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part 1: RAM subroutines

D. J. Bernstein
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tons of new crypto software ⇒
many mistakes passing tests ⇒
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e.g. 2019.06 “Warning: Google

Researcher Drops Windows

10 Zero-Day Security Bomb”:

modular inverse.
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cards, cryptographic libraries”.

e.g. 2020.08 “A key-recovery

timing attack on : : : FrodoKEM”.
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FrodoKEM team also fixed the

timing oracle [GJN20] badly and

caused a more serious security

problem while trying to do that.”
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Don’t try to force this chain to

match the development path
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Separation promotes independent

speedups in (1) the development

process and (2) the verification

process: e.g., vectorization is

often challenging for development

but trivial for verification.


