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Notation,

for o in number field K:

trg o, detg o mean tr, det of
B — apf as Q-linear map K — K.

More generally: trg Q, detg a as

F-linear map for subfield F of K.



Often want to compute detg.
One of many examples: Define
(m = exp(2mi/m) and h,, =
#CI(Q(¢m))/#CI(RN Q(¢m)):
e.g. hgy = 17; hjsg = 17 - 21121;
hyee = 17:21121-29102880226241.

17 = 2detg '%)(Bg4/2) where
Bea = {{s — {06+ ¢35+ <16 T ST —
C%@ — C16 — 1.
_ Q(¢32)

21121 = 2detq >>='(B12s/2) where
Biog = —(35 + ¢35 — (35 + {35 +

11 |, +10 | 9 3 7 6
(32 + ¢33 +¢30 +¢3 —C3p — €G30 —
3o+ 85 +¢5 — 85— ¢ — 1.

291023830226241 = - - -
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Louboutin, 1999 Shokrollahi:
various algorithms to evaluate

m — h_, all using at least
m1-5+0o(1) bit operations

(even with fast multiplication).

h— has mito(l) bits.
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For many choices of m:
Fast detg as in this talk gives h,
using m1t°(1) bit operations.



Main motivation

Core computation in algebraic
number theory: filter all small
elements of Ok to find S-units
(elements with prime-ideal
factorizations supported on S).

More generally, filter all small
elements of an Ok-ideal I # 0
to find S-generators of I.

Traditional application: Compute
S-unit group; in particular,
conjecturally obtain OF and
CI(K) in subexponential time.
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low-dimensional lattice. Easily
scan a sublattice for each factor.



How to recognize S-units?

For some fields K (e.g., in NFS),
find small elements of Ok in a
low-dimensional lattice. Easily
scan a sublattice for each factor.

For balanced high-degree K (e.g.,
cyclotomics), lattice has high
dimension; scanning sublattices
seems hard. So, for each small «

(modulo automorphisms etc.),
compute detg o, see whether
detg a factors suitably.

How fast is o — detg o



Highlights of the 2022 paper

Section 2: For small , how large
IS detg a? Case study: Q(¢m)
where m = 2n € {4,8,16,...}.
Trivially O(nlog n) bits; more
precise “circular approximation”

to distribution: experiments.
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Section 3: How fast are

standard detg algorithms?
Modular resultants via continued
fractions: usually n?(log n)3*to(1).
[T, o(a) in C: n?(log n)3+e(l);
n%(log n)2°1) using a cyclotomic
speedup from 1982 Schonhage.



Section 1: detg o = detg detg o

obviously reduces cost to ntto(l)

for the same Q({) case study.

See paper for credits + speedups.
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Section 4: How general is this?
Want small-relative-degree tower.
Also want small bases supporting
fast multiplication and subfields.
For Abelian fields: Gauss-period
basis is small, supports subfields;
generalizing Rader’'s FFT gives

fast multiplication; total cost
n(log n)3+t°() if reldeg (log n)°(1).
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Section 4: How general is this?
Want small-relative-degree tower.
Also want small bases supporting
fast multiplication and subfields.
For Abelian fields: Gauss-period
basis is small, supports subfields;
generalizing Rader’'s FFT gives

fast multiplication; total cost
n(log n)3+t°() if reldeg (log n)°(1).

Section 5: S-unit application.



Power-of-2 cyclotomics

Take, e.g., Biog = —C%S -+ -

detgggiég B1og = B1og - 0(5128)

= —6¢{ — 2806 — 6¢76 — 6<Ts
— 6C%6 + 6C%6 — 2(16 — 2.
Q(¢32)

detQ(CS) 8128

= —88¢3 + 104¢3 + 56¢g + 88.

Q(¢32)
detqre,) P18

— 22012¢, — 12928,

detg(@Q) 8128

— 692092028 = 21121 - 21>,
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2010 Gentry—Halevi: This costs
n(log n)°1) and “relies heavily on
the special form of ... x" + 1,
with n a power of two".

In fact, also works for Q({m) for
any smooth positive integer m.

What about further fields?
Main challenge: fast multiplication.

2017 Bauch—Bernstein—de
Valence—Lange—van Vredendaal

includes analogous det evaluation
for multiquadratic fields, built
from a fast-multiplication
algorithm for those fields.



Prime-conductor cyclotomics

For prime p with smooth p — 1:
use long tower Q C --- C Q({p).

Use Gauss periods as a basis
for each subfield F C Q({p):
e.g., for degree-4 subfield F

of K = Q({17), use the basis
K1 _ sl 4 —4 | -1
trﬁ %7 = Cg ™ C1757L §157 ™ C173'
tr}/-; %7 — %7 T %7 T Clg T §172'
trﬁ Cé? = Cé? T %7 T C177 T 5176'
tre Gi7 = 617 T 617 + 617 + 617

(Care is required for general

conductor. Use 1997 Breuer;
Breuer credits Hiss and Lenstra.)
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11
Multiply in Q(¢{p) using FFT.

1968 Rader FFT: To evaluate
g =gixt +gx?+ -+ grext
at C%7 ..... C%g notice that

3b—a

g =Y g =Y, g5
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g(¢k), g(¢3:). 8(¢3n). - g(¢%).



11
Multiply in Q(¢{p) using FFT.

1968 Rader FFT: To evaluate
g =g1x' +gx*+ -+ giex’
at C%7 ..... C%g notice that

b 3b; b—a
g(ﬁ’?) — Zj ng17J =2, 83—a§i°’7 -

Length-16 cyclic convolution of

6

g(¢k), g(¢3:). 8(¢3n). - g(¢%).

Folding the Rader FFT:

g represents elt of deg-4 subfield
& g1, 86, - - - Is 4-periodic.

Use length-4 cyclic convolution
with the Gauss periods.



2017 Arita—Handa: folded Rader
FFT for prime conductor. (No
mention of Gauss periods, Rader.)

2022 paper: Application to det.
Application of segmentation.

Analysis and comparison.

And beyond prime conductor:
Generalization to arbitrary
conductor (Section 4.12; one
part is 1978 Winograd FFT).
Sage scripts for arbitrary
conductor (Appendix A).

Fast C software (Appendix C)
for the power-of-2 case study.



