Valuations and S-units

D. J. Bernstein

University of Illinois at Chicago; Ruhr University Bochum

 \mathbf{R} = field of real numbers.

C = field of complex numbers.

The function $x \mapsto |x|$ from **C** to **R** is a **valuation on C**:

- |0| = 0.
- $\bullet \ x \neq 0 \Rightarrow |x| > 0.$
- $\bullet |xy| = |x||y|.$
- $\bullet |x + y| \le |x| + |y|.$

e.g. $x \mapsto \sqrt{|x|}$ is a valuation.

Exercise: $\sqrt{|x+y|} \le \sqrt{|x|} + \sqrt{|y|}$.

e.g. $x \mapsto \sqrt{|x|}$ is a valuation.

Exercise: $\sqrt{|x+y|} \le \sqrt{|x|} + \sqrt{|y|}$.

e.g. $x \mapsto |x|^{0.31415}$ is a valuation.

e.g. $x \mapsto \sqrt{|x|}$ is a valuation.

Exercise: $\sqrt{|x+y|} \le \sqrt{|x|} + \sqrt{|y|}$.

e.g. $x \mapsto |x|^{0.31415}$ is a valuation.

e.g. $x \mapsto |x|^{\delta}$ is a valuation for any $\delta \in \mathbf{R}$ with $0 < \delta \le 1$.

e.g. $x \mapsto \sqrt{|x|}$ is a valuation.

Exercise: $\sqrt{|x+y|} \le \sqrt{|x|} + \sqrt{|y|}$.

e.g. $x \mapsto |x|^{0.31415}$ is a valuation.

e.g. $x \mapsto |x|^{\delta}$ is a valuation for any $\delta \in \mathbf{R}$ with $0 < \delta \le 1$.

These valuations are **equivalent**: positive powers of each other. They have the same unit disks: they map the same inputs to $\mathbf{R}_{<1}$.

e.g. $x \mapsto \sqrt{|x|}$ is a valuation.

Exercise: $\sqrt{|x+y|} \le \sqrt{|x|} + \sqrt{|y|}$.

e.g. $x \mapsto |x|^{0.31415}$ is a valuation.

e.g. $x \mapsto |x|^{\delta}$ is a valuation for any $\delta \in \mathbf{R}$ with $0 < \delta \le 1$.

These valuations are **equivalent**: positive powers of each other. They have the same unit disks: they map the same inputs to $\mathbf{R}_{\leq 1}$.

Not equivalent: **trivial valuation** defined by $0 \mapsto 0$; $x \mapsto 1$ if $x \neq 0$. Unit disk is all inputs.

 \mathbf{Q} = field of rational numbers.

The function $x \mapsto |x|$ from \mathbf{Q} to \mathbf{R} is a valuation on \mathbf{Q} . Same as previous $x \mapsto |x|$, but restricts \mathbf{C} inputs to be in \mathbf{Q} .

 \mathbf{Q} = field of rational numbers.

The function $x \mapsto |x|$ from \mathbf{Q} to \mathbf{R} is a valuation on \mathbf{Q} . Same as previous $x \mapsto |x|$, but restricts \mathbf{C} inputs to be in \mathbf{Q} .

A nonequivalent nontrivial valuation on **Q**: define $|0|_3 = 0$, $|x|_3 = 3^{-e_3}$ if $x = \pm 2^{e_2} 3^{e_3} 5^{e_5} \cdots$ e.g. $|90|_3 = 1/9$; $|-7/3|_3 = 3$.

 \mathbf{Q} = field of rational numbers.

The function $x \mapsto |x|$ from \mathbf{Q} to \mathbf{R} is a valuation on \mathbf{Q} . Same as previous $x \mapsto |x|$, but restricts \mathbf{C} inputs to be in \mathbf{Q} .

A nonequivalent nontrivial valuation on **Q**: define $|0|_3 = 0$, $|x|_3 = 3^{-e_3}$ if $x = \pm 2^{e_2} 3^{e_3} 5^{e_5} \cdots$ e.g. $|90|_3 = 1/9$; $|-7/3|_3 = 3$.

- $|0|_3 = 0$.
- $x \neq 0 \Rightarrow |x|_3 > 0$.
- $|xy|_3 = |x|_3|y|_3$.
- $|x + y|_3 \le |x|_3 + |y|_3$.

Even better: $\leq \max\{|x|_3, |y|_3\}$.

```
For x \in \mathbf{Q}, define |x|_{\infty} = |x|; |x|_p = p^{-e_p} if x = \pm 2^{e_2} 3^{e_3} 5^{e_5} \cdots
```

X	$ x _{\infty}$	$ x _2$	$ x _3$	$ x _5$		product
-2	2	1/2	1	1		1
-1	1	1	1	1		1
0	0	0	0	0		0
1	1	1	1	1		1
2	2 3	1/2	1	1		1
3	3	1	1/3	1		1
4	4	1/4	1	1		1
5	5	1	1	1/5		1
6	456	1/2	1/3	1		1
:	[don't forget $x = 2/3$ etc.]					

```
Infinite-dimensional lattice of (\log |x|_{\infty}, \log |x|_2, \log |x|_3, \dots):
```

$$\log |x|_{\infty} \log |x|_2 \log |x|_3 \log |x|_5 \dots$$

.

$$\log 2 - \log 2 \ 0 \ \dots$$

[skip x = 0: log 0 not defined]

$$\log 2 - \log 2 0$$
 ...

$$\log 3 \quad 0 \quad -\log 3 \quad 0 \quad \dots$$

$$\log 4 - \log 4 0 \dots$$

$$\log 5 \quad 0 \quad -\log 5 \dots$$

$$\log 6 - \log 2 - \log 3 0 \dots$$

[again don't forget 2/3 etc.]

This lattice, the set of vectors $(\log |x|_{\infty}, \log |x|_2, \log |x|_3, \ldots)$, is $(\log 2, -\log 2, 0, 0, 0, \ldots) \mathbf{Z} + (\log 3, 0, -\log 3, 0, 0, \ldots) \mathbf{Z} + (\log 5, 0, 0, -\log 5, 0, \ldots) \mathbf{Z} + (\log 7, 0, 0, 0, -\log 7, \ldots) \mathbf{Z} + \cdots$ where $\mathbf{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots\}$.

```
This lattice, the set of vectors
(\log |x|_{\infty}, \log |x|_2, \log |x|_3, \ldots), \text{ is}
(\log 2, -\log 2, 0, 0, 0, ...)Z +
(\log 3, 0, -\log 3, 0, 0, ...)Z +
(\log 5, 0, 0, -\log 5, 0, ...)Z +
(\log 7, 0, 0, 0, -\log 7, ...)Z +
· · · where
\mathbf{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots\}.
x = \pm 2^{e_2} 3^{e_3} 5^{e_5} \cdots maps to
(\log |x|_{\infty}, \log |x|_{2}, \log |x|_{3}, ...) =
(\log 2, -\log 2, 0, 0, 0, \dots)e_2 +
(\log 3, 0, -\log 3, 0, 0, ...)e_3 +
(\log 5, 0, 0, -\log 5, 0, ...)e_5 +
(\log 7, 0, 0, 0, -\log 7, ...)e_7 +
```

Can divide $\log |x|_p$ by $\log p$ to obtain an integer "— ord $_p x$ "; ord $_p (\pm 2^{e_2} 3^{e_3} 5^{e_5} \cdots) = e_p$.

Number theorists include the $\log p$ weight for many reasons:

- leaving out the weight would produce infinitely many short log vectors (e.g., length <2);
- want "the product formula": $\prod_{v} |x|_{v} = 1; \sum_{v} \log |x|_{v} = 0;$
- this particular power $|x|_v$ has a probability interpretation (matches "Haar measure" on the "completion"); etc.

 $x \in \mathbf{Q}$ is called an S-integer if $|x|_p \le 1$ for each $p \notin S$.

 $x \in \mathbf{Q}$ is called an S-integer if $|x|_p \le 1$ for each $p \notin S$.

 $\{S\text{-integers}\}\$ is a subring of \mathbf{Q} : closed under mult since $\mathbf{R}_{\leq 1}$ is; closed under addition since $|x+y|_p \leq \max\{|x|_p,|y|_p\}$.

 $x \in \mathbf{Q}$ is called an S-integer if $|x|_p \le 1$ for each $p \notin S$.

 $\{S\text{-integers}\}\$ is a subring of \mathbf{Q} : closed under mult since $\mathbf{R}_{\leq 1}$ is; closed under addition since $|x+y|_p \leq \max\{|x|_p,|y|_p\}$.

For any commutative ring R: R^* means $\{u \in R : uR = R\}$.

 $x \in \mathbf{Q}$ is called an S-integer if $|x|_p \le 1$ for each $p \notin S$.

 $\{S\text{-integers}\}\$ is a subring of \mathbf{Q} : closed under mult since $\mathbf{R}_{\leq 1}$ is; closed under addition since $|x+y|_p \leq \max\{|x|_p,|y|_p\}$.

For any commutative ring R: R^* means $\{u \in R : uR = R\}$.

 $x \in \mathbf{Q}^*$ is called an S-unit if $|x|_p = 1$ for each $p \notin S$. $\{S$ -units $\} = \{S$ -integers $\}^*$.

 $\Leftrightarrow |x|_2 \leq 1, |x|_3 \leq 1, \ldots$

 $\Leftrightarrow x \in \mathbf{Z}$.

So $\{\{\infty\}\text{-integers}\} = \mathbf{Z}$, the usual ring of integers.

 $\Leftrightarrow |x|_2 \leq 1, |x|_3 \leq 1, \dots$

 $\Leftrightarrow x \in \mathbf{Z}$.

So $\{\{\infty\}\text{-integers}\} = \mathbf{Z}$, the usual ring of integers.

e.g. x is an $\{\infty\}$ -unit

 $\Leftrightarrow |x|_2 = 1, |x|_3 = 1, ...$

 $\Leftrightarrow \log |x|_2 = 0$, $\log |x|_3 = 0$, ...

 $\Leftrightarrow x \in \{-1, 1\}.$

 $\Leftrightarrow |x|_2 \leq 1, |x|_3 \leq 1, \dots$

 $\Leftrightarrow x \in \mathbf{Z}$.

So $\{\{\infty\}\text{-integers}\} = \mathbf{Z}$, the usual ring of integers.

e.g. x is an $\{\infty\}$ -unit

 $\Leftrightarrow |x|_2 = 1, |x|_3 = 1, ...$

 $\Leftrightarrow \log |x|_2 = 0$, $\log |x|_3 = 0$, ...

 $\Leftrightarrow x \in \{-1, 1\}.$

This also forces $\log |x|_{\infty} = 0$:

 $\{-1, 1\}$ have log vector (0, 0, ...).

$$\Leftrightarrow |x|_2 \leq 1, |x|_3 \leq 1, \ldots$$

$$\Leftrightarrow x \in \mathbf{Z}$$
.

So $\{\{\infty\}\text{-integers}\} = \mathbf{Z}$, the usual ring of integers.

e.g. x is an $\{\infty\}$ -unit

$$\Leftrightarrow |x|_2 = 1, |x|_3 = 1, ...$$

$$\Leftrightarrow \log |x|_2 = 0$$
, $\log |x|_3 = 0$, ...

$$\Leftrightarrow x \in \{-1, 1\}.$$

This also forces $\log |x|_{\infty} = 0$:

$$\{-1, 1\}$$
 have log vector $(0, 0, ...)$.

$$\{-1,1\} = \mathbf{Z}^*.$$

Don't confuse with $\mathbf{Q}^* = \mathbf{Q} - \{0\}$.

 $\Leftrightarrow |x|_5 \leq 1, |x|_7 \leq 1, \ldots$

 $\Leftrightarrow x \in 2^{\mathbf{Z}}3^{\mathbf{Z}}\mathbf{Z}.$

 $\Leftrightarrow |x|_{5} \leq 1, |x|_{7} \leq 1, ...$

 $\Leftrightarrow x \in 2^{\mathbb{Z}}3^{\mathbb{Z}}\mathbb{Z}$.

e.g. x is an $\{\infty, 2, 3\}$ -unit

 $\Leftrightarrow |x|_5 = 1, |x|_7 = 1, ...$

 $\Leftrightarrow x \in \pm 2^{\mathbf{Z}}3^{\mathbf{Z}}$

 $\Leftrightarrow x$ is "3-smooth".

$$\Leftrightarrow |x|_5 \leq 1, |x|_7 \leq 1, \ldots$$

$$\Leftrightarrow x \in 2^{\mathbf{Z}}3^{\mathbf{Z}}\mathbf{Z}$$
.

e.g. x is an $\{\infty, 2, 3\}$ -unit

$$\Leftrightarrow |x|_5 = 1, |x|_7 = 1, ...$$

$$\Leftrightarrow x \in \pm 2^{\mathbf{Z}}3^{\mathbf{Z}}$$

 $\Leftrightarrow x$ is "3-smooth".

For S-units can focus on S-logs: $x \mapsto (\log |x|_{\infty}, \log |x|_{2}, \log |x|_{3})$ maps group $\pm 2^{\mathbf{Z}}3^{\mathbf{Z}}$ to lattice $(\log 2, -\log 2, 0)\mathbf{Z} +$

 $(\log 3, 0, -\log 3)\mathbf{Z}.$

Increase S for more S-units.

- R pR closed under mult;
- $pR \neq R$ (i.e., $p \notin R^*$);
- $pR \neq \{0\}$ (i.e., $p \neq 0$).

- R pR closed under mult;
- $pR \neq R$ (i.e., $p \notin R^*$);
- $pR \neq \{0\}$ (i.e., $p \neq 0$).

 $\{\infty\}$ -integers **Z** have prime elements $\{\pm 2, \pm 3, \pm 5, \pm 7, \ldots\}$, i.e., $\{2, 3, 5, 7, \ldots\}$

- R pR closed under mult;
- $pR \neq R$ (i.e., $p \notin R^*$);
- $pR \neq \{0\}$ (i.e., $p \neq 0$).

 $\{\infty\}$ -integers **Z** have prime elements $\{\pm 2, \pm 3, \pm 5, \pm 7, \ldots\}$, i.e., $\{2, 3, 5, 7, \ldots\}$

Can write any $x \in \mathbf{Z} - \{0\}$ uniquely as $u2^{e_2}3^{e_3}5^{e_5} \cdots$ where $u \in \mathbf{Z}^*$, $e_p \in \{0, 1, 2, ...\}$.

- R pR closed under mult;
- $pR \neq R$ (i.e., $p \notin R^*$);
- $pR \neq \{0\}$ (i.e., $p \neq 0$).

 $\{\infty\}$ -integers **Z** have prime elements $\{\pm 2, \pm 3, \pm 5, \pm 7, ...\}$, i.e., $\{2, 3, 5, 7, ...\}$

Can write any $x \in \mathbf{Z} - \{0\}$ uniquely as $u2^{e_2}3^{e_3}5^{e_5} \cdots$ where $u \in \mathbf{Z}^*$, $e_p \in \{0, 1, 2, ...\}$.

Log: nonnegative combination of $(\log 2, - \log 2, 0, 0, ...)$; $(\log 3, 0, - \log 3, 0, ...)$; etc. u disappears in log vector.

 $\{\infty, 2, 3\}$ -integers $2^{\mathbf{Z}}3^{\mathbf{Z}}\mathbf{Z}$ have prime elements $\{\pm 5, \pm 7, \ldots\}$. $2, 3 \in (2^{\mathbf{Z}}3^{\mathbf{Z}}\mathbf{Z})^*$; no longer prime!

 $\{\infty, 2, 3\}$ -integers $2^{\mathbf{Z}}3^{\mathbf{Z}}\mathbf{Z}$ have prime elements $\{\pm 5, \pm 7, \ldots\}$. $2, 3 \in (2^{\mathbf{Z}}3^{\mathbf{Z}}\mathbf{Z})^*$; no longer prime!

Can write any $x \in 2^{\mathbb{Z}}3^{\mathbb{Z}}\mathbb{Z} - \{0\}$ uniquely as $u5^{e_5}7^{e_7}\cdots$ where $u \in (2^{\mathbb{Z}}3^{\mathbb{Z}}\mathbb{Z})^*, e_p \in \{0, 1, 2, \ldots\}.$

 $\{\infty, 2, 3\}$ -integers $2^{\mathbf{Z}}3^{\mathbf{Z}}\mathbf{Z}$ have prime elements $\{\pm 5, \pm 7, \ldots\}$. $2, 3 \in (2^{\mathbf{Z}}3^{\mathbf{Z}}\mathbf{Z})^*$; no longer prime!

Can write any $x \in 2^{\mathbb{Z}}3^{\mathbb{Z}}\mathbb{Z} - \{0\}$ uniquely as $u5^{e_5}7^{e_7}\cdots$ where $u \in (2^{\mathbb{Z}}3^{\mathbb{Z}}\mathbb{Z})^*, e_p \in \{0, 1, 2, \ldots\}.$

i.e. $u \in \pm 2^{\mathbf{Z}}3^{\mathbf{Z}}$.

u logs: integer combination of $(\log 2, -\log 2, 0, ...)$, $(\log 3, 0, -\log 3, ...)$.

 $\{\infty, 2, 3\}$ -integers $2^{\mathbb{Z}}3^{\mathbb{Z}}\mathbb{Z}$ have prime elements $\{\pm 5, \pm 7, \ldots\}$. $2, 3 \in (2^{\mathbb{Z}}3^{\mathbb{Z}}\mathbb{Z})^*$; no longer prime! Can write any $x \in 2^{\mathbb{Z}}3^{\mathbb{Z}} - \{0\}$ uniquely as $u5^{e_5}7^{e_7}\cdots$ where $u \in (2^{\mathbb{Z}}3^{\mathbb{Z}}\mathbb{Z})^*, e_p \in \{0, 1, 2, \ldots\}.$ i.e. $u \in \pm 2^{\mathbb{Z}}3^{\mathbb{Z}}$. u logs: integer combination of $(\log 2, -\log 2, 0, \ldots),$ $(\log 3, 0, -\log 3, ...).$ $5^{e_5}7^{e_7}\cdots$ logs: combine

 $5^{e_5}7^{e_7}\cdots logs: combine$ (log 5, 0, 0, — log 5, . . .); (log 7, 0, 0, 0, — log 7, . . .); etc.

The 4th cyclotomic field

i: the usual $\sqrt{-1}$ in ${\bf C}$. ${\bf Q}(i)={\bf Q}+{\bf Q}i$ is a field: the "field of Gaussian rationals"; the "4th cyclotomic field". e.g. $3/11-2i/5\in {\bf Q}(i)$.

The 4th cyclotomic field

i: the usual $\sqrt{-1}$ in ${\bf C}$. ${\bf Q}(i)={\bf Q}+{\bf Q}i$ is a field: the "field of Gaussian rationals"; the "4th cyclotomic field". e.g. $3/11-2i/5\in {\bf Q}(i)$.

(More generally, $\mathbf{Q}(\alpha)$ means the smallest field containing \mathbf{Q} , α .)

i: the usual $\sqrt{-1}$ in ${\bf C}$. ${\bf Q}(i)={\bf Q}+{\bf Q}i$ is a field: the "field of Gaussian rationals"; the "4th cyclotomic field". e.g. $3/11-2i/5\in {\bf Q}(i)$.

(More generally, $\mathbf{Q}(\alpha)$ means the smallest field containing \mathbf{Q} , α .)

Fact: Each $x \in \mathbf{Q}(i)^*$ factors uniquely as $r \prod_{p \in P} p^{e_p}$ where $r \in \{1, i, -1, -i\}$; $P = \{1 + i, 3, 2 + i, 2 - i, \ldots\}$; each e_p is an integer.

$$|a + bi|^2 = a^2 + b^2$$
 for $a, b \in \mathbb{R}$.

For each $p \in P$: have $p \in \mathbf{Z} + \mathbf{Z}i$, and $|p|^2$ is a prime not in $3 + 4\mathbf{Z}$ or the square of a prime in $3 + 4\mathbf{Z}$:

$$p = 1 + i$$
: $|p|^2 = 2$.
 $p = 3$: $|p|^2 = 9$.
 $p = 2 + i$: $|p|^2 = 5$.
 $p = 2 - i$: $|p|^2 = 5$.
 $p = 7$: $|p|^2 = 49$.
 $p = 11$: $|p|^2 = 121$.
 $p = 3 + 2i$: $|p|^2 = 13$.
 $p = 3 - 2i$: $|p|^2 = 13$.
etc. (To fully define P , also handle $1, i, -1, -i$ multiples.)

Standard *powers* of nonequivalent nontrivial valuations on $\mathbf{Q}(i)$:

$$|x|_{\infty} = |x|^2$$
. (Warning: $x \mapsto |x|$ is a valuation; $x \mapsto |x|^2$ isn't!) $|x|_{1+i} = 2^{-e_{1+i}}$. $|x|_3 = 9^{-e_3}$. (So now $|3|_3 = 1/9$.) $|x|_{2+i} = 5^{-e_{2+i}}$. $|x|_{2-i} = 5^{-e_{2-i}}$. $|x|_7 = 49^{-e_7}$. $|x|_{11} = 121^{-e_{11}}$. $|x|_{3+2i} = 13^{-e_{3-2i}}$. $|x|_{3-2i} = 13^{-e_{3-2i}}$.

Etc. These have product 1. For x = 0, all valuations 0.

 $x \mapsto (\log |x|_{\infty}, \log |x|_{1+i}, ...)$ maps the group $\mathbf{Q}(i)^*$ onto the infinite-dimensional lattice $(\log 2, -\log 2, 0, 0, 0, ...)\mathbf{Z} + (\log 9, 0, -\log 9, 0, 0, ...)\mathbf{Z} + (\log 5, 0, 0, -\log 5, 0, ...)\mathbf{Z} + (\log 5, 0, 0, 0, -\log 5, 0, ...)\mathbf{Z} + (\log 5, 0, 0, 0, -\log 5, ...)\mathbf{Z} + ...$

 $x \mapsto (\log |x|_{\infty}, \log |x|_{1+i}, \dots)$ maps the group $\mathbf{Q}(i)^*$ onto the infinite-dimensional lattice $(\log 2, -\log 2, 0, 0, 0, ...)$ **Z** + $(\log 9, 0, -\log 9, 0, 0, ...)$ **Z** + $(\log 5, 0, 0, -\log 5, 0, ...)$ **Z** + $(\log 5, 0, 0, 0, -\log 5, ...)$ **Z** + · · · $S \subseteq \{\infty, 1+i, 3, \ldots\}, \infty \in S$:

 $S \subseteq \{\infty, 1+i, 3, \ldots\}, \infty \in S$: $x \in \mathbf{Q}(i)^*$ is called an S-unit if $\log |x|_p = 0$ for each $p \notin S$. $x \mapsto (\log |x|_{\infty}, \log |x|_{1+i}, ...)$ maps the group $\mathbf{Q}(i)^*$ onto the infinite-dimensional lattice $(\log 2, -\log 2, 0, 0, 0, ...)\mathbf{Z} + (\log 9, 0, -\log 9, 0, 0, ...)\mathbf{Z} + (\log 5, 0, 0, -\log 5, 0, ...)\mathbf{Z} + (\log 5, 0, 0, 0, -\log 5, 0, ...)\mathbf{Z} + (\log 5, 0, 0, 0, -\log 5, ...)\mathbf{Z} + ...$

 $S \subseteq \{\infty, 1+i, 3, \ldots\}, \infty \in S$: $x \in \mathbf{Q}(i)^*$ is called an S-unit if $\log |x|_p = 0$ for each $p \notin S$. e.g. $\{\infty\}$ -units: $\{1, i, -1, -i\}$.

 $x \mapsto (\log |x|_{\infty}, \log |x|_{1+i}, \dots)$ maps the group $\mathbf{Q}(i)^*$ onto the infinite-dimensional lattice $(\log 2, -\log 2, 0, 0, 0, ...)$ **Z** + $(\log 9, 0, -\log 9, 0, 0, ...)$ **Z** + $(\log 5, 0, 0, -\log 5, 0, ...)$ **Z** + $(\log 5, 0, 0, 0, -\log 5, ...)$ **Z** + · · · $S \subseteq \{\infty, 1+i, 3, \ldots\}, \infty \in S$: $x \in \mathbf{Q}(i)^*$ is called an *S*-unit if $\log |x|_p = 0$ for each $p \notin S$. e.g. $\{\infty\}$ -units: $\{1, i, -1, -i\}$. e.g. $\{\infty, 1+i, 2+i\}$ -unit lattice: $(\log 2, -\log 2, 0, 0, 0, ...)$ **Z** + $(\log 5, 0, 0, -\log 5, 0, ...)$ **Z**.

Variant appearing in literature:

Split $|x|_{\infty}$ into two copies of |x|.

Gives slightly different lattice:

$$(0.5 \log 2, 0.5 \log 2, -\log 2, 0, 0, 0, ...)$$

$$(0.5 \log 9, 0.5 \log 9, 0, -\log 9, 0, 0, ...)$$

$$(0.5 \log 5, 0.5 \log 5, 0, 0, -\log 5, 0, ...)$$

$$(0.5 \log 5, 0.5 \log 5, 0, 0, 0, -\log 5, ...)$$

.

Minor advantages: e.g., some definitions of the lattice become slightly more concise.

But now have redundant columns, each column deviating from the probability interpretation.

$$\zeta_m = \exp(2\pi i/m) \text{ for } m \in \mathbf{Z}_{\geq 1}.$$
e.g. $\zeta_8 = (1+i)/\sqrt{2}$; $\zeta_8^2 = \zeta_4 = i.$
 $\mathbf{Q}(\zeta_8) = \mathbf{Q} + \mathbf{Q}\zeta_8 + \mathbf{Q}\zeta_8^2 + \mathbf{Q}\zeta_8^3.$

$$\zeta_m = \exp(2\pi i/m) \text{ for } m \in \mathbf{Z}_{\geq 1}.$$

e.g. $\zeta_8 = (1+i)/\sqrt{2}$; $\zeta_8^2 = \zeta_4 = i.$
 $\mathbf{Q}(\zeta_8) = \mathbf{Q} + \mathbf{Q}\zeta_8 + \mathbf{Q}\zeta_8^2 + \mathbf{Q}\zeta_8^3.$

Fact: Each $x \in \mathbf{Q}(\zeta_8)^*$ factors uniquely as $ru^{e_u} \prod_{p \in P} p^{e_p}$ where $r \in \{1, \zeta_8, \dots, \zeta_8^7\}$; $P = \{1 + \zeta_8, 1 - \zeta_8 - \zeta_8^2, \dots\}$; $u = 1 + \zeta_8 + \zeta_8^2$; $e_u \in \mathbf{Z}$; $e_p \in \mathbf{Z}$.

$$\zeta_m = \exp(2\pi i/m) \text{ for } m \in \mathbf{Z}_{\geq 1}.$$
e.g. $\zeta_8 = (1+i)/\sqrt{2}$; $\zeta_8^2 = \zeta_4 = i.$
 $\mathbf{Q}(\zeta_8) = \mathbf{Q} + \mathbf{Q}\zeta_8 + \mathbf{Q}\zeta_8^2 + \mathbf{Q}\zeta_8^3.$

Fact: Each $x \in \mathbf{Q}(\zeta_8)^*$ factors uniquely as $ru^{e_u} \prod_{p \in P} p^{e_p}$ where $r \in \{1, \zeta_8, \dots, \zeta_8^7\}$; $P = \{1 + \zeta_8, 1 - \zeta_8 - \zeta_8^2, \dots\}$; $u = 1 + \zeta_8 + \zeta_8^2$; $e_u \in \mathbf{Z}$; $e_p \in \mathbf{Z}$.

Why isn't u included in P?

Answer: We'll want to use P to index various nontrivial valuations. Exercise: u valuation is trivial.

Standard valuation power ∞_1 : $|x|_{\infty_1} = |x|^2$.

Standard valuation power ∞_1 :

$$|x|_{\infty_1} = |x|^2.$$

Standard valuation power ∞_3 :

$$|x|_{\infty_3} = |\sigma_3(x)|^2$$
 where $\sigma_3(a_0 + a_1\zeta_8 + a_2\zeta_8^2 + a_3\zeta_8^3)$ $= a_0 + a_1\zeta_8^3 + a_2\zeta_8^6 + a_3\zeta_8^9$. Exercise: $\sigma_3(xy) = \sigma_3(x)\sigma_3(y)$.

Standard valuation power ∞_1 :

$$|x|_{\infty_1} = |x|^2.$$

Standard valuation power ∞_3 :

$$|x|_{\infty_3} = |\sigma_3(x)|^2$$
 where $\sigma_3(a_0 + a_1\zeta_8 + a_2\zeta_8^2 + a_3\zeta_8^3)$ $= a_0 + a_1\zeta_8^3 + a_2\zeta_8^6 + a_3\zeta_8^9$. Exercise: $\sigma_3(xy) = \sigma_3(x)\sigma_3(y)$.

To see ∞_1, ∞_3 are inequivalent:

$$|1 + \zeta_8|_{\infty_1} = 2 + \sqrt{2} > 1,$$

 $|1 + \zeta_8|_{\infty_3} = 2/(2 + \sqrt{2}) < 1.$

Standard valuation power ∞_1 :

$$|x|_{\infty_1} = |x|^2.$$

Standard valuation power ∞_3 :

$$|x|_{\infty_3} = |\sigma_3(x)|^2$$
 where $\sigma_3(a_0 + a_1\zeta_8 + a_2\zeta_8^2 + a_3\zeta_8^3)$ $= a_0 + a_1\zeta_8^3 + a_2\zeta_8^6 + a_3\zeta_8^9$. Exercise: $\sigma_3(xy) = \sigma_3(x)\sigma_3(y)$.

To see ∞_1, ∞_3 are inequivalent:

$$|1 + \zeta_8|_{\infty_1} = 2 + \sqrt{2} > 1,$$

 $|1 + \zeta_8|_{\infty_3} = 2/(2 + \sqrt{2}) < 1.$

Standard valuation for $p \in P$: $|x|_p = N(p)^{-e_p}$, using prime power $N(p) = |p|_{\infty_1} |p|_{\infty_3}$.

$$Z[\zeta_8] = Z + Z\zeta_8 + Z\zeta_8^2 + Z\zeta_8^3$$
.

$$Z[\zeta_8] = Z + Z\zeta_8 + Z\zeta_8^2 + Z\zeta_8^3$$
.

$$\{\infty_1, \infty_3\}$$
-units: $\zeta_8^{\{0,...,7\}} u^{\mathbf{Z}}$.

 $Z[\zeta_8] = Z + Z\zeta_8 + Z\zeta_8^2 + Z\zeta_8^3$.

 $\{\infty_1, \infty_3\}$ -units: $\zeta_8^{\{0,...,7\}} u^{\mathbf{Z}}$.

 $\{\infty_1, \infty_3\}$ -unit lattice:

(1.76..., -1.76..., 0, ...)**Z**.

$$Z[\zeta_8] = Z + Z\zeta_8 + Z\zeta_8^2 + Z\zeta_8^3$$
.

$$\{\infty_1, \infty_3\}$$
-units: $\zeta_8^{\{0,...,7\}} u^{\mathbf{Z}}$.

$$\{\infty_1, \infty_3\}$$
-unit lattice:

$$(1.76..., -1.76..., 0, ...)$$
Z.

Again increase S for more S-units.

$$\{\infty_1, \infty_3, 1 + \zeta_8\}$$
-units: $\zeta_8^{\{0,...,7\}} u^{\mathbf{Z}} (1 + \zeta_8)^{\mathbf{Z}}$.

$$\{\infty_1, \infty_3\}$$
-integers:

$$Z[\zeta_8] = Z + Z\zeta_8 + Z\zeta_8^2 + Z\zeta_8^3$$
.

$$\{\infty_1, \infty_3\}$$
-units: $\zeta_8^{\{0,...,7\}} u^{\mathbf{Z}}$.

$$\{\infty_1, \infty_3\}$$
-unit lattice:

$$(1.76..., -1.76..., 0, ...)$$
Z.

Again increase S for more S-units.

$$\{\infty_1, \infty_3, 1 + \zeta_8\}$$
-units:

$$\zeta_8^{\{0,\ldots,7\}} u^{\mathbf{Z}} (1+\zeta_8)^{\mathbf{Z}}.$$

$$\{\infty_1, \infty_3, 1+\zeta_8\}$$
-unit lattice:

$$(1.76..., -1.76..., 0, ...)$$
Z +

$$(1.22..., -0.53..., -0.69..., ...)$$
Z.

Reasonably short basis for the infinite-dimensional lattice of $\mathbf{Q}(\zeta_8)^*$ logs, shown truncated after 2 digits:

```
1.76 - 1.76 0 0 0 ...
1.22 - 0.53 - 0.69 0 0 ...
1.09 1.09 0 - 2.19 0 ...
1.09 1.09 0 0 - 2.19 ...
```

.

Reasonably short basis for the infinite-dimensional lattice of $\mathbf{Q}(\zeta_8)^*$ logs, shown truncated after 2 digits:

$$1.76 - 1.76 \ 0 \ 0 \ 0$$
 $1.22 - 0.53 - 0.69 \ 0 \ 0$
 $1.09 \ 1.09 \ 0 \ -2.19 \ 0$
 $1.09 \ 1.09 \ 0 \ 0 \ -2.19$
 $1.09 \ 1.09 \ 0 \ 0 \ -2.19$

Diagonal after 2 columns.

Compare to the lattice bases for

 \mathbf{Q} , $\mathbf{Q}(i)$: diagonal after 1 column.

Reasonably short basis for the infinite-dimensional lattice of $\mathbf{Q}(\zeta_8)^*$ logs, shown truncated after 2 digits:

$$1.76 - 1.76 \ 0 \ 0 \ 0 \ ...$$
 $1.22 - 0.53 - 0.69 \ 0 \ 0 \ ...$
 $1.09 \ 1.09 \ 0 \ -2.19 \ 0 \ ...$
 $1.09 \ 1.09 \ 0 \ 0 \ -2.19 \ ...$

Diagonal after 2 columns.

Compare to the lattice bases for \mathbf{Q} , $\mathbf{Q}(i)$: diagonal after 1 column.

Exercise: Find shorter basis.

$$\zeta_{16} = \exp(2\pi i/16)$$
 so $\zeta_{16}^8 = -1$.

$$\mathbf{Q}(\zeta_{16}) = \mathbf{Q} + \mathbf{Q}\zeta_{16} + \mathbf{Q}\zeta_{16}^2 + \mathbf{Q}\zeta_{16}^3 + \mathbf{Q}\zeta_{16}^3 + \mathbf{Q}\zeta_{16}^4 + \mathbf{Q}\zeta_{16}^5 + \mathbf{Q}\zeta_{16}^6 + \mathbf{Q}\zeta_{16}^7.$$

$$\zeta_{16} = \exp(2\pi i/16)$$
 so $\zeta_{16}^8 = -1$.

$$\mathbf{Q}(\zeta_{16}) = \mathbf{Q} + \mathbf{Q}\zeta_{16} + \mathbf{Q}\zeta_{16}^2 + \mathbf{Q}\zeta_{16}^3 + \mathbf{Q}\zeta_{16}^3 + \mathbf{Q}\zeta_{16}^4 + \mathbf{Q}\zeta_{16}^5 + \mathbf{Q}\zeta_{16}^6 + \mathbf{Q}\zeta_{16}^7.$$

8th roots of -1 in \mathbb{C} : $\zeta_{16}^{\pm 1}$, $\zeta_{16}^{\pm 3}$, $\zeta_{16}^{\pm 5}$, $\zeta_{16}^{\pm 7}$.

$$\zeta_{16} = \exp(2\pi i/16)$$
 so $\zeta_{16}^8 = -1$.

$$\mathbf{Q}(\zeta_{16}) = \mathbf{Q} + \mathbf{Q}\zeta_{16} + \mathbf{Q}\zeta_{16}^2 + \mathbf{Q}\zeta_{16}^3 + \mathbf{Q}\zeta_{16}^3 + \mathbf{Q}\zeta_{16}^4 + \mathbf{Q}\zeta_{16}^5 + \mathbf{Q}\zeta_{16}^6 + \mathbf{Q}\zeta_{16}^7.$$

8th roots of -1 in \mathbb{C} :

$$\zeta_{16}^{\pm 1}$$
, $\zeta_{16}^{\pm 3}$, $\zeta_{16}^{\pm 5}$, $\zeta_{16}^{\pm 7}$.

Each odd integer j has a unique ring morphism $\sigma_j: \mathbf{Q}(\zeta_{16}) \to \mathbf{C}$ mapping ζ_{16} to ζ_{16}^j .

$$\zeta_{16} = \exp(2\pi i/16)$$
 so $\zeta_{16}^8 = -1$.

$$\mathbf{Q}(\zeta_{16}) = \mathbf{Q} + \mathbf{Q}\zeta_{16} + \mathbf{Q}\zeta_{16}^2 + \mathbf{Q}\zeta_{16}^3 + \mathbf{Q}\zeta_{16}^3 + \mathbf{Q}\zeta_{16}^4 + \mathbf{Q}\zeta_{16}^5 + \mathbf{Q}\zeta_{16}^6 + \mathbf{Q}\zeta_{16}^7.$$

8th roots of -1 in **C**:

$$\zeta_{16}^{\pm 1}$$
, $\zeta_{16}^{\pm 3}$, $\zeta_{16}^{\pm 5}$, $\zeta_{16}^{\pm 7}$.

Each odd integer j has a unique ring morphism $\sigma_j: \mathbf{Q}(\zeta_{16}) \to \mathbf{C}$ mapping ζ_{16} to ζ_{16}^j .

Define
$$|x|_{\infty_j} = |\sigma_j(x)|^2$$
.

$$\zeta_{16} = \exp(2\pi i/16)$$
 so $\zeta_{16}^8 = -1$.

$$\mathbf{Q}(\zeta_{16}) = \mathbf{Q} + \mathbf{Q}\zeta_{16} + \mathbf{Q}\zeta_{16}^2 + \mathbf{Q}\zeta_{16}^3 + \mathbf{Q}\zeta_{16}^3 + \mathbf{Q}\zeta_{16}^4 + \mathbf{Q}\zeta_{16}^5 + \mathbf{Q}\zeta_{16}^6 + \mathbf{Q}\zeta_{16}^7.$$

8th roots of -1 in **C**:

$$\zeta_{16}^{\pm 1}$$
 , $\zeta_{16}^{\pm 3}$, $\zeta_{16}^{\pm 5}$, $\zeta_{16}^{\pm 7}$.

Each odd integer j has a unique ring morphism $\sigma_j: \mathbf{Q}(\zeta_{16}) \to \mathbf{C}$ mapping ζ_{16} to ζ_{16}^j .

Define
$$|x|_{\infty_j} = |\sigma_j(x)|^2$$
.

Inequivalent: $\infty_1, \infty_3, \infty_5, \infty_7$.

 $\{\infty\}$ -integers, meaning $\{\infty_1, \infty_3, \infty_5, \infty_7\}$ -integers: $\mathbf{Z}[\zeta_{16}] = \mathbf{Z} + \mathbf{Z}\zeta_{16} + \mathbf{Z}\zeta_{16}^2 + \mathbf{Z}\zeta_{16}^3 + \mathbf{Z}\zeta_{16}^3 + \mathbf{Z}\zeta_{16}^5 + \mathbf{Z}\zeta_{16}^5 + \mathbf{Z}\zeta_{16}^7$

 $\{\infty\}$ -integers, meaning

 $\{\infty_1, \infty_3, \infty_5, \infty_7\}$ -integers:

$$\mathbf{Z}[\zeta_{16}] = \mathbf{Z} + \mathbf{Z}\zeta_{16} + \mathbf{Z}\zeta_{16}^2 + \mathbf{Z}\zeta_{16}^3 + \mathbf{Z}\zeta_{16}^3 + \mathbf{Z}\zeta_{16}^4 + \mathbf{Z}\zeta_{16}^5 + \mathbf{Z}\zeta_{16}^6 + \mathbf{Z}\zeta_{16}^7.$$

 $\{\infty\}$ -units: $\zeta_{16}^{\mathbf{Z}}u_1^{\mathbf{Z}}u_3^{\mathbf{Z}}u_5^{\mathbf{Z}}$ where $u_1=1+\zeta_{16}+\zeta_{16}^2$, $u_3=1+\zeta_{16}^3+\zeta_{16}^6=\sigma_3(u_1)$, $u_5=1+\zeta_{16}^5+\zeta_{16}^{10}=\sigma_5(u_1)$.

 $\{\infty\}$ -integers, meaning

 $\{\infty_1, \infty_3, \infty_5, \infty_7\}$ -integers:

$$\mathbf{Z}[\zeta_{16}] = \mathbf{Z} + \mathbf{Z}\zeta_{16} + \mathbf{Z}\zeta_{16}^2 + \mathbf{Z}\zeta_{16}^3 + \mathbf{Z}\zeta_{16}^3 + \mathbf{Z}\zeta_{16}^4 + \mathbf{Z}\zeta_{16}^5 + \mathbf{Z}\zeta_{16}^6 + \mathbf{Z}\zeta_{16}^7.$$

 $\{\infty\}$ -units: $\zeta_{16}^{\mathbf{Z}}u_{1}^{\mathbf{Z}}u_{3}^{\mathbf{Z}}u_{5}^{\mathbf{Z}}$ where $u_{1}=1+\zeta_{16}+\zeta_{16}^{2}$,

$$u_3 = 1 + \zeta_{16}^3 + \zeta_{16}^6 = \sigma_3(u_1),$$

$$u_5 = 1 + \zeta_{16}^5 + \zeta_{16}^{10} = \sigma_5(u_1).$$

Exercise: $u_1u_3u_5u_7 = -1$ where

$$u_7 = 1 + \zeta_{16}^7 + \zeta_{16}^{14} = \sigma_7(u_1).$$

$$\{\infty\}$$
-integers, meaning

$$\{\infty_1, \infty_3, \infty_5, \infty_7\}$$
-integers:

$$\mathbf{Z}[\zeta_{16}] = \mathbf{Z} + \mathbf{Z}\zeta_{16} + \mathbf{Z}\zeta_{16}^2 + \mathbf{Z}\zeta_{16}^3 + \mathbf{Z}\zeta_{16}^3 + \mathbf{Z}\zeta_{16}^4 + \mathbf{Z}\zeta_{16}^5 + \mathbf{Z}\zeta_{16}^6 + \mathbf{Z}\zeta_{16}^7.$$

$$\{\infty\}$$
-units: $\zeta_{16}^{\mathbf{Z}}u_1^{\mathbf{Z}}u_3^{\mathbf{Z}}u_5^{\mathbf{Z}}$ where

$$u_1 = 1 + \zeta_{16} + \zeta_{16}^2$$

$$u_3 = 1 + \zeta_{16}^3 + \zeta_{16}^6 = \sigma_3(u_1),$$

$$u_5 = 1 + \zeta_{16}^5 + \zeta_{16}^{10} = \sigma_5(u_1).$$

Exercise: $u_1u_3u_5u_7 = -1$ where

$$u_7 = 1 + \zeta_{16}^7 + \zeta_{16}^{14} = \sigma_7(u_1).$$

Logs of u_1 , u_3 , u_5 , truncated:

$$2.09 1.13 -2.89 -0.33$$

$$1.13 \quad -0.33 \quad 2.09 \quad -2.89$$

$$-2.89$$
 2.09 -0.33 1.13

In the infinite-dimensional lattice of $\mathbf{Q}(\zeta_{16})^*$ logs, a diagonal starts after the four ∞ columns:

$$2.09 \quad 1.13 \quad -2.89 \quad -0.33 \quad 0 \quad 0$$
 $1.13 \quad -0.33 \quad 2.09 \quad -2.89 \quad 0 \quad 0$
 $-2.89 \quad 2.09 \quad -0.33 \quad 1.13 \quad 0 \quad 0$
 $1.34 \quad 1.01 \quad 0.21 \quad -1.88 \quad -0.69 \quad 0$
 $1.94 \quad -0.68 \quad 0.98 \quad 0.58 \quad 0 \quad -2.8$

•

In the infinite-dimensional lattice of $\mathbf{Q}(\zeta_{16})^*$ logs, a diagonal starts after the four ∞ columns:

$$2.09 \quad 1.13 \quad -2.89 \quad -0.33 \quad 0 \quad 0$$
 $1.13 \quad -0.33 \quad 2.09 \quad -2.89 \quad 0 \quad 0$
 $-2.89 \quad 2.09 \quad -0.33 \quad 1.13 \quad 0 \quad 0$
 $1.34 \quad 1.01 \quad 0.21 \quad -1.88 \quad -0.69 \quad 0$
 $1.94 \quad -0.68 \quad 0.98 \quad 0.58 \quad 0 \quad -2.8$

The general picture: Number of ∞ columns is between n/2 and n for a degree-n number field, and a diagonal appears almost immediately after the ∞ columns.