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Notation,

for ¸ in number field K:

trKQ ¸, detKQ ¸ mean tr, det of

˛ 7→ ¸˛ as Q-linear map K → K.

More generally: trKF ¸, detKF ¸ as

F -linear map for subfield F of K.

2

Often want to compute detKQ.

One of many examples: Define

“m = exp(2ıi=m) and h−m =

#Cl(Q(“m))=#Cl(R ∩Q(“m)).

e.g. h−64 = 17; h−128 = 17 · 21121;

h−256 = 17·21121·29102880226241.

17 = 2 det
Q(“16)
Q (B64=2) where

B64 = “7
16− “6

16 + “5
16 + “4

16 + “3
16−

“2
16 − “16 − 1.

21121 = 2 det
Q(“32)
Q (B128=2) where

B128 = −“15
32 + “14

32 − “13
32 + “12

32 +

“11
32 + “10

32 + “9
32 + “8

32− “7
32− “6

32−
“5

32 + “4
32 + “3

32 − “2
32 − “32 − 1.

29102880226241 = · · ·
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3

1851 Kummer, 1952 Hasse, 1964

Schrutka von Rechtenstamm,

1970 Newman, 1978 Lehmer–

Masley, 1992 Fung–Granville–

Williams, 1995 Jha, 1998

Louboutin, 1999 Shokrollahi:

various algorithms to evaluate

m 7→ h−m, all using at least

m1:5+o(1) bit operations

(even with fast multiplication).

h−m has m1+o(1) bits.
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4

Main motivation

Core computation in algebraic

number theory: filter all small

elements of OK to find S-units

(elements with prime-ideal

factorizations supported on S).

More generally, filter all small

elements of an OK-ideal I 6= 0

to find S-generators of I.

Traditional application: Compute

S-unit group; in particular,

conjecturally obtain O∗K and

Cl(K) in subexponential time.
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How to recognize S-units?

For some fields K (e.g., in NFS),

find small elements of OK in a

low-dimensional lattice. Easily

scan a sublattice for each factor.
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For balanced high-degree K (e.g.,

cyclotomics), lattice has high

dimension; scanning sublattices

seems hard. So, for each small ¸

(modulo automorphisms etc.),

compute detKQ ¸, see whether

detKQ ¸ factors suitably.

How fast is ¸ 7→ detKQ ¸?
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Highlights of the 2022 paper

Section 2: For small ¸, how large

is detKQ ¸? Case study: Q(“m)

where m = 2n ∈ {4; 8; 16; : : :}.
Trivially O(n log n) bits; more

precise “circular approximation”

to distribution; experiments.
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Section 3: How fast are

standard detKQ algorithms?

Modular resultants via continued

fractions: usually n2(log n)3+o(1).Q
ff ff(¸) in C: n2(log n)3+o(1);

n2(log n)2+o(1) using a cyclotomic

speedup from 1982 Schönhage.
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generalizing Rader’s FFT gives

fast multiplication; total cost

n(log n)3+o(1) if reldeg (log n)o(1).
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Power-of-2 cyclotomics

Take, e.g., B128 = −“15
32 + · · ·.

det
Q(“32)
Q(“16)

B128 = B128 · ff(B128)

= −6“7
16 − 2“6

16 − 6“5
16 − 6“4

16

− 6“3
16 + 6“2

16 − 2“16 − 2.

det
Q(“32)
Q(“8)

B128

= −88“3
8 + 104“2

8 + 56“8 + 88.

det
Q(“32)
Q(“4)

B128

= 22912“4 − 12928.

det
Q(“32)
Q B128

= 692092928 = 21121 · 215.



6

Highlights of the 2022 paper

Section 2: For small ¸, how large

is detKQ ¸? Case study: Q(“m)

where m = 2n ∈ {4; 8; 16; : : :}.
Trivially O(n log n) bits; more

precise “circular approximation”

to distribution; experiments.

Section 3: How fast are

standard detKQ algorithms?

Modular resultants via continued

fractions: usually n2(log n)3+o(1).Q
ff ff(¸) in C: n2(log n)3+o(1);

n2(log n)2+o(1) using a cyclotomic

speedup from 1982 Schönhage.

7

Section 1: detKQ ¸ = detFQ detKF ¸

obviously reduces cost to n1+o(1)

for the same Q(“m) case study.

See paper for credits + speedups.

Section 4: How general is this?

Want small-relative-degree tower.

Also want small bases supporting

fast multiplication and subfields.

For Abelian fields: Gauss-period

basis is small, supports subfields;

generalizing Rader’s FFT gives

fast multiplication; total cost

n(log n)3+o(1) if reldeg (log n)o(1).

Section 5: S-unit application.

8

Power-of-2 cyclotomics

Take, e.g., B128 = −“15
32 + · · ·.

det
Q(“32)
Q(“16)

B128 = B128 · ff(B128)

= −6“7
16 − 2“6

16 − 6“5
16 − 6“4

16

− 6“3
16 + 6“2

16 − 2“16 − 2.

det
Q(“32)
Q(“8)

B128

= −88“3
8 + 104“2

8 + 56“8 + 88.

det
Q(“32)
Q(“4)

B128

= 22912“4 − 12928.

det
Q(“32)
Q B128

= 692092928 = 21121 · 215.



6

Highlights of the 2022 paper

Section 2: For small ¸, how large

is detKQ ¸? Case study: Q(“m)

where m = 2n ∈ {4; 8; 16; : : :}.
Trivially O(n log n) bits; more

precise “circular approximation”

to distribution; experiments.

Section 3: How fast are

standard detKQ algorithms?

Modular resultants via continued

fractions: usually n2(log n)3+o(1).Q
ff ff(¸) in C: n2(log n)3+o(1);

n2(log n)2+o(1) using a cyclotomic

speedup from 1982 Schönhage.

7

Section 1: detKQ ¸ = detFQ detKF ¸

obviously reduces cost to n1+o(1)

for the same Q(“m) case study.

See paper for credits + speedups.

Section 4: How general is this?

Want small-relative-degree tower.

Also want small bases supporting

fast multiplication and subfields.

For Abelian fields: Gauss-period

basis is small, supports subfields;

generalizing Rader’s FFT gives

fast multiplication; total cost

n(log n)3+o(1) if reldeg (log n)o(1).

Section 5: S-unit application.

8

Power-of-2 cyclotomics

Take, e.g., B128 = −“15
32 + · · ·.

det
Q(“32)
Q(“16)

B128 = B128 · ff(B128)

= −6“7
16 − 2“6

16 − 6“5
16 − 6“4

16

− 6“3
16 + 6“2

16 − 2“16 − 2.

det
Q(“32)
Q(“8)

B128

= −88“3
8 + 104“2

8 + 56“8 + 88.

det
Q(“32)
Q(“4)

B128

= 22912“4 − 12928.

det
Q(“32)
Q B128

= 692092928 = 21121 · 215.



7

Section 1: detKQ ¸ = detFQ detKF ¸

obviously reduces cost to n1+o(1)

for the same Q(“m) case study.

See paper for credits + speedups.

Section 4: How general is this?

Want small-relative-degree tower.

Also want small bases supporting

fast multiplication and subfields.

For Abelian fields: Gauss-period

basis is small, supports subfields;

generalizing Rader’s FFT gives

fast multiplication; total cost

n(log n)3+o(1) if reldeg (log n)o(1).

Section 5: S-unit application.

8

Power-of-2 cyclotomics

Take, e.g., B128 = −“15
32 + · · ·.

det
Q(“32)
Q(“16)

B128 = B128 · ff(B128)

= −6“7
16 − 2“6

16 − 6“5
16 − 6“4

16

− 6“3
16 + 6“2

16 − 2“16 − 2.

det
Q(“32)
Q(“8)

B128

= −88“3
8 + 104“2

8 + 56“8 + 88.

det
Q(“32)
Q(“4)

B128

= 22912“4 − 12928.

det
Q(“32)
Q B128

= 692092928 = 21121 · 215.



7

Section 1: detKQ ¸ = detFQ detKF ¸

obviously reduces cost to n1+o(1)

for the same Q(“m) case study.

See paper for credits + speedups.

Section 4: How general is this?

Want small-relative-degree tower.

Also want small bases supporting

fast multiplication and subfields.

For Abelian fields: Gauss-period

basis is small, supports subfields;

generalizing Rader’s FFT gives

fast multiplication; total cost

n(log n)3+o(1) if reldeg (log n)o(1).

Section 5: S-unit application.

8

Power-of-2 cyclotomics

Take, e.g., B128 = −“15
32 + · · ·.

det
Q(“32)
Q(“16)

B128 = B128 · ff(B128)

= −6“7
16 − 2“6

16 − 6“5
16 − 6“4

16

− 6“3
16 + 6“2

16 − 2“16 − 2.

det
Q(“32)
Q(“8)

B128

= −88“3
8 + 104“2

8 + 56“8 + 88.

det
Q(“32)
Q(“4)

B128

= 22912“4 − 12928.

det
Q(“32)
Q B128

= 692092928 = 21121 · 215.

9

2010 Gentry–Halevi: This costs

n(log n)O(1) and “relies heavily on

the special form of : : : xn + 1,

with n a power of two”.



7

Section 1: detKQ ¸ = detFQ detKF ¸

obviously reduces cost to n1+o(1)

for the same Q(“m) case study.

See paper for credits + speedups.

Section 4: How general is this?

Want small-relative-degree tower.

Also want small bases supporting

fast multiplication and subfields.

For Abelian fields: Gauss-period

basis is small, supports subfields;

generalizing Rader’s FFT gives

fast multiplication; total cost

n(log n)3+o(1) if reldeg (log n)o(1).

Section 5: S-unit application.

8

Power-of-2 cyclotomics

Take, e.g., B128 = −“15
32 + · · ·.

det
Q(“32)
Q(“16)

B128 = B128 · ff(B128)

= −6“7
16 − 2“6

16 − 6“5
16 − 6“4

16

− 6“3
16 + 6“2

16 − 2“16 − 2.

det
Q(“32)
Q(“8)

B128

= −88“3
8 + 104“2

8 + 56“8 + 88.

det
Q(“32)
Q(“4)

B128

= 22912“4 − 12928.

det
Q(“32)
Q B128

= 692092928 = 21121 · 215.

9

2010 Gentry–Halevi: This costs

n(log n)O(1) and “relies heavily on

the special form of : : : xn + 1,

with n a power of two”.



7

Section 1: detKQ ¸ = detFQ detKF ¸

obviously reduces cost to n1+o(1)

for the same Q(“m) case study.

See paper for credits + speedups.

Section 4: How general is this?

Want small-relative-degree tower.

Also want small bases supporting

fast multiplication and subfields.

For Abelian fields: Gauss-period

basis is small, supports subfields;

generalizing Rader’s FFT gives

fast multiplication; total cost

n(log n)3+o(1) if reldeg (log n)o(1).

Section 5: S-unit application.

8

Power-of-2 cyclotomics

Take, e.g., B128 = −“15
32 + · · ·.

det
Q(“32)
Q(“16)

B128 = B128 · ff(B128)

= −6“7
16 − 2“6

16 − 6“5
16 − 6“4

16

− 6“3
16 + 6“2

16 − 2“16 − 2.

det
Q(“32)
Q(“8)

B128

= −88“3
8 + 104“2

8 + 56“8 + 88.

det
Q(“32)
Q(“4)

B128

= 22912“4 − 12928.

det
Q(“32)
Q B128

= 692092928 = 21121 · 215.

9

2010 Gentry–Halevi: This costs

n(log n)O(1) and “relies heavily on

the special form of : : : xn + 1,

with n a power of two”.



8

Power-of-2 cyclotomics

Take, e.g., B128 = −“15
32 + · · ·.

det
Q(“32)
Q(“16)

B128 = B128 · ff(B128)

= −6“7
16 − 2“6

16 − 6“5
16 − 6“4

16

− 6“3
16 + 6“2

16 − 2“16 − 2.

det
Q(“32)
Q(“8)

B128

= −88“3
8 + 104“2

8 + 56“8 + 88.

det
Q(“32)
Q(“4)

B128

= 22912“4 − 12928.

det
Q(“32)
Q B128

= 692092928 = 21121 · 215.

9

2010 Gentry–Halevi: This costs

n(log n)O(1) and “relies heavily on

the special form of : : : xn + 1,

with n a power of two”.



8

Power-of-2 cyclotomics

Take, e.g., B128 = −“15
32 + · · ·.

det
Q(“32)
Q(“16)

B128 = B128 · ff(B128)

= −6“7
16 − 2“6

16 − 6“5
16 − 6“4

16

− 6“3
16 + 6“2

16 − 2“16 − 2.

det
Q(“32)
Q(“8)

B128

= −88“3
8 + 104“2

8 + 56“8 + 88.

det
Q(“32)
Q(“4)

B128

= 22912“4 − 12928.

det
Q(“32)
Q B128

= 692092928 = 21121 · 215.

9

2010 Gentry–Halevi: This costs

n(log n)O(1) and “relies heavily on

the special form of : : : xn + 1,

with n a power of two”.

In fact, also works for Q(“m) for

any smooth positive integer m.



8

Power-of-2 cyclotomics

Take, e.g., B128 = −“15
32 + · · ·.

det
Q(“32)
Q(“16)

B128 = B128 · ff(B128)

= −6“7
16 − 2“6

16 − 6“5
16 − 6“4

16

− 6“3
16 + 6“2

16 − 2“16 − 2.

det
Q(“32)
Q(“8)

B128

= −88“3
8 + 104“2

8 + 56“8 + 88.

det
Q(“32)
Q(“4)

B128

= 22912“4 − 12928.

det
Q(“32)
Q B128

= 692092928 = 21121 · 215.

9

2010 Gentry–Halevi: This costs

n(log n)O(1) and “relies heavily on

the special form of : : : xn + 1,

with n a power of two”.

In fact, also works for Q(“m) for

any smooth positive integer m.

What about further fields?

Main challenge: fast multiplication.



8

Power-of-2 cyclotomics

Take, e.g., B128 = −“15
32 + · · ·.

det
Q(“32)
Q(“16)

B128 = B128 · ff(B128)

= −6“7
16 − 2“6

16 − 6“5
16 − 6“4

16

− 6“3
16 + 6“2

16 − 2“16 − 2.

det
Q(“32)
Q(“8)

B128

= −88“3
8 + 104“2

8 + 56“8 + 88.

det
Q(“32)
Q(“4)

B128

= 22912“4 − 12928.

det
Q(“32)
Q B128

= 692092928 = 21121 · 215.

9

2010 Gentry–Halevi: This costs

n(log n)O(1) and “relies heavily on

the special form of : : : xn + 1,

with n a power of two”.

In fact, also works for Q(“m) for

any smooth positive integer m.

What about further fields?

Main challenge: fast multiplication.

2017 Bauch–Bernstein–de

Valence–Lange–van Vredendaal

includes analogous det evaluation

for multiquadratic fields, built

from a fast-multiplication

algorithm for those fields.
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Prime-conductor cyclotomics

For prime p with smooth p − 1:

use long tower Q ⊂ · · · ⊂ Q(“p).

Use Gauss periods as a basis

for each subfield F ⊆ Q(“p):

e.g., for degree-4 subfield F

of K = Q(“17), use the basis

trKF “
1
17 = “1

17 + “4
17 + “−4

17 + “−1
17 ,

trKF “
3
17 = “3

17 + “−5
17 + “5

17 + “−3
17 ,

trKF “
2
17 = “2

17 + “8
17 + “−8

17 + “−2
17 ,

trKF “
6
17 = “6

17 + “7
17 + “−7

17 + “−6
17 .

(Care is required for general

conductor. Use 1997 Breuer;

Breuer credits Hiss and Lenstra.)
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2010 Gentry–Halevi: This costs

n(log n)O(1) and “relies heavily on

the special form of : : : xn + 1,

with n a power of two”.

In fact, also works for Q(“m) for

any smooth positive integer m.

What about further fields?

Main challenge: fast multiplication.

2017 Bauch–Bernstein–de

Valence–Lange–van Vredendaal

includes analogous det evaluation

for multiquadratic fields, built

from a fast-multiplication

algorithm for those fields.

10

Prime-conductor cyclotomics

For prime p with smooth p − 1:

use long tower Q ⊂ · · · ⊂ Q(“p).

Use Gauss periods as a basis

for each subfield F ⊆ Q(“p):

e.g., for degree-4 subfield F

of K = Q(“17), use the basis

trKF “
1
17 = “1

17 + “4
17 + “−4

17 + “−1
17 ,

trKF “
3
17 = “3

17 + “−5
17 + “5

17 + “−3
17 ,

trKF “
2
17 = “2

17 + “8
17 + “−8

17 + “−2
17 ,

trKF “
6
17 = “6

17 + “7
17 + “−7

17 + “−6
17 .

(Care is required for general

conductor. Use 1997 Breuer;

Breuer credits Hiss and Lenstra.)
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11

Multiply in Q(“p) using FFT.

1968 Rader FFT: To evaluate

g = g1x
1 + g2x

2 + · · ·+ g16x
16

at “1
17; : : : ; “

16
17 , notice that

g(“3b
17 ) =

P
j gj“

3b j
17 =

P
a g3−a“

3b−a
17 .
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Use length-4 cyclic convolution

with the Gauss periods.
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2017 Arita–Handa: folded Rader

FFT for prime conductor. (No

mention of Gauss periods, Rader.)

2022 paper: Application to det.

Application of segmentation.

Analysis and comparison.

And beyond prime conductor:

Generalization to arbitrary

conductor (Section 4.12; one

part is 1978 Winograd FFT).

Sage scripts for arbitrary

conductor (Appendix A).

Fast C software (Appendix C)

for the power-of-2 case study.
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