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Notation,
for o in number field K:
K K
trq @, detQ a mean tr, det of

B — apf as Q-linear map K — K.

More generally: trg Q, cetg o as

F-linear map for subfield F of K.

Often want to compute detg.
One of many examples: Define
(m = exp(2mwi/m) and h, =
#CI(Q(¢m))/#CIR N Q(¢m)).
e.g. hgy = 17; hypg = 17 - 21121,
hoee = 17-21121-29102880226241.

17 = 2detg '6)(Bg4 /2) where

Boa = {{s — (06 + 16 + 16 + ¢ —
C%@ — §16 — 1.

21121 = 2 detg ) (B12g/2) where
Biog = —(33 + {35 — (33 + ¢35 +
Ca + ¢33 +¢3r + 50 — Cho — (30 —
3+ +¢3 —¢5 — ¢ -1
29102880226241 = - - -
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fast multiplication and subfields.
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n(log n)3t°() if reldeg (log n)°(L).

Section 5: S-unit application.

Power-of-2 cyclotomics

Take, e.g., Biog = —C%g + -

detgggzg B1og = Big - 0(B12g)

= —6¢{s — 2¢9s — 6¢7 — 6476
— 6(%6 + 6C%6 — 2(16 — 2.
Q(¢32)

detq(ss) B2

= —88¢3 + 104¢3 + 56(g + 88.

Q(¢32)
detQ(<4) 8128

— 22012¢, — 12928,

detg(C32) 8128

— 692092928 = 21121 - 219



1: detg o = detg detg o
v reduces cost to ntto(l)
ame Q(¢m) case study.

or for credits + speedups.

4: How general is this?
1all-relative-degree tower.
1t small bases supporting
tiplication and subfields.
lan fields: Gauss-period
small, supports subfields;
ing Rader’'s FFT gives
tiplication; total cost

+o(1) if reldeg (log n)°).

5: S-unit application.

Power-of-2 cyclotomics

Take, e.g., Biog = —C%S + -

detgggiég B1og = Big - 0(B12g)

= —6¢{ — 2¢06 — 6¢76 — 6¢T
— 6¢3 + 687 — 2¢16 — 2.
Q(¢32) B

Q(¢g) 128

= —88¢3 + 104¢3 + 56(g + 88.

det

Q(¢32)
detqre,) P18

— 22012¢, — 12928,

detg(QZ) 8128

— 692002028 = 21121 - 219,

2010 Ge

n(log n)'
the spec
with n a



— detg detg o
cost to nito(l)
,) case study.

its + speedups.

neral is this?
e-degree tower.
1ses supporting
and subfields.
Gauss-period
ports subfields;
's FFT gives

- total cost

ldeg (log n)°L).

application.

Power-of-2 cyclotomics

Take, e.g., Biog = —C%g + -

detgggzg B1og = Big - 0(B12g)

= —6¢{s — 2¢75 — 6476 — 6<Ts
— 6(%6 + 6C%6 — 2(16 — 2.
Q(¢32)

detQ(C8) 8128

= —88¢3 + 104¢3 + 56(g + 88.

Q(¢32)
detQ(<4) 8128

— 22012¢, — 12928,

detg(C32) 8128

— 692002928 = 21121 - 219,

2010 Gentry—Hale
n(log n)°1) and *
the special form o
with n a power of



Power-of-2 cyclotomics

Take, e.g., Biog = —C%S + -

detgggiég B1og = Big - 0(B12g)

= —6¢{s — 2¢fs — 6¢35 — 6416
— 6¢3 + 682 — 2¢16 — 2.

Q(¢32)
detQ(CS) 8128

= —88¢3 + 104¢3 + 56(g + 88.

Q(¢32)
detqre,) P18

— 22012¢, — 12928,

— 692002028 = 21121 - 219,

2010 Gentry—Halevi: This c
n(log 1)) and “relies hea
the special form of ... x" +
with n a power of two" .



Power-of-2 cyclotomics

Take, e.g., Biog = —C%g + -

detgggizg B1og = Big - 0(B12g)

= —6¢{s — 295 — 6¢7 — 6476
— 6(%6 + 6C%6 — 2(16 — 2.

Q(¢32)
detQ(CS) 8128

= —88¢3 + 104¢3 + 56(g + 88.

Q(¢32)
detQ(<4) 8128

— 22012¢, — 12928,

detg(C32) 8128

— 692092928 = 21121 - 219,

2010 Gentry—Halevi: This costs
n(log 1)) and “relies heavily on
the special form of ... x" + 1,
with n a power of two".



Power-of-2 cyclotomics

Take, e.g., Biog = —C%g + -

detgggizg B1og = Big - 0(B12g)

= —6¢{s — 295 — 6¢7 — 6476
— 6(%6 + 6C%6 — 2(16 — 2.

Q(¢32)
detQ(CS) 8128

= —88¢3 + 104¢3 + 56(g + 88.

Q(¢32)
detQ(<4) 8128

— 22012¢, — 12928,

detg(C32) 8128

— 692092928 = 21121 - 219,

2010 Gentry—Halevi: This costs
n(log 1)) and “relies heavily on
the special form of ... x" + 1,
with n a power of two".

In fact, also works for Q(¢{,) for
any smooth positive integer m.



Power-of-2 cyclotomics

Take, e.g., Biog = —C%g + -

detgggizg B1og = Big - 0(B12g)

= —6¢{s — 295 — 6¢7 — 6476
— 6(%6 + 6C%6 — 2(16 — 2.

Q(¢32)
detQ(C8) 8128

= —88¢3 + 104¢3 + 56(g + 88.

Q(¢32)
detQ(<4) 8128

— 22012¢, — 12928,

detg(C32) 8128

— 692092928 = 21121 - 219,

2010 Gentry—Halevi: This costs
n(log 1)) and “relies heavily on
the special form of ... x" + 1,
with n a power of two".

In fact, also works for Q(¢{,) for
any smooth positive integer m.

What about further fields?
Main challenge: fast multiplication.



Power-of-2 cyclotomics

Take, e.g., Biog = —C%g + -

detgggizg B1og = Big - 0(B12g)

= —6¢{s — 295 — 6¢7 — 6476
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the special form of ... x" + 1,
with n a power of two".

In fact, also works for Q(¢{,) for
any smooth positive integer m.

What about further fields?
Main challenge: fast multiplication.

2017 Bauch—Bernstein—de
Valence—Lange—van Vredendaal

includes analogous det evaluation
for multiquadratic fields, built
from a fast-multiplication
algorithm for those fields.
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n(log n)°(1)
the special form of ... x" + 1,

and “relies heavily on

with n a power of two" .

In fact, also works for Q(¢{) for
any smooth positive integer m.

What about further fields?

Main challenge: fast multiplication.

2017 Bauch—Bernstein—de
Valence—Lange—van Vredendaal
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from a fast-multiplication
algorithm for those fields.
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the special form of ... x" + 1,
with n a power of two" .

In fact, also works for Q({,) for
any smooth positive integer m.

What about further fields?

Main challenge: fast multiplication.

2017 Bauch—Bernstein—de
Valence—Lange—van Vredendaal

includes analogous det evaluation
for multiquadratic fields, built
from a fast-multiplication
algorithm for those fields.
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For prime p with smooth p — 1:
use long tower Q C --- C Q(¢p).

Use Gauss periods as a basis
for each subfield F C Q({p):
e.g., for degree-4 subfield F

of K = Q({17), use the basis
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Prime-conductor cyclotomics

For prime p with smooth p — 1:
use long tower Q C --- C Q(¢p).

Use Gauss periods as a basis
for each subfield F C Q({p):
e.g., for degree-4 subfield F

of K = Q({17), use the basis

4 4 1
trF §17 = <17 5175Jr C17 T C173'
trF §17 = §17 §17 T §17 + §17 '
tlrF §17 = C17 + 517 - §17 + §17 '
trg (7 = 7 + ¢y + & + 47

(Care is required for general

conductor. Use 1997 Breuer;
Breuer credits Hiss and Lenstra.)
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g = g1x" + gx*-
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Prime-conductor cyclotomics

For prime p with smooth p — 1:
use long tower Q C --- C Q(¢p).

Use Gauss periods as a basis
for each subfield F C Q(¢p):
e.g., for degree-4 subfield F

of K = Q({17), use the basis
Kpl _»1 o 4 o »—4  »—1
trﬁ %7 = %7 ™ C17 ™ C17 ™ C173’
tlrF §17 = §17 + C17 T 517 + C17 1
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trf ¢ = & + ¢ + 4 + 47

(Care is required for general

conductor. Use 1997 Breuer;
Breuer credits Hiss and Lenstra.)
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Multiply in Q(¢p) using FF

1968 Rader FFT: To evalua
g=gx+gx°+ -+ g
at §17, . §17, notice that

(¢} 17 —Z g1§17 =2 .8
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Prime-conductor cyclotomics Multiply in Q(¢p) using FFT.
For prime p with smooth p — 1: 1968 Rader FFT: To evaluate
use long tower Q C --- C Q(¢p). g = gixt + g@x2+ -+ grex?t

1 .
. . at (i-, .. , notice that
Use Gauss periods as a basis Sy, Cl?
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e.g., for degree-4 subfield F
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(Care is required for general

conductor. Use 1997 Breuer;
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For prime p with smooth p — 1:
use long tower Q C --- C Q(¢p).
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Multiply in Q(¢p) using FFT.

1968 Rader FFT: To evaluate
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(Care is required for general
Use 1997 Breuer:
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conductor.
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Multiply in Q(¢p) using FFT.
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81,86, ---:,89:83 and
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g represents elt of deg-4 subfield
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Use length-4 cyclic convolution

Is 4-periodic.
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Multiply in Q(¢p) using FFT.
1968 Rader FFT: To evaluate
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at Ch, . §17, notice that
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Length-16 cyclic convolution of

81:86:---:89:83 and
<%7' <%7' C%' S C% IS
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Multiply in Q(¢p) using FFT.

1968 Rader FFT: To evaluate
g=gixt+gx?+ -+ grex?
at Ch ..... C%g, notice that

b 3b; b—a
g(<:137) — Zj ng17J — Za g?,—aC%? :

Length-16 cyclic convolution of

6

Folding the Rader FFT:
g represents elt of deg-4 subfield

<~ &Z1,86- -
Use length-4 cyclic convolution

s 4-periodic.

with the Gauss periods.
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2017 Arita—Handa: folded Rader

FFT for prime conductor. (No
mention of Gauss periods, Rader.)

2022 paper: Application to det.
Application of segmentation.

Analysis and comparison.

And beyond prime conductor:
Generalization to arbitrary
conductor (Section 4.12; one
part is 1978 Winograd FFT).
Sage scripts for arbitrary
conductor (Appendix A).

Fast C software (Appendix C)
for the power-of-2 case study.



