McTiny:
Fast High-Confidence Post-Quantum Key Erasure
for Tiny Network Servers

Daniel J. Bernstein!'? and Tanja Lange?

LUniversity of lllinois at Chicago
2Ruhr University Bochum

3Eindhoven University of Technology

USENIX Security 2020

Post-quantum cryptography

Cryptography designed under the assumption that the attacker
(not the user!) has a large quantum computer.

Options: code-based, hash-based, isogeny-based, lattice-based, multivariates.

1978 McEliece: Public-key encryption using error-correcting codes.
» Original parameters designed for 2°4 security.
» 2008 Bernstein—Lange—Peters: broken in ~2% cycles.
> Easily scale up for higher security.
>

1962 Prange: simple attack idea guiding sizes in 1978 McEliece.
The McEliece system (with later key-size optimizations)
achieves 2* security against Prange's attack

using (0.741186. .. + o(1))A?(log, A)?-bit keys as A — oo.

Daniel J. Bernstein & Tanja Lange McTiny https://mctiny.org/

https://mctiny.org/

Security analysis of McEliece encryption

Some papers studying algorithms for attackers:

1962 Prange; 1981 Clark—Cain, crediting Omura; 1988 Lee—Brickell; 1988 Leon; 1989 Krouk;
1989 Stern; 1989 Dumer; 1990 Coffey—Goodman; 1990 van Tilburg; 1991 Dumer;

1991 Coffey—Goodman—Farrell; 1993 Chabanne—Courteau; 1993 Chabaud; 1994 van Tilburg;
1994 Canteaut—Chabanne; 1998 Canteaut—Chabaud; 1998 Canteaut—Sendrier;

2008 Bernstein—Lange—Peters; 2009 Bernstein—Lange—Peters—van Tilborg;

2009 Bernstein (post-quantum); 2009 Finiasz—Sendrier; 2010 Bernstein—Lange—Peters;
2011 May—Meurer—Thomae; 2012 Becker—Joux—May—Meurer; 2013 Hamdaoui—Sendrier;
2015 May—Ozerov; 2016 Canto Torres—Sendrier; 2017 Kachigar-Tillich (post-quantum);
2017 Both—May; 2018 Both—May; 2018 Kirshanova (post-quantum).

All of these attacks involve huge searches, like attacking AES.
The quantum attacks (Grover etc.) leave at least half of the bits of security.

Daniel J. Bernstein & Tanja Lange McTiny https://mctiny.org/

https://mctiny.org/

Attack progress over time

log, AttackCostyear(K)

lim

K—o00 log, AttackCostpgog(K)

0coc

KeN-yiog
Ken-yiog
J3LIpUSG—Sa1I0| OIURD)

rozO—Aepy

J311pUaG—inoepwe

I2una\—Ae|N—xnor—xag
sewoy | —aina|\—Ae
s19394—28ue-ulRisuiag

Ja1puag-zseluly
810q|1 | UBA-SI339g—-dBuUE]-URISWIDg

s19394—28ue-ulRisuiag

Jaupuag-neajue)
pneqeyy-ineajued)

suueqeyd-jnesjued)
Sanq)iL uea
pneqeyy
nesjno)-asuueqeyd

|[244e4—UBWPO0D—A3)307)
Jswing

8inq)i| uea

uew MQQI\Amtou

uiay

no.

uosT
If1g-237

utey-4e|n

8161

https://mctiny.org/

McTiny

Daniel J. Bernstein & Tanja Lange

https://mctiny.org/

nH-ued-3ueyz,

1g-uer | —nij-Suepn,

Sues|nop-ouEIdIN

MPIPIA-UBANSN

sewnyeng—iewnyi—reafy,

Attack progress over time

log, AttackCostyear(K)

lim

K—o00 log, AttackCostpgog(K)

1.421

Red: Lattices have lost much more security.

Lattices had 42% higher security levels
ten years ago than they have today.

1.315

1989\ ap-uanoysee]

uanoyIeeT—eLED-SedN [—13%25!
uaAdyJeeT]

1.154

0coc

KeN-yiog
Ken-yiog

191IpUSG—Sa1I0| OjueD)

b nosezO-Aepy

J311pUaG—inoepwe
Jaana—Ae|\-Xnor—1adeg

sewoy | —aina|\—Ae
s19394—28ue-ulRisuiag

Ja1puag-zseluly

Bl0q|1 | UeA—5I5394—BuET-upPISUIDY

s19394—28ue-ulRisuiag

Jaupuag-neajue)
pneqeyy-ineajued)

suueqeyd-jnesjued)
Sanq)iL uea
pneqeyy
nesjno)-asuueqeyd

|[244e4—UBWPO0D—A3)307)
Jswing

8inq)i| uea
wmm&._%mowl\nmtou

U]
0.

uosT
If1g-237

utey-4e|n

8161

https://mctiny.org/

McTiny

Daniel J. Bernstein & Tanja Lange

https://mctiny.org/

NIST PQC submission Classic McEliece

No patents.

Shortest ciphertexts.

Fast open-source constant-time software implementations.

Very conservative system, expected to last; has strongest security track record.

Sizes with similar post-quantum security to AES-128, AES-192, AES-256:

Metric mceliece348864 | mceliece460896 | mceliece6960119
Public-key size 261120 bytes 524160 bytes 1047319 bytes
Secret-key size 6452 bytes 13568 bytes 13908 bytes
Ciphertext size 128 bytes 188 bytes 226 bytes

Key-generation time

52415436 cycles

181063400 cycles

417271280 cycles

Encapsulation time

43648 cycles

77380 cycles

143908 cycles

Decapsulation time

130944 cycles

267828 cycles

295628 cycles

See https://classic.mceliece.org for authors, details & parameters.

Daniel J. Bernstein & Tanja Lange

McTiny

https://mctiny.org/

https://classic.mceliece.org
https://mctiny.org/

Key issues for McEliece

Daniel J. Bernstein & Tanja Lange McTiny https://mctiny.org/

https://mctiny.org/

Key issues for McEliece

BIG PUBLIC KEYS.

Daniel J. Bernstein & Tanja Lange McTiny https://mctiny.org/ 6

https://mctiny.org/

Key issues for McEliece

Users send big data anyway. We have lots of bandwidth. Maybe 1MB keys are okay.

Each client spends a small fraction of a second generating new ephemeral 1IMB key.

Daniel J. Bernstein & Tanja Lange McTiny https://mctiny.org/

https://mctiny.org/

Key issues for McEliece

Users send big data anyway. We have lots of bandwidth. Maybe 1MB keys are okay.
Each client spends a small fraction of a second generating new ephemeral 1IMB key.

But: If any client is allowed to send a new ephemeral 1IMB McEliece key to server,
an attacker can easily flood server's memory. This invites DoS attacks.

Daniel J. Bernstein & Tanja Lange McTiny https://mctiny.org/

https://mctiny.org/

Key issues for McEliece

Users send big data anyway. We have lots of bandwidth. Maybe 1MB keys are okay.
Each client spends a small fraction of a second generating new ephemeral 1IMB key.

But: If any client is allowed to send a new ephemeral 1IMB McEliece key to server,
an attacker can easily flood server's memory. This invites DoS attacks.

Our goal: Eliminate these attacks by eliminating all per-client storage on server.

Daniel J. Bernstein & Tanja Lange McTiny https://mctiny.org/

https://mctiny.org/

Goodness, what big keys you have!
Public keys look like this:

10 01 10 1
01 0 0 011
K = _
: 1 110
00 10 11 1

Left part is (n — k) x (n — k) identity matrix (no need to send).
Right part is random-looking (n — k) x k matrix.
E.g. n=6960, k = 5413, so n — k = 1547.

Daniel J. Bernstein & Tanja Lange McTiny https://mctiny.org/

https://mctiny.org/

Goodness, what big keys you have!
Public keys look like this:

10 01 10 1
01 0 0 011
K = _
: 1 110
00 10 11 1

Left part is (n — k) x (n — k) identity matrix (no need to send).
Right part is random-looking (n — k) x k matrix.

E.g. n=6960, k = 5413, so n — k = 1547.

Encryption xors secretly selected columns, e.g.

0 0

+ +

0
1
0
0

—_ O R =

1
0
1
0

= =

1
0
0

Daniel J. Bernstein & Tanja Lange McTiny https://mctiny.org/

https://mctiny.org/

Can servers avoid storing big keys?

10 01 1 01
01 00 01 1
K = = (Ip_k|K")
- P | 1 10
00 ... 10 1 11

Encryption xors secretly selected columns.

With some storage and trusted environment:
Receive columns of K’ one at a time, store and update partial sum.

Daniel J. Bernstein & Tanja Lange McTiny https://mctiny.org/

https://mctiny.org/

Can servers avoid storing big keys?

10 01 1 01
01 00 01 1
K = = (Ip_k|K")
- P | 1 10
00 ... 10 1 11

Encryption xors secretly selected columns.

With some storage and trusted environment:
Receive columns of K’ one at a time, store and update partial sum.

On the real Internet, without per-client state:

Daniel J. Bernstein & Tanja Lange McTiny https://mctiny.org/

https://mctiny.org/

Can servers avoid storing big keys?

10 01 1 01
01 00 01 1
K = = (Ip_k|K")
- P | 1 10
00 ... 10 1 11

Encryption xors secretly selected columns.

With some storage and trusted environment:
Receive columns of K’ one at a time, store and update partial sum.

On the real Internet, without per-client state:

Don't reveal intermediate results!

Which columns are picked is the secret message!
Intermediate results show whether a column was used or not.

Daniel J. Bernstein & Tanja Lange McTiny https://mctiny.org/

https://mctiny.org/

McTiny

Partition key

Kii Ki2 Kiz ... Kiy
W Ko Koz Koz ... Koy
Kr,l Kr,2 Kr,3 s Kr,K
» Each submatrix K;; small enough to fit (including header) into network packet.
» Client feeds the K;; to server & handles storage for the server.
» Server computes K; jej, puts result into cookie.
» Cookies are encrypted by server to itself using some temporary symmetric key
(same key for all server connections).
No per-client memory allocation.
» Cookies also encrypted & authenticated to client.
» Client sends several Kjje; cookies, receives their combination.

» More stuff to avoid replay & similar attacks.

Daniel J. Bernstein & Tanja Lange McTiny https://mctiny.org/

https://mctiny.org/

McTiny

Partition key

vvyyvyy

>
>
>

>

Kii Ki2 Kiz ... Kiy
p Ko1 Kop Koz ... Koy
Kr,l Kr,2 Kr,3 cee Kr,K

Each submatrix K;; small enough to fit (including header) into network packet.
Client feeds the K;; to server & handles storage for the server.

Server computes Kj jej, puts result into cookie.

Cookies are encrypted by server to itself using some temporary symmetric key
(same key for all server connections).

No per-client memory allocation.

Cookies also encrypted & authenticated to client.

Client sends several K; je; cookies, receives their combination.

More stuff to avoid replay & similar attacks.

Several round trips, but no per-client state on the server.

Daniel J. Bernstein & Tanja Lange McTiny https://mctiny.org/

https://mctiny.org/

Measurements of our software (https://mctiny.org)

0.000 - 131072 262144 393216 524288 655360 786432 917504 1048576 1179648 1310720

1.170
1.287

Client time vs. bytes sent, bytes acknowledged, bytes in acknowledgments.
Curve shows packet pacing from our new user-level congestion-control library.

xR

Daniel J. Bernstein & Tanja Lange McTiny https://mctiny.org/ 10

https://mctiny.org
https://mctiny.org/

