
1

Speed, speed, speed

D. J. Bernstein

University of Illinois at Chicago;

Ruhr University Bochum

Reporting some recent

symmetric-speed discussions,

especially from RWC 2020.

Not included in this talk:

• NISTLWC.

• Short inputs.

• FHE/MPC ciphers.

2

$1000 TCR hashing competition

Crowley: “I have a problem

where I need to make some

cryptography faster, and I’m

setting up a $1000 competition

funded from my own pocket for

work towards the solution.”

Not fast enough: Signing H(M),

where M is a long message.

“[On a] 900MHz Cortex-A7

[SHA-256] takes 28.86 cpb : : :

BLAKE2b is nearly twice as

fast : : : However, this is still a

lot slower than I’m happy with.”

https://mindsarentmagic.org/2020/01/04/1000-tcr-hashing-competition/

3

Instead choose random R

and sign (R;H(R;M)).

Note that H needs only “TCR”,

not full collision resistance.

Does this allow faster H design?

TCR breaks how many rounds?

3

Instead choose random R

and sign (R;H(R;M)).

Note that H needs only “TCR”,

not full collision resistance.

Does this allow faster H design?

TCR breaks how many rounds?

“As far as I know, no-one

has ever proposed a TCR as a

primitive, designed to be faster

than existing hash functions,

and that’s what I need.”

3

Instead choose random R

and sign (R;H(R;M)).

Note that H needs only “TCR”,

not full collision resistance.

Does this allow faster H design?

TCR breaks how many rounds?

“As far as I know, no-one

has ever proposed a TCR as a

primitive, designed to be faster

than existing hash functions,

and that’s what I need.”

More desiderata: tree hash,

new tweak at each vertex,

multi-message security.

4

Aumasson, “Too much crypto”

70%, 23%, 35%, 21% rounds or

50%, 8%, 25%, 20% rounds of

AES-128/B2b/ChaCha20/SHA-3

are “broken” or “practically broken”.

“Inconsistent security margins”.

https://aumasson.jp/data/talks/TMC-RWC20.pdf

4

Aumasson, “Too much crypto”

70%, 23%, 35%, 21% rounds or

50%, 8%, 25%, 20% rounds of

AES-128/B2b/ChaCha20/SHA-3

are “broken” or “practically broken”.

“Inconsistent security margins”.

“Attacks don’t really get better”.

https://aumasson.jp/data/talks/TMC-RWC20.pdf

4

Aumasson, “Too much crypto”

70%, 23%, 35%, 21% rounds or

50%, 8%, 25%, 20% rounds of

AES-128/B2b/ChaCha20/SHA-3

are “broken” or “practically broken”.

“Inconsistent security margins”.

“Attacks don’t really get better”.

“Thousands of papers, stagnating

results and techniques”.

https://aumasson.jp/data/talks/TMC-RWC20.pdf

4

Aumasson, “Too much crypto”

70%, 23%, 35%, 21% rounds or

50%, 8%, 25%, 20% rounds of

AES-128/B2b/ChaCha20/SHA-3

are “broken” or “practically broken”.

“Inconsistent security margins”.

“Attacks don’t really get better”.

“Thousands of papers, stagnating

results and techniques”.

“What we want: More

scientific and rational approach

to choosing round numbers,

tolerance for corrections”.

https://aumasson.jp/data/talks/TMC-RWC20.pdf

5

New BLAKE3 hash function =

7-round BLAKE2s + tree mode,

parallel XOF + more changes.

“Much faster than MD5, SHA-1,

SHA-2, SHA-3, and BLAKE2.”

https://github.com/BLAKE3-team/BLAKE3

5

New BLAKE3 hash function =

7-round BLAKE2s + tree mode,

parallel XOF + more changes.

“Much faster than MD5, SHA-1,

SHA-2, SHA-3, and BLAKE2.”

Crowley: “Android disk crypto is

always right up against the wall

of acceptable speed (and battery

use). Adiantum uses ChaCha12

and is still IMHO too slow.

[10.6 Cortex-A7 cycles/byte.] It

sometimes seems like no-one in

the crypto world feels the user’s

pain here; it always looks better

to call for more rounds.”

https://github.com/BLAKE3-team/BLAKE3
https://twitter.com/ciphergoth/status/1212484680341024769

6

Huge influence of CPU.

Intel cycles/byte for two ciphers:

#1 #2 Intel microarchitecture

0.37 0.68 2018 Cannon Lake

0.38 0.88 2017 Cascade Lake

0.38 0.89 2017 Skylake-X

1.94 1.90 2016 Goldmont

0.77 0.98 2016 Kaby Lake

0.74 0.95 2015 Skylake

0.77 1.01 2014 Broadwell

0.77 1.03 2013 Haswell

1.71 1.29 2012 Ivy Bridge

6

Huge influence of CPU.

Intel cycles/byte for two ciphers:

#1 #2 Intel microarchitecture

0.37 0.68 2018 Cannon Lake

0.38 0.88 2017 Cascade Lake

0.38 0.89 2017 Skylake-X

1.94 1.90 2016 Goldmont

0.77 0.98 2016 Kaby Lake

0.74 0.95 2015 Skylake

0.77 1.01 2014 Broadwell

0.77 1.03 2013 Haswell

1.71 1.29 2012 Ivy Bridge

#1: ChaCha12. #2: AES-256.

7

Deck functions: e.g., Xoofff

Keccak team says: Xoofff takes

0.51 cycles/byte on Skylake-X.

Deck functions are “a new useful

API to make modes trivial”;

they “allow efficient ciphers”.

https://eprint.iacr.org/2018/767

7

Deck functions: e.g., Xoofff

Keccak team says: Xoofff takes

0.51 cycles/byte on Skylake-X.

Deck functions are “a new useful

API to make modes trivial”;

they “allow efficient ciphers”.

Syntax of deck function:

Fk : ({0; 1}∗)∗ → {0; 1}∞.

https://eprint.iacr.org/2018/767

7

Deck functions: e.g., Xoofff

Keccak team says: Xoofff takes

0.51 cycles/byte on Skylake-X.

Deck functions are “a new useful

API to make modes trivial”;

they “allow efficient ciphers”.

Syntax of deck function:

Fk : ({0; 1}∗)∗ → {0; 1}∞.

Security goal: PRF.

https://eprint.iacr.org/2018/767

7

Deck functions: e.g., Xoofff

Keccak team says: Xoofff takes

0.51 cycles/byte on Skylake-X.

Deck functions are “a new useful

API to make modes trivial”;

they “allow efficient ciphers”.

Syntax of deck function:

Fk : ({0; 1}∗)∗ → {0; 1}∞.

Security goal: PRF.

Efficiency goal: quickly compute

substring of Fk (X0), then

substring of Fk (X0; X1), then

substring of Fk (X0; X1; X2), etc.

https://eprint.iacr.org/2018/767

8

Deck-Stream: Fk (N).

8

Deck-Stream: Fk (N).

Deck-MAC: 128 bits of Fk (M).

8

Deck-Stream: Fk (N).

Deck-MAC: 128 bits of Fk (M).

Deck-SANE session:

128 bits of Fk (N) → tag;

use more bits of Fk (N)

as stream → ciphertext C1;

128 bits of Fk (N;A1; C1) → tag;

etc.

8

Deck-Stream: Fk (N).

Deck-MAC: 128 bits of Fk (M).

Deck-SANE session:

128 bits of Fk (N) → tag;

use more bits of Fk (N)

as stream → ciphertext C1;

128 bits of Fk (N;A1; C1) → tag;

etc.

Deck-SANSE: misuse resistance.

8

Deck-Stream: Fk (N).

Deck-MAC: 128 bits of Fk (M).

Deck-SANE session:

128 bits of Fk (N) → tag;

use more bits of Fk (N)

as stream → ciphertext C1;

128 bits of Fk (N;A1; C1) → tag;

etc.

Deck-SANSE: misuse resistance.

Deck-WBC: wide-block cipher.

For speed, the wide-block cipher

combines Xoofff and Xoofffie,

(sort of) built from Xoodoo.

9

MAC speed

2014 Bernstein–Chou Auth256:

29 bit ops per message bit,

using mults in field of size 2256.

(I’ve started investigating

bit ops for integer mults.)

9

MAC speed

2014 Bernstein–Chou Auth256:

29 bit ops per message bit,

using mults in field of size 2256.

(I’ve started investigating

bit ops for integer mults.)

Encryption sounds slower, but

aims for PRF or PRP or SPRP.

How many rounds are needed

in the context of a MAC?

9

MAC speed

2014 Bernstein–Chou Auth256:

29 bit ops per message bit,

using mults in field of size 2256.

(I’ve started investigating

bit ops for integer mults.)

Encryption sounds slower, but

aims for PRF or PRP or SPRP.

How many rounds are needed

in the context of a MAC?

OCB etc. try to skip MAC,

but can these modes safely use

as few rounds as counter mode?

10

Bit operations per bit of plaintext

(assuming precomputed subkeys):

key ops/bit cipher

256 54 ChaCha8

256 78 ChaCha12

128 88 Simon: 62 ops broken

128 100 NOEKEON

128 117 Skinny

256 126 ChaCha20

256 144 Simon: 106 ops broken

128 147.2 PRESENT

256 156 Skinny

128 162.75 Piccolo

128 202.5 AES

256 283.5 AES

11

More virtues of mult-based MACs:

• Easy masking.

• Binary mults: Share area with

code-based crypto.

• Integer mults: Share area with

lattice-based crypto and ECC.

• Use existing CPU multipliers.

11

More virtues of mult-based MACs:

• Easy masking.

• Binary mults: Share area with

code-based crypto.

• Integer mults: Share area with

lattice-based crypto and ECC.

• Use existing CPU multipliers.

If int mults are available anyway,

should we renew attention to

ciphers that use some mults?

11

More virtues of mult-based MACs:

• Easy masking.

• Binary mults: Share area with

code-based crypto.

• Integer mults: Share area with

lattice-based crypto and ECC.

• Use existing CPU multipliers.

If int mults are available anyway,

should we renew attention to

ciphers that use some mults?

e.g. x *= 0xdf26f9 is same as

x-=x<<3; x-=x<<8; x+=x<<13.

Mix with ^, >>>16, maybe +.

Try 16-bit mults for Intel, ARM.

