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to follow these data-flow rules:
Square and always multiply.

def pow256bit(x,e):
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y = y*y

yX = y*X

bit = 1&(e>>i)
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return y
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while i1 >= O:
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else:
i = 1i-1
else:
y = ¥y*X
i,j = 1i-1,
return y
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to follow these data-flow rules:
Square and always multiply.
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return y
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Following data-flow rules,
assuming all arithmetic (including
i shifts etc.) is constant-time,
assuming e weight exactly 128:
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Following data-flow rules,
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def pow256bit(x,e):
y,i,j = 1,255,0
while 1 >= 0:
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return y

Allowing any weight <128:

def pow2b56bitweightlel28(x,e):
v,i,j = 1,255,0
for loop in range(384):
z = yt(x-y)*]
z+(1-z) * (i<0)
y = y*z
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i-(j1(1-bit))
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assert 1 < O

return y

Exercise: constant-time ECC
scalar mult with sliding windows.



