Fast verified

D. J. Bernstein

bost-quantum software,
vart 1: RAM subroutines

Performance pressure =

tons of new cry
many mistakes

hto software =

passing tests =

frequent security disasters.

e.g. 2019.06 “Warning: Google
Researcher Drops Windows

10 Zero-Day Security Bomb”:
modular inverse.

e.g. 2019.09 “Produced signatures
were valid but leaked information
on the private key': Falcon.

e.g. 2019.10 “Minerva attack can
recover private keys from smart
cards, cryptographic libraries” .

e.g. 2020.08 “A key-recovery
timing attack on ... FrodoKEM".

e.g. 2020.12 “lt looks like the
FrodoKEM team also fixed the

timing oracle [GJN20] badly and
caused a more serious security

problem while trying to do that.”

2



fied
\ntum software,
RAM subroutines

rnstein

ance pressure =
1ew crypto software =

istakes passing tests =
security disasters.

0.06 “Warning: Google
1er Drops Windows
Day Security Bomb":

Inverse.

e.g. 2019.09 “Produced signatures
were valid but leaked information
on the private key": Falcon.

e.g. 2019.10 “Minerva attack can
recover private keys from smart
cards, cryptographic libraries’ .

e.g. 2020.08 “A key-recovery
timing attack on ... FrodoKEM".

e.g. 2020.12 “lt looks like the
FrodoKEM team also fixed the

timing oracle [GJN20] badly and
caused a more serious security

problem while trying to do that.”

2

Many fu

Keccak |
"Keccak
>20 opt
of Kecc:

Also, for
many fu



ware,
outines

ure —

) software =
ssing tests =
lisasters.

ning: Google
Windows
rity Bomb™ :

e.g. 2019.09 “"Produced signatures
were valid but leaked information
on the private key': Falcon.

e.g. 2019.10 “Minerva attack can
recover private keys from smart
cards, cryptographic libraries” .

e.g. 2020.08 “A key-recovery
timing attack on ... FrodoKEM".

e.g. 2020.12 “lt looks like the
FrodoKEM team also fixed the

timing oracle [GJN20] badly and
caused a more serious security

problem while trying to do that.”

2

Many functions X

Keccak (SHA-3) t
"Keccak Code Pa«
>20 optimized im
of Keccak: AV X2,
Also, for “parallel
many further impl



gle

e.g. 2019.09 “"Produced signatures
were valid but leaked information
on the private key": Falcon.

e.g. 2019.10 “Minerva attack can
recover private keys from smart
cards, cryptographic libraries’ .

e.g. 2020.08 “A key-recovery
timing attack on ... FrodoKEM".

e.g. 2020.12 “lt looks like the
FrodoKEM team also fixed the

timing oracle [GJN20] badly and
caused a more serious security

problem while trying to do that.”

2

Many functions X many CP

Keccak (SHA-3) team main
"Keccak Code Package” wit
>20 optimized implementat
of Keccak: AVX2, NEON, e
Also, for “parallel Keccak”,
many further implementatio



e.g. 2019.09 “Produced signatures
were valid but leaked information
on the private key': Falcon.

e.g. 2019.10 “Minerva attack can
recover private keys from smart
cards, cryptographic libraries” .

e.g. 2020.08 “A key-recovery
timing attack on ... FrodoKEM".

e.g. 2020.12 “lt looks like the
FrodoKEM team also fixed the

timing oracle [GJN20] badly and
caused a more serious security

problem while trying to do that.”

2

Many functions X many CPUs

Keccak (SHA-3) team maintains
"Keccak Code Package” with
>20 optimized implementations
of Keccak: AVX2, NEON, etc.
Also, for “parallel Keccak”,
many further implementations.



e.g. 2019.09 “Produced signatures
were valid but leaked information
on the private key': Falcon.

e.g. 2019.10 “Minerva attack can
recover private keys from smart
cards, cryptographic libraries” .

e.g. 2020.08 “A key-recovery
timing attack on ... FrodoKEM".

e.g. 2020.12 “lt looks like the
FrodoKEM team also fixed the

timing oracle [GJN20] badly and
caused a more serious security

problem while trying to do that.”

2

Many functions X many CPUs

Keccak (SHA-3) team maintains
"Keccak Code Package” with
>20 optimized implementations
of Keccak: AVX2, NEON, etc.
Also, for “parallel Keccak”,
many further implementations.

Why not portable C code using
“optimizing” compiler? Slower.



e.g. 2019.09 “Produced signatures
were valid but leaked information
on the private key': Falcon.

e.g. 2019.10 “Minerva attack can
recover private keys from smart
cards, cryptographic libraries” .

e.g. 2020.08 “A key-recovery

timing attack on ... FrodoKEM".

e.g. 2020.12 “lt looks like the
FrodoKEM team also fixed the

timing oracle [GJN20] badly and
caused a more serious security

problem while trying to do that.”

2

Many functions X many CPUs

Keccak (SHA-3) team maintains
"Keccak Code Package” with
>20 optimized implementations
of Keccak: AVX2, NEON, etc.
Also, for “parallel Keccak”,
many further implementations.

Why not portable C code using
“optimizing” compiler? Slower.

Post-quantum crypto Is going
down same path: AVX2, ARM
Cortex-M4, Cortex-A7, Cortex-
A53, Zen, AVX-512, RISC-V, ...



0.09 “Produced signatures
id but leaked information
rivate key': Falcon.

0.10 "Minerva attack can
drivate keys from smart
yptographic libraries” .

0.08 “A key-recovery

ttack on ... FrodoKEM".

0.12 "It looks like the

-M team also fixed the
racle [GJN20] badly and
| more serious security

while trying to do that.”

2

Many functions X many CPUs

Keccak (SHA-3) team maintains
"Keccak Code Package” with
>20 optimized implementations
of Keccak: AVX2, NEON, etc.
Also, for “parallel Keccak”,
many further implementations.

Why not portable C code using
“optimizing’ compiler? Slower.

Post-quantum crypto Is going
down same path: AVX2, ARM

Cortex-M4, Cortex-A7, Cortex-

Ab3, Zen, AVX-512, RISC-V, ...

Some gc¢

For som
and som

Without
can have

that the
does wh




duced signatures
<ed information
" Falcon.

erva attack can
/s from smart
1c libraries' .

Sy-recovery
.. FrodoKEM" .

oks like the
Iso fixed the
20| badly and
jous security
ng to do that.”

2

Many functions X many CPUs

Keccak (SHA-3) team maintains
"Keccak Code Package” with
>20 optimized implementations
of Keccak: AVX2, NEON, etc.
Also, for “parallel Keccak”,
many further implementations.

Why not portable C code using
“optimizing” compiler? Slower.

Post-quantum crypto Is going
down same path: AVX2, ARM

Cortex-M4, Cortex-A7, Cortex-

Ab3, Zen, AVX-512, RISC-V, ...

Some good news

For some types of
and some types of

Without insane ley
can have an autor
that the optimizec
does what the spe



atures
ation

k can
1art

1
) .

y
CEM™.

e
he
and
ty
hat.”

Many functions X many CPUs

Keccak (SHA-3) team maintains
"Keccak Code Package” with
>20 optimized implementations
of Keccak: AVX2, NEON, etc.
Also, for “parallel Keccak”,
many further implementations.

Why not portable C code using
“optimizing” compiler? Slower.

Post-quantum crypto Is going
down same path: AVX2, ARM

Cortex-M4, Cortex-A7, Cortex-

Ab3, Zen, AVX-512, RISC-V, ...

Some good news

For some types of optimized

and some types of specs:

Without insane levels of effc
can have an automated gual
that the optimized code

does what the spec says.



Many functions X many CPUs

Keccak (SHA-3) team maintains
"Keccak Code Package” with
>20 optimized implementations
of Keccak: AVX2, NEON, etc.
Also, for “parallel Keccak”,
many further implementations.

Why not portable C code using
“optimizing” compiler? Slower.

Post-quantum crypto Is going
down same path: AVX2, ARM

Cortex-M4, Cortex-A7, Cortex-

Ab3, Zen, AVX-512, RISC-V, ...

Some good news

For some types of optimized code,

and some types of specs:

Without insane levels of effort,
can have an automated guarantee
that the optimized code

does what the spec says.



Many functions X many CPUs

Keccak (SHA-3) team maintains
"Keccak Code Package” with
>20 optimized implementations
of Keccak: AVX2, NEON, etc.
Also, for “parallel Keccak”,
many further implementations.

Why not portable C code using
“optimizing” compiler? Slower.

Post-quantum crypto Is going
down same path: AVX2, ARM

Cortex-M4, Cortex-A7, Cortex-

Ab3, Zen, AVX-512, RISC-V, ...

Some good news

For some types of optimized code,

and some types of specs:

Without insane levels of effort,
can have an automated guarantee
that the optimized code

does what the spec says.

Security reviewer still has to
check whether the spec Is secure
and has to check for

bugs in the verification tools—
but saves tons of time in checking
code optimized for each CPU.



nctions X many CPUs

(SHA-3) team maintains
- Code Package” with
Imized implementations
k: AVX2, NEON, etc.

- “parallel Keccak”,
rther implementations.

= portable C code using
ing’ compiler? Slower.

intum crypto Is going
me path: AVX2, ARM
N4, Cortex-A7, Cortex-
n, AVX-512, RISC-V, ...

Some good news

For some types of o
and some types of s

btimized code,

DECS.

Without insane levels of effort,

can have an automated guarantee

Security reviewer sti

that the optimized code
does what the spec says.

Il has to

check whether the spec Is secure

and has to check for

bugs in the verification tools—

but saves tons of time in checking

code optimized for each CPU.

What ex

Starting
algorithr
Why do

written |



“many CPUs

eam maintains
“kage” with
plementations
NEON, etc.
Keccak'
ementations.

C code using
diler? Slower.

pto IS going
AVX2, ARM
-A7, Cortex-
2, RISC-V, ...

Some good news

For some types of o
and some types of s

btimized code,

DECS.

Without insane levels of effort,

can have an automated guarantee

that the optimized code

does what the spec says.

Security reviewer sti

Il has to

check whether the spec Is secure

and has to check for

bugs in the verification tools—

but saves tons of time in checking

code optimized for each CPU.

What exactly is "t

Starting in 1960,
algorithms—writte
Why do we tolerat
written in English



ns.

ing
ver.

g

)
\

EX-

Some good news

For some types of o
and some types of s

btimized code,

DECS.

Without insane levels of effort,

can have an automated guarantee

Security reviewer sti

that the optimized code
does what the spec says.

Il has to

check whether the spec Is secure

and has to check for

bugs in the verification tools—

but saves tons of time in checking

code optimized for each CPU.

What exactly is “the spec”?

Starting in 1960, CACM pul
algorithms—uwritten in ALG!
Why do we tolerate algorith
written in English “pseudoc:



Some good news

For some types of optimized code,

and some types of specs:

Without insane levels of effort,
can have an automated guarantee
that the optimized code

does what the spec says.

Security reviewer still has to
check whether the spec Is secure
and has to check for

bugs in the verification tools—
but saves tons of time in checking
code optimized for each CPU.

What exactly is “the spec”?

Starting in 1960, CACM published
algorithms—written in ALGOL.
Why do we tolerate algorithms
written in English “pseudocode”?



Some good news

For some types of optimized code,

and some types of specs:

Without insane levels of effort,
can have an automated guarantee
that the optimized code

does what the spec says.

Security reviewer still has to
check whether the spec Is secure
and has to check for

bugs in the verification tools—
but saves tons of time in checking
code optimized for each CPU.

What exactly is “the spec”?

Starting in 1960, CACM published
algorithms—written in ALGOL.
Why do we tolerate algorithms
written in English “pseudocode”?

“Easier to read than ref":
that's because ref

e was forced to be in C,

e often tries to be constant time,
e sometimes tries to be fast.



Some good news What exactly is “the spec”?

For some types of optimized code, Starting in 1960, CACM published
and some types of specs: algorithms—written in ALGOL.

. . Why do we tolerate algorithms
Without insane levels of effort, Y 5

written in English “pseudocode”?
can have an automated guarantee

that the optimized code “Easier to read than ref":
does what the spec says. that's because ref

. . . e was forced to be in C,
Security reviewer still has to

. e often tries to be constant time,
check whether the spec Is secure

e sometimes tries to be fast.
and has to check for

bugs in the verification tools— No conflict between spec being
but saves tons of time in checking (1) easy to read, (2) executable.
code optimized for each CPU. Verity spec = ref = avx2 =-- .

Security reviewers focus on spec.




od news

e types of optimized code,

e types of specs:

insane levels of effort,

> an automated guarantee
optimized code

at the spec says.

reviewer still has to
hether the spec Is secure
to check for

the verification tools—

s tons of time in checking
'imized for each CPU.

What exactly is “the spec”?

Starting in 1960, CACM published
algorithms—written in ALGOL.
Why do we tolerate algorithms
written in English “pseudocode”?

“Easier to read than ref':
that's because ref

e was forced to be in C,

e often tries to be constant time,
e sometimes tries to be fast.

No conflict between spec being
(1) easy to read, (2) executable.
Verity spec = ref = avx2 =-- -

Security reviewers focus on spec.

Case stu

Many al
CPU RA
secret ac
Can we



optimized code,

specs:

/els of effort,
nated guarantee
| code

C says.

till has to
Spec IS secure
for

ation tools—

time In checking
- each CPU.

What exactly is “the spec”?

Starting in 1960, CACM published
algorithms—written in ALGOL.
Why do we tolerate algorithms
written in English “pseudocode”?

“Easier to read than ref":
that's because ref

e was forced to be in C,

e often tries to be constant time,
e sometimes tries to be fast.

No conflict between spec being
(1) easy to read, (2) executable.
Verity spec = ref = avx2 =-- -

Security reviewers focus on spec.

Case study: RAM

Many algorithms r
CPU RAM instruc
secret addresses ti
Can we eliminate



' code,

Irt,

rantee

CUrE

ecking

What exactly is “the spec”?

Starting in 1960, CACM published
algorithms—written in ALGOL.
Why do we tolerate algorithms
written in English “pseudocode”?

“Easier to read than ref':
that's because ref

e was forced to be in C,

e often tries to be constant time,
e sometimes tries to be fast.

No conflict between spec being
(1) easy to read, (2) executable.
Verity spec = ref = avx2 =-- -

Security reviewers focus on spec.

Case study: RAM subroutin

Many algorithms rely on RA
CPU RAM instructions leak
secret addresses through tin
Can we eliminate timing lea



What exactly is “the spec”?

Starting in 1960, CACM published
algorithms—written in ALGOL.
Why do we tolerate algorithms
written in English “pseudocode”?

“Easier to read than ref":
that's because ref

e was forced to be in C,

e often tries to be constant time,
e sometimes tries to be fast.

No conflict between spec being
(1) easy to read, (2) executable.
Verity spec = ref = avx2 =-- -

Security reviewers focus on spec.

Case study: RAM subroutines

Many algorithms rely on RAM.
CPU RAM instructions leak

secret addresses through timing.
Can we eliminate timing leaks?



What exactly is “the spec”?

Starting in 1960, CACM published
algorithms—written in ALGOL.
Why do we tolerate algorithms
written in English “pseudocode”?

“Easier to read than ref":
that's because ref

e was forced to be in C,

e often tries to be constant time,
e sometimes tries to be fast.

No conflict between spec being
(1) easy to read, (2) executable.
Verity spec = ref = avx2 =-- -

Security reviewers focus on spec.

Case study: RAM subroutines

Many algorithms rely on RAM.
CPU RAM instructions leak

secret addresses through timing.
Can we eliminate timing leaks?

Yes! Replace CPU RAM insns
with software to simulate RAM.



What exactly is “the spec”?

Starting in 1960, CACM published
algorithms—written in ALGOL.
Why do we tolerate algorithms
written in English “pseudocode”?

“Easier to read than ref":
that's because ref

e was forced to be in C,

e often tries to be constant time,
e sometimes tries to be fast.

No conflict between spec being
(1) easy to read, (2) executable.
Verity spec = ref = avx2 =-- -

Security reviewers focus on spec.

Case study: RAM subroutines

Many algorithms rely on RAM.
CPU RAM instructions leak
secret addresses through timing.
Can we eliminate timing leaks?

Yes! Replace CPU RAM insns
with software to simulate RAM.

Speedup #1: Use sorting to
efficiently simulate parallel RAM.



What exactly is “the spec”?

Starting in 1960, CACM published
algorithms—written in ALGOL.
Why do we tolerate algorithms
written in English “pseudocode”?

“Easier to read than ref":
that's because ref

e was forced to be in C,

e often tries to be constant time,
e sometimes tries to be fast.

No conflict between spec being
(1) easy to read, (2) executable.
Verity spec = ref = avx2 =-- -

Security reviewers focus on spec.

Case study: RAM subroutines

Many algorithms rely on RAM.
CPU RAM instructions leak
secret addresses through timing.
Can we eliminate timing leaks?

Yes! Replace CPU RAM insns
with software to simulate RAM.

Speedup #1: Use sorting to
efficiently simulate parallel RAM.

Speedup #2: Sometimes
same permutation Is applied
to many inputs. Precompute
“control bits" for permutation.



actly is “the spec”?

in 1960, CACM published
ns—written in ALGOL.
we tolerate algorithms
n English “pseudocode”?

to read than ref™:
2cause ref

rced to be in C,

ries to be constant time,
mes tries to be fast.

ict between spec being
to read, (2) executable.
pec = ref — avx2 = ---.

reviewers focus on spec.

Case study: RAM subroutines

Many algorithms rely on RAM.
CPU RAM instructions leak

secret addresses through timing.
Can we eliminate timing leaks?

Yes! Replace CPU RAM insns
with software to simulate RAM.

Speedup #1: Use sorting to

efficiently simulate parallel RAM.

Speedup #2: Sometimes
same permutation Is applied
to many inputs. Precompute
“control bits" for permutation.

2018 Be
for sortii
Verified

2020 Be
for cons
HOL Lig

Coming
of the p.

This sof
inside clL
for Class

permuta
NTRU |



he spec’?

_ACM published
n in ALGOL.
e algorithms
“pseudocode” ?

an ref’:

i

in C,
constant time,
to be fast.

n spec being
2) executable.
= avx2 = - - -,

focus on spec.

Case study: RAM subroutines

Many algorithms rely on RAM.
CPU RAM instructions leak

secret addresses through timing.
Can we eliminate timing leaks?

Yes! Replace CPU RAM insns
with software to simulate RAM.

Speedup #1: Use sorting to

efficiently simulate parallel RAM.

Speedup #2: Sometimes
same permutation Is applied
to many inputs. Precompute
“control bits" for permutation.

2018 Bernstein: sj
for sorting integer

Verified constant-1

2020 Bernstein: sj
for constant-time
HOL Light proof «

Coming soon: ver
of the permutatiot

This software is al
Inside current soft
for Classic McElie
permutations), N
NTRU Prime (sor



ylished
OL.

ms
yde” 7

time,

cINg
able.

spec.

Case study: RAM subroutines

Many algorithms rely on RAM.
CPU RAM instructions leak

secret addresses through timing.
Can we eliminate timing leaks?

Yes! Replace CPU RAM insns
with software to simulate RAM.

Speedup #1: Use sorting to

efficiently simulate parallel RAM.

Speedup #2: Sometimes
same permutation Is applied
to many inputs. Precompute
“control bits" for permutation.

2018 Bernstein: speed recor
for sorting integer arrays.
Verified constant-time softw

2020 Bernstein: speed recor
for constant-time permutati
HOL Light proof of algorithi

Coming soon: verification
of the permutation software

This software is already usec
inside current software relea
for Classic McEliece (sorting
permutations), NTRU (sorti
NTRU Prime (sorting).



Case study: RAM subroutines

Many algorithms rely on RAM.
CPU RAM instructions leak

secret addresses through timing.
Can we eliminate timing leaks?

Yes! Replace CPU RAM insns
with software to simulate RAM.

Speedup #1: Use sorting to

efficiently simulate parallel RAM.

Speedup #2: Sometimes
same permutation Is applied
to many inputs. Precompute
“control bits" for permutation.

2018 Bernstein: speed records
for sorting integer arrays.
Verified constant-time software.

2020 Bernstein: speed records
for constant-time permutations.
HOL Light proof of algorithm.

Coming soon: verification
of the permutation software.

This software is already used
inside current software releases
for Classic McEliece (sorting and
permutations), NTRU (sorting),
NTRU Prime (sorting).



dy: RAM subroutines

gorithms rely on RAM.
\M instructions leak
Idresses through timing.
eliminate timing leaks?

place CPU RAM insns
tware to simulate RAM.

 #1: Use sorting to

y simulate parallel RAM.

 #2: Sometimes
rmutation is applied
inputs. Precompute
bits” for permutation.

2018 Bernstein: speed records
for sorting integer arrays.
Verified constant-time software.

2020 Bernstein: speed records
for constant-time permutations.
HOL Light proof of algorithm.

Coming soon: verification
of the permutation software.

This software is already used
inside current software releases
for Classic McEliece (sorting and
permutations), NTRU (sorting),
NTRU Prime (sorting).

The con

Imagine
automat
fast binc

“Compill
prove th
always v

If all of



subroutines

ely on RAM.

tions leak
wrough timing.
timing leaks?

| RAM insns
mulate RAM.

sorting to

> parallel RAM.

1etimes

Is applied
'recompute
permutation.

2018 Bernstein: speed records
for sorting integer arrays.
Verified constant-time software.

2020 Bernstein: speed records
for constant-time permutations.
HOL Light proof of algorithm.

Coming soon: verification
of the permutation software.

This software is already used
inside current software releases
for Classic McEliece (sorting and
permutations), NTRU (sorting),
NTRU Prime (sorting).

T he conventional

Imagine an optimi
automatically cony
fast binary for whi

“Compiler verifica
prove that the cor
always works corre

It all of this is don



1ng.
ks'?

AM.

RAM.

on.

2018 Bernstein: speed records
for sorting integer arrays.
Verified constant-time software.

2020 Bernstein: speed records
for constant-time permutations.
HOL Light proof of algorithm.

Coming soon: verification
of the permutation software.

This software is already used
inside current software releases
for Classic McEliece (sorting and
permutations), NTRU (sorting),
NTRU Prime (sorting).

The conventional path

Imagine an optimizing comg
automatically converting sp
fast binary for whichever CF

“Compiler verification™:
prove that the compiler
always works correctly.

If all of this is done, great!



2018 Bernstein: speed records
for sorting integer arrays.
Verified constant-time software.

2020 Bernstein: speed records
for constant-time permutations.
HOL Light proof of algorithm.

Coming soon: verification
of the permutation software.

This software is already used
inside current software releases
for Classic McEliece (sorting and
permutations), NTRU (sorting),
NTRU Prime (sorting).

The conventional path

Imagine an optimizing compiler
automatically converting spec —
fast binary for whichever CPU.

“Compiler verification™:
prove that the compiler
always works correctly.

If all of this is done, great!



2018 Bernstein: speed records
for sorting integer arrays.
Verified constant-time software.

2020 Bernstein: speed records
for constant-time permutations.
HOL Light proof of algorithm.

Coming soon: verification
of the permutation software.

This software is already used
inside current software releases
for Classic McEliece (sorting and
permutations), NTRU (sorting),
NTRU Prime (sorting).

The conventional path

Imagine an optimizing compiler
automatically converting spec —
fast binary for whichever CPU.

“Compiler verification™:
prove that the compiler
always works correctly.

If all of this is done, great!
Reality: Again, look at Keccak.

Speedups >
automated speedups >
verified automated speedups.



rnstein: speed records
1g Integer arrays.
constant-time software.

rnstein: speed records
tant-time permutations.
ht proof of algorithm.

soon: verification
ermutation software.

tware is already used
Irrent software releases
ic McEliece (sorting and

tions), NTRU (sorting),
’rime (sorting).

The conventional path

Imagine an optimizing compiler
automatically converting spec —
fast binary for whichever CPU.

“Compiler verification”:
prove that the compiler
always works correctly.

If all of this is done, great!
Reality: Again, look at Keccak.

Speedups >
automated speedups >
verified automated speedups.

Veritying

Optimiz.
spec —
opt4d —
Some m
CPUs sk



yeed records
arrays.
‘Ime software.

ryeed records
permutations.
f algorithm.
fication

1 software.
ready used
ware releases

ce (sorting and
"RU (sorting),

ing).

The conventional path

Imagine an optimizing compiler
automatically converting spec —
fast binary for whichever CPU.

“Compiler verification™:
prove that the compiler
always works correctly.

If all of this is done, great!
Reality: Again, look at Keccak.

Speedups >
automated speedups >
verified automated speedups.

Verifying fast soft

Optimization expe
spec — opt — Of
opt4 — optd — -
Some manual steg
CPUs share some



ses
and

ng),

The conventional path

Imagine an optimizing compiler
automatically converting spec —
fast binary for whichever CPU.

“Compiler verification™:
prove that the compiler
always works correctly.

If all of this is done, great!
Reality: Again, look at Keccak.

Speedups >
automated speedups >
verified automated speedups.

Veritying fast software

Optimization experts:

spec — opt — opt2 — opt
opt4 — optb — --- — avx
Some manual steps, some tc
CPUs share some steps.



The conventional path

Imagine an optimizing compiler
automatically converting spec —
fast binary for whichever CPU.

“Compiler verification™:
prove that the compiler
always works correctly.

If all of this is done, great!
Reality: Again, look at Keccak.

Speedups >
automated speedups >
verified automated speedups.

Veritying fast software

Optimization experts:

spec — opt — opt2 — opt3 —
opt4 — optd — --- — avx2.
Some manual steps, some tools.
CPUs share some steps.



The conventional path

Imagine an optimizing compiler
automatically converting spec —
fast binary for whichever CPU.

“Compiler verification™:
prove that the compiler
always works correctly.

If all of this is done, great!
Reality: Again, look at Keccak.

Speedups >
automated speedups >
verified automated speedups.

Veritying fast software

Optimization experts:

spec — opt — opt2 — opt3 —
opt4 — optd — --- — avx2.
Some manual steps, some tools.
CPUs share some steps.

“Translation validation™:
verify equivalence of

tool output to tool input.
Doesn't require verifying
that the tool always works.

“Transformation verification™:
verify equivalence of
manual output to manual input.



ventional path

an optimizing compiler
ically converting spec —
iry for whichever CPU.

er verification:
at the compiler
orks correctly.

this Is done, great!
Again, look at Keccak.

S >
ed speedups >
automated speedups.

Veritying fast software

Optimization experts:

spec — opt — opt2 — opt3 —
opt4 — optd — --- — avx2.
Some manual steps, some tools.
CPUs share some steps.

“Translation validation™:
verify equivalence of

tool output to tool input.
Doesn't require verifying
that the tool always works.

“Transformation verification’ :
verify equivalence of

manual output to manual input.

Allowing

For verif
spec ¢

verif3

Don't tr
match tl
spec —
opt4d —



path

zing compiler
jerting spec —
chever CPU.
tion” :

npiler

ctly.

e, great!

ok at Keccak.

ps >
| speedups.

Veritying fast software

Optimization experts:

spec — opt — opt2 — opt3 —
opt4 — optd — --- — avx2.
Some manual steps, some tools.
CPUs share some steps.

“Translation validation™:
verify equivalence of

tool output to tool input.
Doesn't require verifying
that the tool always works.

“Transformation verification”:
verify equivalence of
manual output to manual input.

Allowing new verif

For verification, st
spec <» verif «
verif3 & - &,

Don't try to force
match the develor
spec — opt — Of
opt4 — optd — -



iler
eC —
U.

ak.

Veritying fast software

Optimization experts:

spec — opt — opt2 — opt3 —
opt4 — optd — --- — avx2.
Some manual steps, some tools.
CPUs share some steps.

“Translation validation™:
verify equivalence of

tool output to tool input.
Doesn't require verifying
that the tool always works.

“Transformation verification’ :
verify equivalence of

manual output to manual input.

Allowing new verification ch

For verification, suffices to L
spec <> verif < verif2 <
verif3 <& - & avx2.

Don't try to force this chain
match the development patl

spec — opt — opt2 — op
opt4 — optdb — --- — avx



Veritying fast software

Optimization experts:

spec — opt — opt2 — opt3 —
opt4 — optd — --- — avx2.
Some manual steps, some tools.
CPUs share some steps.

“Translation validation™:
verify equivalence of

tool output to tool input.
Doesn't require verifying
that the tool always works.

“Transformation verification":
verify equivalence of
manual output to manual input.

10
Allowing new verification chains

For verification, suffices to build
spec <> verif < verif2 «
verif3 < - - & avx?2.

Don't try to force this chain to
match the development path
spec — opt — opt2 — opt3 —
opt4 — optd — --- — avx2.



Veritying fast software Allowing new verification chains
Optimization experts: For verification, suffices to build
spec — opt — opt2 — opt3 — spec <> verif < verif2 «
opt4 — optd — --- — avx2. verif3 < - - - <> avx2.

Some manual steps, some tools. | . .
Don't try to force this chain to

PUs sh |
CPUs share some steps match the development path

“Translation validation™: spec — opt — opt2 — opt3 —
verity equivalence of opt4 — opts — - - — avx?2.
tool output to tool input.

Separation promotes independent

Doesn’t require verifying speedups in (1) the development

that the tool always works. .
¢ orocess and (2) the verification

“Transformation verification': orocess: e.g., vectorization Is
verity equivalence of often challenging for development

manual output to manual input. but trivial for verification.




