Fast verified
post-quantum software

Daniel J. Bernstein

Houston, we have a problem ...

My talk at ICMC 2019: “Does open-source
cryptographic software work correctly?”

Talk right now in ICMC 2021 track 2: “Overview
of open-source cryptography vulnerabilities.”

Daniel J. Bernstein, Fast verified post-quantum software

https://arxiv.org/abs/2107.04940

Houston, we have a problem ...

My talk at ICMC 2019: “Does open-source
cryptographic software work correctly?”

Talk right now in ICMC 2021 track 2: “Overview
of open-source cryptography vulnerabilities.”

2021.07 Blessing—Specter—Weitzner “You really
shouldn't roll your own crypto: an empirical study
of vulnerabilities in cryptographic libraries”:

73 “actual” cryptographic vulnerabilities, including
11 “severe” cryptographic vulnerabilities, among
OpenSSL, GnuTLS, Mozilla TLS, WolfSSL, Botan,
Libgcrypt, LibreSSL, BoringSSL post-2010 CVEs.

Daniel J. Bernstein, Fast verified post-quantum software

https://arxiv.org/abs/2107.04940

and the complexity is getting worse

Must be
post-quantum!
Must be Must stop
timing attacks!

fast!

A 4 "':
{ Complicated ecosystem

of post-quantum specs

Much more complicated ecosystem
of post-quantum software

Daniel J. Bernstein, Fast verified post-quantum software

The good news: symbolic testing

Symbolic-testing tools check that
optimized software equals reference software.
“Equals”: gives the same outputs for all inputs.

Today'’s tools are surprisingly easy to use and
quickly handle many post-quantum subroutines.

Daniel J. Bernstein, Fast verified post-quantum software

https://pqsrc.cr.yp.to

The good news: symbolic testing

Symbolic-testing tools check that
optimized software equals reference software.
“Equals”: gives the same outputs for all inputs.

Today'’s tools are surprisingly easy to use and
quickly handle many post-quantum subroutines.

This talk: new saferewrite symbolic-testing tool.
Open source from https://pgsrc.cr.yp.to.

Daniel J. Bernstein, Fast verified post-quantum software

https://pqsrc.cr.yp.to

The good news: symbolic testing

Symbolic-testing tools check that
optimized software equals reference software.
“Equals”: gives the same outputs for all inputs.

Today'’s tools are surprisingly easy to use and
quickly handle many post-quantum subroutines.

This talk: new saferewrite symbolic-testing tool.
Open source from https://pgsrc.cr.yp.to.

Under the hood, doing most of the work:
valgrind; its VEX library; Z3 theorem prover;
angr.io binary-analysis/symbolic-execution toolkit.

Daniel J. Bernstein, Fast verified post-quantum software

https://pqsrc.cr.yp.to

Case study: int16[64] comparison

Subroutine used inside Frodo post-quantum KEM.
My ref version, cmp_64xint16/ref/verify.c:

#include <stdint.h>

int cmp_64xint16(const uintl6_t *x,
const uintl6_t *y)
{ for (int i = 0;1i < 64;++i)
if (x[i] !'= y[i])
return -1;
return O;

}

Daniel J. Bernstein, Fast verified post-quantum software

Automatic saferewrite analysis

Using clang -01 -fwrapv -march=native:
e saferewrite says unsafe-valgrindfailure:
Code has variable branches/indices,
violating constant-time coding discipline.

e And unsafe-unrollsplit-65:
Unrolling split the code into 65 cases.

Daniel J. Bernstein, Fast verified post-quantum software

Automatic saferewrite analysis

Using clang -01 -fwrapv -march=native:
e saferewrite says unsafe-valgrindfailure:
Code has variable branches/indices,
violating constant-time coding discipline.

e And unsafe-unrollsplit-65:
Unrolling split the code into 65 cases.

Using gcc -03 -march=native -mtune=native:
e unsafe-valgrindfailure
e unsafe-unrollsplit-65

e equals-ref-clang -01_...
cmp_64xint16 binaries give same outputs.

Daniel J. Bernstein, Fast verified post-quantum software

Automatic analysis of a rewrite

#include <stdint.h>
#include <string.h>

int cmp_64xintl16(const uintl6_t *x,
const uintl6_t *y)
{

return memcmp(x,y,128);

}

Daniel J. Bernstein, Fast verified post-quantum software

Automatic analysis of a rewrite

#include <stdint.h>
#include <string.h>

int cmp_64xintl16(const uintl6_t *x,
const uintl6_t *y)
{

return memcmp(x,y,128);

}

Again unsafe-valgrindfailure: variable time.
Also unsafe-differentfrom-ref-clang
Why? Nonzero memcmp output isn't always -1.

Daniel J. Bernstein, Fast verified post-quantum software

Automatic analysis of another rewrite

#include <stdint.h>
#include <string.h>
int cmp_64xint16(const uintl6_t *x,
const uintl6_t *y)
{ int r = memcmp(x,y,128);
if (r !'= 0) return -1;
return O;

}

Daniel J. Bernstein, Fast verified post-quantum software

Automatic analysis of another rewrite

#include <stdint.h>
#include <string.h>
int cmp_64xint16(const uintl6_t *x,
const uintl6_t *y)
{ int r = memcmp(x,y,128);
if (r !'= 0) return -1;
return O;

}

Now equals-ref-clang_... but still
unsafe-valgrindfailure. 2017 Frodo software
used memcmp; broken by 2020.06 timing attack.

Daniel J. Bernstein, Fast verified post-quantum software

2020.06 Frodo official constant-time code

int8 t ct_verify(const uintl6_t *a,
const uintl6_t *b, size_ t len)
{ // Compare two arrays in constant time.
// Returns O if the byte arrays are equal,
// -1 otherwise.
uintl6 t r = O;
for (size t i = 0; i < len; i++) {
r |= ali]l = blil;
+
r=(-(int16_t)r)>>(8*sizeof (uintl6_t)-1);
return (int8 t)r;

by

Daniel J. Bernstein, Fast verified post-quantum software 10

Use saferewrite to analyze this ...
Add wrapper to fit the cmp_64xint16 interface

int cmp_64xintl16(const uintl6_t *x,
const uintl6_t *y)
{ return ct_verify(x,y,64); }

saferewrite focuses on constant lengths.
(Frodo uses int16[N] for a few choices of N.)

Daniel J. Bernstein, Fast verified post-quantum software

11

Use saferewrite to analyze this ...
Add wrapper to fit the cmp_64xint16 interface

int cmp_64xintl16(const uintl6_t *x,
const uintl6_t *y)
{ return ct_verify(x,y,64); }

saferewrite focuses on constant lengths.
(Frodo uses int16[N] for a few choices of N.)

Feed ct_verify and wrapper to saferewrite:
e No more unsafe-valgrindfailure: Great.

Daniel J. Bernstein, Fast verified post-quantum software 11

Use saferewrite to analyze this ...
Add wrapper to fit the cmp_64xint16 interface:

int cmp_64xintl16(const uintl6_t *x,
const uintl6_t *y)
{ return ct_verify(x,y,64); }

saferewrite focuses on constant lengths.

(Frodo uses int16[N] for a few choices of N.)

Feed ct_verify and wrapper to saferewrite:
e No more unsafe-valgrindfailure: Great.
e unsafe-differentfrom-ref-...: Oops!

Bug discovered 2020.12 by Saarinen; easy to exploit.

Daniel J. Bernstein, Fast verified post-quantum software

11

A safe rewrite: correct constant-time code

#include <stdint.h>
int cmp_64xint16(const uintl6_t *x,
const uintl6_t *y)

{ uint32 t differences = 0;

for (long long i = 0;i < 64;++1i)

differences |= x[i] ~ yl[il;

return (1 & ((differences - 1) >> 16)) - 1;

+

Now saferewrite analysis with both compilers
says equals-ref-... and no more unsafe.

Daniel J. Bernstein, Fast verified post-quantum software 12

Examples in saferewrite package

10 sample implementations of cmp_64xint16.
One uses OpenSSL's CRYPTO_memcmp Intel asm;
see CVE-2018-0733 re CRYPTO_memcmp HP asm.

Daniel J. Bernstein, Fast verified post-quantum software 13

Examples in saferewrite package

10 sample implementations of cmp_64xint16.
One uses OpenSSL's CRYPTO_memcmp Intel asm;
see CVE-2018-0733 re CRYPTO_memcmp HP asm.

97 sample implementations of 26 other functions.
Some functions much bigger than cmp_64xint16.
Some simple functions for exercising saferewrite.

Daniel J. Bernstein, Fast verified post-quantum software 13

Examples in saferewrite package

10 sample implementations of cmp_64xint16.
One uses OpenSSL's CRYPTO_memcmp Intel asm;
see CVE-2018-0733 re CRYPTO_memcmp HP asm.

97 sample implementations of 26 other functions.
Some functions much bigger than cmp_64xint16.
Some simple functions for exercising saferewrite.

unsafe-differentfrom automatically includes
example of an input triggering the difference.
Can be hard to find by traditional testing/fuzzing!

Daniel J. Bernstein, Fast verified post-quantum software 13

Examples in saferewrite package

10 sample implementations of cmp_64xint16.
One uses OpenSSL's CRYPTO_memcmp Intel asm;
see CVE-2018-0733 re CRYPTO_memcmp HP asm.

97 sample implementations of 26 other functions.
Some functions much bigger than cmp_64xint16.
Some simple functions for exercising saferewrite.

unsafe-differentfrom automatically includes
example of an input triggering the difference.
Can be hard to find by traditional testing/fuzzing!

Analysis of everything (multicore) done in 8 mins.
Laptop tip: chmod +t src/*; chmod -t src/cmpx

Daniel J. Bernstein, Fast verified post-quantum software

Example: integer-sequence encoders

Existing optimized code from NTRU Prime,
with heavy use of Intel AVX2 vector instructions:

e 245-line encode_761x1531/avx/encode.c

encode.c and similar encoders for other sizes are
automatically generated by 239-line Python script.

Daniel J. Bernstein, Fast verified post-quantum software 14

Example: integer-sequence encoders

Existing optimized code from NTRU Prime,
with heavy use of Intel AVX2 vector instructions:

e 245-line encode_761x1531/avx/encode.c

encode.c and similar encoders for other sizes are
automatically generated by 239-line Python script.

Existing reference code, much simpler:
e 38-line encode_761x1531/ref/Encode.c
e 18-line encode_761x1531/ref/wrapper.c

Daniel J. Bernstein, Fast verified post-quantum software 14

Example: integer-sequence encoders

Existing optimized code from NTRU Prime,
with heavy use of Intel AVX2 vector instructions:

e 245-line encode_761x1531/avx/encode.c
encode.c and similar encoders for other sizes are
automatically generated by 239-line Python script.
Existing reference code, much simpler:

e 38-line encode_761x1531/ref/Encode.c

e 18-line encode_761x1531/ref/wrapper.c

“Is the optimized code a safe rewrite of ref?”
Automatic saferewrite analysis: equals-ref.

Daniel J. Bernstein, Fast verified post-quantum software 14

Excerpt from avx/encode.c

_mm256_loadu_si256((__m256i *) reading);
_mm256_add_epil6(x,_mm256_setl_epil6(2295));
= _mm256_setl_epil6(16383);
_mm256_mulhi_epil6(x, _mm256_setl_epil6(21846));
x & _mm256_setl_epi32(65535);
= _mm256_srli_epi32(x,16);
_mm256_mullo_epi32(x, mm256_setl_epi32(1531));
_mm256_add_epi32(y,x);
_mm256_shuffle_epi8(x,_mm256_set_epi8(
12,8,4,0,12,8,4,0,14,13,10,9,6,5,2,1,
12,8,4,0,12,8,4,0,14,13,10,9,6,5,2,1
));
x = _mm256_permutedx64_epi64(x,0xd8);
_mm_storeu_si128((__m128i *) writing,
_mm256_extractf128_si256(x,0));
*((uint32 *) (out+0)) _mm256_extract_epi32(x,4);
*((uint32 *) (out+4)) _mm256_extract_epi32(x,6);

& |

Ea T T T T ST
I

Daniel J. Bernstein, Fast verified post-quantum software

15

More subroutines in NTRU Prime code

equals; total core-minutes
decode 761x1531: avx=int16=p=ref; 38 min

decode_761x3: avx=ref; 0.3 min
decode 761x4591: avx=int16=p=ref; 39 min
decode 761xint16: little=ref; 0.3 min
decode 761xint32: little=ref; 0.3 min
encode_761x1531: avx=portable=ref; 17 min
encode 761x1531round: avx=ref; 6 min
encode 761x3: avx=ref; 0.4 min

encode_761x4591: avx=portable=ref; 6 min
encode_761xfreeze3: missing asm insn in angr!
encode 761xint16: little=ref; 0.4 min

Daniel J. Bernstein, Fast verified post-quantum software

Active, responsive angr development team

() lssues 542 19 Pullrequests 71 (® Actions [Projects 3 @ Security |~ Insights

<> Code

~ix saturating packing ops #2887/

I\ Sge [l |tfish merged 1 commitinto master from fix/signed saturation_packing () 4 hoursago

) Conversation 2 -0~ Commits 1 [l Checks 13 Files changed 2

rhelmot commented 8 hours ago Member = s«

As per djb's email. This addresses the issue with vpackuswb (yan I'm really curious what the
fuck you were thinking when you wrote this code 4 years ago) but I'm still looking into the
other-sized variants.

ltfish commented 8 hours ago Member =~ ee-

was this code ever tested?

The answer is obvious! "no."

Reviewers

No reviews

Assignees

No one assigned

Labels

None yet

Projects

None yet

Other subroutines in NTRU Prime code

decode 256x2: avx=ref; 0.3 min
encode_256x2: avx=ref; 0.2 min
core_scale3sntrup761: avx=ref; 11 min
core_weightsntrup761: avx=ref; 10 min

core_wforcesntrup761l: avx=ref=r2=s; 31 min

Not integrated into saferewrite yet:
e core_inv3sntrup761: avx vs. ref
e core_invsntrup761: avx vs. ref
e core_mult3sntrup761: avx vs. 32 vs. ref
e core_multsntrup761: avx vs. ref
Status: Multiplication software is partially verified.

Daniel J. Bernstein, Fast verified post-quantum software 18

Links, TODO #saferewrite

saferewrite package is available now from
https://pgsrc.cr.yp.to. Work in progress:

e More post-quantum case studies.

e More pre-quantum case studies: e.g., Ed25519.
e More languages: e.g., support Python ref.

e Developer integration: incremental testing etc.
e “Cuts”: subroutine swaps etc. for faster testing.
e Plugins for dedicated equivalence testers.

e Higher assurance for the entire toolchain.

Related work: Cryptol/SAW /hacrypto, Cryptoline,
Fiat-Crypto, HACL*, Jasmin, ValeCrypt, VST.

Daniel J. Bernstein, Fast verified post-quantum software

19

https://pqsrc.cr.yp.to
https://github.com/GaloisInc/hacrypto
https://github.com/fmlab-iis/cryptoline
https://github.com/mit-plv/fiat-crypto/
https://github.com/project-everest/hacl-star
https://github.com/jasmin-lang/jasmin
https://github.com/project-everest/hacl-star/tree/master/vale
https://vst.cs.princeton.edu/

