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y = y*z
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Allowing any weight ≤128:

def pow256bitweightle128(x,e):

y,i,j = 1,255,0

for loop in range(384):

z = y+(x-y)*j

z = z+(1-z)*(i<0)

y = y*z

bit = 1&(e>>max(i,0))

i = i-(j|(1-bit))

j = bit&(1-j)

assert i < 0

return y



7

This is like CPU’s perspective on

original square-and-multiply.

j is “instruction pointer”:

0 if at top of loop,

1 if in middle of loop.

Each “instruction” here

includes exactly one multiply.

Try to choose instruction set

with big useful operations,

avoiding control overhead.

Analogous to designing CPU.

8

Following data-flow rules,

assuming all arithmetic (including

i shifts etc.) is constant-time,

assuming e weight exactly 128:

def pow256bit(x,e):

y,i,j = 1,255,0

while i >= 0:

z = y+(x-y)*j

y = y*z

bit = 1&(e>>i)

i = i-(j|(1-bit))

j = bit&(1-j)

return y

9

Allowing any weight ≤128:

def pow256bitweightle128(x,e):

y,i,j = 1,255,0

for loop in range(384):

z = y+(x-y)*j

z = z+(1-z)*(i<0)

y = y*z

bit = 1&(e>>max(i,0))

i = i-(j|(1-bit))

j = bit&(1-j)

assert i < 0

return y



7

This is like CPU’s perspective on

original square-and-multiply.

j is “instruction pointer”:

0 if at top of loop,

1 if in middle of loop.

Each “instruction” here

includes exactly one multiply.

Try to choose instruction set

with big useful operations,

avoiding control overhead.

Analogous to designing CPU.

8

Following data-flow rules,

assuming all arithmetic (including

i shifts etc.) is constant-time,

assuming e weight exactly 128:

def pow256bit(x,e):

y,i,j = 1,255,0

while i >= 0:

z = y+(x-y)*j

y = y*z

bit = 1&(e>>i)

i = i-(j|(1-bit))

j = bit&(1-j)

return y

9

Allowing any weight ≤128:

def pow256bitweightle128(x,e):

y,i,j = 1,255,0

for loop in range(384):

z = y+(x-y)*j

z = z+(1-z)*(i<0)

y = y*z

bit = 1&(e>>max(i,0))

i = i-(j|(1-bit))

j = bit&(1-j)

assert i < 0

return y



8

Following data-flow rules,

assuming all arithmetic (including

i shifts etc.) is constant-time,

assuming e weight exactly 128:

def pow256bit(x,e):

y,i,j = 1,255,0

while i >= 0:

z = y+(x-y)*j

y = y*z

bit = 1&(e>>i)

i = i-(j|(1-bit))

j = bit&(1-j)

return y

9

Allowing any weight ≤128:

def pow256bitweightle128(x,e):

y,i,j = 1,255,0

for loop in range(384):

z = y+(x-y)*j

z = z+(1-z)*(i<0)

y = y*z

bit = 1&(e>>max(i,0))

i = i-(j|(1-bit))

j = bit&(1-j)

assert i < 0

return y



8

Following data-flow rules,

assuming all arithmetic (including

i shifts etc.) is constant-time,

assuming e weight exactly 128:

def pow256bit(x,e):

y,i,j = 1,255,0

while i >= 0:

z = y+(x-y)*j

y = y*z

bit = 1&(e>>i)

i = i-(j|(1-bit))

j = bit&(1-j)

return y

9

Allowing any weight ≤128:

def pow256bitweightle128(x,e):

y,i,j = 1,255,0

for loop in range(384):

z = y+(x-y)*j

z = z+(1-z)*(i<0)

y = y*z

bit = 1&(e>>max(i,0))

i = i-(j|(1-bit))

j = bit&(1-j)

assert i < 0

return y

Exercise: constant-time ECC

scalar mult with sliding windows.


