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e Advise users on security.

Define R = Z[x]/(x"%! — x — 1);
“small” = all coeffs in {—1,0,1};
w = 286; g = 4591.

Attacker wants to find
small weight-w secret a € K.

Problem 1: Public G € R/q with
aG + e =0. Small secret e € R.

Problem 2: Public G € R/q and
aG + e. Small secret e € R.

Problem 3: Public G1,G> € R/q.
Public aG1 + e1, aGy + e.
Small secrets e1, e € R.
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Define R = Z[x]/(x"% — x — 1);
“small” = all coeffs in {—1,0,1};

Attacker wants to find
small weight-w secret a € K.

Problem 1: Public G € R/q with
aG + e =0. Small secret e € R.

Problem 2: Public G € R/q and
aG + e. Small secret e € R.

Problem 3: Public G1,G> € R/q.
Public aG1 + e1, aGy + e.
Small secrets e1, e € R.
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G=—e/a, and A
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Define R = Z[x]/(x"% — x — 1);
“small” = all coeffs in {—1,0,1};

Attacker wants to find
small weight-w secret a € K.

Problem 1: Public G € R/q with
aG + e =0. Small secret e € R.

Problem 2: Public G € R/q and
aG + e. Small secret e € 'R.

Problem 3: Public G1,G> € R/q.
Public aGy1 + e1, aGy + e.
Small secrets e1, e € R.

Examples of target cryptosy.

Secret key: small a; small e

Public key reveals multiplier
and approximation A = aG -

Public key for “NTRU":
G=—e/a, and A=0.



Three typical attack problems

Define R = Z[x]/(x"%1 — x — 1);

“small” = all coeffs in {—1,0,1};

w = 2386; g = 4591.

Attacker wants to find
small weight-w secret a € K.

Problem 1: Public G € R/q with
aG + e =0. Small secret e € R.

Problem 2: Public G € R/q and
aG + e. Small secret e € R.

Problem 3: Public G1,G> € R/q.

Public aG1 + e1, aGy + e.
Small secrets e1, e € R.

Examples of target cryptosystems

Secret key: small a; small e.

Public key reveals multiplier G
and approximation A = aG + e.

Public key for “NTRU":
G =—e/a, and A=0.
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Define R = Z[x]/(x"%! — x — 1);
“small” = all coeffs in {—1,0,1};
w = 286; g = 4591.

Attacker wants to find
small weight-w secret a € K.

Problem 1: Public G € R/q with
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Examples of target cryptosystems

Secret key: small a; small e.

Public key reveals multiplier G
and approximation A = aG + e.

Public key for “NTRU":
G =—e/a, and A=0.

Public key for “Ring-LWE":
random G, and A = aG + e.




Three typical attack problems

Define R = Z[x]/(x"%! — x — 1);
“small” = all coeffs in {—1,0,1};
w = 286; g = 4591.

Attacker wants to find
small weight-w secret a € K.

Problem 1: Public G € R/q with
aG + e =0. Small secret e € R.

Problem 2: Public G € R/q and
aG + e. Small secret e € R.

Problem 3: Public G1,G> € R/q.

Public aG1 + e1, aGy + e.
Small secrets e1, e € R.

Examples of target cryptosystems

Secret key: small a; small e.

Public key reveals multiplier G
and approximation A = aG + e.

Public key for “NTRU":
G =—e/a, and A=0.

Public key for “Ring-LWE":
random G, and A = aG + e.

Systematization of naming,
recognizing similarity + credits:
"NTRU" = Quotient NTRU.
"Ring-LWE" = Product NTRU.
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Examples of target cryptosystems Encryption for Quotient NTRU:

Input small b, small d.

Secret key: small a; small e. |
Ciphertext: B =3Gb -+ d.

Public key reveals multiplier G
and approximation A = aG + e.

Public key for “NTRU" :
G =—e/a, and A=0.

Public key for “Ring-LWE":
random G, and A = aG + e.

Systematization of naming,
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Examples of target cryptosystems Encryption for Quotient NTRU:

Input small b, small d.

Secret key: small a; small e. |
Ciphertext: B =3Gb -+ d.

Public key reveals multiplier G |
Encryption for Product NTRU:

and approximation A = aG + e.
Input encoded message M.

Public key for “NTRU": Ran(]omly generate
G =—e/a,and A= 0. small b, small d, small c.
Public key for “Ring-LWE": Ciphertext: B=Gb+d

and C = Ab+ M + c.

random G, and A = aG + e.

Next slides: survey of G, a,e,c, M
recognizing similarity + credits: details and variants in NISTPQC

“NTRU" = Quotient NTRU. submissions. Source: Bernstein,

“Ring-LWE” = Product NTRU. “Comparing proofs of security
for lattice-based encryption”.

Systematization of naming,
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Encryption for Quotient NTRU:

Input small b, small d.
Ciphertext: B =3Gb + d.

Encryption for Product NTRU:
Input encoded message M.
Randomly generate

small b, small d, small c.
Ciphertext: B=Gb+ d
and C = Ab+ M + c.

Next slides: survey of G, a,e,c, M
details and variants in NISTPQC
submissions. Source: Bernstein,
“Comparing proofs of security

for lattice-based encryption”.
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Next slides: survey of G, a,e,c, M
details and variants in NISTPQC

submissions. Source:
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“Comparing proofs of security

for lattice-based encryption”.

system parameter set | type

frodo 640 | Product
frodo 976 | Product
frodo 1344 | Product
kyber 512 | Product
kyber 768 | Product
kyber 1024 | Product
lac 128 | Product
lac 192 | Product
lac 256 | Product
newhope 512 | Product
newhope 1024 | Product
ntru hps2048509 | Quotient
ntru hps2048677 | Quotient
ntru hps4096821 | Quotient
ntru hrss701 | Quotient
ntrulpr 653 | Product
ntrulpr 761 | Product
ntrulpr 857 | Product
roundbnl 1 | Product
roundbnil 3 | Product
roundbni 5 | Product
round5nd 1.0d | Product
roundb5nd 3.0d | Product
round5nd 5.0d | Product
round5nd 1.5d | Product
round5nd 3.5d | Product
round5nd 5.5d | Product
saber light | Product
saber main | Product
saber fire | Product
sntrup 653 | Quotient
sntrup 761 | Quotient
sntrup 857 | Quotient
threebears baby | Product
threebears mama | Product
threebears papa | Product
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Encryption for Quotient NTRU:

Input small b, small d.
Ciphertext: B =3Gb + d.

Encryption for Product NTRU:
Input encoded message M.
Randomly generate

small b, small d, small c.
Ciphertext: B=Gb+ d
and C = Ab+ M + c.

Next slides: survey of G, a,e,c, M
details and variants in NISTPQC
submissions. Source: Bernstein,
“Comparing proofs of security

for lattice-based encryption”

system parameter set | type set of multipliers
frodo 640 | Product | (Z/32768)040x040
frodo 976 | Product | (Z/65536)276<976
frodo 1344 | Product | (Z/65536)!344x1344
kyber 512 | Product | ((Z/3329)[x]/(x*>°
kyber 768 | Product | ((Z/3329)[x]/(x?°
kyber 1024 | Product | ((Z/3329)[x]/(x?°°
lac 128 | Product | (Z/251)[x]/(x>1? +
lac 192 | Product | (Z/251)[x]/(x19%* -
lac 256 | Product | (Z/251)[x]/(x10%* -
newhope 512 | Product | (Z/12289)[x]/(x>12
newhope 1024 | Product | (Z/12289)[x]/(x"
ntru hps2048509 | Quotient | (Z/2048)[x]/(x 509-
ntru hps2048677 | Quotient | (Z/2048)[x]/(x°®77 -
ntru hps4096821 | Quotient | (Z/4096)[x]/(x%2! -
ntru hrss701 | Quotient | (Z/8192)[x]/(x"%! -
ntrulpr 653 | Product | (Z/4621)[x] /(x> -
ntrulpr 761 | Product | (Z/4591)[x]/(x"°! -
ntrulpr 857 | Product | (Z/5167)[x]/(x%7 -
round5nl 1 | Product | (Z/4096)030>630
round5ni 3 | Product | (Z/32768)376>876
roundb5ni 5 | Product (2/32768)1217><1217
round5nd 1.0d | Product | (Z/8192)[x]/(x>8° -
round5nd 3.0d | Product | (Z/4096)[x]/(x%? -
round5nd 5.0d | Product | (Z/8192)[x]/(x!170
round5nd 1.5d | Product | (Z/1024)[x]/(x°%
round5nd 3.5d | Product | (Z/4096)[x]/(x""
round5nd 5.5d | Product | (Z/2048)[x]/(x*"
saber light | Product | ((Z/8192)[x]/(x?°°
saber main | Product | ((Z/8192)[x]/(x?%°
saber fire | Product | ((Z/8192)[x]/(x?°°
sntrup 653 | Quotient (Z/4621)[X]/(X
sntrup 761 | Quotient | (Z/4591)[x]/(x"
sntrup 857 | Quotient | (Z/5167)[x]/(x®
threebears baby | Product | (Z/(231%0 — 21560—
threebears mama | Product | (Z/(231%0 — 21560 _
threebears papa | Product | (Z/(23120 — 21560 _




Encryption for Quotient NTRU:

Input small b, small d.
Ciphertext: B = 3Gb + d.

Encryption for Product NTRU:
Input encoded message M.
Randomly generate

small b, small d, small c.
Ciphertext: B=Gb+ d
and C = Ab+ M + c.

Next slides: survey of G, a,e,c, M
details and variants in NISTPQC
submissions. Source: Bernstein,
“Comparing proofs of security

for lattice-based encryption”.

system parameter set | type set of multipliers

frodo 640 | Product | (Z/32768)040x040

frodo 976 | Product | (Z/65536)776<976

frodo 1344 | Product | (Z/65536)!344x1344

kyber 512 | Product | ((Z/3329)[x]/(x%%° + 1))?*?
kyber 768 | Product | ((Z/3329)[x]/(x?%° + 1))3*3
kyber 1024 | Product | ((Z/3329)[x]/(x?%0 + 1))4*4
lac 128 | Product | (Z/251)[x]/(x**? + 1)

lac 192 | Product | (Z/251)[x]/(x1%%* 4 1)

lac 256 | Product | (Z/251)[x]/(x1%%* + 1)
newhope 512 | Product | (Z/12289)[x]/(x>!? + 1)
newhope 1024 | Product | (Z/12289)[x]/(x19%* + 1)
ntru hps2048509 | Quotient | (Z/2048)[x]/(x*% — 1)
ntru hps2048677 | Quotient | (Z/2048)[x]/(x®"" — 1)
ntru hps4096821 | Quotient | (Z/4096)[x]/(x®%! — 1)
ntru hrss701 | Quotient | (Z/8192)[x]/(x"! — 1)
ntrulpr 653 | Product | (Z/4621)[x]/(x%>3 — x — 1)
ntrulpr 761 | Product | (Z/4591)[x]/(x®! — x — 1)
ntrulpr 857 | Product | (Z/5167)[x]/(x®>" — x — 1)
round5nl 1 | Product | (Z/4096)030>630

round5ni 3 | Product | (Z/32768)876x876

round5nl 5 | Product | (Z/32768)1217>1217
round5nd 1.0d | Product | (Z/8192)[x]/(x°8® 4 ... +1)
round5nd 3.0d | Product | (Z/4096)[x]/(x%%% 4 ... +1)
round5nd 5.0d | Product | (Z/8192)[x]/(x*70 + ... +1)
round5nd 1.5d | Product | (Z/1024)[x]/(x*%? — 1)
round5nd 3.5d | Product | (Z/4096)[x]/(x">" — 1)
round5nd 5.5d | Product | (Z/2048)[x]/(x%" — 1)
saber light | Product | ((Z/8192)[x]/(x%%° + 1))%*?
saber main | Product | ((Z/8192)[x]/(x?°¢ 4 1))3*3
saber fire | Product | ((Z/8192)[x]/(x?°0 + 1))**4
sntrup 653 | Quotient | (Z/4621)[x]/(x®>3 — x — 1)
sntrup 761 | Quotient | (Z/4591)[x]/(x"®! — x — 1)
sntrup 857 | Quotient | (Z/5167)[x]/(x®>" — x — 1)
threebears baby | Product | (Z/(231%0 — 21500 _ 1))2x2
threebears mama | Product | (Z/(231%0 — 21560 _ 1))3x3
threebears papa | Product | (Z/(23120 — 21560 _ 1))4x4
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system parameter set | type set of multipliers

frodo 640 | Product | (Z/32768)040x040

frodo 976 | Product | (Z/65536)276<976

frodo 1344 | Product | (Z/65536)!344x1344

kyber 512 | Product | ((Z/3329)[x]/(x%%° + 1))%*?
kyber 768 | Product | ((Z/3329)[x]/(x?°¢ + 1))3*3
kyber 1024 | Product | ((Z/3329)[x]/(x?%° + 1))**4
lac 128 | Product | (Z/251)[x]/(x°1? + 1)

lac 192 | Product | (Z/251)[x]/(x19%* + 1)

lac 256 | Product | (Z/251)[x]/(x19%* +1)
newhope 512 | Product | (Z/12289)[x]/(x>12 T 1)
newhope 1024 | Product (Z/12289)[X]/( Y1)
ntru hps2048509 | Quotient | (Z/2048)[x]/(x*% — 1)
ntru hps2048677 | Quotient | (Z/2048)[x]/(x®"" — 1)
ntru hps4096821 | Quotient | (Z/4096)[x]/(x%%! — 1)
ntru hrss701 | Quotient | (Z/8192)[x]/(x"%! — 1)
ntrulpr 653 | Product | (Z/4621)[x]/(x®®3 — x — 1)
ntrulpr 761 | Product | (Z/4591)[x]/(x"%! — x — 1)
ntrulpr 857 | Product | (Z/5167)[x]/(x®>" — x — 1)
round5nl 1 | Product | (Z/4096)030>630

round5ni 3 | Product | (Z/32768)376>876

roundb5ni 5 | Product (2/32768)1217><1217
round5nd 1.0d | Product | (Z/8192)[x]/(x°%° + ...+ 1)
round5nd 3.0d | Product | (Z/4096)[x]/(x%%% 4 ... +1)
round5nd 5.0d | Product | (Z/8192)[x]/(x*70 + ... +1)
round5nd 1.5d | Product | (Z/1024)[x]/(x*% — 1)
round5nd 3.5d | Product | (Z/4096)[x]/(x">" — 1)
round5nd 5.5d | Product | (Z/2048)[x]/(x%*" — 1)
saber light | Product | ((Z/8192)[x]/(x?°¢ 4 1))?*?
saber main | Product | ((Z/8192)[x]/(x%>® + 1))3*3
saber fire | Product | ((Z/8192)[x]/(x?0 4 1))**4
sntrup 653 | Quotient (Z/4621)[X]/(X —x—1)
sntrup 761 | Quotient | (Z/4591)[x]/(x"®! — x — 1)
sntrup 857 | Quotient | (Z/5167)[x]/(x®>" — x — 1)
threebears baby | Product | (Z/(231%0 — 21560 1))2%?
threebears mama | Product | (Z/(23120 — 21560 _1))3x3
threebears papa | Product | (Z/(23120 — 21500 _ 1))4x4
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system parameter set | type set of multipliers

frodo 640 | Product | (Z/32768)040x040

frodo 976 | Product | (Z/65536)276<976

frodo 1344 | Product | (Z/65536)!344x1344

kyber 512 | Product | ((Z/3329)[x]/(x%%° + 1))?*?
kyber 768 | Product | ((Z/3329)[x]/(x%%° + 1))3*3
kyber 1024 | Product | ((Z/3329)[x]/(x?%0 + 1))4*4
lac 128 | Product | (Z/251)[x]/(x°1? + 1)

lac 192 | Product (Z/251)[x'/(x1024 +1)

lac 256 | Product | (Z/251)[x]/(x19%* + 1)
newhope 512 | Product | (Z/12289)[x]/(x>12 + 1)
newhope 1024 | Product | (Z/12289)[x]/(x19%* + 1)
ntru hps2048509 | Quotient | (Z/2048)[x]/(x*% — 1)
ntru hps2048677 | Quotient | (Z/2048)[x]/(x®"" — 1)
ntru hps4096821 | Quotient | (Z/4096)[x]/(x®%! — 1)
ntru hrss701 | Quotient | (Z/8192)[x]/(x"! — 1)
ntrulpr 653 | Product | (Z/4621)[x]/(x%>3 —x —1
ntrulpr 761 | Product | (Z/4591)[x]/(x™®! —x —1
ntrulpr 857 | Product | (Z/5167)[x]/(x®>" — x — 1)
round5nl 1 | Product | (Z/4096)030>630

roundbnl 3 | Product | (Z/32768)876x876

round5ni 5 | Product | (Z/32768)1217>1217
roundb5nd 1.0d | Product | (Z/8192)[x]/(x%% + ...+ 1)
round5nd 3.0d | Product | (Z/4096)[x]/(x%%% 4 ... +1)
round5nd 5.0d | Product | (Z/8192)[x]/(x'170 F— 1)
round5nd 1.5d | Product | (Z/1024)[x] /(X509 )
round5nd 3.5d | Product | (Z/4096)[x]/(x">" — 1)
round5nd 5.5d | Product | (Z/2048)[x]/(x%" — 1)
saber light | Product | ((Z/8192)[x]/(x?°¢ 4 1))%*?
saber main | Product | ((Z/8192)[x]/(x?°¢ 4 1))3*3
saber fire | Product | ((Z/8192)[x]/(x?%0 + 1))**4
sntrup 653 | Quotient (Z/4621)[X]/(X —x—1)
sntrup 761 | Quotient | (Z/4591)[x]/(x"%t — x — 1)
sntrup 857 | Quotient (Z/5167)[x]/(><8 —x—1)
threebears baby | Product | (Z/(231%0 — 21500 _ 1))2x2
threebears mama | Product | (Z/(231%0 — 21560 _ 1))3x3
threebears papa | Product | (Z/(23120 — 21560 _ 1))4x4

short element

76408, £ 1> 12}: Pr1,4,17,.
Z970%8. £_10,...,10}; Pr1,6,29, .
Z1344x8. 16 . 6}; Pr2,40,364,

(Z[/(28 1% Tocice {05
Z[x)/(x2%0 + 1))%; i o{—05,

Z[x]/(x*° +1))* Y g<ica{-05,
x]/(x°12 + 1); { 1,0,1}; Pr1,2,

~1,0,1}: Pr 1,6
~1,0,1}; Pr1,2
<

NNNNNNNNNNNN

ENCNENENCNENENCNENENENED
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e
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1 O 1} wei
1} Welght 57,57
; 1}; weight 223,223
zl217><8,{ 1,0, 1}; weight 231, 231
Z[x]/(x°80 + ... 4+1); {—1,0,1}; w
J(x®2 + . +1);{-1,0,1}; w
S0 4 +1); {—1,0,1}; v
) { 1,0 1}; weight
/(x™" —1); {~1,0,1}; weight
); { 1,0,1}; weight

— X

— X —

/(X857 X —
1,0,

1,0,

0<i<101—0-5,

Z
ZO</<8{ 0.5,
(2002 + 1)) ool 05,
 {—1,0,1}; wei
 {—1,0,1}; wei
 {—1,0,1}; wei
2,-1,0,1,2}:
—1,0,1}; Pr 13,
~1,0,1}: Pr5,?

z°; Zo</<312
23,3 ocican
Z* > o<ica1

l\.)l\.)l\.)
,_.,_.
oo |
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system parameter set | type set of multipliers

frodo 640 | Product | (Z/32768)040x040

frodo 976 | Product | (Z/65536)276<976

frodo 1344 | Product | (Z/65536)!344x1344

kyber 512 | Product | ((Z/3329)[x]/(x%%° + 1))%*?
kyber 768 | Product | ((Z/3329)[x]/(x?°¢ + 1))3*3
kyber 1024 | Product | ((Z/3329)[x]/(x?%° + 1))**4
lac 128 | Product | (Z/251)[x]/(x°1? + 1)

lac 192 | Product (Z/251)[x'/(x1024 + 1)

lac 256 | Product | (Z/251)[x]/(x19%* +1)
newhope 512 | Product | (Z/12289)[x]/(x>12 + 1)
newhope 1024 | Product (Z/12289)[X]/( 1024 11)
ntru hps2048509 | Quotient | (Z/2048)[x] /(x> — 1)
ntru hps2048677 | Quotient | (Z/2048)[x]/(x®"" — 1)
ntru hps4096821 | Quotient | (Z/4096)[x]/(x8%! — 1)
ntru hrss701 | Quotient | (Z/8192)[x]/(x"%! — 1)
ntrulpr 653 | Product | (Z/4621)[x]/(x®®3 — x — 1)
ntrulpr 761 | Product | (Z/4591)[x]/(x"%! — x — 1)
ntrulpr 857 | Product | (Z/5167)[x]/(x®>" — x — 1)
round5nl 1 | Product | (Z/4096)030>630

round5ni 3 | Product | (Z/32768)376>876

roundb5ni 5 | Product | (Z/32768)1217x1217
round5nd 1.0d | Product | (Z/8192)[x]/(x°8® + ... +1)
round5nd 3.0d | Product | (Z/4096)[x]/(x%%% 4 ... +1)
round5nd 5.0d | Product | (Z/8192)[x]/(x*70 + ... +1)
round5nd 1.5d | Product | (Z/1024)[x]/(x*% — 1)
round5nd 3.5d | Product | (Z/4096)[x]/(x">" — 1)
round5nd 5.5d | Product | (Z/2048)[x]/(x%*" — 1)
saber light | Product | ((Z/8192)[x]/(x?°¢ 4 1))?*?
saber main | Product | ((Z/8192)[x]/(x%>® + 1))3*3
saber fire | Product | ((Z/8192)[x]/(x?0 4 1))**4
sntrup 653 | Quotient (Z/4621)[X]/(X —x—1)
sntrup 761 | Quotient | (Z/4591)[x]/(x"®! — x — 1)
sntrup 857 | Quotient (Z/5167)[X]/(X8 —x—1)
threebears baby | Product | (Z/(23120 — 21560 _ 1))2x2
threebears mama | Product | (Z/(23120 — 21560 _1))3x3
threebears papa | Product | (Z/(23120 — 21500 _ 1))4x4

short element

Z040%8. £_12 12}; Pr1,4,17, ...
Z970%8. £_10,...,10}; Pr1,6,29, ... (spec page 23)
Z1344x8. 16 ... 6}; Pr2,40,364, ... (spec page 23)

(Z[X]/(X256 + 1)) 2 0<i<41-05,0. 5)

(spec page 23)

(Z[x]/(x? )) 2> 0<i<41—0.5,0.5}

(Z[x]/(x*° + 1))*; X o<i<a{—0.5,0.5}

Z[x]/(x°'? +1); {-1,0,1}; Pr 1,2, 1; weight 128,128
Z[x]/(x19%* +1); {-1,0,1}; Pr 1,6, 1; weight 128,128
Z[x]/(x19%* +1); {-1,0,1}; Pr 1,2, 1; weight 256, 256
Z[x]/ (x> +1); > p<;-16{—0.5,0.5}

Z[x]/(x"°* +1); 3 <;c16{—0.5,0.5}

Z[x]/ (x> —1); {~1,0,1}

Z[x]/(x°" —1); {~1,0,1}

Z[x]/(x%! —1); {~1,0,1}

Z[x]/(x"™ —1); {-1,0,1}; key correlation > 0
Z[x]/(x%3 — x — 1); {~1,0, 1}; weight 252
Z[x]/(x"0t — 1); {—1,0,1}; weight 250
Z[x]/(x87 — 1); {—1,0,1}; weight 281

X —
X —

Z036%8. 1 0,1}; weight 57, 57
0,

Z870%8. £_1.0,1}; weight 223,223

Z1217x8. 1 1,0, 1} weight 231, 231

Z[x]/(x%8% + .. +1); {—1,0,1}; weight 91,91
Z[x]/(x8° + ...+ 1); {—1,0,1}; weight 106, 106
Z[x]/(x!170 . +1); {-1,0,1}; weight 111,111
Z:x:/(x509 ) {—1, 0, 1}; weight 68, 68; ending 0
Z:x:/(X —1); {-1,0, 1}; weight 121, 121; ending 0
Z[x]/(x%*" —1); {—1,0,1}; weight 194, 194; ending 0

(Z[x]/(x* + 1)) 2 0<i<101—0:5,0.5}
(Z[X]/EX256 + 1)) 2 0<i<g{—05,0.5}

(Z[x]/(x2° + 1)) 2 0<i<6{~05,0.5}

Z[x]/(x° 1) {-1,0,1}; weight 288
Z[x]/(x™® — x —1); {~1,0,1}; weight 286

Z[X]/( 857 _ 1) {—1,0,1}; weight 322

Z? ZO</<312 21 '{ 2, —1 0,1,2}; Pr1,32,62,32,1; *
Z3; 'Y 0<i<312 210 '{-1,0,1}; Pr13,38,13; *

yAS ZO</<312 210 { 1,0,1}; Pr5,22,5; *



system parameter set | type set of multipliers

frodo 640 | Product | (Z/32768)040x040

frodo 976 | Product | (Z/65536)776<976

frodo 1344 | Product | (Z/65536)344x1344

kyber 512 | Product | ((Z/3329)[x]/(x%%° + 1))?*?
kyber 768 | Product | ((Z/3329)[x]/(x%%° + 1))3*3
kyber 1024 | Product | ((Z/3329)[x]/(x?%0 + 1))4*4
lac 128 | Product | (Z/251)[x]/(x°1? + 1)

lac 192 | Product (Z/251)[x'/(x1024 +1)

lac 256 | Product | (Z/251)[x]/(x19%* + 1)
newhope 512 | Product | (Z/12289)[x]/(x>12 + 1)
newhope 1024 | Product | (Z/12289)[x]/(x19%* + 1)
ntru hps2048509 | Quotient | (Z/2048)[x]/(x*% — 1)
ntru hps2048677 | Quotient | (Z/2048)[x]/(x%"" — 1)
ntru hps4096821 | Quotient | (Z/4096)[x]/(x®%! — 1)
ntru hrss701 | Quotient | (Z/8192)[x]/(x"! — 1)
ntrulpr 653 | Product | (Z/4621)[x]/(x%>3 —x —1
ntrulpr 761 | Product | (Z/4591)[x]/(x™®! —x —1
ntrulpr 857 | Product | (Z/5167)[x]/(x®>" — x — 1)
round5nl 1 | Product | (Z/4096)030>630

roundbnl 3 | Product | (Z/32768)876x876

round5ni 5 | Product | (Z/32768)1217>1217
roundb5nd 1.0d | Product | (Z/8192)[x]/(x%% + ...+ 1)
round5nd 3.0d | Product | (Z/4096)[x]/(x%%% 4 ... +1)
round5nd 5.0d | Product | (Z/8192)[x]/(x*70 + ... +1)
round5nd 1.5d | Product | (Z/1024)[x]/(x*%? — 1)
roundb5nd 3.5d | Product | (Z/4096)[x]/(x">" — 1)
round5nd 5.5d | Product | (Z/2048)[x]/(x%*" — 1)
saber light | Product | ((Z/8192)[x]/(x%°° + 1))%*?
saber main | Product | ((Z/8192)[x]/(x?°¢ 4 1))3*3
saber fire | Product | ((Z/8192)[x]/(x?°0 + 1))**4
sntrup 653 | Quotient (Z/4621)[X]/(X —x—1)
sntrup 761 | Quotient | (Z/4591)[x]/(x"%! — x — 1)
sntrup 857 | Quotient (Z/5167)[x]/(><8 —x—1)
threebears baby | Product | (Z/(231%0 — 21500 _ 1))2x2
threebears mama | Product | (Z/(231%0 — 21560 _ 1))3x3
threebears papa | Product | (Z/(23120 — 21560 _ 1))4x4

short element

Z040x8. f_12 12}; Pr1,4,17, ...
Z976x8. £_10,...,10}; Pr1,6,29, ...
Z1344x8. 16 . 6}; Pr2, 40,364, .

(Z[X]/(X256 + 1))

(spec page 23)
(spec page 23)
. (spec page 23)
ZO</<4{ 0.5,0. 5}
(Z[x]/ (x> )) 2 0<i<4{—05,05}

Z[x]/(x*° +1))*; Y o<;-4{—0.5,0.5}
x]/(x®12 +1); {~1,0,1}; Pr 1,2, 1; weight 128, 128

x1024 4 1) —1,0,1}; Pr 1,6, 1; weight 128,128
—1,0,1}; Pr 1,2, 1; weight 256, 256
0<i

.<161—0.5,0.5}
i<161—0.5,0.5}

~

_OI
IN

509
X677
821

X
/E X701
(X653

)i
):
)i
—1); {— 1}; weight 252
{— 1}; weight 250
; {—1,0,1}; weight 281
} Welght 57,57
; 1}; weight 223,223
zl217><8,{ 1,0, 1} weight 231, 231
Z[x]/(x°% + ... 4+1); {~1,0,1}; weight 91, 91
/(%2 + ..+ 1), {—1,0,1}; weight 106, 106
/(x1170 . +1); {—1,0,1}; weight 111, 111
) —1,0, 1}; weight 68, 68; ending 0
/(x™" —1); {-1,0,1}; weight 121, 121; ending 0
); {—1,0,1}; weight 194, 194; ending 0

¥

¥

, 1}; key correlation > 0
0,
, 0,
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—1
—1
—1
—1
— X
— X —
— X —
1,0,
1,0,

( ( Zo</<10{ 0.5,0.5}
(Z[x]/(x*° + 1)) > 0<i<g1—0.5,0.5}
( ZO</<6{ 0.5,0. 5}
. {—1,0,1}; weight 288
{— ,O, 1}; weight 286
Z[X]/(X857 —x—1); {-1,0,1}; weight 322
2, 1 0, 1,2}; Pr1,32,62,32,1:%*
1,0,1}; Pr 13,38, 13; *
1,0,1

107
AS Zo</<3122 '"{-
{ } Pr 5,622 5: *

Z* Y <icar 2

oo |



short element

ter set | type set of multipliers
640 | Product | (Z/32768)040x040
976 | Product | (Z/65536)976x976
1344 | Product | (Z/65536)!344x1344
512 | Product | ((Z/3329)[x]/(x?%° + 1))2*2
768 | Product | ((Z/3329)[x]/(x%%° + 1))3*3
1024 | Product | ((Z/3329)[x]/(x?%° + 1))**4
128 | Product | (Z/251)[x]/(x°1? + 1)
192 | Product (Z/251)[x'/(x1024—|—1)
256 | Product | (Z/251)[x]/(x19%* + 1)
512 | Product | (Z/12289)[x]/(x>12 + 1)
1024 | Product (Z/12289)[X]/( 1024+1)
48509 | Quotient | (Z/2048)[x]/(x> 1)
48677 | Quotient | (Z/2048)[x]/(x®7" — 1)
96821 | Quotient | (Z/4096)[x]/(x%°1 — 1)
55701 | Quotient | (Z/8192)[x]/(x"! — 1)
653 | Product | (Z/4621)[x]/(x%>3 —x — 1)
761 | Product | (Z/4591)[x]/(x"%! — x — 1)
857 | Product | (Z/5167)[x]/(x®>" — x — 1)
1 | Product | (Z/4096)036x636
3 | Product | (Z/32768)876x876
5 | Product | (Z/32768)1217>x1217
1.0d | Product | (Z/8192)[x]/(x°8® + ... +1)
3.0d | Product | (Z/4096)[x]/(x®%? + ... +1)
5.0d | Product | (Z/8192)[x]/(x"70 4+ ...+ 1)
1.5d | Product | (Z/1024)[x]/(x*% — 1)
3.5d | Product | (Z/4096)[x]/(x"" —1)
5.5d | Product | (Z/2048)[x]/(x%*" — 1)
light | Product | ((Z/8192)[x]/(x?2® + 1))2*?2
main | Product | ((Z/8192)[x]/(x?%0 + 1))3*3
fire | Product | ((Z/8192)[x]/(x 256+1))4><4
653 | Quotient (Z/4621)[X]/(X —x—1)
761 | Quotient | (Z/4591)[x]/(x"®! — x — 1)
857 | Quotient (Z/5167)[X]/(X8 —x—1)
baby | Product | (Z/(23120 — 21560 _ 1))2x2
mama | Product | (Z/(23120 — 21560 _ 1))3x3
papa | Product | (Z/(23120 — 21500 _ 1))4x4

Z640%8. {-12,..., 12}; Pr1,4,17, ... (spec page 23)
Z970%8. £_10,...,10}; Pr1,6,29, ... (spec page 23)
Z1344x8. 16 ... 6}; Pr2,40,364, ... (spec page 23)

(Z[X]/(X256 + 1)) 2 0<i<41-05,0. 5)

(Z[x]/(x? )) > 0<i<41—0.5,0.5}

(Z[x]/(x*° +1))*; X o<i<a{—0.5,0.5}

Z[x]/(x°'? +1); {-1,0,1}; Pr 1,2, 1; weight 128,128
Z[x]/(x19%* +1); {-1,0,1}; Pr 1,6, 1; weight 128,128
Z[x]/(x19%* +1); {-1,0,1}; Pr 1,2, 1; weight 256, 256
Z[x]/(x12 +1); > p<;-16{—0.5,0.5}

Z[x]/(x"%°* +1); 3 <;c16{—0.5,0.5}

Z[x]/(x°%° —1); {-1,0,1}

Z[x]/(x°" —1); {~1,0,1}

Z[x]/(x%! —1); {~1,0,1}

Z[x]/(x™ —1); {-1,0,1}; key correlation > 0
Z[x]/(x%3 — x — 1); {~1,0, 1}; weight 252
Z[x]/(x"0t — 1); {—1,0,1}; weight 250
Z[x]/(x87 — 1); {—1,0,1}; weight 281

X —

X —
Z0306%8. 1 0,1}; weight 57, 57
Z876%8. 1 0,1}; weight 223,223
Z1217x8. 1 1,0, 1} weight 231, 231

Z[x]/(x%8% + .. +1); {—1,0,1}; weight 91,91
Z[x]/(x8° + ...+ 1); {—1,0,1}; weight 106, 106
Z[x]/(x!170 . +1); {-1,0,1}; weight 111,111
Z:x:/(x509 ) {—1, 0, 1}; weight 68, 68; ending 0
Z:x:/(X —1); {-1,0, 1}; weight 121, 121; ending 0
Z[x]/(x%*" —1); {—1,0,1}; weight 194, 194; ending 0

(Z[x]/(x* + 1)) 2 0<i<101—0:5,0.5}
(Z[X]/EX256 + 1)) 2 0<i<g{—05,0.5}

(Z[x]/(x>>° + 1)) > o<i<61—0.5,0.5}

Z[x]/(x° 1) {-1,0,1}; weight 288
Z[x]/(x™® — x —1); {~1,0,1}; weight 286

Z[X]/( 857 _ 1) {—1,0,1}; weight 322

Z? ZO</<312 21 '{ 2, —1 0,1,2}; Pr1,32,62,32,1; *
Z3; 'Y 0<i<312 210 '{-1,0,1}; Pr13,38,13; *

yAS ZO</<312 210 { 1,0,1}; Pr5,22,5; *

key offset (nume

z640><8; {_121 N

Z975%8, £10,.
Zl344><8 { 6,
(Z[x]/(x 256 1
(Z[x]/ (<30 11
(Z[x]/(x*° + 1
/( 512 + 1)
1024 4+ 1)
/(X1024 4+ 1:
(X512 + 1)’
/(X1024 4+ 1:
/(X509 _ 1);
/( 677 1).
/( 821 1)
'X'/(X701 1);
round {—2310, .
round {—2295, .
round {—2583, .
round Z /4096 tc
round Z /32768 1
round Z /32768 1
round Z /8192 tc
round Z /4096 tc
round Z /8192 tc
reduce mod x°98
reduce mod x"°
reduce mod x946
round Z /8192 tc
round Z /8192 tc
round Z/8192 tc
Z[x)/(x%%3 -
Z[x]/(x" — x -
Z[X]/ (x®7 —

Z7; Zo<,<312 2
23 gcic3102
Z" Y g<ic3122

DX X X X X X X
~— ~

Z[x
Y4
Y4
Y4
Y4
Y4
Y4
Y4
Y4




set of multipliers

short element

key offset (numerator or noise or rou

(2/32768)640><640
(2/65536)976X976
(2/65536)1344>< 1344
((Z/3329)[x]/(x%20 + 1))2*2
((Z/3329)[x]/(x%0 +1))3*x3
((Z/3329)[x]/(x%6 + 1))**4
(Z/251)[x]/(x°+* + 1)
(2/251)[x'/(x1024 +1)
(Z/251)[x]/(x*%%* + 1)

(
(
(
(

Z/12289)[x]/(x°12 + 1)
Z/12289)[x]/(x10%* + 1)
Z/2048)[x]/(x*%? — 1)
Z/2048)[x]/(x°"" — 1)
(Z/4096)[x]/(x®%! — 1)
(Z/8192)[x]/(x"Ot — 1)
(Z/4621) :x:/(x653 —x—1
(Z/4591):X:/(X761 x —1
(Z/5167):x:/(x857 x—1)
(2/4096)636><636
(2/32768)876X876
(2/32768)1217><1217
(Z/8192)[x]/(x°%0 + ... +1)
(Z/4096)[x]/(x8%2 + ...+ 1)
(Z/8192)[x]/(x*170 T 1)
(Z/1024)[x]/ (><509 )
(Z/4096)[x]/(x">" — 1)
(Z/2048)[x]/(x**" — 1)
((Z/8192)[x] /(x>0 + 1))2*2
((Z/8192)[x] /(x> + 1))>*3
((Z/8192)[x]/(x*2° + 1))+
(Z/4621)[X]/(X —x—1)
(Z/4591)[x]/(x"01 — x — 1)
(Z/5167)[x]/(><8 — X ><12)

(Z/(23120 . 21560 1
(Z/(23120 . 21560 1))3><3
1

(Z/(23120 . 21560 ))4><4

Z640><8; {_12

Z976x8. 10, ...
Z1344x8. 16 . 6}; Pr2, 40,364, .

..... 12V Pr1,4,17, ...
,10}; Pr1,6,29,...

(spec page 23)
(spec page 23)
. (spec page 23)

(Z[X]/(X256 + 1)) 2 0<i<41-05,0. 5)

(Z[x]/(x>>° )) > 0<i<41—0.5,0.5}

(Z[x]/(x*° +1))* X o<jca{—0.5 0.5}

Z[x]/(x°'? +1); {-1,0,1}; Pr 1,2, 1; weight 128,128
Z[x]/(x'0%* +1); {—1,0,1}; Pr 1,6, 1; weight 128, 128
Z[x]/(x10%* +1); {~1,0,1}; Pr 1,2, 1; weight 256, 256
Z[x]/(x**% +1); 3 g<jc161—0.5,0.5}

Z[x]/(x"%* +1); 3 <;c16{—0.5,0.5}

Z[x]/(x°%° —1); {-1,0,1}

Z[x]/(x°"" —1); {-1,0,1}

Z[x]/(x%t —1); {~1,0,1}

Z[x]/(x™ —1); {~1,0,1}; key correlation > 0
Z[x]/(x%3 — x —1); {~1,0, 1}; weight 252
Z[x]/(x™1 — x —1); {~1,0, 1}; weight 250
Z[x]/(x®" — x —1); {~1,0,1}; weight 281
Z030%8. 1 0,1}; weight 57, 57

Z876x8. £_1.0,1}; weight 223,223

zl217><8,{ 1,0, 1}; weight 231, 231

Z[x]/(x>%° + ... 41); {~1,0,1}; weight 91,91
Z[x]/(x®2 + ... +1); {~1,0,1}; weight 106, 106
Z[x]/(x1T0 + . +1); {—1,0,1}; weight 111,111
Z[x]/ (x99 —1); {—1,0,1}; weight 68, 68; ending 0
Z[x]/(x™>" —1); {~1,0,1}; weight 121, 121; ending 0
Z[x]/(x** —1); { 1,0,1}; weight 194, 194; ending 0
Z[x] /(x> + 1)) 0<i<101—0.5,0.5}

Z[X]/( 857 — x —
Z?; Zo</<3122 '{—
Z>; Zo</<3122 '{-
Z% Y gcicz10 20—

(Z[x]/( S
(Z[x]/(x2> + 1)) 2 0<i<g{—0.5,05}
( DN

0<i<61—0.5,0.5}
1,0,1}; weight 288

-

{— ,O, 1}; weight 286

; {—1,0,1}; weight 322

2, —1 0,1,2}; Pr1,32,62,32,1; *
1,0,1}; Pr 13,38, 13; *

1,0,1}; Pr5,22,5; *

Z040x8. f_12 12}; Pr1,4,17,.
Z970%8. £_10,...,10}; Pr1,6,29, .
Z1344x8. 16 . 6}; Pr2,40,364,

(Z[/(28 1% Tocice {05
Z[x)/(x2%0 + 1))%; i o{—05,

Z[x]/(x*° +1))* Y g<ica{-05,
x]/(x°12 + 1); { 1,0,1}; Pr1,2,

~1,0,1}: Pr 1,6
~1,0,1}; Pr1,2
<

1,0

—1,0,1}; weight |
X —1,0, 1}; weight !
X] —1,0,1}; key corr
round {—2310, ... ., 2310} to 3Z
round {—2295, ..., 2295} to 3Z
round {—2583, ..., 2583} to 3Z
round Z /4096 to 8Z

round Z/32768 to 16Z

round Z /32768 to 8Z

round Z/8192 to 16Z

round Z /4096 to 8Z

round Z/8192 to 16Z

reduce mod x°% + . + 1; round Z
reduce mod x™0 + .. + 1; round Z
reduce mod x?*° + .. 4+ 1; round Z
round Z/8192 to 8Z

round Z/8192 to 8Z

round Z/8192 to 8Z

NNNNNNNNN
XXX X X X X X

Z[x]/(x SZ? —1);{-1,0,1}, !nve
Z[x]/(x 7 —1);{-1,0,1}; inve
Z[X]/( 1); {—1,0,1}; inve
Z° Zo</<3122 '{-2,-1,0,1,2};
Z>; Zo</<3122 '{—1.0,1}; Pr13,
Z*% Y o<ic3122"'{~1,0,1}; Pr5,:



short element

key offset (numerator or noise or rounding method)

Z640%8. {-12,..., 12}; Pr1,4,17, ... (spec page 23)
Z970%8. £_10,...,10}; Pr1,6,29, ... (spec page 23)
Z13¥48. 16 ., 6}; Pr 2,40, 364, ... (spec page 23)

(Z[X]/(X256 + 1)) 2 0<i<41-05,0. 5)

(Z[x]/(x? )) > 0<i<41—0.5,0.5}

(Z[x]/(x*° +1))*; Y o<i<a{—0.5,0.5}

Z[x]/(x°¥2 +1); {~1,0,1}; Pr1,2, 1; weight 128,128
Z[x]/(x19%* +1); {-1,0,1}; Pr 1,6, 1; weight 128,128
Z[x]/(x19%* +1); {-1,0,1}; Pr 1,2, 1; weight 256, 256
Z[x]/(x*"2 +1); > p<;-16{—0.5,0.5}

Z[x]/(x"°* +1); 3 <;c16{—0.5,0.5}

Z[x]/(x°%° —1); {-1,0,1}

Z[x]/(x°" —1); {~1,0,1}

Z[x]/(x%! —1); {~1,0,1}

Z[x]/(x™ —1); {-1,0,1}; key correlation > 0
Z[x]/(x%3 — x — 1); {~1,0, 1}; weight 252
Z[x]/(x"0t — 1); {—1,0,1}; weight 250
Z[x]/(x87 — 1); {—1,0,1}; weight 281

X —

X —
Z630%8. 11 0,1}: weight 57, 57
Z876x8. 11 0,1}; weight 223,223
Z1217x8. 1 1,0, 1} weight 231, 231
Z[x]/(x%8 + ... +1); {~1,0,1}; weight 91,91
J(x®2 4+ + 1); {—1,0,1}; weight 106, 106

Z|x]/(

Z[x]/(x!170 . +1); {-1,0,1}; weight 111,111
Z:x:/(x509 ) {—1, 0, 1}; weight 68, 68; ending 0
Z:x:/(X —1); {—1,0,1}; weight 121,121; ending 0
Z[x]/(x%*" —1); {—1,0,1}; weight 194, 194; ending 0

(Z[x]/(x* + 1)) 2 0<i<101—0:5,0.5}
(Z[X]/EX256 + 1)) 2 0<i<g{—05,0.5}

(Z[x]/(x2° + 1)) 2 0<i<61-0.5,0.5}

Z[x]/(x° 1) {-1,0,1}; weight 288
Z[x]/(x™® — x —1); {~1,0,1}; weight 286

Z[X]/( 857 _ 1) {—1,0,1}; weight 322

Z ZO</<312 21 '{ 2, —1 0,1,2}; Pr1,32,62,32,1; *
Z3; 'Y 0<i<312 210 '{-1,0,1}; Pr13,38,13; *

yAS ZO</<312 210 { 1,0,1}; Pr5,22,5; *

Z040%8. £_12 12}; Pr1,4,17, ... (spec page 23)
Z970%8. £_10,...,10}; Pr1,6,29, ... (spec page 23)
Z1344x8. 16, 6}; Pr2,40,364, ... (spec page 23)
(Z[X]/(X256 + 1)) S o<ia{~05,0.5)
(Z[x]/(x? )) 2> 0<i<41—0.5,0.5}
(Z[x]/(x*° + 1))*; X o<i<a{—0.5,0.5}

Z[x]/(x°'? +1); {-1,0,1}; Pr 1,2, 1; weight 128,128
Z[x]/(x19%* +1); {—1,0,1}; Pr 1,6, 1; weight 128,128
Z[x]/(x1%%* +1); {-1,0,1}; Pr 1,2, 1; weight 256, 256
Z:X:/(Xicl);*‘ 1); 2_0<i<161—0-5,0.5}

Z:X:/( +1) 2 0<i<161—0.5,0.5}

Z[x]/(x 1); {—1,0,1}; weight 127,127
Z[x]/(x®7" —1); {—1,0,1}; weight 127, 127
Z[x]/(x%t —1); {~1,0,1}; weight 255, 255
Z[x]/(x™ —1); {-1,0,1}; key correlation > 0; -(x — 1

round {2310, ..., 2310} to 3Z

round {—2295, ..., 2295} to 3Z

round {—2583, ..., 2583} to 3Z

round Z /4096 to 8Z

round Z/32768 to 16Z

round Z/32768 to 8Z

round Z/8192 to 16Z

round Z /4096 to 8Z

round Z/8192 to 16Z

reduce mod x°% + ...+ 1: round Z/1024 to 8Z
reduce mod x™° + ...+ 1: round Z /4096 to 16Z
reduce mod x%%® + .. 4+ 1: round Z /2048 to 8Z
round Z /8192 to 8Z

round Z /8192 to 8Z

round Z/8192 to 8Z

Z[x]/(x%>3 — x —1); {~1,0,1}; invertible mod 3
Z[x]/(x™®! — x —1); {~1,0,1}; invertible mod 3
Z[X]/( 857 _ x —1); {-1,0,1}; invertible mod 3

Z°; Zo<,<3122 'f-2,-1,0,1,2}; Pr1,32,62,32,1; *
Z3; Zo<,<3122 '{-1,0,1}; Pr13,38,13; *

Z* S g<cic3122M9{-1,0,1}; Pr5,22,5; *



short element

key offset (numerator or noise or rounding method)

Z040%8. {-12,..., 12}; Pr1,4,17, ... (spec page 23)
Z976%8. £_10,...,10}; Pr1,6,29, ... (spec page 23)
Z1344x8. 16 ., 6}; Pr 2,40,364, ... (spec page 23)

(Z[X]/(X256 + 1)) 2 0<i<41-05,0. 5)

(Z[x]/(x>>° )) > 0<i<41—0.5,0.5}

(Z[x]/(x*° +1))* X o<j<a{—0.5 0.5}

Z[x]/(x°'? +1); {-1,0,1}; Pr 1,2, 1; weight 128,128
Z[x]/(x'0%* +1); {—1,0,1}; Pr 1,6, 1; weight 128, 128
Z[x]/(x10%* +1); {~1,0,1}; Pr 1,2, 1; weight 256, 256
Z[x]/ (x> +1); 3 g<jc161—0.5,0.5}

Z[x]/(x"%* +1); 3 g<;c16{—0.5,0.5}

Z[x]/(x°%° —1); {-1,0,1}

Z[x]/(x°"" —1); {-1,0,1}

Z[x]/(x%t —1); {~1,0,1}

Z[x]/(x"™ —1); {~1,0,1}; key correlation > 0
Z[x]/(x%3 — x —1); {~1,0, 1}; weight 252
Z[x]/(x™1 — x —1); {~1,0, 1}; weight 250
Z[x]/(x®7 — x —1); {~1,0,1}; weight 281
Z0306x8. 1 0,1}; weight 57, 57

Z876x8. £_1.0,1}; weight 223,223

zl217><8,{ 1,0, 1}; weight 231, 231
Z[x]/(x>%° + ... 41); {~1,0,1}; weight 91,91
/(x8%2 + .. 4+1); {~1,0,1}; weight 106, 106
J(xM0 ¢ 4+1); {—1,0,1}; weight 111,111
); {—1,0,1}; weight 68, 68; ending 0
/(x™" —1); {~1,0,1}; weight 121, 121; ending 0
); { 1,0,1}; weight 194,194; ending 0

( ( Zo</<10{ 0.5,0.5}
(Z[6]/ (2% + 1)% Tz {-05.0.5)

( ZO</<6{ 0.5,0. 5}
. {—1,0,1}; weight 288
{— ,O, 1}; weight 286
Z[X]/( 857 _ x —1); {~1,0,1}; weight 322
Z, Zo</<3122 '{—2
AL Zo</<3122 } i

Z* Y <icar 2

1,0, 1,2}; Pr1,32,62,32,1; *
0,1}; Pr13,38,13; *
0,1}; Pr5,22,5; *

Z040%8. {-12,..., 12}; Pr1,4,17, ... (spec page 23)
Z976%8. £_10,...,10}; Pr1,6,29, ... (spec page 23)
Z1344x8. 16 ., 6}; Pr 2,40,364, ... (spec page 23)

(Z[X]/(X256 + 1)) 2 0<i<41-05,0. 5)
Z[x]/ (x> )) 2 0<i<4{—05,05}

Z[x]/(x*° +1))*; Y o<;-4{—0.5,0.5}
x]/(x®12 +1); {~1,0,1}; Pr 1,2, 1; weight 128, 128

0,1}; Pr1,6,1; weight 128, 128
0,1}; Pr1,2,1; weight 256, 256

.<161—0.5,0.5}

i<161—0.5,0.5}
1}; weight 127,127

-1,0,

—1,0, 1}; weight 127,127

X] ~1,0,1}: weight 255, 255

X] —1,0,1}; key correlation > 0; -(x — 1)
round {—2310, ..., 2310} to 3Z

round {—2295, ..., 2295} to 3Z

round {—2583, ..., 2583} to 3Z

round Z /4096 to 8Z

round Z/32768 to 16Z

round Z /32768 to 8Z

round Z/8192 to 16Z

round Z /4096 to 8Z

round Z/8192 to 16Z

reduce mod x°% + ...+ 1: round Z/1024 to 8Z
reduce mod x™° + ...+ 1: round Z/4096 to 16Z
reduce mod x%%© + .. 4+ 1: round Z /2048 to 8Z
round Z/8192 to 8Z

round Z/8192 to 8Z

round Z/8192 to 8Z

{1,
{1,
X512—|—1) ZS
;2.0

NNNNNNNNN
XXX X X X XX

AN AN AN AN AN SN
x
(&)
()
©
|
~

Z[x]/(x%*3 — x —1); {~1,0,1}; invertible mod 3
Z[x]/(x"®r —x —1); {~1,0,1}; invertible mod 3
Z[x]/( 857 _ x —1); {~1,0,1}; invertible mod 3

Z°; Zo<,<3122 'f-2,-1,0,1,2}; Pr1,32,62,32,1; *
Z3; Zo<,<3122 '{-1,0,1}; Pr13,38,13; *

Z% Y g<ic322'9{-1,0,1}; Pr5,22,5; *



., 12}, Pr1,4,17, ... (spec page 23)

.,10}; Pr1,6,29, ... (spec page 23)
,6}; Pr2,40,364, ... (spec page 23)

) ZO</<4{ 0.5,0. 5}

) > 0<i<41—0.5,05}

ZO</<4{ 0.5,0. 5}
{ 1,0, 1} Pr1,2,1; weight 128, 128

1,0,1}; Pr1,6,1; weight 128,128
1,0,1}; Pr1,2,1; weight 256, 256

) {—
) {—
Z <i<161—0.5,0.5}
ZO<I<16{ 0.5,0. 5}

{ 1,0,1}

{-1,

{-1,

{ 1, . key correlation > 0

0 1}; weight 252

0, 1}; weight 250

{ 1,0,1}; weight 281

1} weight 57, 57

1}; weight 223,223

‘1}; weight 231, 231

+1); {—1,0,1}; weight 91,91

+1); {—1,0,1}; weight 106, 106

+1); {—1,0,1}; weight 111,111
1,0,1}; weight 68, 68; ending 0

{—1,0,1}; weight 121, 121; ending 0
—1,0, 1}; weight 194, 194; ending 0

1
1
15
—1,
—1,

Z </<10{ 0.5, 05}
> o<i<g{—0.5,0.5}
Y ZO<i<6{_O-5vO-5}

. {—1,0,1}; weight 288

;. {—1,0,1}; weight 286

. {—1,0,1}; weight 322

—2, 1012}Pr13262321*
~1,0,1}; Pr 13,38, 13; *

~1,0,1}; Pr5,22,5:; *

o o |

key offset (numerator or noise or rounding method)

ciphertext offset

Z640%8. {-12,..., 12}; Pr1,4,17, ... (spec page 23)
Z970%8. £_10,...,10}; Pr1,6,29, ... (spec page 23)
Z13¥48. 16 ., 6}; Pr 2,40, 364, ... (spec page 23)

(Z[X]/(X256 + 1)) S o<i<a{ 05,05}
EZ[X]/( )) 2 0<i<4{—05,05}

Z[x]/(x*° +1))*; Y g<;i<4{—0.5,0.5}
1/(x°12 +1); {~1,0,1}; Pr 1,2,1; weight 128, 128

(x1024 4 1): {—1,0,1}; Pr 1,6, 1; weight 128,128

/(x10%% 1 1); {—1,0,1}; Pr 1,2,1; weight 256, 256
(x> +1); > g<jc16{—0.5,0.5}

J(x19%% 1) 3 i 16{—0.5,0.5}

XXX X X X X X
~— ~— ~

Z[x
Y4
Y4
Y4
Y4
Y4
Y4
Y4
Y4

(x°9 —1); {~1,0,1}; weight 127,127
/(x77 —1); {—1,0,1}; weight 127, 127
/(x821 —1); {—1,0,1}; weight 255, 255
x]/(x0r —1); {~1,0, 1}; key correlation > 0; -(x — 1)

round {2310, ..., 2310} to 3Z

round {—2295, ..., 2295} to 3Z

round {—2583, ..., 2583} to 3Z

round Z /4096 to 8Z

round Z/32768 to 16Z

round Z/32768 to 8Z

round Z/8192 to 16Z

round Z /4096 to 8Z

round Z/8192 to 16Z

reduce mod x°% &+ ...+ 1: round Z/1024 to 8Z
reduce mod x™° + ...+ 1: round Z/4096 to 16Z
reduce mod x%%® + .. 4+ 1: round Z /2048 to 8Z
round Z /8192 to 8Z

round Z /8192 to 8Z

round Z/8192 to 8Z

Z[x]/(x%>3 — x —1); {~1,0,1}; invertible mod 3
Z[x]/(x™® — x —1); {~1,0,1}; invertible mod 3
Z[X]/( 857 _ x —1); {-1,0,1}; invertible mod 3

Z°; Zo<,<3122 'f-2,-1,0,1,2}; Pr1,32,62,32,1; *
Z3; Zo<,<3122 '{~1,0,1}; Pr13,38,13; *

Z* S g<ic3122M9{-1,0,1}; Pr5,22,5; *

Z8%8- 12

X512 4 1)
'X'/(X1024 4+ 1:
not applicable

not applicable

not applicable

not applicable

bottom 256 coef
bottom 256 coef
bottom 256 coef
round Z /4096 tc
round Z /32768 1
round Z /32768 1
bottom 128 coef
bottom 192 coef
bottom 256 coef
bottom 318 coef
bottom 410 coef
bottom 490 coef
round Z /8192 tc
round Z /8192 tc
round Z /8192 tc
not applicable

not applicable

not applicable

1
Z; Y 0<i<312 21(
Z, Zo</<3122 »
Z; Y g<ic3122




. (spec page 23)

. (spec page 23)

. (spec page 23)
).5}
).5}
).5}
1; weight 128, 128
, 1; weight 128, 128
, 1; weight 256, 256
}
5}

elation > 0
ght 252
cht 250
ght 281

cight 91, 91

cight 106, 106
veight 111,111
»8, 68; ending 0
121, 121; ending O
194, 194; ending O
0.5}

).5}

).5}

gcht 288

cht 286

ght 322
Pr1,632,62,32,1; *
38,13; *

2,5; *

key offset (numerator or noise or rounding method)

Z640%8. 15 12}; Pr 1,4,17, ... (spec page 23)
Z976%8. £_10,...,10}; Pr1,6,29, ... (spec page 23)
Z1344x8. 1 5 6}; Pr2,40,364, ... (spec page 23)
(Z[X]/(x256 + 1)) S o<ica{~05,0.5}
(Z[x]/ (x50 )) > 0<i<a{—0.5,0.5}

~

NNNNNNNN“N

XX X X X X X

| X

Z[x]/(x*° +1))*; Y o<;-4{—0.5,0.5}
x]/(x®12 +1); {~1,0,1}; Pr 1,2, 1; weight 128, 128

(x10%% 4+ 1); {—1,0,1}; Pr 1,6, 1; weight 128,128
/(x10%% 1 1); {~1,0,1}; Pr 1,2,1; weight 256, 256
/(12 +1); 3 g<<16{—0.5,0.5}

/(x192% 4 1); ZE< <161—0.5,0.5}

/(x*99 —1); {~1,0,1}; weight 127,127

/(x077 —1); {~1,0,1}; weight 127,127

/(x®21 —1); {~1,0,1}; weight 255, 255

1/(x" —1); {~1,0,1}; key correlation > 0; -(x — 1)

round {2310, ..., 2310} to 3Z

round {—2295, ..., 2295} to 3Z

round {—2583, ..., 2583} to 3Z

round Z /4096 to 8Z

round Z/32768 to 16Z

round Z /32768 to 8Z

round Z/8192 to 16Z

round Z/4096 to 8Z

round Z/8192 to 16Z

reduce mod x°% + ...+ 1: round Z/1024 to 8Z
reduce mod x™° + ...+ 1: round Z /4096 to 16Z
reduce mod x%%© + .. 4+ 1: round Z /2048 to 8Z
round Z/8192 to 8Z

round Z/8192 to 8Z

round Z/8192 to 8Z

Z[x]/(x%°3 — x —1); {~1,0,1}; invertible mod 3
Z[x]/(x®r —x —1); {~1,0,1}; invertible mod 3
Z[x]/( 857 _ x —1); {~1,0,1}; invertible mod 3

Z°; Zo<,<3122 'f-2,-1,0,1,2}; Pr1,32,62,32,1; *
Z3; Zo<,<3122 '{~1,0,1}; Pr 13,38, 13; *

Z% Y g<ic322'9{-1,0,1}; Pr5,22,5; *

ciphertext offset (noise or rounding r

z8<8. 12, ..., 12}; Pr1,4,17, ...
z8<8. £10,...,10}; Pr1,6,29, ...
z8<8. 16, ..., 6}; Pr2, 40,364, ...

e )i 2_0<i<a{—05,05
x> +1); 2 0<i<al1—0.5,0.5

1 ): 2_0<i<41—0.5,0.5,
x> +1),{-1,0,1}; Pr 1,2,
x10%% 1 1), {-1,0,1}; Pr1,6
x19%% 1 1), {-1,0,1}; Pr1,2

X
~
—~

X

—_
(@)
N
D

_l_

[
~—~—
™
i\ .
A
'—l
(@))
~=

o

o1

o

not applicable

not applicable

not applicable

not applicable

bottom 256 coeffs; z — |(114(z + 2
bottom 256 coeffs; z — |(113(z + 2
bottom 256 coeffs; z — |(101(z + 2
round Z/4096 to 64Z

round Z/32768 to 512Z

round Z /32768 to 64Z

bottom 128 coeffs; round Z/8192 to
bottom 192 coeffs; round Z/4096 to
bottom 256 coeffs; round Z/8192 to
bottom 318 coeffs; round Z/1024 to
bottom 410 coeffs; round Z/4096 to
bottom 490 coeffs; round Z/2048 to
round Z/8192 to 1024Z

round Z/8192 to 512Z

round Z /8192 to 128Z

not applicable

not applicable

not applicable

Z; Y 0<i<312 210'{ 2,-1,0,1,2}; F
4 Zo<,<3122 '{-1,0,1}; Pr13,:
Z; Y o<ic312 2" {~1,0,1}; Pr5, 2



key offset (numerator or noise or rounding method)

Z640%8. {-12,..., 12}; Pr1,4,17, ... (spec page 23)
Z970%8. £_10,...,10}; Pr1,6,29, ... (spec page 23)
Z1344x8. 16 .. 6}; Pr2,40,364, ... (spec page 23)

(Z[X]/(X256 + 1)) S o<i<a{ 05,05}
EZ[X]/( )) 2 0<i<4{—05,05}

Z[x]/(x*° +1))*; Y g<;<4{—0.5,0.5}
1/(x°12 +1); {~1,0,1}; Pr 1,2,1; weight 128, 128

(x1024 4 1): {—1,0,1}; Pr 1,6, 1; weight 128,128

/(x10%% 1 1); {—1,0,1}; Pr 1,2,1; weight 256, 256
(x> +1); > g<jc16{—0.5,0.5}

J(x19%% 1) 3 i 16{—0.5,0.5}

XX XX X X X X
~— ~— ~

Z[x
Y4
Y4
Y4
Y4
Y4
Y4
Y4
Y4

(x599 —1); {—1,0,1}; weight 127, 127
/(x577 —1): {~1,0,1}; weight 127, 127
/(x821 — 1); {—1,0,1}; weight 255, 255
x]/(x"1 —1); {—1,0,1}; key correlation > 0; -(x — 1)

round {—2310, ..., 2310} to 3Z

round {—2295, ..., 2295} to 3Z

round {—2583, ..., 2583} to 3Z

round Z /4096 to 8Z

round Z/32768 to 16Z

round Z/32768 to 8Z

round Z/8192 to 16Z

round Z /4096 to 8Z

round Z /8192 to 16Z

reduce mod x°% + ...+ 1: round Z/1024 to 8Z
reduce mod x™° + ...+ 1: round Z /4096 to 16Z
reduce mod x%%® + .. 4+ 1: round Z /2048 to 8Z
round Z /8192 to 8Z

round Z /8192 to 8Z

round Z/8192 to 8Z

Z[x]/(x%3 — x —1); {~1,0,1}; invertible mod 3
Z[x]/(x™®! — x —1); {~1,0,1}; invertible mod 3
Z[x]/( 857 _ x —1); {-1,0,1}; invertible mod 3

Z°; Zo<,<3122 'f-2,-1,0,1,2}; Pr1,32,62,32,1; *
Z3; Zo<,<3122 '{~1,0,1}; Pr13,38,13; *

Z* S g<cic3102M{-1,0,1}; Pr5,22,5; *

ciphertext offset (noise or rounding method)

z8<8. 12, ..., 12}; Pr1,4,17, ... (spec page 23)
z8x8, £_10,...,10}; Pr1,6,29, ... (spec page 23)
z8<8. 16, ..., 6}; Pr2,40,364, ... (spec page 23)
x]/(x*% +1); ¥ g<ica{—0.5,0.5}
x>0 1% 2 0<i<a1—0.5,0.5}

ZO<I<4{ 0.5, 05}
x®12 4+1); {~1,0,1}; Pr1,2,1

x10%% 4+ 1) {-1,0,1}; Pr1,6,1
x1024 1 1); {-1,0,1}; Pr1,2,1

/(2 +1); Y o<jc16{—0.5,0.5}

/(192 +1),"S g;-16{~0.5,0.5}
not applicable

not applicable

not applicable

not applicable

bottom 256 coeffs; z — |(114(z + 2156) + 16384)/327¢
bottom 256 coeffs; z — |(113(z + 2175) + 16384)/327¢
bottom 256 coeffs; z — |(101(z + 2433) + 16384)/327¢
round Z/4096 to 64Z

round Z/32768 to 512Z

round Z /32768 to 64Z

bottom 128 coeffs; round Z/8192 to 512Z

bottom 192 coeffs; round Z/4096 to 128Z

bottom 256 coeffs; round Z/8192 to 256Z

bottom 318 coeffs; round Z/1024 to 64Z

bottom 410 coeffs; round Z/4096 to 512Z

bottom 490 coeffs; round Z/2048 to 64Z

round Z /8192 to 1024Z

round Z /8192 to 512Z

round Z /8192 to 128Z

not applicable

not applicable

not applicable

Z;Y gcics10 210'{ 2,-1,0,1,2}; Pr1,32,62,32,1; *
Z; > g<ic312 210 '{-1,0,1}; Pr 13,38,13; *

Z; Y 0cic3122'9{~1,0,1}; Pr5,22,5; *




key offset (numerator or noise or rounding method)

Z640%8. 15 12}; Pr 1,4,17, ... (spec page 23)
Z976%8. £_10,...,10}; Pr1,6,29, ... (spec page 23)
Z1344x8. 1 5 6}; Pr2,40,364, ... (spec page 23)
(Z[X]/(x256 + 1)) S o<ica{~05,0.5}
(Z[x]/ (x50 )) > 0<i<a{—0.5,0.5}

(Z[x]/(x*° +1))*; Y 9<;<a{~0.5,0.5}

Z[x]/(x°'? +1); {-1,0,1}; Pr 1,2, 1; weight 128,128
Z[x]/(x'0%* +1); {—1,0,1}; Pr 1,6, 1; weight 128, 128
Z[x]/(x10%* +1); {~1,0,1}; Pr 1,2, 1; weight 256, 256
Z[x]/ (x> +1); 3 g<jc161—0.5,0.5}

Z[x]/(x"%* +1); 3 g<;c16{—0.5,0.5}

Z[x]/(x*%? —1); {~1,0,1}; weight 127,127

Z[x]/(x®7" —1); {~1,0,1}; weight 127, 127

Z[x]/(x%t —1); {~1,0,1}; weight 255, 255

Z[x]/(x™ —1); {-1,0,1}; key correlation > 0; -(x — 1)

round {2310, ..., 2310} to 3Z

round {—2295, ..., 2295} to 3Z

round {—2583, ..., 2583} to 3Z

round Z /4096 to 8Z

round Z/32768 to 16Z

round Z /32768 to 8Z

round Z/8192 to 16Z

round Z/4096 to 8Z

round Z/8192 to 16Z

reduce mod x°% + ...+ 1: round Z/1024 to 8Z
reduce mod x™° + ...+ 1: round Z/4096 to 16Z
reduce mod x%%© + .. 4+ 1: round Z /2048 to 8Z
round Z/8192 to 8Z

round Z/8192 to 8Z

round Z/8192 to 8Z

Z[x]/(x%*3 — x —1); {~1,0,1}; invertible mod 3
Z[x]/(x™1 —x —1); {~1,0,1}; invertible mod 3
Z[x]/( 857 _ x —1); {~1,0,1}; invertible mod 3

Z°; Zo<,<3122 'f-2,-1,0,1,2}; Pr1,32,62,32,1; *
Z3; Zo<,<3122 '{~1,0,1}; Pr 13,38, 13; *

Z* Y g<ic3122'9{-1,0,1}; Pr5,22,5; *

ciphertext offset (noise or rounding method)

Z8%8. {-12,..., 12}; Pr1,4,17,... (spec page 23)
z8<8. £10,...,10}; Pr1,6,29, ... (spec page 23)
Z8x8. {-6,..., 6}; Pr2,40,364, ... (spec page 23)

o ): 2_o<i<41—0.5,0.5}
x22 +1); 3 0<i<41-0.5,0.5}
): 2_0<i<41—0.5,0.5}

x*2 +1); {-1,0,1}; Pr1,2,1
x10%% 1 1), {-1,0,1}; Pr1,6,1
x10%% 1 1), {-1,0,1}; Pr1,2,1

X
~
—~

X

—_
(@)
N
D

_l_

[
-
(@)
A
A
'—l
(@))
~ =

o

o1

o

o1
-

not applicable

not applicable

not applicable

not applicable

bottom 256 coeffs; z — |(114(z 4 2156) + 16384) /32768 |
bottom 256 coeffs; z — |(113(z + 2175) + 16384) /32768 |
bottom 256 coeffs; z — |(101(z + 2433) + 16384) /32768 |
round Z /4096 to 64Z

round Z/32768 to 512Z

round Z /32768 to 64Z

bottom 128 coeffs; round Z/8192 to 512Z

bottom 192 coeffs; round Z/4096 to 128Z

bottom 256 coeffs; round Z/8192 to 256Z

bottom 318 coeffs; round Z/1024 to 64Z

bottom 410 coeffs; round Z/4096 to 512Z

bottom 490 coeffs; round Z/2048 to 64Z

round Z/8192 to 1024Z

round Z/8192 to 512Z

round Z /8192 to 128Z

not applicable

not applicable

not applicable

Z:Y ociam 21 '{ 2,-1,0,1,2}; Pr1,32,62,32,1; *

Z;, Y g<icain 21 ’{ 1,0,1}; Pr13,38,13; *

Z; Y 0cic3122'9{~1,0,1}; Pr5,22,5; *



rator or noise or rounding method)

., 12}, Pr1,4,17, ... (spec page 23)

.,10}; Pr1,6,29, ... (spec page 23)
,6}; Pr2,40,364, ... (spec page 23)

) ZO</<4{ 0.5,0. 5}

) > 0<i<41—0.5,05}

ZO</<4{ 0.5,0. 5}
{ 1,0, 1} Pr1,2,1; weight 128, 128

1,0,1}; Pr1,6,1; weight 128,128
1,0,1}; Pr1,2,1; weight 256, 256

) {—
) {—

Z <i<161—0.5,0.5}
) 2

0<i<161—0.5,0.5}
0, 1}; weight 127,127

0

—1,

—1,0, 1}; weight 127,127

~1,0,1}; weight 255, 255

—1,0, 1}; key correlation > 0; -(x — 1)
12310} to 3Z

.,2295} to 3Z
..,2583} to 3Z
) 82
0 16Z
0 8Z
) 162
) 82
) 16Z
+...4+1; round Z/1024 to 8Z
+ ...+ 1; round Z/4096 to 16Z
+...4+1; round Z/2048 to 8Z

: r-’Hr-’Hr-’Hr-‘H

) 8Z
) 8Z
) 8Z
-1); {—1,0, 1}; invertible mod 3
-1); {—1,0,1}; invertible mod 3
1); {—1,0,1}; invertible mod 3
l0'{ 2,-1,0,1,2}; Pr1,32,62,32,1; *
07f_1,0,1}; Pr13,38,13; *
0/ f_1,0,1}; Pr5,22,5; *

ciphertext offset (noise or rounding method)

Z8%8. {-12,..., 12}; Pr1,4,17, ... (spec page 23)
Z8%8. £10,...,10}; Pr1,6,29, ... (spec page 23)
z8<8. 16, ..., 6}; Pr2,40,364, ... (spec page 23)
_X./(ngg +1); 2 0<i<a{—0.5,0.5}

(x> 4+1); 2 0<j<41—0.5,0.5}

( ); 2 0<j<a{—0.5,0.5}

(x12 +1); {~1,0,1}; Pr1,2,1

(x19%% +1); {-1,0,1}; Pr1,6,1

(x1024 1 1); {-1,0,1}; Pr1,2,1

/(2 +1); Y o<jc16{—0.5,0.5}

/(192 +1);"S g;-16{~0.5,0.5}
not applicable

not applicable

not applicable

not applicable

bottom 256 coeffs; z — | (114(z 4+ 2156) + 16384) /32768 |
bottom 256 coeffs; z — |(113(z + 2175) + 16384) /32768 |
bottom 256 coeffs; z — |(101(z + 2433) + 16384) /32768 |
round Z/4096 to 64Z

round Z/32768 to 512Z

round Z /32768 to 64Z

bottom 128 coeffs; round Z/8192 to 512Z

bottom 192 coeffs; round Z/4096 to 128Z

bottom 256 coeffs; round Z/8192 to 256Z

bottom 318 coeffs; round Z/1024 to 64Z

bottom 410 coeffs; round Z/4096 to 512Z

bottom 490 coeffs; round Z/2048 to 64Z

round Z /8192 to 1024Z

round Z /8192 to 512Z

round Z /8192 to 128Z

not applicable

not applicable

not applicable

Z;Y gcics10 210'{ 2,-1,0,1,2}; Pr1,32,62,32,1; *

Z; > g<ic312 210 '{-1,0,1}; Pr 13,38,13; *

Z; Y 0cic3122'%{~1,0,1}; Pr5,22,5; *

set of encoded n

8 X 8 matrix ove
8 X 8 matrix ove
8 X 8 matrix ove

> 0<i<25610, 16
> 0<i<25610, 16

> 0<i<25610, 161
256-dim subcode

256-dim subcode
256-dim subcode

> 0<i<25610, 61

> 0<i<25610, 61
not applicable

not applicable
not applicable
not applicable

> 0<i<25610,23
> 0<i<25610, 22

> 0<i<25610, 25
8 X 8 matrix ove

8 X 8 matrix ove
8 X 8 matrix ove

> 0<i<12810, 40!
> 0<i<19210, 20

> 0<i<25610, 40
128-dim subcodse

192-dim subcodse
256-dim subcode

> 0<i<25610, 40
> 0<i<25610, 40

2> 0<i<25610, 40
not applicable

not applicable
not applicable
256-dim subcode
256-dim subcode
256-dim subcode



nding method)

. (spec page 23)

. (spec page 23)

. (spec page 23)
).5}
).5}
).5}
1; weight 128, 128
, 1; weight 128, 128
, 1; weight 256, 256
}
5}
127,127
127,127
255, 255
elation > 0; -(x — 1)

/1024 to 8Z
/4096 to 16Z
/2048 to 8Z

rtible mod 3

rtible mod 3

rtible mod 3
Pr1,632,62,32,1; *
38,13; *

2 5 *

ciphertext offset (noise or rounding method)

set of encoded messages

Z8%8. {-12,..., 12}; Pr1,4,17,... (spec page 23)
z8<8. £10,...,10}; Pr1,6,29, ... (spec page 23)
Z8x8. {-6,..., 6}; Pr2,40,364, ... (spec page 23)

o ); 2 o<i<a{—05,05}
X + 1), ZO§i<4{_O'5v 05}
); 2 0<i<a{—05,05}

x*2 +1); {-1,0,1}; Pr1,2,1
x10%% 1 1), {-1,0,1}; Pr1,6,1
x19%% 1 1), {-1,0,1}; Pr1,2,1

X
~—
—~

X

—_
(@)
N
D

_l_

[
-
(e}
A
A
'—l
(@))
~=

o

o1

o

o1
-

not applicable

not applicable

not applicable

not applicable

bottom 256 coeffs; z — |(114(z 4 2156) + 16384) /32768 |
bottom 256 coeffs; z — |(113(z + 2175) + 16384) /32768 |
bottom 256 coeffs; z — |(101(z + 2433) + 16384) /32768 |
round Z/4096 to 64Z

round Z/32768 to 512Z

round Z /32768 to 64Z

bottom 128 coeffs; round Z/8192 to 512Z

bottom 192 coeffs; round Z/4096 to 128Z

bottom 256 coeffs; round Z/8192 to 256Z

bottom 318 coeffs; round Z/1024 to 64Z

bottom 410 coeffs; round Z/4096 to 512Z

bottom 490 coeffs; round Z/2048 to 64Z

round Z/8192 to 1024Z

round Z/8192 to 512Z

round Z/8192 to 128Z

not applicable

not applicable

not applicable

Z:Y ociam 21 '{ 2,-1,0,1,2}; Pr1,32,62,32,1; *

Z; Y g<icain 21 ’{ 1,0,1}; Pr13,38,13; *

Z; Y 0cio3122"9{~1,0,1}; Pr5,22,5; *

8 x 8 matrix over {0, 8192, 16384, 22
8 x 8 matrix over {0,8192,...,5734
8 x 8 matrix over {0, 4096, .. ., 6144

> o<ico56{0, 1665}x’
2 0<i<25610, 1665}’

> 0<i<25610, 1665}x’
256-dim subcode (see spec) of > -

)

256-dim subcode (see spec) of Y -
256-dim subcode (see spec) of 3 o
2 0<i<25610, 6145}1x’ (1 4 x*°)

Y 0<i<5610, 61451 (1 4 x*° 4 x°
not applicable

not applicable

not applicable

not applicable

> o<ico56{0,2310}x’
> 0<i<25610,2295}x'

> 0<i<25610, 2583}’
8 x 8 matrix over {0, 1024, 2048, 301

8 x 8 matrix over {0, 4096, ..., 2867
8 x 8 matrix over {0, 2048, ..., 3072

> o<ic1280,4096}x’
> 0<i<19210,2048}x’

Y 0<i<25610,4096}x'
128-dim subcode (see spec) of > (-

192-dim subcode (see spec) of Y o
256-dim subcode (see spec) of Y o

2 0<i<25610,4096}x’'
> 0<i<25610,4096}x'

> 0<i<25610,4096}x’
not applicable

not applicable
not applicable
256-dim subcode (see spec) of D -
256-dim subcode (see spec) of > .
256-dim subcode (see spec) of D o



ciphertext offset (noise or rounding method)

Z8%8. {-12,..., 12}; Pr1,4,17, ... (spec page 23)
Z8%8. £10,...,10}; Pr1,6,29, ... (spec page 23)

)
x*° 1) 3 g<j<a{—05,0.5}
)

? 20;i<4{_0-51 0.5}
x*2 +1); {-1,0,1}; Pr1,2,1

x10%% 4+ 1) {-1,0,1}; Pr1,6,1
x10%% 1 1), {-1,0,1}; Pr1,2,1

x]/(x°12 +1); 3 g<ic161-0.5,0.5}

x]/(x"%%* +1); 3 g<j16{—0.5,0.5}

not applicable

not applicable

not applicable

not applicable

bottom 256 coeffs; z — [ (114(z 4 2156) + 16384) /32768 |
bottom 256 coeffs; z — |(113(z + 2175) + 16384) /32768 |
bottom 256 coeffs; z — |(101(z + 2433) + 16384) /32768 |
round Z/4096 to 64Z

round Z/32768 to 512Z

round Z /32768 to 64Z

bottom 128 coeffs; round Z/8192 to 512Z

bottom 192 coeffs; round Z/4096 to 128Z

bottom 256 coeffs; round Z/8192 to 256Z

bottom 318 coeffs; round Z/1024 to 64Z

bottom 410 coeffs; round Z/4096 to 512Z

bottom 490 coeffs; round Z/2048 to 64Z

round Z /8192 to 1024Z

round Z /8192 to 512Z

round Z /8192 to 128Z

not applicable

not applicable

not applicable

Z; Y gcicg02'%{-2,-1,0,1,2}; Pr1,32,62,32,1; *

Z;Y )<ic310 219 {-1,0,1}; Pr13,38,13; *

Z;Y gcio3102%{~1,0,1}; Pr5,22,5; *

set of encoded messages

8 x 8 matrix over {0, 8192, 16384, 24576}
8 x 8 matrix over {0,8192,...,57344}
8 x 8 matrix over {0, 4096, . . ., 61440}

> o<ico56{0, 1665}’
> 0<i<25610, 1665}’

2 _0<j<25610, 1665}’ |
256-dim subcode (see spec) of Y -, .512{0,126}x"

)
256-dim subcode (see spec) of Y o-j-102410, 126}x’
256-dim subcode (see spec) of > ;102410 126}’
> 0<icos610,6145}x (1 + x20)

S 0<ic5610, 61451x (1 + x50 4 X312 1 x768)

not applicable

not applicable

not applicable

not applicable

> o<ico56{0,2310}x’
> 0<i<25610,2295}x’

> 0<i<25610, 2583}’
8 x 8 matrix over {0, 1024,2048, 3072}

8 x 8 matrix over {0, 4096, ..., 28672}
8 x 8 matrix over {0, 2048, ...,30720}

> 0<i<12810,4096}x’
> 0<i<19210,2048}x’

2_0<i<25610,4096}x’ .
128-dim subcode (see spec) of Y j-;-31510,512}x’

192-dim subcode (see spec) of 3 o 41010, 2048}’
256-dim subcode (see spec) of Y g.; 49010, 1024 }x’

> 0<i<25610,4096}x'
> 0<i<25610, 4096 }x'

> _0<j<25610, 4096}’
not applicable

not applicable
not applicable
256-dim subcode (see spec) of 37410, 5123217
256-dim subcode (see spec) of Y - _74{0, 512}210’_
256-dim subcode (see spec) of 3 o _p74{0, 512}210



ciphertext offset (noise or rounding method)

z8<8. 12, ..., 12}; Pr1,4,17,... (spec page 23)
z8<8, £10,...,10}; Pr1,6,29, ... (spec page 23)
z8<8. 16, ..., 6}; Pr2,40,364, ... (spec page 23)
x§52 +1); Y g<ica{—0.5,05}
x?20 4 1;; > 0<i<41—0.5,0.5}

' > 0<i<a1—0.5,0.5}
x*2 4+ 1): {-1,0,1}; Pr1,2,1

x10%% 1 1), {-1,0,1}; Pr1,6,1
x19%% 1 1), {-1,0,1}; Pr1,2,1

x]/(x*9%* +1); 3 g<;c16{—0.5,0.5}
not applicable

not applicable

not applicable

not applicable

bottom 256 coeffs; z — |(114(z 4 2156) + 16384) /32768 |
bottom 256 coeffs; z — |(113(z + 2175) + 16384) /32768 |
bottom 256 coeffs; z — |(101(z + 2433) + 16384) /32768 |
round Z/4096 to 64Z

round Z/32768 to 512Z

round Z /32768 to 64Z

bottom 128 coeffs; round Z/8192 to 512Z

bottom 192 coeffs; round Z/4096 to 128Z

bottom 256 coeffs; round Z/8192 to 256Z

bottom 318 coeffs; round Z/1024 to 64Z

bottom 410 coeffs; round Z/4096 to 512Z

bottom 490 coeffs; round Z/2048 to 64Z

round Z/8192 to 1024Z

round Z/8192 to 512Z

round Z/8192 to 128Z

not applicable

not applicable

not applicable

Z; Y ocica02t9{-2,-1,0,1,2}; Pr1,32,62,32,1; *

Z;Y <ic31027%{~1,0,1}; Pr13,38,13; *

Z;Y gcioa1p29{-1,0,1}; Pr5,22,5; *

X,

set of encoded messages

8 x 8 matrix over {0, 8192, 16384, 24576}
8 x 8 matrix over {0,8192,...,57344}
8 X 8 matrix over {0,_4096 ..... 61440}

> 0<i<25610, 1665}’
2 0<i<25610, 1665}’

>_0<i<25610, 1665 }x' |
256-dim subcode (see spec) of Y j;.51210,126}x"

)
256-dim subcode (see spec) of Y (-; 102410, 126}x’'
256-dim subcode (see spec) of > (- -102410, 126}’
Y 0<ico56{0,6145} x (1 + x*0)

S 0<ic5610, 61451x (1 + x50 4 X212 1 »768)

not applicable

not applicable

not applicable

not applicable

> o<ico56{0,2310}x’
2 0<i<25610,2295}x'

> 0<i<25610, 2583} x’
8 x 8 matrix over {0, 1024, 2048, 3072}

8 x 8 matrix over {0, 4096, ..., 28672}
8 x 8 matrix over {0, 2048, ...,30720}

2 0<i<12810,4096}x'
2 0<i<19210,2048}x’

2_0<i<25610, 4096’ .
128-dim subcode (see spec) of Y j-;-31510,512}x’

192-dim subcode (see spec) of Y < _41010, 2048}’
256-dim subcode (see spec) of Y i 49010, 1024 }x’

2 0<i<25610,4096}x'
> 0<i<25610, 4096} x'

> 0<i<25610, 4096 }x'
not applicable

not applicable
not applicable
256-dim subcode (see spec) of 3o _574{0, 512217
256-dim subcode (see spec) of Y - _74{0, 512}210’_
256-dim subcode (see spec) of 3 o _»7,{0,512}210



(noise or rounding method)

set of encoded messages

,12}; Pr1,4,17, ... (spec page 23)
,10}; Pr 1,6,29, ... (spec page 23)
6}; Pr2,40,364, ... (spec page 23)

> 0<i<41—0.5,0.5}

{-1,0,1}; Pr1,2,1
); {—1,0,1}; Pr1,6,1
); {—1,0,1}; Pr1,2,1

> 0<i<161—0.5,0.5}
); 2 0<i<161—0.5,0.5}

fs; z — | (114(z + 2156) + 16384)/32768 |
fs; z s [(113(z + 2175) + 16384) /32768
fs; z — [(101(z + 2433) + 16384)/32768 |
) 6427

0 51227

0 64Z

fs; round Z/8192 to 512Z

fs; round Z /4096 to 128Z

fs; round Z/8192 to 256Z

fs; round Z /1024 to 64Z

fs; round Z/4096 to 512Z

fs; round Z /2048 to 64Z

) 102427

) 5127

) 1282

"{-2,-1,0,1,2}; Pr1,32,62,32,1; *
"{—1,0,1}; Pr 13,38, 13; *
"{-1,0,1}; Pr5,22,5; *

8 x 8 matrix over {0, 8192, 16384, 24576}
8 x 8 matrix over {0,8192, ...,57344}
8 x 8 matrix over {0, 4096, . . ., 61440}

> o<ico56{0, 1665}’
> 0<i<25610, 1665}’

2 _0<j<25610, 1665}’ |
256-dim subcode (see spec) of Y 1, 5121{0,126}x"

)
256-dim subcode (see spec) of Y o-j-102410, 126}x’
256-dim subcode (see spec) of > ;102410 126}’
> 0<icos610,6145}x (1 + x20)

S 0<ic5610, 61451x (1 + x50 4 X312 1 x768)

not applicable

not applicable

not applicable

not applicable

> o<ico56{0,2310}x’
> 0<i<25610,2295}x’

> 0<i<25610, 2583}’
8 x 8 matrix over {0, 1024, 2048, 3072}

8 x 8 matrix over {0, 4096, ..., 28672}
8 x 8 matrix over {0, 2048, ...,30720}

> 0<i<12810,4096}x’'
> 0<i<19210,2048}x’

2_0<i<25610,4096}x’ .
128-dim subcode (see spec) of > (- 31510, 512}x"

192-dim subcode (see spec) of Y (i 410{0, 2048}’
256-dim subcode (see spec) of Y g.;_49010, 1024 }x’

> 0<i<25610, 4096} x'
> 0<i<25610,4096}x'

> _0<i<25610, 4096}’
not applicable

not applicable
not applicable
256-dim subcode (see spec) of 3o _74{0, 5123217
256-dim subcode (see spec) of Y 7410, 512}210’_
256-dim subcode (see spec) of 3 o7, {0, 512}210

Attackin

Attack s
of usuall
strategy.
Normal




nethod)

(spec page 23)
(spec page 23)
(spec page 23)

156) + 16384) /32768
175) + 16384) /32768
433) + 16384) /32768

51272
12872
2562
64Z
51272
64Z

r1,32,62,32,1: *
8, 13; *
) B *

set of encoded messages

8 x 8 matrix over {0, 8192, 16384, 24576}
8 x 8 matrix over {0,8192,...,57344}
8 X 8 matrix over {O,_4096 ..... 61440}

> 0<i<25610, 1665}’
2 0<i<25610, 1665}’

2_0<i<25610, 1665}x' |
256-dim subcode (see spec) of Y j;.51210,126}x"

)
256-dim subcode (see spec) of Y (-;-102410, 126}x’
256-dim subcode (see spec) of > ;102410 126}’
Y 0<ico56{0,6145} x (1 + x*0)

S 0<ic5610, 61451x (1 + x50 4 X312 1 »768)

not applicable

not applicable

not applicable

not applicable

> o<ico56{0,2310}x’
2 0<i<25610,2295}x'

> 0<i<25610, 2583} x’
8 x 8 matrix over {0, 1024, 2048, 3072}

8 x 8 matrix over {0, 4096, ..., 28672}
8 x 8 matrix over {0, 2048, ...,30720}

2 0<i<12810,4096}x'
2 0<i<19210,2048}x’

2_0<i<25610, 4096 x’ .
128-dim subcode (see spec) of Y j-;-31510,512}x’

192-dim subcode (see spec) of Y o< _41010, 2048}’
256-dim subcode (see spec) of Y i 49010, 1024 }x’

2 0<i<25610,4096}x'
> 0<i<25610, 4096} x'

> 0<i<25610, 4096 }x'
not applicable

not applicable
not applicable
256-dim subcode (see spec) of S o _574{0, 512217
256-dim subcode (see spec) of Y - _74{0, 512}210’_
256-dim subcode (see spec) of 3 o _»7,{0,512}210

Attacking these pi

Attack strategy wi
of usually being b
strategy. Focus of
Normal layers in a

Analysis ¢
to attack

T

“"Approxim
anal
A

“S\/
anal
A

Model of cC




set of encoded messages

8 x 8 matrix over {0, 8192, 16384, 24576}
8 x 8 matrix over {0, 8192, ..., 57344}
8 x 8 matrix over {0, 4096, . . ., 61440}

> o<ico56{0, 1665}’
> 0<i<25610, 1665}’

2 _0<j<25610, 1665}’ |
256-dim subcode (see spec) of 3 (<;-51210,126}x"
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Hence the attack finds (a, e),
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Hybrid attacks

Extreme special case:
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Grover reduces cost to v/ .

Can also get “4/ " using memory
without quantum computation.

Represent a as a; + a». (What
is the optimal ag, a» overlap?)

Look for approximate collision

between Hl(al) and Hz(ag).
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zB ~ —v(0, K). Check whether

(v, v(0, K) + zB) is short enough.

Can again do quantum search,
or approximate collision search.

Can afford exponentially many z,
maybe compensating for lower B.

Common claim: This saves time
only for sufficiently narrow {a}.
(Is this true, or a calculation error
in existing algorithm analyses?)
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