
1

Fast verified

post-quantum software,

part 1: RAM subroutines

D. J. Bernstein

Performance pressure ⇒
tons of new crypto software ⇒
many mistakes passing tests ⇒
frequent security disasters.

e.g. 2019.06 “Warning: Google

Researcher Drops Windows

10 Zero-Day Security Bomb”:

modular inverse.

2

e.g. 2019.09 “Produced signatures

were valid but leaked information

on the private key”: Falcon.

e.g. 2019.10 “Minerva attack can

recover private keys from smart

cards, cryptographic libraries”.

e.g. 2020.08 “A key-recovery

timing attack on : : : FrodoKEM”.

e.g. 2020.12 “It looks like the

FrodoKEM team also fixed the

timing oracle [GJN20] badly and

caused a more serious security

problem while trying to do that.”



1

Fast verified

post-quantum software,

part 1: RAM subroutines

D. J. Bernstein

Performance pressure ⇒
tons of new crypto software ⇒
many mistakes passing tests ⇒
frequent security disasters.

e.g. 2019.06 “Warning: Google

Researcher Drops Windows

10 Zero-Day Security Bomb”:

modular inverse.

2

e.g. 2019.09 “Produced signatures

were valid but leaked information

on the private key”: Falcon.

e.g. 2019.10 “Minerva attack can

recover private keys from smart

cards, cryptographic libraries”.

e.g. 2020.08 “A key-recovery

timing attack on : : : FrodoKEM”.

e.g. 2020.12 “It looks like the

FrodoKEM team also fixed the

timing oracle [GJN20] badly and

caused a more serious security

problem while trying to do that.”

3

Many functions × many CPUs

Keccak (SHA-3) team maintains

“Keccak Code Package” with

>20 optimized implementations

of Keccak: AVX2, NEON, etc.

Also, for “parallel Keccak”,

many further implementations.



1

Fast verified

post-quantum software,

part 1: RAM subroutines

D. J. Bernstein

Performance pressure ⇒
tons of new crypto software ⇒
many mistakes passing tests ⇒
frequent security disasters.

e.g. 2019.06 “Warning: Google

Researcher Drops Windows

10 Zero-Day Security Bomb”:

modular inverse.

2

e.g. 2019.09 “Produced signatures

were valid but leaked information

on the private key”: Falcon.

e.g. 2019.10 “Minerva attack can

recover private keys from smart

cards, cryptographic libraries”.

e.g. 2020.08 “A key-recovery

timing attack on : : : FrodoKEM”.

e.g. 2020.12 “It looks like the

FrodoKEM team also fixed the

timing oracle [GJN20] badly and

caused a more serious security

problem while trying to do that.”

3

Many functions × many CPUs

Keccak (SHA-3) team maintains

“Keccak Code Package” with

>20 optimized implementations

of Keccak: AVX2, NEON, etc.

Also, for “parallel Keccak”,

many further implementations.



1

Fast verified

post-quantum software,

part 1: RAM subroutines

D. J. Bernstein

Performance pressure ⇒
tons of new crypto software ⇒
many mistakes passing tests ⇒
frequent security disasters.

e.g. 2019.06 “Warning: Google

Researcher Drops Windows

10 Zero-Day Security Bomb”:

modular inverse.

2

e.g. 2019.09 “Produced signatures

were valid but leaked information

on the private key”: Falcon.

e.g. 2019.10 “Minerva attack can

recover private keys from smart

cards, cryptographic libraries”.

e.g. 2020.08 “A key-recovery

timing attack on : : : FrodoKEM”.

e.g. 2020.12 “It looks like the

FrodoKEM team also fixed the

timing oracle [GJN20] badly and

caused a more serious security

problem while trying to do that.”

3

Many functions × many CPUs

Keccak (SHA-3) team maintains

“Keccak Code Package” with

>20 optimized implementations

of Keccak: AVX2, NEON, etc.

Also, for “parallel Keccak”,

many further implementations.



2

e.g. 2019.09 “Produced signatures

were valid but leaked information

on the private key”: Falcon.

e.g. 2019.10 “Minerva attack can

recover private keys from smart

cards, cryptographic libraries”.

e.g. 2020.08 “A key-recovery

timing attack on : : : FrodoKEM”.

e.g. 2020.12 “It looks like the

FrodoKEM team also fixed the

timing oracle [GJN20] badly and

caused a more serious security

problem while trying to do that.”

3

Many functions × many CPUs

Keccak (SHA-3) team maintains

“Keccak Code Package” with

>20 optimized implementations

of Keccak: AVX2, NEON, etc.

Also, for “parallel Keccak”,

many further implementations.



2

e.g. 2019.09 “Produced signatures

were valid but leaked information

on the private key”: Falcon.

e.g. 2019.10 “Minerva attack can

recover private keys from smart

cards, cryptographic libraries”.

e.g. 2020.08 “A key-recovery

timing attack on : : : FrodoKEM”.

e.g. 2020.12 “It looks like the

FrodoKEM team also fixed the

timing oracle [GJN20] badly and

caused a more serious security

problem while trying to do that.”

3

Many functions × many CPUs

Keccak (SHA-3) team maintains

“Keccak Code Package” with

>20 optimized implementations

of Keccak: AVX2, NEON, etc.

Also, for “parallel Keccak”,

many further implementations.

Why not portable C code using

“optimizing” compiler? Slower.



2

e.g. 2019.09 “Produced signatures

were valid but leaked information

on the private key”: Falcon.

e.g. 2019.10 “Minerva attack can

recover private keys from smart

cards, cryptographic libraries”.

e.g. 2020.08 “A key-recovery

timing attack on : : : FrodoKEM”.

e.g. 2020.12 “It looks like the

FrodoKEM team also fixed the

timing oracle [GJN20] badly and

caused a more serious security

problem while trying to do that.”

3

Many functions × many CPUs

Keccak (SHA-3) team maintains

“Keccak Code Package” with

>20 optimized implementations

of Keccak: AVX2, NEON, etc.

Also, for “parallel Keccak”,

many further implementations.

Why not portable C code using

“optimizing” compiler? Slower.

Post-quantum crypto is going

down same path: AVX2, ARM

Cortex-M4, Cortex-A7, Cortex-

A53, Zen, AVX-512, RISC-V, : : :



2

e.g. 2019.09 “Produced signatures

were valid but leaked information

on the private key”: Falcon.

e.g. 2019.10 “Minerva attack can

recover private keys from smart

cards, cryptographic libraries”.

e.g. 2020.08 “A key-recovery

timing attack on : : : FrodoKEM”.

e.g. 2020.12 “It looks like the

FrodoKEM team also fixed the

timing oracle [GJN20] badly and

caused a more serious security

problem while trying to do that.”

3

Many functions × many CPUs

Keccak (SHA-3) team maintains

“Keccak Code Package” with

>20 optimized implementations

of Keccak: AVX2, NEON, etc.

Also, for “parallel Keccak”,

many further implementations.

Why not portable C code using

“optimizing” compiler? Slower.

Post-quantum crypto is going

down same path: AVX2, ARM

Cortex-M4, Cortex-A7, Cortex-

A53, Zen, AVX-512, RISC-V, : : :

4

Some good news

For some types of optimized code,

and some types of specs:

Without insane levels of effort,

can have an automated guarantee

that the optimized code

does what the spec says.



2

e.g. 2019.09 “Produced signatures

were valid but leaked information

on the private key”: Falcon.

e.g. 2019.10 “Minerva attack can

recover private keys from smart

cards, cryptographic libraries”.

e.g. 2020.08 “A key-recovery

timing attack on : : : FrodoKEM”.

e.g. 2020.12 “It looks like the

FrodoKEM team also fixed the

timing oracle [GJN20] badly and

caused a more serious security

problem while trying to do that.”

3

Many functions × many CPUs

Keccak (SHA-3) team maintains

“Keccak Code Package” with

>20 optimized implementations

of Keccak: AVX2, NEON, etc.

Also, for “parallel Keccak”,

many further implementations.

Why not portable C code using

“optimizing” compiler? Slower.

Post-quantum crypto is going

down same path: AVX2, ARM

Cortex-M4, Cortex-A7, Cortex-

A53, Zen, AVX-512, RISC-V, : : :

4

Some good news

For some types of optimized code,

and some types of specs:

Without insane levels of effort,

can have an automated guarantee

that the optimized code

does what the spec says.



2

e.g. 2019.09 “Produced signatures

were valid but leaked information

on the private key”: Falcon.

e.g. 2019.10 “Minerva attack can

recover private keys from smart

cards, cryptographic libraries”.

e.g. 2020.08 “A key-recovery

timing attack on : : : FrodoKEM”.

e.g. 2020.12 “It looks like the

FrodoKEM team also fixed the

timing oracle [GJN20] badly and

caused a more serious security

problem while trying to do that.”

3

Many functions × many CPUs

Keccak (SHA-3) team maintains

“Keccak Code Package” with

>20 optimized implementations

of Keccak: AVX2, NEON, etc.

Also, for “parallel Keccak”,

many further implementations.

Why not portable C code using

“optimizing” compiler? Slower.

Post-quantum crypto is going

down same path: AVX2, ARM

Cortex-M4, Cortex-A7, Cortex-

A53, Zen, AVX-512, RISC-V, : : :

4

Some good news

For some types of optimized code,

and some types of specs:

Without insane levels of effort,

can have an automated guarantee

that the optimized code

does what the spec says.



3

Many functions × many CPUs

Keccak (SHA-3) team maintains

“Keccak Code Package” with

>20 optimized implementations

of Keccak: AVX2, NEON, etc.

Also, for “parallel Keccak”,

many further implementations.

Why not portable C code using

“optimizing” compiler? Slower.

Post-quantum crypto is going

down same path: AVX2, ARM

Cortex-M4, Cortex-A7, Cortex-

A53, Zen, AVX-512, RISC-V, : : :

4

Some good news

For some types of optimized code,

and some types of specs:

Without insane levels of effort,

can have an automated guarantee

that the optimized code

does what the spec says.



3

Many functions × many CPUs

Keccak (SHA-3) team maintains

“Keccak Code Package” with

>20 optimized implementations

of Keccak: AVX2, NEON, etc.

Also, for “parallel Keccak”,

many further implementations.

Why not portable C code using

“optimizing” compiler? Slower.

Post-quantum crypto is going

down same path: AVX2, ARM

Cortex-M4, Cortex-A7, Cortex-

A53, Zen, AVX-512, RISC-V, : : :

4

Some good news

For some types of optimized code,

and some types of specs:

Without insane levels of effort,

can have an automated guarantee

that the optimized code

does what the spec says.

Security reviewer still has to

check whether the spec is secure

and has to check for

bugs in the verification tools—

but saves tons of time in checking

code optimized for each CPU.



3

Many functions × many CPUs

Keccak (SHA-3) team maintains

“Keccak Code Package” with

>20 optimized implementations

of Keccak: AVX2, NEON, etc.

Also, for “parallel Keccak”,

many further implementations.

Why not portable C code using

“optimizing” compiler? Slower.

Post-quantum crypto is going

down same path: AVX2, ARM

Cortex-M4, Cortex-A7, Cortex-

A53, Zen, AVX-512, RISC-V, : : :

4

Some good news

For some types of optimized code,

and some types of specs:

Without insane levels of effort,

can have an automated guarantee

that the optimized code

does what the spec says.

Security reviewer still has to

check whether the spec is secure

and has to check for

bugs in the verification tools—

but saves tons of time in checking

code optimized for each CPU.

5

What exactly is “the spec”?

Starting in 1960, CACM published

algorithms—written in ALGOL.

Why do we tolerate algorithms

written in English “pseudocode”?



3

Many functions × many CPUs

Keccak (SHA-3) team maintains

“Keccak Code Package” with

>20 optimized implementations

of Keccak: AVX2, NEON, etc.

Also, for “parallel Keccak”,

many further implementations.

Why not portable C code using

“optimizing” compiler? Slower.

Post-quantum crypto is going

down same path: AVX2, ARM

Cortex-M4, Cortex-A7, Cortex-

A53, Zen, AVX-512, RISC-V, : : :

4

Some good news

For some types of optimized code,

and some types of specs:

Without insane levels of effort,

can have an automated guarantee

that the optimized code

does what the spec says.

Security reviewer still has to

check whether the spec is secure

and has to check for

bugs in the verification tools—

but saves tons of time in checking

code optimized for each CPU.

5

What exactly is “the spec”?

Starting in 1960, CACM published

algorithms—written in ALGOL.

Why do we tolerate algorithms

written in English “pseudocode”?



3

Many functions × many CPUs

Keccak (SHA-3) team maintains

“Keccak Code Package” with

>20 optimized implementations

of Keccak: AVX2, NEON, etc.

Also, for “parallel Keccak”,

many further implementations.

Why not portable C code using

“optimizing” compiler? Slower.

Post-quantum crypto is going

down same path: AVX2, ARM

Cortex-M4, Cortex-A7, Cortex-

A53, Zen, AVX-512, RISC-V, : : :

4

Some good news

For some types of optimized code,

and some types of specs:

Without insane levels of effort,

can have an automated guarantee

that the optimized code

does what the spec says.

Security reviewer still has to

check whether the spec is secure

and has to check for

bugs in the verification tools—

but saves tons of time in checking

code optimized for each CPU.

5

What exactly is “the spec”?

Starting in 1960, CACM published

algorithms—written in ALGOL.

Why do we tolerate algorithms

written in English “pseudocode”?



4

Some good news

For some types of optimized code,

and some types of specs:

Without insane levels of effort,

can have an automated guarantee

that the optimized code

does what the spec says.

Security reviewer still has to

check whether the spec is secure

and has to check for

bugs in the verification tools—

but saves tons of time in checking

code optimized for each CPU.

5

What exactly is “the spec”?

Starting in 1960, CACM published

algorithms—written in ALGOL.

Why do we tolerate algorithms

written in English “pseudocode”?



4

Some good news

For some types of optimized code,

and some types of specs:

Without insane levels of effort,

can have an automated guarantee

that the optimized code

does what the spec says.

Security reviewer still has to

check whether the spec is secure

and has to check for

bugs in the verification tools—

but saves tons of time in checking

code optimized for each CPU.

5

What exactly is “the spec”?

Starting in 1960, CACM published

algorithms—written in ALGOL.

Why do we tolerate algorithms

written in English “pseudocode”?

“Easier to read than ref”:

that’s because ref

• was forced to be in C,

• often tries to be constant time,

• sometimes tries to be fast.



4

Some good news

For some types of optimized code,

and some types of specs:

Without insane levels of effort,

can have an automated guarantee

that the optimized code

does what the spec says.

Security reviewer still has to

check whether the spec is secure

and has to check for

bugs in the verification tools—

but saves tons of time in checking

code optimized for each CPU.

5

What exactly is “the spec”?

Starting in 1960, CACM published

algorithms—written in ALGOL.

Why do we tolerate algorithms

written in English “pseudocode”?

“Easier to read than ref”:

that’s because ref

• was forced to be in C,

• often tries to be constant time,

• sometimes tries to be fast.

No conflict between spec being

(1) easy to read, (2) executable.

Verify spec = ref = avx2 = · · ·.
Security reviewers focus on spec.



4

Some good news

For some types of optimized code,

and some types of specs:

Without insane levels of effort,

can have an automated guarantee

that the optimized code

does what the spec says.

Security reviewer still has to

check whether the spec is secure

and has to check for

bugs in the verification tools—

but saves tons of time in checking

code optimized for each CPU.

5

What exactly is “the spec”?

Starting in 1960, CACM published

algorithms—written in ALGOL.

Why do we tolerate algorithms

written in English “pseudocode”?

“Easier to read than ref”:

that’s because ref

• was forced to be in C,

• often tries to be constant time,

• sometimes tries to be fast.

No conflict between spec being

(1) easy to read, (2) executable.

Verify spec = ref = avx2 = · · ·.
Security reviewers focus on spec.

6

Case study: RAM subroutines

Many algorithms rely on RAM.

CPU RAM instructions leak

secret addresses through timing.

Can we eliminate timing leaks?



4

Some good news

For some types of optimized code,

and some types of specs:

Without insane levels of effort,

can have an automated guarantee

that the optimized code

does what the spec says.

Security reviewer still has to

check whether the spec is secure

and has to check for

bugs in the verification tools—

but saves tons of time in checking

code optimized for each CPU.

5

What exactly is “the spec”?

Starting in 1960, CACM published

algorithms—written in ALGOL.

Why do we tolerate algorithms

written in English “pseudocode”?

“Easier to read than ref”:

that’s because ref

• was forced to be in C,

• often tries to be constant time,

• sometimes tries to be fast.

No conflict between spec being

(1) easy to read, (2) executable.

Verify spec = ref = avx2 = · · ·.
Security reviewers focus on spec.

6

Case study: RAM subroutines

Many algorithms rely on RAM.

CPU RAM instructions leak

secret addresses through timing.

Can we eliminate timing leaks?



4

Some good news

For some types of optimized code,

and some types of specs:

Without insane levels of effort,

can have an automated guarantee

that the optimized code

does what the spec says.

Security reviewer still has to

check whether the spec is secure

and has to check for

bugs in the verification tools—

but saves tons of time in checking

code optimized for each CPU.

5

What exactly is “the spec”?

Starting in 1960, CACM published

algorithms—written in ALGOL.

Why do we tolerate algorithms

written in English “pseudocode”?

“Easier to read than ref”:

that’s because ref

• was forced to be in C,

• often tries to be constant time,

• sometimes tries to be fast.

No conflict between spec being

(1) easy to read, (2) executable.

Verify spec = ref = avx2 = · · ·.
Security reviewers focus on spec.

6

Case study: RAM subroutines

Many algorithms rely on RAM.

CPU RAM instructions leak

secret addresses through timing.

Can we eliminate timing leaks?



5

What exactly is “the spec”?

Starting in 1960, CACM published

algorithms—written in ALGOL.

Why do we tolerate algorithms

written in English “pseudocode”?

“Easier to read than ref”:

that’s because ref

• was forced to be in C,

• often tries to be constant time,

• sometimes tries to be fast.

No conflict between spec being

(1) easy to read, (2) executable.

Verify spec = ref = avx2 = · · ·.
Security reviewers focus on spec.

6

Case study: RAM subroutines

Many algorithms rely on RAM.

CPU RAM instructions leak

secret addresses through timing.

Can we eliminate timing leaks?



5

What exactly is “the spec”?

Starting in 1960, CACM published

algorithms—written in ALGOL.

Why do we tolerate algorithms

written in English “pseudocode”?

“Easier to read than ref”:

that’s because ref

• was forced to be in C,

• often tries to be constant time,

• sometimes tries to be fast.

No conflict between spec being

(1) easy to read, (2) executable.

Verify spec = ref = avx2 = · · ·.
Security reviewers focus on spec.

6

Case study: RAM subroutines

Many algorithms rely on RAM.

CPU RAM instructions leak

secret addresses through timing.

Can we eliminate timing leaks?

Yes! Replace CPU RAM insns

with software to simulate RAM.



5

What exactly is “the spec”?

Starting in 1960, CACM published

algorithms—written in ALGOL.

Why do we tolerate algorithms

written in English “pseudocode”?

“Easier to read than ref”:

that’s because ref

• was forced to be in C,

• often tries to be constant time,

• sometimes tries to be fast.

No conflict between spec being

(1) easy to read, (2) executable.

Verify spec = ref = avx2 = · · ·.
Security reviewers focus on spec.

6

Case study: RAM subroutines

Many algorithms rely on RAM.

CPU RAM instructions leak

secret addresses through timing.

Can we eliminate timing leaks?

Yes! Replace CPU RAM insns

with software to simulate RAM.

Speedup #1: Use sorting to

efficiently simulate parallel RAM.



5

What exactly is “the spec”?

Starting in 1960, CACM published

algorithms—written in ALGOL.

Why do we tolerate algorithms

written in English “pseudocode”?

“Easier to read than ref”:

that’s because ref

• was forced to be in C,

• often tries to be constant time,

• sometimes tries to be fast.

No conflict between spec being

(1) easy to read, (2) executable.

Verify spec = ref = avx2 = · · ·.
Security reviewers focus on spec.

6

Case study: RAM subroutines

Many algorithms rely on RAM.

CPU RAM instructions leak

secret addresses through timing.

Can we eliminate timing leaks?

Yes! Replace CPU RAM insns

with software to simulate RAM.

Speedup #1: Use sorting to

efficiently simulate parallel RAM.

Speedup #2: Sometimes

same permutation is applied

to many inputs. Precompute

“control bits” for permutation.



5

What exactly is “the spec”?

Starting in 1960, CACM published

algorithms—written in ALGOL.

Why do we tolerate algorithms

written in English “pseudocode”?

“Easier to read than ref”:

that’s because ref

• was forced to be in C,

• often tries to be constant time,

• sometimes tries to be fast.

No conflict between spec being

(1) easy to read, (2) executable.

Verify spec = ref = avx2 = · · ·.
Security reviewers focus on spec.

6

Case study: RAM subroutines

Many algorithms rely on RAM.

CPU RAM instructions leak

secret addresses through timing.

Can we eliminate timing leaks?

Yes! Replace CPU RAM insns

with software to simulate RAM.

Speedup #1: Use sorting to

efficiently simulate parallel RAM.

Speedup #2: Sometimes

same permutation is applied

to many inputs. Precompute

“control bits” for permutation.

7

2018 Bernstein: speed records

for sorting integer arrays.

Verified constant-time software.

2020 Bernstein: speed records

for constant-time permutations.

HOL Light proof of algorithm.

Coming soon: verification

of the permutation software.

This software is already used

inside current software releases

for Classic McEliece (sorting and

permutations), NTRU (sorting),

NTRU Prime (sorting).



5

What exactly is “the spec”?

Starting in 1960, CACM published

algorithms—written in ALGOL.

Why do we tolerate algorithms

written in English “pseudocode”?

“Easier to read than ref”:

that’s because ref

• was forced to be in C,

• often tries to be constant time,

• sometimes tries to be fast.

No conflict between spec being

(1) easy to read, (2) executable.

Verify spec = ref = avx2 = · · ·.
Security reviewers focus on spec.

6

Case study: RAM subroutines

Many algorithms rely on RAM.

CPU RAM instructions leak

secret addresses through timing.

Can we eliminate timing leaks?

Yes! Replace CPU RAM insns

with software to simulate RAM.

Speedup #1: Use sorting to

efficiently simulate parallel RAM.

Speedup #2: Sometimes

same permutation is applied

to many inputs. Precompute

“control bits” for permutation.

7

2018 Bernstein: speed records

for sorting integer arrays.

Verified constant-time software.

2020 Bernstein: speed records

for constant-time permutations.

HOL Light proof of algorithm.

Coming soon: verification

of the permutation software.

This software is already used

inside current software releases

for Classic McEliece (sorting and

permutations), NTRU (sorting),

NTRU Prime (sorting).



5

What exactly is “the spec”?

Starting in 1960, CACM published

algorithms—written in ALGOL.

Why do we tolerate algorithms

written in English “pseudocode”?

“Easier to read than ref”:

that’s because ref

• was forced to be in C,

• often tries to be constant time,

• sometimes tries to be fast.

No conflict between spec being

(1) easy to read, (2) executable.

Verify spec = ref = avx2 = · · ·.
Security reviewers focus on spec.

6

Case study: RAM subroutines

Many algorithms rely on RAM.

CPU RAM instructions leak

secret addresses through timing.

Can we eliminate timing leaks?

Yes! Replace CPU RAM insns

with software to simulate RAM.

Speedup #1: Use sorting to

efficiently simulate parallel RAM.

Speedup #2: Sometimes

same permutation is applied

to many inputs. Precompute

“control bits” for permutation.

7

2018 Bernstein: speed records

for sorting integer arrays.

Verified constant-time software.

2020 Bernstein: speed records

for constant-time permutations.

HOL Light proof of algorithm.

Coming soon: verification

of the permutation software.

This software is already used

inside current software releases

for Classic McEliece (sorting and

permutations), NTRU (sorting),

NTRU Prime (sorting).



6

Case study: RAM subroutines

Many algorithms rely on RAM.

CPU RAM instructions leak

secret addresses through timing.

Can we eliminate timing leaks?

Yes! Replace CPU RAM insns

with software to simulate RAM.

Speedup #1: Use sorting to

efficiently simulate parallel RAM.

Speedup #2: Sometimes

same permutation is applied

to many inputs. Precompute

“control bits” for permutation.

7

2018 Bernstein: speed records

for sorting integer arrays.

Verified constant-time software.

2020 Bernstein: speed records

for constant-time permutations.

HOL Light proof of algorithm.

Coming soon: verification

of the permutation software.

This software is already used

inside current software releases

for Classic McEliece (sorting and

permutations), NTRU (sorting),

NTRU Prime (sorting).



6

Case study: RAM subroutines

Many algorithms rely on RAM.

CPU RAM instructions leak

secret addresses through timing.

Can we eliminate timing leaks?

Yes! Replace CPU RAM insns

with software to simulate RAM.

Speedup #1: Use sorting to

efficiently simulate parallel RAM.

Speedup #2: Sometimes

same permutation is applied

to many inputs. Precompute

“control bits” for permutation.

7

2018 Bernstein: speed records

for sorting integer arrays.

Verified constant-time software.

2020 Bernstein: speed records

for constant-time permutations.

HOL Light proof of algorithm.

Coming soon: verification

of the permutation software.

This software is already used

inside current software releases

for Classic McEliece (sorting and

permutations), NTRU (sorting),

NTRU Prime (sorting).

8

The conventional path

Imagine an optimizing compiler

automatically converting spec →
fast binary for whichever CPU.

“Compiler verification”:

prove that the compiler

always works correctly.

If all of this is done, great!



6

Case study: RAM subroutines

Many algorithms rely on RAM.

CPU RAM instructions leak

secret addresses through timing.

Can we eliminate timing leaks?

Yes! Replace CPU RAM insns

with software to simulate RAM.

Speedup #1: Use sorting to

efficiently simulate parallel RAM.

Speedup #2: Sometimes

same permutation is applied

to many inputs. Precompute

“control bits” for permutation.

7

2018 Bernstein: speed records

for sorting integer arrays.

Verified constant-time software.

2020 Bernstein: speed records

for constant-time permutations.

HOL Light proof of algorithm.

Coming soon: verification

of the permutation software.

This software is already used

inside current software releases

for Classic McEliece (sorting and

permutations), NTRU (sorting),

NTRU Prime (sorting).

8

The conventional path

Imagine an optimizing compiler

automatically converting spec →
fast binary for whichever CPU.

“Compiler verification”:

prove that the compiler

always works correctly.

If all of this is done, great!



6

Case study: RAM subroutines

Many algorithms rely on RAM.

CPU RAM instructions leak

secret addresses through timing.

Can we eliminate timing leaks?

Yes! Replace CPU RAM insns

with software to simulate RAM.

Speedup #1: Use sorting to

efficiently simulate parallel RAM.

Speedup #2: Sometimes

same permutation is applied

to many inputs. Precompute

“control bits” for permutation.

7

2018 Bernstein: speed records

for sorting integer arrays.

Verified constant-time software.

2020 Bernstein: speed records

for constant-time permutations.

HOL Light proof of algorithm.

Coming soon: verification

of the permutation software.

This software is already used

inside current software releases

for Classic McEliece (sorting and

permutations), NTRU (sorting),

NTRU Prime (sorting).

8

The conventional path

Imagine an optimizing compiler

automatically converting spec →
fast binary for whichever CPU.

“Compiler verification”:

prove that the compiler

always works correctly.

If all of this is done, great!



7

2018 Bernstein: speed records

for sorting integer arrays.

Verified constant-time software.

2020 Bernstein: speed records

for constant-time permutations.

HOL Light proof of algorithm.

Coming soon: verification

of the permutation software.

This software is already used

inside current software releases

for Classic McEliece (sorting and

permutations), NTRU (sorting),

NTRU Prime (sorting).

8

The conventional path

Imagine an optimizing compiler

automatically converting spec →
fast binary for whichever CPU.

“Compiler verification”:

prove that the compiler

always works correctly.

If all of this is done, great!



7

2018 Bernstein: speed records

for sorting integer arrays.

Verified constant-time software.

2020 Bernstein: speed records

for constant-time permutations.

HOL Light proof of algorithm.

Coming soon: verification

of the permutation software.

This software is already used

inside current software releases

for Classic McEliece (sorting and

permutations), NTRU (sorting),

NTRU Prime (sorting).

8

The conventional path

Imagine an optimizing compiler

automatically converting spec →
fast binary for whichever CPU.

“Compiler verification”:

prove that the compiler

always works correctly.

If all of this is done, great!

Reality: Again, look at Keccak.

Speedups >

automated speedups >

verified automated speedups.



7

2018 Bernstein: speed records

for sorting integer arrays.

Verified constant-time software.

2020 Bernstein: speed records

for constant-time permutations.

HOL Light proof of algorithm.

Coming soon: verification

of the permutation software.

This software is already used

inside current software releases

for Classic McEliece (sorting and

permutations), NTRU (sorting),

NTRU Prime (sorting).

8

The conventional path

Imagine an optimizing compiler

automatically converting spec →
fast binary for whichever CPU.

“Compiler verification”:

prove that the compiler

always works correctly.

If all of this is done, great!

Reality: Again, look at Keccak.

Speedups >

automated speedups >

verified automated speedups.

9

Verifying fast software

Optimization experts:

spec→ opt→ opt2→ opt3→
opt4→ opt5→ · · · → avx2.

Some manual steps, some tools.

CPUs share some steps.



7

2018 Bernstein: speed records

for sorting integer arrays.

Verified constant-time software.

2020 Bernstein: speed records

for constant-time permutations.

HOL Light proof of algorithm.

Coming soon: verification

of the permutation software.

This software is already used

inside current software releases

for Classic McEliece (sorting and

permutations), NTRU (sorting),

NTRU Prime (sorting).

8

The conventional path

Imagine an optimizing compiler

automatically converting spec →
fast binary for whichever CPU.

“Compiler verification”:

prove that the compiler

always works correctly.

If all of this is done, great!

Reality: Again, look at Keccak.

Speedups >

automated speedups >

verified automated speedups.

9

Verifying fast software

Optimization experts:

spec→ opt→ opt2→ opt3→
opt4→ opt5→ · · · → avx2.

Some manual steps, some tools.

CPUs share some steps.



7

2018 Bernstein: speed records

for sorting integer arrays.

Verified constant-time software.

2020 Bernstein: speed records

for constant-time permutations.

HOL Light proof of algorithm.

Coming soon: verification

of the permutation software.

This software is already used

inside current software releases

for Classic McEliece (sorting and

permutations), NTRU (sorting),

NTRU Prime (sorting).

8

The conventional path

Imagine an optimizing compiler

automatically converting spec →
fast binary for whichever CPU.

“Compiler verification”:

prove that the compiler

always works correctly.

If all of this is done, great!

Reality: Again, look at Keccak.

Speedups >

automated speedups >

verified automated speedups.

9

Verifying fast software

Optimization experts:

spec→ opt→ opt2→ opt3→
opt4→ opt5→ · · · → avx2.

Some manual steps, some tools.

CPUs share some steps.



8

The conventional path

Imagine an optimizing compiler

automatically converting spec →
fast binary for whichever CPU.

“Compiler verification”:

prove that the compiler

always works correctly.

If all of this is done, great!

Reality: Again, look at Keccak.

Speedups >

automated speedups >

verified automated speedups.

9

Verifying fast software

Optimization experts:

spec→ opt→ opt2→ opt3→
opt4→ opt5→ · · · → avx2.

Some manual steps, some tools.

CPUs share some steps.



8

The conventional path

Imagine an optimizing compiler

automatically converting spec →
fast binary for whichever CPU.

“Compiler verification”:

prove that the compiler

always works correctly.

If all of this is done, great!

Reality: Again, look at Keccak.

Speedups >

automated speedups >

verified automated speedups.

9

Verifying fast software

Optimization experts:

spec→ opt→ opt2→ opt3→
opt4→ opt5→ · · · → avx2.

Some manual steps, some tools.

CPUs share some steps.

“Translation validation”:

verify equivalence of

tool output to tool input.

Doesn’t require verifying

that the tool always works.

“Transformation verification”:

verify equivalence of

manual output to manual input.



8

The conventional path

Imagine an optimizing compiler

automatically converting spec →
fast binary for whichever CPU.

“Compiler verification”:

prove that the compiler

always works correctly.

If all of this is done, great!

Reality: Again, look at Keccak.

Speedups >

automated speedups >

verified automated speedups.

9

Verifying fast software

Optimization experts:

spec→ opt→ opt2→ opt3→
opt4→ opt5→ · · · → avx2.

Some manual steps, some tools.

CPUs share some steps.

“Translation validation”:

verify equivalence of

tool output to tool input.

Doesn’t require verifying

that the tool always works.

“Transformation verification”:

verify equivalence of

manual output to manual input.

10

Allowing new verification chains

For verification, suffices to build

spec↔ verif↔ verif2↔
verif3↔ · · · ↔ avx2.

Don’t try to force this chain to

match the development path

spec→ opt→ opt2→ opt3→
opt4→ opt5→ · · · → avx2.



8

The conventional path

Imagine an optimizing compiler

automatically converting spec →
fast binary for whichever CPU.

“Compiler verification”:

prove that the compiler

always works correctly.

If all of this is done, great!

Reality: Again, look at Keccak.

Speedups >

automated speedups >

verified automated speedups.

9

Verifying fast software

Optimization experts:

spec→ opt→ opt2→ opt3→
opt4→ opt5→ · · · → avx2.

Some manual steps, some tools.

CPUs share some steps.

“Translation validation”:

verify equivalence of

tool output to tool input.

Doesn’t require verifying

that the tool always works.

“Transformation verification”:

verify equivalence of

manual output to manual input.

10

Allowing new verification chains

For verification, suffices to build

spec↔ verif↔ verif2↔
verif3↔ · · · ↔ avx2.

Don’t try to force this chain to

match the development path

spec→ opt→ opt2→ opt3→
opt4→ opt5→ · · · → avx2.



8

The conventional path

Imagine an optimizing compiler

automatically converting spec →
fast binary for whichever CPU.

“Compiler verification”:

prove that the compiler

always works correctly.

If all of this is done, great!

Reality: Again, look at Keccak.

Speedups >

automated speedups >

verified automated speedups.

9

Verifying fast software

Optimization experts:

spec→ opt→ opt2→ opt3→
opt4→ opt5→ · · · → avx2.

Some manual steps, some tools.

CPUs share some steps.

“Translation validation”:

verify equivalence of

tool output to tool input.

Doesn’t require verifying

that the tool always works.

“Transformation verification”:

verify equivalence of

manual output to manual input.

10

Allowing new verification chains

For verification, suffices to build

spec↔ verif↔ verif2↔
verif3↔ · · · ↔ avx2.

Don’t try to force this chain to

match the development path

spec→ opt→ opt2→ opt3→
opt4→ opt5→ · · · → avx2.



9

Verifying fast software

Optimization experts:

spec→ opt→ opt2→ opt3→
opt4→ opt5→ · · · → avx2.

Some manual steps, some tools.

CPUs share some steps.

“Translation validation”:

verify equivalence of

tool output to tool input.

Doesn’t require verifying

that the tool always works.

“Transformation verification”:

verify equivalence of

manual output to manual input.

10

Allowing new verification chains

For verification, suffices to build

spec↔ verif↔ verif2↔
verif3↔ · · · ↔ avx2.

Don’t try to force this chain to

match the development path

spec→ opt→ opt2→ opt3→
opt4→ opt5→ · · · → avx2.



9

Verifying fast software

Optimization experts:

spec→ opt→ opt2→ opt3→
opt4→ opt5→ · · · → avx2.

Some manual steps, some tools.

CPUs share some steps.

“Translation validation”:

verify equivalence of

tool output to tool input.

Doesn’t require verifying

that the tool always works.

“Transformation verification”:

verify equivalence of

manual output to manual input.

10

Allowing new verification chains

For verification, suffices to build

spec↔ verif↔ verif2↔
verif3↔ · · · ↔ avx2.

Don’t try to force this chain to

match the development path

spec→ opt→ opt2→ opt3→
opt4→ opt5→ · · · → avx2.

Separation promotes independent

speedups in (1) the development

process and (2) the verification

process: e.g., vectorization is

often challenging for development

but trivial for verification.


