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R = field of real numbers.

C = field of complex numbers.

The function x — |x|
from C to R is a valuation on C:

e 0| =0.

e x #0 = |x| > 0. X+TYy
o [xy| = Ix]lyl
o [x+y|<|x|+lyl X




There are other valuations on C.

e.g. X — /|x| is a valuation.
Exercise: /|x +y| < +/|x| + /]yl




There are other valuations on C.

e.g. X — /|x| is a valuation.

Exercise: \/

e.g. X |x

|O.31415

x+y| <AVIx|+ /]yl

Is a valuation.



There are other valuations on C.

e.g. X — /|x| is a valuation.

Exercise: /|x +y| < +/|x| + /]yl
|O.31415

e.g. X+ |x is a valuation.

e.g. x — |x|° is a valuation
for any 6 € R with 0 <o < 1.



There are other valuations on C.

e.g. X — /|x| is a valuation.
Exercise: /|x +y| < +/|x| + /]yl

e.g. x — |x|031*15 is a valuation.

e.g. x — |x|° is a valuation
for any 6 € R with 0 <o < 1.

These valuations are equivalent:
positive powers of each other.
They have the same unit disks:
they map the same inputs to R<.



There are other valuations on C.

e.g. X — /|x| is a valuation.

Exercise: /|x +y| < +/|x| + /]yl
|O.31415

e.g. X+ |x is a valuation.

e.g. x — |x|° is a valuation
for any 6 € R with 0 <o < 1.

These valuations are equivalent:
positive powers of each other.
They have the same unit disks:
they map the same inputs to R<.

Not equivalent: trivial valuation
defined by 0 — 0; x — 1 if x # 0.
Unit disk is all inputs.



Q = field of rational numbers.

The function x — |x|
from Q to R is a valuation on Q.
Same as previous x — |x|, but
restricts C inputs to be in Q.



Q = field of rational numbers.

The function x — |x|
from Q to R is a valuation on Q.
Same as previous x — |x|, but
restricts C inputs to be in Q.

A nonequivalent nontrivial

valuation on Q: define [0|3 =0,
|X‘3 — 378 if x = £2%2335% ...
e.g. |90[3 =1/9; |-7/3]3 =3.




Q = field of rational numbers.

The function x — |x|
from Q to R is a valuation on Q.
Same as previous x — |x|, but
restricts C inputs to be in Q.

A nonequivalent nontrivial

valuation on Q: define [0|3 =0,
|X‘3 — 378 if x = £2%2335% ...
e.g. |90[3 =1/9; |-7/3]3 =3.

e 0|3 =0.
e x #0 = |x|3>0.
* [xy|3 = |x[3]y]s.

o [x+yl3 <Ix[3+lyls.
Even better: <max{|x|3,|y|3}.




For x € Q, define |x|c0 = |X]|;
X|p=p P if x =£223985% ...

X | |x|loo |X|2 |X|3 |X|5 ... product

1/21 1
1 1 1
0 0 O
1 1 1
1/21 1
1 1/31
1/41 1 ..
1 1 1/5...
1/2 1/3 1

S O & W N O DN
S = Y = S S O N N e S = T =S U =

|[don't forget x = 2/3 etc.]




Infinite-dimensional lattice of
(log |X|c0, log |x|2, log |x|3, .. .):

log |x|co log |x|2 log|x|3 log|x[5 ...

log 2 —log?2 0 0

0 0 0 0

[skip x = 0: log 0 not defined]

0 0 0 0

og 2 —log2 0 0

og 3 0 —log3 0

og 4 —log4 0 0
og b 0 0 —logh ...
og 6 —log2 —log3 0

lagain don't forget 2/3 etc.]



This lattice, t

08 | X| 0o, lOg

..« where

Z-1{ . -2

ne set of vectors

0g5,0,0,—logh,0,...)Z +
log7,0,0,0,—log7,...)Z +

x|2, log|x|3,...), is

(

(log?2, —log2,0,0,0,...)Z +
(log 3,0, —1og3,0,0,...)Z +
(
(

~1,0,1,2,...}



This lattice, the set of vectors
(log |X|co, log |x|2, log |x|3,...), is
(log2, —log2,0,0,0,...)Z +

(log 3,0, —1og3,0,0,...)Z +
(
(

0g5,0,0,—logh,0,...)Z +
log7,0,0,0,—log7,...)Z +
.- - where

Z={..,-2,-1,0,1,2,...}

+22335%% ... maps to
0g |X|co, log x[2, log |x]3, . ..) =
og2,—log2,0,0,0,...)e
0g3,0,—10g3,0,0,...)e3 +
0g5,0,0,—logh,0,...)es +
0g7,0,0,0,—log7,...)e7 +




Can divide log |x|, by log p to
obtain an integer "—ord, x";
Ordp(::2623e35e5 "t ) — ep

Number theorists include the
log p weight for many reasons:
e leaving out the weight would
produce infinitely many short
log vectors (e.g., length <2);
e want “the product formula”:

Hv |X‘V = 1; Zvlcg x|y = 0;
e this particular power |x|, has

a probability interpretation
(matches “Haar measure”
on the “completion”); etc.



Say § C{0,2,3,5,...}, 00 € S.
Typical case: pe S & p < 37.



Say § C{0,2,3,5,...}, 00 € S.
Typical case: pe S & p < 37.

x € Q is called an S-integer
if [x|p <1 foreach pé&S.



Say § C{0,2,3,5,...}, 00 € S.
Typical case: pe S & p < 37.

x € Q is called an S-integer
if [x|p <1 foreach pé&S.

{S-integers} is a subring of Q:

C
C

X+ ylp < max{\x

OSeC

OSeC

unda

unda

er mu

er adc

t since R<q Is;
ition since

ylp}-
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Say § C{0,2,3,5,...}, 00 € S.
Typical case: pe S & p < 37.

x € Q is called an S-integer
if [x|p <1 foreach pé&S.

{S-integers} is a subring of Q:
closed under mult since R<1 is;

closed under addition since
x + ylp < max{|xp, ly[p}-

For any commutative ring R:
R* means {u € R: uR = R}.

P



Say § C{0,2,3,5,...}, 00 € S.
Typical case: pe S & p < 37.

x € Q is called an S-integer
if [x|p <1 foreach pé&S.

{S-integers} is a subring of Q:
closed under mult since R<1 is;

closed under addition since
x + ylp < max{|xp, ly[p}-

For any commutative ring R:
R* means {u € R: uR = R}.

P

x € Q* is called an S-unit
if [x|p =1 foreach p ¢ S.
{S-units} = {S-integers}*.



e.g. x is an {oo}-integer

& ‘X‘QS 1, ‘X‘3§1,
& x e L.

So {{oo}-integers} = Z,

the usual ring of integers.



e.g. x is an {oo}-integer

& ‘X‘QS 1, ‘X‘3§1,
& x e L.

So {{oo}-integers} = Z,

the usual ring of integers.

e.g. x is an {oo}-unit
<~ X‘2:1, ‘X‘3:1,

<~ Og‘X‘Q = 0, |Og‘X|3 =0, ...

& xeq{-1,1}



e.g. x is an {oo}-integer

& ‘X‘QS 1, ‘X‘3§1,
& x e L.

So {{oo}-integers} = Z,

the usual ring of integers.

e.g. x is an {oo}-unit
<~ X‘2:1, ‘X‘3:1,

<~ Og‘X‘Q = 0, |Og‘X|3 =0, ...
& xe{-1,1}.

This also forces log |x|co = 0:
{—1,1} have log vector (0,0, ...).



e.g. x is an {oo}-integer

& ‘X‘QS 1, ‘X‘3§ 1, ...
& x e L.

So {{oo}-integers} = Z,

the usual ring of integers.

e.g. x is an {oo}-unit
<~ X‘2:1, ‘X‘3:1,

<~ Og‘X‘Q = 0, |Og‘X|3 =0, ...
& xe{-1,1}.

This also forces log |x|co = 0:
{—1,1} have log vector (0,0, ...).
{—-1,1} =Z*.

Don’t confuse with Q* = Q —{0}.



e.g. x is an {00, 2, 3}-integer
& ‘X‘5§ 1, ‘X‘7§1,
o x € 24347

10



e.g. x is an {00, 2, 3}-integer
& ‘X‘5§ 1, ‘X‘7§1,
o x € 24347

e.g. x is an {00, 2, 3}-unit
<~ ‘X‘5:1, ‘X‘7:1,
— - ::2232

& x Is '3-smooth’ .

10



10

e.g. x is an {00, 2, 3}-integer
& ‘X‘5§ 1, ‘X‘7§ 1, ...
o x € 24347

e.g. x is an {00, 2, 3}-unit
<~ ‘X‘5:1, ‘X‘7:1,
& X & ::2232

& x Is '3-smooth’ .

For S-units can focus on S-logs:

x — (log |x|oo, log |x|2, log |x|3)
maps group +243Z 10 |attice

(
(

og2, —log2,0)Z +
0g 3,0, —log3)Z.

Increase S for more S-units.



Prime element p of R:

e R — pR closed under mult;
e pR=#%R (ie., p ¢ R*);

e pR # {0} (i.e., p #0).
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Prime element p of R:

e R — pR closed under mult;

e pR=#%R (ie., p ¢ R*);

e pR # {0} (i.e., p #0).
{oo}-integers Z have prime
elements {::2, ::3, ::5, ::7, . .},
e, {2,3,5,7,...}2Z".




Prime element p of R:

e R — pR closed under mult;

e pR=#%R (ie., p ¢ R*);

e pR # {0} (i.e., p #0).
{oo}-integers Z have prime
elements {::2, ::3, ::5, ::7, . .},
e, {2,3,5,7,...}2Z".

Can write any x € Z — {0}
uniquely as u2%23€35% ... where
uecl* e, €40,1,2,...}.
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Prime element p of R:

e R — pR closed under mult;

e pR=#%R (ie., p ¢ R*);

e pR # {0} (i.e., p #0).
{oo}-integers Z have prime
elements {::2, ::3, ::5, ::7, . .},
e, {2,3,5,7,...}2Z".

Can write any x € Z — {0}
uniquely as u2%23€35% ... where
uecl* e, €40,1,2,...}.

Log: nonnegative combination of
(log2, —log2,0,0,...);

(log 3,0, —log3,0,...);

etc. u disappears in log vector.

11



{00, 2, 3}-integers 2434Z have
prime elements {+5, +7,...}.
2,3 € (2434Z)*; no longer primel
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{00, 2, 3}-integers 2434Z have

prime elements {+5, +7,...}.
2,3 € (2434Z)*; no longer primel

Can write any x € 2434Z — {0}
uniquely as ub5%7¢7 - - - where
u € (24342)*, e, <40,1,2,...}.



12
{00, 2, 3}-integers 2434Z have

prime elements {+5, +7,...}.
2,3 € (2434Z)*; no longer primel

Can write any x € 2434Z — {0}
uniquely as ub5%7¢7 - - - where
u € (24342)*, e, <40,1,2,...}.

l.e. U € ::2232.

u logs: integer combination of
(log?2, —log2,0,...),
(log3,0,—log3,...).




12

{00, 2, 3}-integers 2434Z have
prime elements {+5, +7,...}.
2,3 € (2434Z)*; no longer primel

Can write any x € 2434Z — {0}

uniquely
u € (243

as ub 7 ... where
£Z)* e, <€4{0,1,2,...}.

-0ZL3Z

l.e. U E =

u logs: integer combination of

(log 2, —
(log 3,0,

HE57ET7 . .

etc.

log2,0,...),
—log3,...).

- logs: combine

(log5h,0,0, —logh,...);
(log7,0,0,0,—log7,...);



The 4th cyclotomic field

I

the usual v/—1 in C.

Q(/) =Q + Qi is a field:

t
t

ne “field of Gaussian rationals’:

ne “4th cyclotomic field™ .

e.g. 3/11 —2i/5 € Q(i).

13



The 4th cyclotomic field

I

the usual v/—1 in C.

Q(/) =Q + Qi is a field:

t
t

ne “field of Gaussian rationals’:

ne “4th cyclotomic field™ .

e.g. 3/11 —2i/5 € Q(i).

(More generally, Q(a) means the

smallest field containing Q, o.)
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13

The 4th cyclotomic field

I

the usual v/—1 in C.

Q(/) =Q + Qi is a field:

t
t

ne “field of Gaussian rationals’:

ne “4th cyclotomic field™ .

e.g. 3/11 —2i/5 € Q(i).

(More generally, Q(a) means the

smallest field containing Q, o.)

Fact: Each x € Q(/)*

factors uniquely as rﬁpep pEp
where r € {1,i,—1, —i};
P={1+i32+i2—1i,...};
each ep Is an integer.



14
la+ bi|?> = a° + b° for a, b € R.
For each p € P: have p e Z + Zi,
and |p|? is a prime not in 3 + 4Z
or the square of a prime in 3+4Z:

p=1+41: p|? =
p=3: p|? =9
p=2+1: p2:
p=2—i p|* =
p=T p|* = 49
p=11 p|? = 121.
p = 21 p|? = 13.
p=3—2i p|? =13

etc. (To fully define P,
also handle 1,7, —1, —/ multiples.)



15
Standard powers of nonequivalent

nontrivial valuations on Q(/):

x|oo = |X|%. (Warning: x — |x]
is a valuation; x — |x|? isn't!)

X|14j = 27 1.

xl3 =9 (So now [3|3 = 1/9.)
X|oqj = b2+

X|o_; =572

x|7 = 497°¢7

x|11 = 1217 €11,

X|342;i = 1375342,

X|3_p; = 13732/,

Etc. These have product 1.
For x = 0, all valuations O.



x — (log |X|co, log [x|14j, - - )
maps the group Q(/)* onto
ne infinite-dimensional lattice
og2,—10g2,0,0,0,...)Z +
0g9,0,—10g9,0,0,...)Z +
0g5,0,0, —logh,0,...)Z +

o N N S S

0g5,0,0,0,—logh,...)Z+ - --

16



16
x — (log |X|co, log [x|14j, - - )

maps the group Q(/)* onto

ne infinite-dimensional lattice
og2,—10g2,0,0,0,...)Z +
0g9,0,—10g9,0,0,...)Z +
0g5,0,0, —logh,0,...)Z +
(log5h,0,0,0, —logh,...)Z + - --

A~ /™ /™ +

S§CH{o0,1+14,3,...}, 0€S:
x € Q(i)* is called an S-unit
if log|x|, =0 foreach p & S.



16
x — (log |X|co, log [x|14j, - - )

maps the group Q(/)* onto

ne infinite-dimensional lattice
og2,—10g2,0,0,0,...)Z +
0g9,0,—10g9,0,0,...)Z +
0g5,0,0, —logh,0,...)Z +
(log5h,0,0,0, —logh,...)Z + - --

A~ /™ /™ +

S§CH{o0,1+14,3,...}, 0€S:
x € Q(i)* is called an S-unit
if log|x|, =0 foreach p & S.

e.g. {oo}-units: {1,/,—1, —i}.



x — (log |X|co, log [x|14j, - - )
maps the group Q(/)* onto
ne infinite-dimensional lattice
og2,—10g2,0,0,0,...)Z +
0g9,0,—10g9,0,0,...)Z +
0g5,0,0, —logh,0,...)Z +
(log5h,0,0,0, —logh,...)Z + - --

A~ /™ /™ +

S§CH{o0,1+14,3,...}, 0€S:
x € Q(i)* is called an S-unit
if log|x|, =0 foreach p & S.

e.g. {oo}-units: {1,/,—1, —i}.

e.g. {00,1+4 17,2+ i}-unit lattice:
(log?2, —log2,0,0,0,...)Z
(log5h,0,0, —logh,0,...)Z.

16



Variant appearing in literature:

Split |x|s iNto two copies of |x|.

Gives slightly different lattice:

(0.5log?2,0.5l0g2, —log2,0,0,0,...
(0.5log9,0.510g9,0,—10g9,0,0,...
(0.5log5,0.5l0g5,0,0,—logh,0,...
(0.5

Minor advantages: e.g.,

some definitions of the lattice

become slightly more concise.

But now have redundant columns,

eac
pro

n column deviating from the

nability interpretation.

0g5,0.5logh,0,0,0, —logh, ...

17

N e N N’



The 8th cyclotomic field

Cm = exp(2mi/m) for m € Z>1.
ko= (L4 VD Gt
Q(¢s) = Q + Q¢ + QL + Q.

18
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The 8th cyclotomic field

Cm = exp(2mi/m) for m € Z>1.
ko= (L4 VD Gt
Q(¢s) = Q + Q¢ + QL + Q.

Fact: Each x € Q({3)*

factors uniquely as ru [[,-p p
where r € {1,s, ..., Cg};
P={14+¢s1—C—C,---};
u=1+C8+C§; ey € L; ep € L
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The 8th cyclotomic field

Cm = exp(2mi/m) for m € Z>1.
ko= (L4 VD Gt
Q(¢s) = Q + Q¢ + QL + Q.

Fact: Each x € Q({3)*

factors uniquely as ru [[,-p p
where r € {1, s, .. .,Cg};
P={1+{s1—Cs—¢C§ - -}
u=1+{s+¢5 enc€Z ecl

Why isn't u included in P?
Answer: We'll want to use P to
iIndex various nontrivial valuations.

Exercise: u valuation is trivial.



Standard valuation power co7:

X|ooy = |x]?.

19



Standard valuation power co7:

X|ooy = |x]?.

Standard valuation power co3:
X|ooy = lo3(x)|? where

o3(ap + a1s + al§ + a3¢3)
= ap + a1¢g + @l + a3¢g.

Exercise: o3(xy) = a3(x)a3(y).

19



Standard valuation power co7:

X|ooy = |x]?.

Standard valuation power co3:
X|ooy = lo3(x)|? where

o3(ap + a1s + al§ + a3¢3)
= ap + a1¢g + @l + a3¢g.

Exercise: o3(xy) = a3(x)a3(y).

To see 001, 003 are inequivalent:

1__€80O1:2_|_\/§>11
14 {8loos = 2/(2+V/2) < 1.
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Standard valuation power co7:

X|ooy = |x]?.

Standard valuation power co3:
X|ooy = lo3(x)|? where

03(ap + a1s + al§ + a3¢3)
= ap + a1¢g + @l + a3¢g.

Exercise: o3(xy) = a3(x)a3(y).

To see 001, 003 are inequivalent:

1__€80O1:2_|_\/§>11
14 {8loos = 2/(2+V/2) < 1.

Standard valuation for p € P:

X|p = N(p)~ P, using prime
power N(p) = [Plooy [Ploos

19



{001, 003 }-integers:
Z[¢s] = Z + Z{g + Z¢5 + Z¢3.
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{001, 003 }-integers:

Z[¢s] = Z + Z{g + Z¢5 + Z¢3.

{001, 003 }-units: Céo Tl
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{001, 003 }-integers:
Z[¢s] = Z + Z{g + Z¢5 + Z¢3.

{001, 003 }-units: Céo Tl

{001, 003 }-unit lattice:
(1.76...,-1.76...,0,...)Z.
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{001, 003 }-integers:

Z[¢s] = Z + Z{g + Z¢5 + Z¢3.
{001, 003 }-units: Céo u<.

{001, 003 }-unit lattice:
(1.76...,-1.76...,0,...)Z.

Again increase S for more S-units.

{001, 003, 1 + (g }-units:



20
{001, 003 }-integers:

Z[¢s] = Z + Z{g + Z¢5 + Z¢3.
{001, 003 }-units: Céo u<.

{001, 003 }-unit lattice:
(1.76...,-1.76...,0,...)Z.

Again increase S for more S-units.

{001, 003, 1 + (g }-units:

{001, o003, 1 + Cg}—unit lattice:
(1.76...,-1.76...,0,...)Z +
(122...,-053...,-0.69...,... \Z.



21
Reasonably short basis

for the infinite-dimensional
lattice of Q({g)* logs,
shown truncated after 2 digits:

1.76 —1.76 O 0 0
1.22 —-0.53 -0.69 O 0
1.09 1.09 0 =219 O
1.09 1.09 O 0 =219



21
Reasonably short basis

for the infinite-dimensional
lattice of Q({g)* logs,
shown truncated after 2 digits:

1.76 —1.76 O 0 0
1.22 —-0.53 -0.69 O 0
1.09 1.09 0 =219 O
1.09 1.09 O 0 =219

Diagonal after 2 columns.
Compare to the lattice bases for
Q, Q(/): diagonal after 1 column.
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Reasonably short basis

for the infinite-dimensional

lattice of Q({g)* logs,
shown truncated after 2 digits:

1.76 —1.76 O 0 0
1.22 —-0.53 -0.69 O 0
1.09 1.09 0 =219 O
1.09 1.09 O 0 =219

Diagonal after 2 columns.
Compare to the lattice bases for
Q, Q(/): diagonal after 1 column.

Exercise: Find shorter basis.



The 16th cyclotomic field

(16 = exp(27i/16) so <?6 = —1.

Q(<16) = Q+ Q16 + QLEs + QL3
+ Q¢ + Qs + QLY + Q.

22
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The 16th cyclotomic field

(16 = exp(27i/16) so <?6 = —1.

Q(<16) = Q+ Q16 + QLEs + QL3
+ Q¢ + Qs + QLY + Q.

8th roots of —1 in C;
STRISTRISTRL ST
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mapping (16 to {i6.
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The 16th cyclotomic field

(16 = exp(27i/16) so <?6 = —1.

Q(<16) = Q+ Q16 + QLEs + QL3
+ Q¢ + Qs + QLY + Q.

8th roots of —1 in C;
STRISTRISTRL ST

Each odd integer j has a unique

ring morphism o; : Q(¢16) — C
mapping (16 to {i6.

Define [x|oo; = |0j(x)|2.
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The 16th cyclotomic field

(16 = exp(27i/16) so <?6 = —1.

Q(<16) = Q+ Q16 + QLEs + QL3
+ Q¢ + Qs + QLY + Q.

8th roots of —1 in C;
STRISTRISTRL ST

Each odd integer j has a unique

ring morphism o; : Q(¢16) — C
mapping (16 to {i6.

Define [x|oo; = |0j(x)|2.

Inequivalent: o071, 003, 005, 007.



{oo}-integers, meaning
{001, 003, 005, 007 }-integers:
Z[¢16) = Z + Z16 + Z¢5g + ZE5

+ Z¢fe + 286 + 28 + 285,

23



{oo}-integers, meaning
{001, 003, 005, 007 }-integers:
Z[¢16) = Z + Z16 + Z¢5g + ZE5

+ Z¢fe + 286 + 28 + 285,

{ oo }-units: <126 ut u3z u5Z where

uz =1+ C16 T C?6 = o3(u1),
us =1+ C%@ T C%g = o5(u1):

23
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{oo}-integers, meaning

{001, 003, 005, 007 }-integers:
Z[¢16] = Z + Zli + Z856 + 23
+ Z¢fe + 286 + 28 + 285,

{ oo }-units: <126 ut u3z u5Z where

ur =1+ {16 + (i,

uz =1+ C16 T C?6 — 03(U1)v

us = 1+ C%@ T C%g — 05(“1)-
Exercise: ujuzusuy; = —1 where
u7 =1+ C16 T C16 = o7(u1).




23
{oo}-integers, meaning

{001, 003, 005, 007 }-integers:
Z[¢16] = Z + Zli + Z856 + 23
+ Z¢fe + 286 + 28 + 285,

{00 }-units: <126 ut u3z u5Z where

ur =1+ {16 + (i,

uz =1+ C16 T C?6 — 03(U1)v

us = 1+ C%@ T C%g — 05(“1)-
Exercise: ujuzusuy; = —1 where
u7 =1+ C16 T C16 = o7(u1).

Logs of uy, uz, us, truncated:
2.09 1.13 —2.89 —-0.33
1.13 —0.33 2.09 —-2.89

—2.89 2.09 —-0.33 1.13



24
In the infinite-dimensional lattice

of Q({16)* logs, a diagonal starts
after the four oo columns:

2.09 1.13-289-033 0 0
1.13-0.33 2.09 -2.39 O 0
—-2.89 2.09-033 1.13 O 0
1.34 1.01 021 -1.88—-0.69 O
—2.

1.94 -0.68 093 0.58 O 8
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The general picture: Number of
oo columns is between n/2 and

n for a degree-n number field,
and a diagonal appears almost
immediately after the oo columns.



