Constant-time This code uses 256 squarings,
square-and-multiply plus 1 extra multiplication

. for each bit set in e.
D. J. Bernstein

L L . Problem when e Is secret: time
University of lllinois at Chicago;

Ruhr University Bochum leaks number of bits set in e.

def pow256bit(x,e):
y =1
for i in reversed(range(256)):
y = ¥y*y
if 1&(e>>i):
y = ¥V*X

return y

Constant-time This code uses 256 squarings,

square-and-multiply plus 1 extra multiplication

. for each bit set in e.
D. J. Bernstein

L L . Problem when e Is secret: time
University of lllinois at Chicago;

Ruhr University Bochum leaks number of bits set in e.

“I'll choose secret 256-bit e with

def pow256bit(x,e) : exactly 128 bits set. There are

y =1
for i in reversed(range(256)):
y = ¥y*y
if 1&(e>>i):
y = ¥V*X

return y

enough of these e, and then
there are no more leaks.”

Constant-time This code uses 256 squarings,

square-and-multiply plus 1 extra multiplication

. for each bit set in e.
D. J. Bernstein

L L . Problem when e Is secret: time
University of lllinois at Chicago;

Ruhr University Bochum leaks number of bits set in e.

“I'll choose secret 256-bit e with

def pow256bit(x,e) : exactly 128 bits set. There are

y =1
for i in reversed(range(256)):

enough of these e, and then
there are no more leaks.”

y = y*y — Time still depends on e,
if 1&(e>>1i): even if each multiplication
y = Y*X takes time independent of inputs.

return y

t-time
nd-multiply

rnstein

ty of lllinois at Chicago;
Iversity Bochum

256bit(x,e):

in reversed(range(256)):
y*y

1&(e>>1) :

= y*X

1y

This code uses 256 squarings,
plus 1 extra multiplication
for each bit set In e.

Problem when e is secret: time

leaks number of bits set in e.

“I'll choose secret 256-bit e with

exactly 128 bits set. There are

enough of these e, and then
there are no more leaks.”

— Time still depends on e,
even if each multiplication

takes time independent of inputs.

Hardwar

IS Inhere

CPU des

is at Chicago;
ochum

e):

sed(range(256)) :

This code uses 256 squarings,

plus 1 extra multiplication

for each bit set in e.

Problem when e is secret: time

leaks number of bits set in e.

“I'll choose secret 256-
exactly 128 bits set. T
enough of these e, and

it e with

nere are
then

there are no more leaks.”

— Time still depends on e,

even if each multiplication

takes time independent of inputs.

Hardware reality:

Is Inherently exper

CPU designers try

This code uses 256 squarings, Hardware reality: Accessing

plus 1 extra multiplication Is Inherently expensive.

for each bit set in e. CPU designers try to reduce

Problem when e is secret: time

120, . .
leaks number of bits set in e.
“I'll choose secret 256-bit e with
exactly 128 bits set. There are
enough of these e, and then
(956)) : there are no more leaks.

— Time still depends on e,
even if each multiplication
takes time independent of inputs.

This code uses 256 squarings,
plus 1 extra multiplication
for each bit set in e.

Problem when e is secret: time
leaks number of bits set in e.

“I'll choose secret 256-bit e with

exactly 128 bits set. There are
enough of these e, and then
there are no more leaks.”

— Time still depends on e,
even if each multiplication

takes time independent of inputs.

Hardware reality: Accessing RAM

Is Inherently expensive.

CPU designers try to reduce cost.

This code uses 256 squarings,
plus 1 extra multiplication
for each bit set in e.

Problem when e is secret: time
leaks number of bits set in e.

“I'll choose secret 256-bit e with

exactly 128 bits set. There are
enough of these e, and then
there are no more leaks.”

— Time still depends on e,
even if each multiplication

takes time independent of inputs.

Hardware reality: Accessing RAM

Is Inherently expensive.
CPU designers try to reduce cost.

Example: "L1 cache” typically
has 32KB of recently used data.

This cache inspects RAM

addresses, performs various
computations on addresses
to try to save time.

This code uses 256 squarings,
plus 1 extra multiplication
for each bit set in e.

Problem when e is secret: time
leaks number of bits set in e.

“I'll choose secret 256-bit e with

exactly 128 bits set. There are
enough of these e, and then
there are no more leaks.”

— Time still depends on e,
even if each multiplication

takes time independent of inputs.

Haro

ware reality: Accessing RAM

Is Inherently expensive.

CPU

designers try to reduce cost.

Example: "L1 cache” typically
has 32KB of recently used data.

This

cache inspects RAM

addresses, performs various

computations on addresses

to tr

y to save time.

. so time i1s a function of RAM

addr
from

esses. Avoid all data flow
secrets to RAM addresses.

le uses 256 squarings,
xtra multiplication
bit set In e.

when e Is secret: time
mber of bits set In e.

ose secret 256-bit e with
|28 bits set. There are
of these e, and then

> no more leaks.”

still depends on e,
ach multiplication

ne independent of inputs.

Haro

ware reality: Accessing RAM

Is Inherently expensive.

CPU

designers try to reduce cost.

Example: "L1 cache” typically
has 32KB of recently used data.

This

cache inspects RAM

addresses, performs various

computations on addresses

to try to save time.

. so time i1s a function of RAM

addresses. Avoid all data flow

from

secrets to RAM addresses.

Example
from sec

Often de

for softw
the sam

O squarings,
slication
e.

5 secret: time
Its set In e.

250-bit e with

t. There are
and then
leaks.”

nds on e,
plication

\dent of inputs.

Haro

ware reality: Accessing RAM

Is Inherently expensive.

CPU

designers try to reduce cost.

Example: "L1 cache” typically
has 32KB of recently used data.

This
addr

cache inspects RAM
esses, performs various

computations on addresses

to tr

y to save time.

. so time i1s a function of RAM

addr
from

esses. Avoid all data flow
secrets to RAM addresses.

Example: Avoid a
from secrets to br:

Often described as
for software, but c
the same hardware

Ime

with

alre

IpuUts.

Haro

ware reality: Accessing RAM

Is Inherently expensive.

CPU

designers try to reduce cost.

Example: "L1 cache” typically
has 32KB of recently used data.

This

cache inspects RAM

addresses, performs various

computations on addresses

to try to save time.

. so time i1s a function of RAM

addresses. Avoid all data flow

from

secrets to RAM addresses.

Example: Avoid all data flo
from secrets to branch cond

Often described as a separat
for software, but comes fron
the same hardware reality.

Haro

ware reality: Accessing RAM

Is Inherently expensive.

CPU

designers try to reduce cost.

Example: "L1 cache” typically
has 32KB of recently used data.

This

cache inspects RAM

addresses, performs various

computations on addresses

to tr

y to save time.

. so time i1s a function of RAM

addr
from

esses. Avoid all data flow
secrets to RAM addresses.

Example: Avoid all data flow
from secrets to branch conditions.

Often described as a separate rule
for software, but comes from
the same hardware reality.

Hardware reality: Accessing RAM

Is Inherently expensive.

CPU designers try to reduce cost.

Example: "L1 cache” typically
has 32KB of recently used data.

This cache inspects RAM

addresses, performs various
computations on addresses
to try to save time.

. so time i1s a function of RAM
addresses. Avoid all data flow
from secrets to RAM addresses.

Example: Avoid all data flow
from secrets to branch conditions.

Often described as a separate rule
for software, but comes from
the same hardware reality.

How CPU runs a program
(example of “code = data”):

while True:
insn = RAM[state.ip]

state = execute(state,insn)

ip (“instruction pointer” or
“program counter”): address
in RAM of next instruction.

e reality: Accessing RAM
ntly expensive.

signers try to reduce cost.

: L1 cache” typically
B of recently used data.

he inspects RAM

s, performs various
'tions on addresses
) save time.

me is a function of RAM
s. Avoid all data flow
rets to RAM addresses.

Example: Avoid all data flow
from secrets to branch conditions.

Often described as a separate rule
for software, but comes from
the same hardware reality.

How CPU runs a program
(example of “code = data”):

while True:
insn = RAM[state.ip]

state = execute(state,insn)

ip (“instruction pointer” or
“program counter”): address
in RAM of next instruction.

retur:

If bit Is

dN unusSe

Accessing RAM
1SIVE.

to reduce cost.

he” typically
tly used data.

s RAM

1S various
\ddresses

a
-’ B

nction of RAM
1|l data flow
\M addresses.

Example: Avoid all data flow
from secrets to branch conditions.

Often described as a separate rule
for software, but comes from
the same hardware reality.

How CPU runs a program
(example of “code = data”):

while True:
insn = RAM[state.ip]

state = execute(state,insn)

ip (“instruction pointer” or
“program counter”): address
in RAM of next instruction.

Standard square-a

to follow these dan
Square and always

def pow256bit (x,
y =1
for 1 1in rever
y = y*y
yxX = y*X
bit = 1&(e>>
y = y+(yx-y)

return y

If bit is O then y:

an unused “‘dumm

RAM

RAM

W

SES.

Example: Avoid all data flow
from secrets to branch conditions.

Often described as a separate rule
for software, but comes from
the same hardware reality.

How CPU runs a program
(example of “code = data”):

while True:
insn = RAM[state.ip]

state = execute(state,insn)

ip (“instruction pointer” or
“program counter”): address
in RAM of next instruction.

Standard square-and-multip

to follow these data-flow ru
Square and always multiply.

def pow256bit(x,e):
y =1
for i in reversed(range
y = y*y
yX = y*X
bit = 1&(e>>i)
y = y+(yx-y)*bit

return y

If bit is O then yx computa
an unused “dummy operatic

Example: Avoid all data flow
from secrets to branch conditions.

Often described as a separate rule
for software, but comes from
the same hardware reality.

How CPU runs a program
(example of “code = data”):

while True:
insn = RAM[state.ip]

state = execute(state,insn)

ip (“instruction pointer” or
“program counter”): address
in RAM of next instruction.

Standard square-and-multiply fix

to follow these data-flow rules:
Square and always multiply.

def pow256bit(x,e):
y =1
for i in reversed(range(256)):
y = ¥*y
yX = y*X
bit = 1&(e>>1i)
y = y+(yx-y)*bit

return y

If bit is O then yx computation is
an unused “dummy operation’ .

- Avoid all data flow
rets to branch conditions.

scribed as a separate rule
/are, but comes from
> hardware reality.

U runs a program
e of “code = data”):

rue :
= RAM[state.ip]

= execute(state,insn)

truction pointer” or
n counter”): address
of next instruction.

Standard square-and-multiply fix

to follow these data-flow rules:
Square and always multiply.

def pow256bit(x,e):
y=1

for i in reversed(range(256)):

y = y*y

yX = y*X

bit = 1&(e>>i)

y = y+(yx-y)*bit

return y

If bit is O then yx computation is
an unused “dummy operation” .

Another

def pow
ys1,]
while
if

y

1:

els
y
1

retur;

Il data flow
anch conditions.

5 a separate rule
omes from
> reality.

rogram
= data”):

te.ip]

e(state,insn)

ointer’ or
'): address
struction.

Standard square-and-multiply fix

to follow these data-flow rules:
Square and always multiply.

def pow256bit(x,e):
y =1

for i in reversed(range(256)):

y = y*y

yX = y*X

bit = 1&(e>>i)

y = y+(yx-y)*bit

return y

If bit is O then yx computation is
an unused “dummy operation’ .

Another approach

def pow2b56bit (x,
y,1,j = 1,255,

while i1 >= O:

if j ==
y = ¥*y
if 1&(e>>i
j =1
else:
i = 1i-1
else:
y = ¥y*X
i,j = 1i-1,
return y

N

Itions.

e rule

L

nsn)

Standard square-and-multiply fix

to follow these data-flow rules:
Square and always multiply.

def pow256bit(x,e):
y=1

for i in reversed(range(256)):

y = y*y

yX = y*X

bit = 1&(e>>i)

y = y+(yx-y)*bit

return y

If bit is O then yx computation is
an unused “dummy operation” .

Another approach, not well

def pow256bit(x,e):
y,i,j = 1,255,0
while i1 >= O:
if j ==
y = y*y
if 1&(e>>i):
j =1
else:

i = 1-1

y = y*x
i,j = i-1,0

return y

5 6
Standard square-and-multiply fix Another approach, not well known:

to follow these data-flow rules: .
def pow256bit(x,e):

Square and always multiply.
: y PLY v,i,j = 1,255,0

def pow256bit(x,e): while i >= 0:
y =1 if § ==
for i in reversed(range(256)): y = y*y
y = yxy if 1&(e>>1i):
yX = ¥*X j =1
bit = 1&(e>>i) else:
y = y+(yx-y)*bit i=i-1
return y else:
y = ¥y*X

If bit is O then yx computation is
b - 79 1,J = i-l,O
an unused “dummy operation’ .

return y

1 square-and-multiply fix

/ these data-flow rules:
nd always multiply.

256bit(x,e):

in reversed(range(256)):

y*y

= y*x

= 1&(e>>i)
y+(yx-y)*bit
1y

0 then yx computation is
>d “dummy operation”.

6
Another approach, not well known:

def pow256bit(x,e):
y,i,j = 1,255,0
while 1 >= 0:
if j ==
y = y*y
if 1&(e>>i):
j =1
else:
i = 1-1
else:
y = y*X
i,j = 1i-1,0

return y

This is |
original .
J Is “Inst

O if at te
1ifinnm

Each “ir

includes

nd-multiply fix
ta-flow rules:
 multiply.

e):
sed(range(256)) :
i)

*bit

¢ computation Is
y operation’ .

6
Another approach, not well known:

def pow2b56bit(x,e):
y,i,j = 1,255,0
while i1 >= O:
if j ==
y = ¥*y
if 1&(e>>i):
j =1
else:

i =1-1

y = y*x
i,j = i-1,0

return y

This is like CPU's
original square-anc

J Is “Instruction p:

0 if at top of loop
1 if in middle of Ic

Each “instruction’
Includes exactly or

y fix

tion Is

n .

6
Another approach, not well known:

def pow256bit(x,e):
y,i,j = 1,255,0
while i1 >= O:
if j ==
y = y*y
if 1&(e>>i):
j =1
else:

i = 1-1

y = y*x
i,j = i-1,0

return y

This is like CPU’s perspectis
original square-and-multiply.

J Is “Instruction pointer’:
0 if at top of loop,
1 if in middle of loop.

Each “instruction’ here

includes exactly one multipl

Another approach, not well known:

def pow2b56bit(x,e):
y,i,j = 1,255,0
while 1 >= 0:
if j ==
y = ¥*y
if 1&(e>>i):
j =1
else:
i = 1-1
else:
y = y*X
i,j = 1-1,0

return y

6

This is like CPU's perspective on
original square-and-multiply.

J Is “Instruction pointer’:
0 if at top of loop,
1 if in middle of loop.

Each “instruction” here
includes exactly one multiply.

Another approach, not well known:

def pow2b56bit(x,e):
y,i,j = 1,255,0
while 1 >= 0:
if j ==
y = ¥*y
if 1&(e>>i):
j =1
else:
i = 1-1
else:
y = y*X
i,j = 1-1,0

return y

6

This is like CPU's perspective on
original square-and-multiply.

J Is “Instruction pointer’:
0 if at top of loop,
1 if in middle of loop.

Each “instruction” here
includes exactly one multiply.

Try to choose instruction set
with big useful operations,
avoliding control overhead.

Analogous to designing CPU.

approach, not well known:

256bit (x,e) :

6

This is like CPU’s perspective on
original square-and-multiply.

J Is “Instruction pointer’:
0 if at top of loop,
1 if in middle of loop.

Each “instruction” here
includes exactly one multiply.

Try to choose instruction set
with big useful operations,
avolding control overhead.

Analogous to designing CPU.

Followin
assumin;
I shifts ¢

assumin;

def pow
Y1,
while

z -_

y -_
bit

retur;

- not well known:

e):
0]

6

This is like CPU's perspective on
original square-and-multiply.

J Is “Instruction pointer’:
0 if at top of loop,
1 if in middle of loop.

Each “instruction” here
includes exactly one multiply.

Try to choose instruction set
with big useful operations,
avolding control overhead.

Analogous to designing CPU.

Following data-flo
assuming all arithr
i shifts etc.) is cor
assuming e weight

def pow256bit (x,
y,i,j = 1,255,

while i1 >= 0:

z = y+(x-y)*
y = y*z

bit = 1&(e>>
i=1i-(jl(1-
j = bit&(1-]

return y

known:

This is like CPU’s perspective on
original square-and-multiply.

J Is “Instruction pointer’:
0 if at top of loop,
1 if in middle of loop.

Each “instruction” here
includes exactly one multiply.

Try to choose instruction set
with big useful operations,
avolding control overhead.

Analogous to designing CPU.

Following data-flow rules,

assuming all arithmetic (incl
i shifts etc.) is constant-tim
assuming e weight exactly 1

def pow256bit(x,e):
y,i,j = 1,255,0
while 1 >= O:
z = y+(x=y)*]
y = y*z
bit = 1&(e>>i)
i-(j 1 (1-bit))
j = bit&(1-j)

—
Il

return y

This is like CPU's perspective on
original square-and-multiply.

J Is “Instruction pointer’:
0 if at top of loop,
1 if in middle of loop.

Each “instruction” here
includes exactly one multiply.

Try to choose instruction set
with big useful operations,
avoliding control overhead.

Analogous to designing CPU.

Following data-flow rules,
assuming all arithmetic (including
i shifts etc.) is constant-time,
assuming e weight exactly 128:

def pow256bit(x,e):
y,i,j = 1,255,0
while 1 >= 0O:
z = y+(x=y)*]
y = y*z
bit = 1&(e>>1i)
i=1i-(jl(1-bit))
j = bit&(1-j)

return y

ke CPU's perspective on
square-and-multiply.

ruction pointer’ :
op of loop,
iddle of loop.

1Istruction’ here

exactly one multiply.

hoose instruction set
useful operations,
“control overhead.

us to designing CPU.

Following data-flow rules,
assuming all arithmetic (including
i shifts etc.) is constant-time,
assuming e weight exactly 128:

def pow256bit(x,e):
y,i,j = 1,255,0
while i >= 0:
z = y+(x=y)*]
y = y*z
bit = 1&(e>>1i)
i-(j 1 (1-bit))
j = bit&(1-j)

—
Il

return y

Allowing

def pow
ys1,]
for 1

Z -_

Z -_—

y —_

bit

asSer’

retur:

perspective on
I-multiply.
ointer’ :

op.

here
1e multiply.

ruction set
erations,
verhead.

oning CPU.

Following data-flow rules,
assuming all arithmetic (including
i shifts etc.) is constant-time,
assuming e weight exactly 128:

def pow256bit(x,e):
y,i,j = 1,255,0
while 1 >= 0:
z = y+(x=y)*]
y = y*z
bit = 1&(e>>i)
i=1i-(jl(1-bit))
j = bit&(1-j)

return y

Allowing any weig

def pow256bitwel
y,i,j = 1,255,

for loop 1in ra

z = y+(x-y)*
z = z+(1-z)*
y = y*z

bit = 1&(e>>
i=1i-(j1(1-
j = bit&(1-]

assert 1 < O

return y

/€ 0N

Following data-flow rules,
assuming all arithmetic (including
i shifts etc.) is constant-time,
assuming e weight exactly 128:

def pow256bit(x,e):
y,i,j = 1,255,0
while 1 >= O:
z = y+(x=y)*]
y = y*z
bit = 1&(e>>i)
i=1i-(jl(1-bit))
j = bit&(1-j)

return y

Allowing any weight <128:

def pow256bitweightlel28(
v,i,j = 1,255,0
for loop in range(384):
z = y+(x-y)*]
z+(1-z)*(i<0)
y = y*z
bit = 1&(e>>max(i,0))
i-(j1(1-bit))
i = bit&(1-j)

assert 1 < 0O

N
Il

—
Il

return y

Following data-flow rules,
assuming all arithmetic (including
i shifts etc.) is constant-time,
assuming e weight exactly 128:

def pow256bit(x,e):
y,i,j = 1,255,0
while 1 >= 0:
z = y+(x-y)*]
y = y*z
bit = 1&(e>>i)
i-(j1(1-bit))
j = bit&(1-j)

=
Il

return y

Allowing any weight <128:

def pow2b56bitweightlel28(x,e):
v,i,j = 1,255,0
for loop in range(384):
z = yt(x-y)*]
z+(1-z) * (i<0)
y = y*z
bit = 1&(e>>max(i,0))
i-(j1(1-bit))
i = bit&(1-3)

N
Il

=
Il

assert 1 < O

return y

Following data-flow rules,
assuming all arithmetic (including
i shifts etc.) is constant-time,
assuming e weight exactly 128:

def pow256bit(x,e):
y,i,j = 1,255,0
while 1 >= 0:
z = y+(x-y)*]
y = y*z
bit = 1&(e>>i)
i-(j1(1-bit))
j = bit&(1-j)

=
Il

return y

Allowing any weight <128:

def pow2b56bitweightlel28(x,e):
v,i,j = 1,255,0
for loop in range(384):
z = yt(x-y)*]
z+(1-z) * (i<0)
y = y*z
bit = 1&(e>>max(i,0))
i-(j1(1-bit))
i = bit&(1-3)

N
Il

=
Il

assert 1 < O

return y

Exercise: constant-time ECC
scalar mult with sliding windows.

