
1

Constant-time

square-and-multiply

D. J. Bernstein

University of Illinois at Chicago;

Ruhr University Bochum

def pow256bit(x,e):

y = 1

for i in reversed(range(256)):

y = y*y

if 1&(e>>i):

y = y*x

return y

2

This code uses 256 squarings,

plus 1 extra multiplication

for each bit set in e.

Problem when e is secret: time

leaks number of bits set in e.



1

Constant-time

square-and-multiply

D. J. Bernstein

University of Illinois at Chicago;

Ruhr University Bochum

def pow256bit(x,e):

y = 1

for i in reversed(range(256)):

y = y*y

if 1&(e>>i):

y = y*x

return y

2

This code uses 256 squarings,

plus 1 extra multiplication

for each bit set in e.

Problem when e is secret: time

leaks number of bits set in e.

“I’ll choose secret 256-bit e with

exactly 128 bits set. There are

enough of these e, and then

there are no more leaks.”



1

Constant-time

square-and-multiply

D. J. Bernstein

University of Illinois at Chicago;

Ruhr University Bochum

def pow256bit(x,e):

y = 1

for i in reversed(range(256)):

y = y*y

if 1&(e>>i):

y = y*x

return y

2

This code uses 256 squarings,

plus 1 extra multiplication

for each bit set in e.

Problem when e is secret: time

leaks number of bits set in e.

“I’ll choose secret 256-bit e with

exactly 128 bits set. There are

enough of these e, and then

there are no more leaks.”

— Time still depends on e,

even if each multiplication

takes time independent of inputs.



1

Constant-time

square-and-multiply

D. J. Bernstein

University of Illinois at Chicago;

Ruhr University Bochum

def pow256bit(x,e):

y = 1

for i in reversed(range(256)):

y = y*y

if 1&(e>>i):

y = y*x

return y

2

This code uses 256 squarings,

plus 1 extra multiplication

for each bit set in e.

Problem when e is secret: time

leaks number of bits set in e.

“I’ll choose secret 256-bit e with

exactly 128 bits set. There are

enough of these e, and then

there are no more leaks.”

— Time still depends on e,

even if each multiplication

takes time independent of inputs.

3

Hardware reality: Accessing RAM

is inherently expensive.

CPU designers try to reduce cost.



1

Constant-time

square-and-multiply

D. J. Bernstein

University of Illinois at Chicago;

Ruhr University Bochum

def pow256bit(x,e):

y = 1

for i in reversed(range(256)):

y = y*y

if 1&(e>>i):

y = y*x

return y

2

This code uses 256 squarings,

plus 1 extra multiplication

for each bit set in e.

Problem when e is secret: time

leaks number of bits set in e.

“I’ll choose secret 256-bit e with

exactly 128 bits set. There are

enough of these e, and then

there are no more leaks.”

— Time still depends on e,

even if each multiplication

takes time independent of inputs.

3

Hardware reality: Accessing RAM

is inherently expensive.

CPU designers try to reduce cost.



1

Constant-time

square-and-multiply

D. J. Bernstein

University of Illinois at Chicago;

Ruhr University Bochum

def pow256bit(x,e):

y = 1

for i in reversed(range(256)):

y = y*y

if 1&(e>>i):

y = y*x

return y

2

This code uses 256 squarings,

plus 1 extra multiplication

for each bit set in e.

Problem when e is secret: time

leaks number of bits set in e.

“I’ll choose secret 256-bit e with

exactly 128 bits set. There are

enough of these e, and then

there are no more leaks.”

— Time still depends on e,

even if each multiplication

takes time independent of inputs.

3

Hardware reality: Accessing RAM

is inherently expensive.

CPU designers try to reduce cost.



2

This code uses 256 squarings,

plus 1 extra multiplication

for each bit set in e.

Problem when e is secret: time

leaks number of bits set in e.

“I’ll choose secret 256-bit e with

exactly 128 bits set. There are

enough of these e, and then

there are no more leaks.”

— Time still depends on e,

even if each multiplication

takes time independent of inputs.

3

Hardware reality: Accessing RAM

is inherently expensive.

CPU designers try to reduce cost.



2

This code uses 256 squarings,

plus 1 extra multiplication

for each bit set in e.

Problem when e is secret: time

leaks number of bits set in e.

“I’ll choose secret 256-bit e with

exactly 128 bits set. There are

enough of these e, and then

there are no more leaks.”

— Time still depends on e,

even if each multiplication

takes time independent of inputs.

3

Hardware reality: Accessing RAM

is inherently expensive.

CPU designers try to reduce cost.

Example: “L1 cache” typically

has 32KB of recently used data.

This cache inspects RAM

addresses, performs various

computations on addresses

to try to save time.



2

This code uses 256 squarings,

plus 1 extra multiplication

for each bit set in e.

Problem when e is secret: time

leaks number of bits set in e.

“I’ll choose secret 256-bit e with

exactly 128 bits set. There are

enough of these e, and then

there are no more leaks.”

— Time still depends on e,

even if each multiplication

takes time independent of inputs.

3

Hardware reality: Accessing RAM

is inherently expensive.

CPU designers try to reduce cost.

Example: “L1 cache” typically

has 32KB of recently used data.

This cache inspects RAM

addresses, performs various

computations on addresses

to try to save time.

: : : so time is a function of RAM

addresses. Avoid all data flow

from secrets to RAM addresses.



2

This code uses 256 squarings,

plus 1 extra multiplication

for each bit set in e.

Problem when e is secret: time

leaks number of bits set in e.

“I’ll choose secret 256-bit e with

exactly 128 bits set. There are

enough of these e, and then

there are no more leaks.”

— Time still depends on e,

even if each multiplication

takes time independent of inputs.

3

Hardware reality: Accessing RAM

is inherently expensive.

CPU designers try to reduce cost.

Example: “L1 cache” typically

has 32KB of recently used data.

This cache inspects RAM

addresses, performs various

computations on addresses

to try to save time.

: : : so time is a function of RAM

addresses. Avoid all data flow

from secrets to RAM addresses.

4

Example: Avoid all data flow

from secrets to branch conditions.

Often described as a separate rule

for software, but comes from

the same hardware reality.



2

This code uses 256 squarings,

plus 1 extra multiplication

for each bit set in e.

Problem when e is secret: time

leaks number of bits set in e.

“I’ll choose secret 256-bit e with

exactly 128 bits set. There are

enough of these e, and then

there are no more leaks.”

— Time still depends on e,

even if each multiplication

takes time independent of inputs.

3

Hardware reality: Accessing RAM

is inherently expensive.

CPU designers try to reduce cost.

Example: “L1 cache” typically

has 32KB of recently used data.

This cache inspects RAM

addresses, performs various

computations on addresses

to try to save time.

: : : so time is a function of RAM

addresses. Avoid all data flow

from secrets to RAM addresses.

4

Example: Avoid all data flow

from secrets to branch conditions.

Often described as a separate rule

for software, but comes from

the same hardware reality.



2

This code uses 256 squarings,

plus 1 extra multiplication

for each bit set in e.

Problem when e is secret: time

leaks number of bits set in e.

“I’ll choose secret 256-bit e with

exactly 128 bits set. There are

enough of these e, and then

there are no more leaks.”

— Time still depends on e,

even if each multiplication

takes time independent of inputs.

3

Hardware reality: Accessing RAM

is inherently expensive.

CPU designers try to reduce cost.

Example: “L1 cache” typically

has 32KB of recently used data.

This cache inspects RAM

addresses, performs various

computations on addresses

to try to save time.

: : : so time is a function of RAM

addresses. Avoid all data flow

from secrets to RAM addresses.

4

Example: Avoid all data flow

from secrets to branch conditions.

Often described as a separate rule

for software, but comes from

the same hardware reality.



3

Hardware reality: Accessing RAM

is inherently expensive.

CPU designers try to reduce cost.

Example: “L1 cache” typically

has 32KB of recently used data.

This cache inspects RAM

addresses, performs various

computations on addresses

to try to save time.

: : : so time is a function of RAM

addresses. Avoid all data flow

from secrets to RAM addresses.

4

Example: Avoid all data flow

from secrets to branch conditions.

Often described as a separate rule

for software, but comes from

the same hardware reality.



3

Hardware reality: Accessing RAM

is inherently expensive.

CPU designers try to reduce cost.

Example: “L1 cache” typically

has 32KB of recently used data.

This cache inspects RAM

addresses, performs various

computations on addresses

to try to save time.

: : : so time is a function of RAM

addresses. Avoid all data flow

from secrets to RAM addresses.

4

Example: Avoid all data flow

from secrets to branch conditions.

Often described as a separate rule

for software, but comes from

the same hardware reality.

How CPU runs a program

(example of “code = data”):

while True:

insn = RAM[state.ip]

state = execute(state,insn)

ip (“instruction pointer” or

“program counter”): address

in RAM of next instruction.



3

Hardware reality: Accessing RAM

is inherently expensive.

CPU designers try to reduce cost.

Example: “L1 cache” typically

has 32KB of recently used data.

This cache inspects RAM

addresses, performs various

computations on addresses

to try to save time.

: : : so time is a function of RAM

addresses. Avoid all data flow

from secrets to RAM addresses.

4

Example: Avoid all data flow

from secrets to branch conditions.

Often described as a separate rule

for software, but comes from

the same hardware reality.

How CPU runs a program

(example of “code = data”):

while True:

insn = RAM[state.ip]

state = execute(state,insn)

ip (“instruction pointer” or

“program counter”): address

in RAM of next instruction.

5

Standard square-and-multiply fix

to follow these data-flow rules:

Square and always multiply.

def pow256bit(x,e):

y = 1

for i in reversed(range(256)):

y = y*y

yx = y*x

bit = 1&(e>>i)

y = y+(yx-y)*bit

return y

If bit is 0 then yx computation is

an unused “dummy operation”.



3

Hardware reality: Accessing RAM

is inherently expensive.

CPU designers try to reduce cost.

Example: “L1 cache” typically

has 32KB of recently used data.

This cache inspects RAM

addresses, performs various

computations on addresses

to try to save time.

: : : so time is a function of RAM

addresses. Avoid all data flow

from secrets to RAM addresses.

4

Example: Avoid all data flow

from secrets to branch conditions.

Often described as a separate rule

for software, but comes from

the same hardware reality.

How CPU runs a program

(example of “code = data”):

while True:

insn = RAM[state.ip]

state = execute(state,insn)

ip (“instruction pointer” or

“program counter”): address

in RAM of next instruction.

5

Standard square-and-multiply fix

to follow these data-flow rules:

Square and always multiply.

def pow256bit(x,e):

y = 1

for i in reversed(range(256)):

y = y*y

yx = y*x

bit = 1&(e>>i)

y = y+(yx-y)*bit

return y

If bit is 0 then yx computation is

an unused “dummy operation”.



3

Hardware reality: Accessing RAM

is inherently expensive.

CPU designers try to reduce cost.

Example: “L1 cache” typically

has 32KB of recently used data.

This cache inspects RAM

addresses, performs various

computations on addresses

to try to save time.

: : : so time is a function of RAM

addresses. Avoid all data flow

from secrets to RAM addresses.

4

Example: Avoid all data flow

from secrets to branch conditions.

Often described as a separate rule

for software, but comes from

the same hardware reality.

How CPU runs a program

(example of “code = data”):

while True:

insn = RAM[state.ip]

state = execute(state,insn)

ip (“instruction pointer” or

“program counter”): address

in RAM of next instruction.

5

Standard square-and-multiply fix

to follow these data-flow rules:

Square and always multiply.

def pow256bit(x,e):

y = 1

for i in reversed(range(256)):

y = y*y

yx = y*x

bit = 1&(e>>i)

y = y+(yx-y)*bit

return y

If bit is 0 then yx computation is

an unused “dummy operation”.



4

Example: Avoid all data flow

from secrets to branch conditions.

Often described as a separate rule

for software, but comes from

the same hardware reality.

How CPU runs a program

(example of “code = data”):

while True:

insn = RAM[state.ip]

state = execute(state,insn)

ip (“instruction pointer” or

“program counter”): address

in RAM of next instruction.

5

Standard square-and-multiply fix

to follow these data-flow rules:

Square and always multiply.

def pow256bit(x,e):

y = 1

for i in reversed(range(256)):

y = y*y

yx = y*x

bit = 1&(e>>i)

y = y+(yx-y)*bit

return y

If bit is 0 then yx computation is

an unused “dummy operation”.



4

Example: Avoid all data flow

from secrets to branch conditions.

Often described as a separate rule

for software, but comes from

the same hardware reality.

How CPU runs a program

(example of “code = data”):

while True:

insn = RAM[state.ip]

state = execute(state,insn)

ip (“instruction pointer” or

“program counter”): address

in RAM of next instruction.

5

Standard square-and-multiply fix

to follow these data-flow rules:

Square and always multiply.

def pow256bit(x,e):

y = 1

for i in reversed(range(256)):

y = y*y

yx = y*x

bit = 1&(e>>i)

y = y+(yx-y)*bit

return y

If bit is 0 then yx computation is

an unused “dummy operation”.

6

Another approach, not well known:

def pow256bit(x,e):

y,i,j = 1,255,0

while i >= 0:

if j == 0:

y = y*y

if 1&(e>>i):

j = 1

else:

i = i-1

else:

y = y*x

i,j = i-1,0

return y



4

Example: Avoid all data flow

from secrets to branch conditions.

Often described as a separate rule

for software, but comes from

the same hardware reality.

How CPU runs a program

(example of “code = data”):

while True:

insn = RAM[state.ip]

state = execute(state,insn)

ip (“instruction pointer” or

“program counter”): address

in RAM of next instruction.

5

Standard square-and-multiply fix

to follow these data-flow rules:

Square and always multiply.

def pow256bit(x,e):

y = 1

for i in reversed(range(256)):

y = y*y

yx = y*x

bit = 1&(e>>i)

y = y+(yx-y)*bit

return y

If bit is 0 then yx computation is

an unused “dummy operation”.

6

Another approach, not well known:

def pow256bit(x,e):

y,i,j = 1,255,0

while i >= 0:

if j == 0:

y = y*y

if 1&(e>>i):

j = 1

else:

i = i-1

else:

y = y*x

i,j = i-1,0

return y



4

Example: Avoid all data flow

from secrets to branch conditions.

Often described as a separate rule

for software, but comes from

the same hardware reality.

How CPU runs a program

(example of “code = data”):

while True:

insn = RAM[state.ip]

state = execute(state,insn)

ip (“instruction pointer” or

“program counter”): address

in RAM of next instruction.

5

Standard square-and-multiply fix

to follow these data-flow rules:

Square and always multiply.

def pow256bit(x,e):

y = 1

for i in reversed(range(256)):

y = y*y

yx = y*x

bit = 1&(e>>i)

y = y+(yx-y)*bit

return y

If bit is 0 then yx computation is

an unused “dummy operation”.

6

Another approach, not well known:

def pow256bit(x,e):

y,i,j = 1,255,0

while i >= 0:

if j == 0:

y = y*y

if 1&(e>>i):

j = 1

else:

i = i-1

else:

y = y*x

i,j = i-1,0

return y



5

Standard square-and-multiply fix

to follow these data-flow rules:

Square and always multiply.

def pow256bit(x,e):

y = 1

for i in reversed(range(256)):

y = y*y

yx = y*x

bit = 1&(e>>i)

y = y+(yx-y)*bit

return y

If bit is 0 then yx computation is

an unused “dummy operation”.

6

Another approach, not well known:

def pow256bit(x,e):

y,i,j = 1,255,0

while i >= 0:

if j == 0:

y = y*y

if 1&(e>>i):

j = 1

else:

i = i-1

else:

y = y*x

i,j = i-1,0

return y



5

Standard square-and-multiply fix

to follow these data-flow rules:

Square and always multiply.

def pow256bit(x,e):

y = 1

for i in reversed(range(256)):

y = y*y

yx = y*x

bit = 1&(e>>i)

y = y+(yx-y)*bit

return y

If bit is 0 then yx computation is

an unused “dummy operation”.

6

Another approach, not well known:

def pow256bit(x,e):

y,i,j = 1,255,0

while i >= 0:

if j == 0:

y = y*y

if 1&(e>>i):

j = 1

else:

i = i-1

else:

y = y*x

i,j = i-1,0

return y

7

This is like CPU’s perspective on

original square-and-multiply.

j is “instruction pointer”:

0 if at top of loop,

1 if in middle of loop.

Each “instruction” here

includes exactly one multiply.



5

Standard square-and-multiply fix

to follow these data-flow rules:

Square and always multiply.

def pow256bit(x,e):

y = 1

for i in reversed(range(256)):

y = y*y

yx = y*x

bit = 1&(e>>i)

y = y+(yx-y)*bit

return y

If bit is 0 then yx computation is

an unused “dummy operation”.

6

Another approach, not well known:

def pow256bit(x,e):

y,i,j = 1,255,0

while i >= 0:

if j == 0:

y = y*y

if 1&(e>>i):

j = 1

else:

i = i-1

else:

y = y*x

i,j = i-1,0

return y

7

This is like CPU’s perspective on

original square-and-multiply.

j is “instruction pointer”:

0 if at top of loop,

1 if in middle of loop.

Each “instruction” here

includes exactly one multiply.



5

Standard square-and-multiply fix

to follow these data-flow rules:

Square and always multiply.

def pow256bit(x,e):

y = 1

for i in reversed(range(256)):

y = y*y

yx = y*x

bit = 1&(e>>i)

y = y+(yx-y)*bit

return y

If bit is 0 then yx computation is

an unused “dummy operation”.

6

Another approach, not well known:

def pow256bit(x,e):

y,i,j = 1,255,0

while i >= 0:

if j == 0:

y = y*y

if 1&(e>>i):

j = 1

else:

i = i-1

else:

y = y*x

i,j = i-1,0

return y

7

This is like CPU’s perspective on

original square-and-multiply.

j is “instruction pointer”:

0 if at top of loop,

1 if in middle of loop.

Each “instruction” here

includes exactly one multiply.



6

Another approach, not well known:

def pow256bit(x,e):

y,i,j = 1,255,0

while i >= 0:

if j == 0:

y = y*y

if 1&(e>>i):

j = 1

else:

i = i-1

else:

y = y*x

i,j = i-1,0

return y

7

This is like CPU’s perspective on

original square-and-multiply.

j is “instruction pointer”:

0 if at top of loop,

1 if in middle of loop.

Each “instruction” here

includes exactly one multiply.



6

Another approach, not well known:

def pow256bit(x,e):

y,i,j = 1,255,0

while i >= 0:

if j == 0:

y = y*y

if 1&(e>>i):

j = 1

else:

i = i-1

else:

y = y*x

i,j = i-1,0

return y

7

This is like CPU’s perspective on

original square-and-multiply.

j is “instruction pointer”:

0 if at top of loop,

1 if in middle of loop.

Each “instruction” here

includes exactly one multiply.

Try to choose instruction set

with big useful operations,

avoiding control overhead.

Analogous to designing CPU.



6

Another approach, not well known:

def pow256bit(x,e):

y,i,j = 1,255,0

while i >= 0:

if j == 0:

y = y*y

if 1&(e>>i):

j = 1

else:

i = i-1

else:

y = y*x

i,j = i-1,0

return y

7

This is like CPU’s perspective on

original square-and-multiply.

j is “instruction pointer”:

0 if at top of loop,

1 if in middle of loop.

Each “instruction” here

includes exactly one multiply.

Try to choose instruction set

with big useful operations,

avoiding control overhead.

Analogous to designing CPU.

8

Following data-flow rules,

assuming all arithmetic (including

i shifts etc.) is constant-time,

assuming e weight exactly 128:

def pow256bit(x,e):

y,i,j = 1,255,0

while i >= 0:

z = y+(x-y)*j

y = y*z

bit = 1&(e>>i)

i = i-(j|(1-bit))

j = bit&(1-j)

return y



6

Another approach, not well known:

def pow256bit(x,e):

y,i,j = 1,255,0

while i >= 0:

if j == 0:

y = y*y

if 1&(e>>i):

j = 1

else:

i = i-1

else:

y = y*x

i,j = i-1,0

return y

7

This is like CPU’s perspective on

original square-and-multiply.

j is “instruction pointer”:

0 if at top of loop,

1 if in middle of loop.

Each “instruction” here

includes exactly one multiply.

Try to choose instruction set

with big useful operations,

avoiding control overhead.

Analogous to designing CPU.

8

Following data-flow rules,

assuming all arithmetic (including

i shifts etc.) is constant-time,

assuming e weight exactly 128:

def pow256bit(x,e):

y,i,j = 1,255,0

while i >= 0:

z = y+(x-y)*j

y = y*z

bit = 1&(e>>i)

i = i-(j|(1-bit))

j = bit&(1-j)

return y



6

Another approach, not well known:

def pow256bit(x,e):

y,i,j = 1,255,0

while i >= 0:

if j == 0:

y = y*y

if 1&(e>>i):

j = 1

else:

i = i-1

else:

y = y*x

i,j = i-1,0

return y

7

This is like CPU’s perspective on

original square-and-multiply.

j is “instruction pointer”:

0 if at top of loop,

1 if in middle of loop.

Each “instruction” here

includes exactly one multiply.

Try to choose instruction set

with big useful operations,

avoiding control overhead.

Analogous to designing CPU.

8

Following data-flow rules,

assuming all arithmetic (including

i shifts etc.) is constant-time,

assuming e weight exactly 128:

def pow256bit(x,e):

y,i,j = 1,255,0

while i >= 0:

z = y+(x-y)*j

y = y*z

bit = 1&(e>>i)

i = i-(j|(1-bit))

j = bit&(1-j)

return y



7

This is like CPU’s perspective on

original square-and-multiply.

j is “instruction pointer”:

0 if at top of loop,

1 if in middle of loop.

Each “instruction” here

includes exactly one multiply.

Try to choose instruction set

with big useful operations,

avoiding control overhead.

Analogous to designing CPU.

8

Following data-flow rules,

assuming all arithmetic (including

i shifts etc.) is constant-time,

assuming e weight exactly 128:

def pow256bit(x,e):

y,i,j = 1,255,0

while i >= 0:

z = y+(x-y)*j

y = y*z

bit = 1&(e>>i)

i = i-(j|(1-bit))

j = bit&(1-j)

return y



7

This is like CPU’s perspective on

original square-and-multiply.

j is “instruction pointer”:

0 if at top of loop,

1 if in middle of loop.

Each “instruction” here

includes exactly one multiply.

Try to choose instruction set

with big useful operations,

avoiding control overhead.

Analogous to designing CPU.

8

Following data-flow rules,

assuming all arithmetic (including

i shifts etc.) is constant-time,

assuming e weight exactly 128:

def pow256bit(x,e):

y,i,j = 1,255,0

while i >= 0:

z = y+(x-y)*j

y = y*z

bit = 1&(e>>i)

i = i-(j|(1-bit))

j = bit&(1-j)

return y

9

Allowing any weight ≤128:

def pow256bitweightle128(x,e):

y,i,j = 1,255,0

for loop in range(384):

z = y+(x-y)*j

z = z+(1-z)*(i<0)

y = y*z

bit = 1&(e>>max(i,0))

i = i-(j|(1-bit))

j = bit&(1-j)

assert i < 0

return y



7

This is like CPU’s perspective on

original square-and-multiply.

j is “instruction pointer”:

0 if at top of loop,

1 if in middle of loop.

Each “instruction” here

includes exactly one multiply.

Try to choose instruction set

with big useful operations,

avoiding control overhead.

Analogous to designing CPU.

8

Following data-flow rules,

assuming all arithmetic (including

i shifts etc.) is constant-time,

assuming e weight exactly 128:

def pow256bit(x,e):

y,i,j = 1,255,0

while i >= 0:

z = y+(x-y)*j

y = y*z

bit = 1&(e>>i)

i = i-(j|(1-bit))

j = bit&(1-j)

return y

9

Allowing any weight ≤128:

def pow256bitweightle128(x,e):

y,i,j = 1,255,0

for loop in range(384):

z = y+(x-y)*j

z = z+(1-z)*(i<0)

y = y*z

bit = 1&(e>>max(i,0))

i = i-(j|(1-bit))

j = bit&(1-j)

assert i < 0

return y



7

This is like CPU’s perspective on

original square-and-multiply.

j is “instruction pointer”:

0 if at top of loop,

1 if in middle of loop.

Each “instruction” here

includes exactly one multiply.

Try to choose instruction set

with big useful operations,

avoiding control overhead.

Analogous to designing CPU.

8

Following data-flow rules,

assuming all arithmetic (including

i shifts etc.) is constant-time,

assuming e weight exactly 128:

def pow256bit(x,e):

y,i,j = 1,255,0

while i >= 0:

z = y+(x-y)*j

y = y*z

bit = 1&(e>>i)

i = i-(j|(1-bit))

j = bit&(1-j)

return y

9

Allowing any weight ≤128:

def pow256bitweightle128(x,e):

y,i,j = 1,255,0

for loop in range(384):

z = y+(x-y)*j

z = z+(1-z)*(i<0)

y = y*z

bit = 1&(e>>max(i,0))

i = i-(j|(1-bit))

j = bit&(1-j)

assert i < 0

return y



8

Following data-flow rules,

assuming all arithmetic (including

i shifts etc.) is constant-time,

assuming e weight exactly 128:

def pow256bit(x,e):

y,i,j = 1,255,0

while i >= 0:

z = y+(x-y)*j

y = y*z

bit = 1&(e>>i)

i = i-(j|(1-bit))

j = bit&(1-j)

return y

9

Allowing any weight ≤128:

def pow256bitweightle128(x,e):

y,i,j = 1,255,0

for loop in range(384):

z = y+(x-y)*j

z = z+(1-z)*(i<0)

y = y*z

bit = 1&(e>>max(i,0))

i = i-(j|(1-bit))

j = bit&(1-j)

assert i < 0

return y



8

Following data-flow rules,

assuming all arithmetic (including

i shifts etc.) is constant-time,

assuming e weight exactly 128:

def pow256bit(x,e):

y,i,j = 1,255,0

while i >= 0:

z = y+(x-y)*j

y = y*z

bit = 1&(e>>i)

i = i-(j|(1-bit))

j = bit&(1-j)

return y

9

Allowing any weight ≤128:

def pow256bitweightle128(x,e):

y,i,j = 1,255,0

for loop in range(384):

z = y+(x-y)*j

z = z+(1-z)*(i<0)

y = y*z

bit = 1&(e>>max(i,0))

i = i-(j|(1-bit))

j = bit&(1-j)

assert i < 0

return y

Exercise: constant-time ECC

scalar mult with sliding windows.


