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Define R = Z[x]/(x"% — x — 1);
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Attacker wants to find
small weight-w secret a € K.

Problem 1: Public G € R/q with
aG + e =0. Small secret e € R.

Problem 2: Public G € R/q and
aG +e = A. Small secret e € R.
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G =—e/a, and A= 0.
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Ciphertext: B = 3bG + d.
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aG +e = A. Small secret e € R.

Problem 3: Public G1,G> € R/q.
Public aG1 + e1, aGy + e.
Small secrets e1, e € R.
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Ciphertext: B = bG + d
and C = bA+ M + c.
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short nonzero solution to system
of homogeneous R/q equations.

Problem 1: Find (a, e) € R?
with aG + e = 0, given G € R/q.
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