against the
dual-defense construction”
given that the defenses “target
different aspects of attacks".


https://cr.yp.to/papers.html#tightkem

11
An attack against NTRU-HRSS

DRAM hardware is unreliable.

Often stored bits are corrupted.
Google statistics = 107 users,
each storing a 256-bit key In

DRAM, will have 50000-140000
keys corrupted each year.


https://www.cs.toronto.edu/~bianca/papers/sigmetrics09.pdf

11

An attack against NTRU-HRSS

DRAM hardware is unreliable.
Often stored bits are corrupted.

Google statistics = 107 users,
each storing a 256-bit key In

DRAM, will have 50000-140000
keys corrupted each year.

Main point of the ntrw paper:
implicit rejection doesn't do its job
if ris corrupted. Attacker detects
invalid ciphertexts: changing r
changes decryption output. See
paper for application to NTRU-
HRSS and full attack software.



https://www.cs.toronto.edu/~bianca/papers/sigmetrics09.pdf

What can we do in response?

Incompatible new NTRU-HRSS

can re-add plaintext confirmation.

12



What can we do in response?

Incompatible new NTRU-HRSS
can re-add plaintext confirmation.

Can fix corruption by applying an

error-correcting code (ECC):
e ntrw's 1libsecded software; or
e SECDED ECC DRAM hardware.

Many benefits beyond this attack.


https://pqsrc.cr.yp.to/downloads.html

What can

Incompati

we do in response’?

ble new NTRU-HRSS

can re-add plaintext confirmation.

Can fix corruption by applying an

error-correcting code (ECC):

e ntrw's 1libsecded software: or

e SECDED ECC DRAM hardware.

Many benefits beyond this attack.

Specify ECC in secret-key format?

Use ECC |
Use ECC |

n crypto libraries?
n applications?

Programming language? OS?
Require SECDED ECC DRAM?

12


https://pqsrc.cr.yp.to/downloads.html

12
What can we do in response?

Incompatible new NTRU-HRSS

can re-add plaintext confirmation.

Can fix corruption by applying an

error-correcting code (ECC):
e ntrw's 1libsecded software; or
e SECDED ECC DRAM hardware.

Many benefits beyond this attack.

Specify ECC in secret-key format?
Use ECC in crypto libraries?

Use ECC in applications?
Programming language? OS?
Require SECDED ECC DRAM?
Point fingers and do nothing?


https://pqsrc.cr.yp.to/downloads.html

13
Classic McEliece followup

2022.10: Classic McEliece
recommends dropping plaintext
confirmation “to proactively
eliminate any concerns regarding

U.S. patent 9912479".



https://classic.mceliece.org/nist/mceliece-mods3-20221023.pdf

13
Classic McEliece followup

2022.10: Classic McEliece
recommends dropping plaintext
confirmation “to proactively

eliminate any concerns regarding
U.S. patent 9912479".

Warns that this allows the ntrw
attack whenever r I1s corrupted.
Describes ECC as a defense.


https://classic.mceliece.org/nist/mceliece-mods3-20221023.pdf

13
Classic McEliece followup

2022.10: Classic McEliece
recommends dropping plaintext
confirmation “to proactively

eliminate any concerns regarding
U.S. patent 9912479".

Warns that this allows the ntrw
attack whenever r I1s corrupted.
Describes ECC as a defense.

Introduces principle of factoring
“any generic transformation
aiming at a goal beyond IND-
CCA2" out of KEM specifications,

to simplify design and review.


https://classic.mceliece.org/nist/mceliece-mods3-20221023.pdf

