Speed, speed, speed

D. J. Bernstein

University of lllinois at Chicago;

Ruhr University Bochum

$1000 TCR hashing competition

Reporting some recent

symmetric-speed discussions,
especially from RWC 2020.

Not included in this talk:
e NISTLWC.

e Short inputs.
e FHE/MPC ciphers.

Crowley: “| have a problem
where | need to make some
cryptography faster, and I'm
setting up a $1000 competition
funded from my own pocket for
work towards the solution.”

Not fast enough: Signing H(M),
where M iIs a long message.

“[On a] 900MHz Cortex-A7
[SHA-256] takes 28.86 cpb ...
BLAKE2b is nearly twice as
fast ... However, this is still a
lot slower than I'm happy with.”

peed, speed

rnstein

ty of lllinois at Chicago;

Iversity Bochum

$1000 TCR hashing competition

g some recent

Ic-speed discussions,
y from RWC 2020.

uded 1n this talk:
WC.

Inputs.
VIPC ciphers.

Crowley: “l have a problem
where | need to make some
cryptography faster, and I'm
setting up a $1000 competition
funded from my own pocket for
work towards the solution.”

Not fast enough: Signing H(M),

where M is a long message.

“[On a] 900MHz Cortex-A7
[SHA-256] takes 28.86 cpb ...
BLAKE2b is nearly twice as
fast ... However, this is still a
lot slower than I'm happy with."

Instead

and sign

Note th:

not ful
Does t

ol

TCR bre

is at Chicago;

bschum

$1000 TCR hashing competition

cent

liIscussions,
\VVC 2020.

Is talk:

2IS.

Crowley: “| have a problem
where | need to make some
cryptography faster, and I'm
setting up a $1000 competition
funded from my own pocket for
work towards the solution.”

Not fast enough: Signing H(M),

where M is a long message.

“[On a] 900MHz Cortex-A7
[SHA-256] takes 28.86 cpb ...
BLAKE2b is nearly twice as
fast ... However, this is still a
lot slower than I'm happy with.”

Instead choose rar
and sign (R, H(R,

Note that H need
not full collision re

Does this allow fa:
TCR breaks how r

1g0;

$1000 TCR hashing competition

Crowley: “l have a problem
where | need to make some
cryptography faster, and I'm
setting up a $1000 competition
funded from my own pocket for
work towards the solution.”

Not fast enough: Signing H(M),

where M is a long message.

“[On a] 900MHz Cortex-A7
[SHA-256] takes 28.86 cpb ...
BLAKE2b is nearly twice as
fast ... However, this is still a
lot slower than I'm happy with."

Instead choose random R
and sign (R, H(R, M)).

Note that H needs only “T(
not full collision resistance.

Does this allow faster H des
TCR breaks how many roun

$1000 TCR hashing competition

Crowley: “| have a problem
where | need to make some
cryptography faster, and I'm
setting up a $1000 competition
funded from my own pocket for
work towards the solution.”

Not fast enough: Signing H(M),

where M is a long message.

“[On a] 900MHz Cortex-A7
[SHA-256] takes 28.86 cpb ...
BLAKE2b is nearly twice as
fast ... However, this is still a
lot slower than I'm happy with.”

Instead choose random R
and sign (R, H(R, M)).

Note that H needs only “TCR",
not full collision resistance.

Does this allow faster H design?
TCR breaks how many rounds?

$1000 TCR hashing competition

Crowley: “| have a problem
where | need to make some
cryptography faster, and I'm
setting up a $1000 competition
funded from my own pocket for
work towards the solution.”

Not fast enough: Signing H(M),

where M is a long message.

“[On a] 900MHz Cortex-A7
[SHA-256] takes 28.86 cpb ...
BLAKE2b is nearly twice as
fast ... However, this is still a
lot slower than I'm happy with.”

Instead choose random R
and sign (R, H(R, M)).

Note that H needs only “TCR",
not full collision resistance.

Does this allow faster H design?
TCR breaks how many rounds?

“As far as | know, no-one

has ever proposed a TCR as a
primitive, designed to be faster
than existing hash functions,
and that's what | need.”

$1000 TCR hashing competition

Crowley: “| have a problem
where | need to make some
cryptography faster, and I'm
setting up a $1000 competition
funded from my own pocket for
work towards the solution.”

Not fast enough: Signing H(M),
where M is a long message.

“[On a] 900MHz Cortex-A7
[SHA-256] takes 28.86 cpb ...
BLAKE2b is nearly twice as
fast ... However, this is still a
lot slower than I'm happy with.”

Instead choose random R
and sign (R, H(R, M)).

Note that H needs only “TCR",
not full collision resistance.

Does this allow faster H design?
TCR breaks how many rounds?

“As far as | know, no-one

has ever proposed a TCR as a
primitive, designed to be faster
than existing hash functions,
and that's what | need.”

More desiderata: tree hash,
new tweak at each vertex,
multi-message security.

CR hashing competition

- "] have a problem
need to make some
aphy faster, and I'm

Ip a $1000 competition
rom my own pocket for
vards the solution.”

enough: Signing H(M),
! 1s a long message.

900MHz Cortex-A7

6] takes 28.86 cpb ...
’b Is nearly twice as
However, this is still a
r than I'm happy with.”

Instead choose random R
and sign (R, H(R, M)).

Note that H needs only “TCR",
not full collision resistance.

Does this allow faster H design?
TCR breaks how many rounds?

“As far as | know, no-one

has ever proposed a TCR as a
primitive, designed to be faster
than existing hash functions,
and that's what | need.”

More desiderata: tree hash,
new tweak at each vertex,

multi-message security.

Aumasse

70%, 23
50%, 8%
AES-12¢
are "bro
“Inconsi

g competition

3 problem
ake some
r,and I'm

) competition
wn pocket for
solution.”

Signing H(M),
message.

_ortex-A7
8.86 cpb ...

y twice as
this i1s still a

1 happy with.”

Instead choose random R
and sign (R, H(R, M)).

Note that H needs only “TCR",
not full collision resistance.

Does this allow faster H design?
TCR breaks how many rounds?

“As far as | know, no-one

has ever proposed a TCR as a
primitive, designed to be faster
than existing hash functions,
and that's what | need.”

More desiderata: tree hash,
new tweak at each vertex,
multi-message security.

Aumasson, “Too r

70%, 23%, 35%,
50%, 8%, 25%, 2(
AES-128/B2b/Ch.
are “‘broken” or i
“Inconsistent secu

1tion

on
for

ith.”

Instead choose random R
and sign (R, H(R, M)).

Note that H needs only “TCR",
not full collision resistance.

Does this allow faster H design?
TCR breaks how many rounds?

“As far as | know, no-one

has ever proposed a TCR as a
primitive, designed to be faster
than existing hash functions,
and that's what | need.”

More desiderata: tree hash,
new tweak at each vertex,
multi-message security.

Aumasson, “"Too much cryp

70%, 23%, 35%, 21% rounc
50%, 8%, 25%, 20% rounds
AES-128/B2b/ChaCha20/S
are “‘broken” or “practically
“Inconsistent security margii

Instead choose random R
and sign (R, H(R, M)).

Note that H needs only “TCR",
not full collision resistance.

Does this allow faster H design?
TCR breaks how many rounds?

“As far as | know, no-one

has ever proposed a TCR as a
primitive, designed to be faster
than existing hash functions,
and that's what | need.”

More desiderata: tree hash,
new tweak at each vertex,

multi-message security.

Aumasson, “"Too much crypto”

70%, 23%, 35%, 21% rounds or
50%, 8%, 25%, 20% rounds of

AES-128/B2b/ChaCha20/SHA-3
are “broken” or “practically broken™.
“Inconsistent security margins’ .

Instead choose random R
and sign (R, H(R, M)).

Note that H needs only “TCR",
not full collision resistance.

Does this allow faster H design?
TCR breaks how many rounds?

“As far as | know, no-one

has ever proposed a TCR as a
primitive, designed to be faster
than existing hash functions,
and that's what | need.”

More desiderata: tree hash,
new tweak at each vertex,

multi-message security.

Aumasson, “"Too much crypto”

70%, 23%, 35%, 21% rounds or
50%, 8%, 25%, 20% rounds of

AES-128/B2b/ChaCha20/SHA-3
are “broken” or “practically broken™.
“Inconsistent security margins’ .

“"Attacks don't really get better”.

Instead choose random R
and sign (R, H(R, M)).

Note that H needs only “TCR",
not full collision resistance.

Does this allow faster H design?
TCR breaks how many rounds?

“As far as | know, no-one

has ever proposed a TCR as a
primitive, designed to be faster
than existing hash functions,
and that's what | need.”

More desiderata: tree hash,
new tweak at each vertex,

multi-message security.

Aumasson, “"Too much crypto”

70%, 23%, 35%, 21% rounds or
50%, 8%, 25%, 20% rounds of

AES-128/B2b/ChaCha20/SHA-3
are “broken” or “practically broken™.
“Inconsistent security margins’ .

“"Attacks don't really get better”.

“Thousands of papers, stagnating
results and techniques”.

Instead choose random R Aumasson, “"Too much crypto”
and sign (R, H(R, M)).

70%, 23%, 35%, 21% rounds or

Note that H needs only “TCR”, 50%, 8%, 25%, 20% rounds of

not full collision resistance. AES-128/B2b/ChaCha20/SHA-3
Does this allow faster H design? are "broken” or “practically broken”.
TCR breaks how many rounds? “Inconsistent security margins’ .

“As far as | know, no-one “Attacks don't really get better”.

has ever proposed a TCR as a “Thousands of papers, stagnating

primitive, designed to be faster . ,
results and techniques”.

than existing hash functions,
and that's what | need.” “What we want: More

scientific and rational approach

More desiderata: tree hash, .
to choosing round numbers,

new tweak at each vertex, L
tolerance for corrections’ .

multi-message security.

choose random R
(R, H(R, M)).

it H needs only “"TCR",
collision resistance.

s allow faster H design?
aks how many rounds?

as | know, no-one
proposed a TCR as a
, designed to be faster
sting hash functions,
's what | need.”

siderata: tree hash,
ak at each vertex,
2ssage security.

Aumasson, “"Too much crypto”

70%, 23%, 35%, 21% rounds or
50%, 8%, 25%, 20% rounds of
AES-128/B2b/ChaCha20/SHA-3

are “broken” or “practically broken™.

“Inconsistent security margins’ .
“Attacks don't really get better".

“Thousands of papers, stagnating
results and techniques” .

“What we want: More
scientific and rational approach
to choosing round numbers,
tolerance for corrections’ .

New BL

/-round

parallel .
“Much f

SHA-2,

xdom R
M)).

s only “TCR",
sistance.

ster H design?
nany rounds?

no-one
a TCR as a
| to be faster
functions,
need.”

tree hash,
| vertex,

urity.

Aumasson, "Too much crypto”

70%, 23%, 35%, 21% rounds or
50%, 8%, 25%, 20% rounds of
AES-128/B2b/ChaCha20 /SHA-3

are “broken” or “practically broken™.

“Inconsistent security margins’ .
"Attacks don't really get better”.

“Thousands of papers, stagnating
results and techniques”.

“What we want: More
scientific and rational approach
to choosing round numbers,
tolerance for corrections’ .

New BLAKE3 has
/-round BLAKE?Z2s
parallel XOF 4+ m:
“Much faster thar
SHA-2, SHA-3, ar

ign’?
ds?

ter

Aumasson, “"Too much crypto”

70%, 23%, 35%, 21% rounds or
50%, 8%, 25%, 20% rounds of
AES-128/B2b/ChaCha20/SHA-3

are “broken” or “practically broken™.

“Inconsistent security margins’ .
“Attacks don't really get better".

“Thousands of papers, stagnating
results and techniques” .

“What we want: More
scientific and rational approach
to choosing round numbers,
tolerance for corrections’ .

New BLAKE3 hash function
7-round BLAKE2s + tree m
parallel XOF 4+ more change
“Much faster than MD5, Sk
SHA-2, SHA-3, and BLAKE

Aumasson, "Too much crypto” New BLAKE3 hash function =
(-round BLAKE2s + tree mode,
parallel XOF + more changes.
“Much faster than MD5, SHA-1,
SHA-2, SHA-3, and BLAKE2.”

70%, 23%, 35%, 21% rounds or
50%, 8%, 25%, 20% rounds of
AES-128/B2b/ChaCha20/SHA-3
are “broken” or “practically broken™.
“Inconsistent security margins' .

“Attacks don't really get better”.

“Thousands of papers, stagnating
results and techniques”.

“What we want: More
scientific and rational approach
to choosing round numbers,
tolerance for corrections’ .

Aumasson, "Too much crypto”

70%, 23%, 35%, 21% rounds or
50%, 8%, 25%, 20% rounds of
AES-128/B2b/ChaCha20 /SHA-3

are “broken” or “practically broken™.

“Inconsistent security margins' .
“Attacks don't really get better”.

“Thousands of papers, stagnating
results and techniques”.

“What we want: More
scientific and rational approach
to choosing round numbers,
tolerance for corrections’ .

New BLAKES3 hash function =
/-round BLAKEZ2s + tree mode,
parallel XOF + more changes.
“Much faster than MD5, SHA-1,
SHA-2, SHA-3, and BLAKE2.”

Crowley: “Android disk crypto is
always right up against the wall
of acceptable speed (and battery
use). Adiantum uses ChaChal2
and is still IMHO too slow.

[10.6 Cortex-A7 cycles/byte.] It
sometimes seems like no-one In

the crypto world feels the user’s

pain here; it always looks better

to call for more rounds.”

on, "Too much crypto”

%. 35%, 21% rounds or
0, 25%, 20% rounds of
 /B2b/ChaCha20 /SHA-3

ken” or “practically broken™.

stent security margins’ .
5 don't really get better”.

nds of papers, stagnating
nd techniques’ .

ve want: More

- and rational approach
Ing round numbers,

e for corrections’ .

New BLAKE3 hash function =
7-round BLAKE2s + tree mode,
parallel XOF + more changes.
“Much faster than MD5, SHA-1,
SHA-2, SHA-3, and BLAKE2.”

Crowley: “Android disk crypto is

always right up against

the wall

of acceptable speed (and battery

use). Adiantum uses C
and is still IMHO too s

naChal?2

OW.

[10.6 Cortex-A7 cycles/byte.] It
sometimes seems like no-one In

the crypto world feels the user's

pain here; it always looks better

to call for more rounds.

Huge In1
Intel cyc

w1l

0.37 0.€
0.38 0.¢
0.38 0.¢
1.94 1.6
0.77 0.
0.74 0.€
0.77 1.C
0.77 1.C
1.71 1.2

nuch crypto”

1% rounds or

)% rounds of
2Cha20/SHA-3

ractically broken™.

rity margins' .
lly get better”.

pers, stagnating
jues .

Viore
nal approach
numbers,

ctions' .

New BLAKES3 hash function =
7-round BLAKE2s + tree mode,
parallel XOF + more changes.
“Much faster than MD5, SHA-1,
SHA-2, SHA-3, and BLAKE2."

Crowley: “Android disk crypto is
always right up against the wall
of acceptable speed (and battery
use). Adiantum uses ChaChal2
and is still IMHO too slow.

[10.6 Cortex-A7 cycles/byte.| It
sometimes seems like no-one In

the crypto world feels the user'’s

pain here; it always looks better

to call for more rounds.”

Huge influence of

Intel cycles/byte f

41 42

Intel m

0.37 0.68
0.38 0.88
0.38 0.89
1.94 1.90
0.77 0.98
0.74 0.95
0.77 1.01
0.77 1.03
1.71 1.29

2018 C
2017 C
2017 S
2016 G
2016 K
2015 S
2014 E
2013 F
2012 I

t01 !

s or
of
HA-3

broken" .

s .
tter” .

1ating

ach

New BLAKE3 hash function =
7-round BLAKE2s + tree mode,
parallel XOF + more changes.
“Much faster than MD5, SHA-1,
SHA-2, SHA-3, and BLAKE2.”

Crowley: “Android disk crypto is
always right up against the wall
of acceptable speed (and battery
use). Adiantum uses ChaChal2
and is still IMHO too slow.

[10.6 Cortex-A7 cycles/byte.] It
sometimes seems like no-one In

the crypto world feels the user's

pain here; it always looks better

to call for more rounds.”

Huge influence of CPU.

Intel cycles/byte for two cip

41 2

Intel microarchite

0.37 0.68
0.33 0.88
0.33 0.39
1.94 1.90
0.77 0.98
0.74 0.95
0.77 1.01
0.77 1.03
1.71 1.29

2018 Cannon Lal
2017 Cascade La
2017 Skylake-X
2016 Goldmont
2016 Kaby Lake
2015 Skylake
2014 Broadwell
2013 Haswell
2012 lvy Bridge

New BLAKES3 hash function =
7-round BLAKE2s + tree mode,
parallel XOF + more changes.
“Much faster than MD5, SHA-1,
SHA-2, SHA-3, and BLAKE2."

Crowley: “Android disk crypto is
always right up against the wall
of acceptable speed (and battery
use). Adiantum uses ChaChal2
and is still IMHO too slow.

[10.6 Cortex-A7 cycles/byte.| It
sometimes seems like no-one In

the crypto world feels the user’s

pain here; it always looks better

to call for more rounds.”

Huge influence of CPU.

Intel cycles/byte for two ciphers:

41 42

Intel microarchitecture

0.37 0.68
0.38 0.88
0.38 0.89
1.94 1.90
0.77 0.98
0.74 0.95
0.77 1.01
0.77 1.03
1.71 1.29

2018 Cannon Lake
2017 Cascade Lake
2017 Skylake-X
2016 Goldmont
2016 Kaby Lake
2015 Skylake

2014 Broadwell
2013 Haswell

2012 lvy Bridge

New BLAKES3 hash function =
7-round BLAKE2s + tree mode,
parallel XOF + more changes.
“Much faster than MD5, SHA-1,
SHA-2, SHA-3, and BLAKE2."

Crowley: “Android disk crypto is
always right up against the wall
of acceptable speed (and battery
use). Adiantum uses ChaChal2
and is still IMHO too slow.

[10.6 Cortex-A7 cycles/byte.| It
sometimes seems like no-one In

the crypto world feels the user’s

pain here; it always looks better

to call for more rounds.”

Huge influence of CPU.

Intel cycles/byte for two ciphers:

#1 42| Intel microarchitecture

0.37 0.68 | 2018 Cannon Lake
0.38 0.88 | 2017 Cascade Lake
0.38 0.89 | 2017 Skylake-X
1.94 1.90|2016 Goldmont
0.77 0.98|2016 Kaby Lake
0.74 0.95 | 2015 Skylake

0.77 1.01 {2014 Broadwell
0.77 1.03|2013 Haswell

1.71 1.29 (2012 lvy Bridge

#1: ChaChal2. #2: AES-256.

AKE3 hash function =
BLAKE?2s + tree mode,
XOF 4+ more changes.
aster than MD5, SHA-1,
SHA-3, and BLAKE2.”

- "Android disk crypto iIs
ight up against the wall
table speed (and battery
liantum uses ChaChal2
1l IMHO too slow.
rtex-A7 cycles/byte.| It
es seems like no-one In

to world feels the user's

e; It always looks better
Or more rounds.”

Huge influence of CPU.

Intel cycles/byte for two ciphers:

41 2

Intel microarchitecture

Deck fui

0.37 0.68
0.33 0.88
0.33 0.39
1.94 1.90
0.77 0.98
0.74 0.95
0.77 1.01
0.77 1.03
1.71 1.29

2018 Cannon Lake
2017 Cascade Lake
2017 Skylake-X

2016 Go
2016 Ka

dmont

oy Lake

2015 Skylake
2014 Broadwell
2013 Haswell
2012 lvy Bridge

#1: ChaChal2. #2: AES-256.

Keccak -
0.51 cyc

Deck ful
APl to r

they “al

h function =

-+ tree mode,

ore changes.
 MD5, SHA-1,

d

BLAKE2."

1 disk crypto is

ainst the wall
d (and battery
ses ChaChal2
too slow.
/cles/byte.] It
lke no-one In

cE
S

s the user's
ooks better

unds.”

Huge influence of CPU.

Intel cycles/byte for two ciphers:

41 42

Intel microarchitecture

Deck functions: e

0.37 0.68
0.38 0.88
0.338 0.89
1.94 1.90
0.77 0.986
0.74 0.95
0.77 1.01
0.77 1.03
1.71 1.29

2018 Cannon Lake
2017 Cascade Lake
2017 Skylake-X
2016 Goldmont
2016 Kaby Lake
2015 Skylake

2014 Broadwell
2013 Haswell

2012 lvy Bridge

#1: ChaChal2. #2: AES-256.

Keccak team says:
0.51 cycles/byte o

Deck functions are
APl to make mod
they “allow efficiel

tter

Huge influence of CPU.

Intel cycles/byte for two ciphers:

7l 32

Intel microarchitecture

Deck functions: e.g., Xoofft

0.37 0.68
0.33 0.88
0.33 0.39
1.94 1.90
0.77 0.98
0.74 0.95
0.77 1.01
0.77 1.03
1.71 1.29

2018 Cannon Lake
2017 Cascade Lake
2017 Skylake-X

2016 Go
2016 Ka

dmont

oy Lake

2015 Skylake
2014 Broadwell
2013 Haswell
2012 lvy Bridge

#1: ChaChal2. #2: AES-256.

Keccak team says: Xoofff t:
0.51 cycles/byte on Skylake-

Deck functions are “a new
APl to make modes trivial’:
they “allow efficient ciphers

Huge influence of CPU.

Intel cycles/byte for two ciphers:

41 42

Intel microarchitecture

Deck functions: e.g., Xoofft

0.37 0.68
0.38 0.88
0.338 0.89
1.94 1.90
0.77 0.986
0.74 0.95
0.77 1.01
0.77 1.03
1.71 1.29

2018 Cannon Lake
2017 Cascade Lake
2017 Skylake-X

2016 Go
2016 Ka

dmont

oy Lake

2015 Skylake
2014 Broadwell
2013 Haswell
2012 lvy Bridge

#1: ChaChal2. #2: AES-256.

Keccak team says: Xoofff takes
0.51 cycles/byte on Skylake-X.

Deck functions are “a new useful
APl to make modes trivial’:
they “allow efficient ciphers”.

Huge influence of CPU.

Intel cycles/byte for two ciphers:

41 42

Intel microarchitecture

Deck functions: e.g., Xoofft

0.37 0.68
0.38 0.88
0.338 0.89
1.94 1.90
0.77 0.986
0.74 0.95
0.77 1.01
0.77 1.03
1.71 1.29

2018 Cannon Lake
2017 Cascade Lake
2017 Skylake-X

2016 Go
2016 Ka

dmont

oy Lake

2015 Skylake
2014 Broadwell
2013 Haswell
2012 lvy Bridge

#1: ChaChal2. #2: AES-256.

Keccak team says: Xoofff takes
0.51 cycles/byte on Skylake-X.

Deck functions are “a new useful
APl to make modes trivial’:
they “allow efficient ciphers”.

Syntax of deck function:
Fi : ({0,1}*)* — {0, 1}°°.

Huge influence of CPU.

Intel cycles/byte for two ciphers:

41 42

Intel microarchitecture

Deck functions: e.g., Xoofft

0.37 0.68
0.38 0.88
0.338 0.89
1.94 1.90
0.77 0.986
0.74 0.95
0.77 1.01
0.77 1.03
1.71 1.29

2018 Cannon Lake
2017 Cascade Lake
2017 Skylake-X

2016 Go
2016 Ka

dmont

oy Lake

2015 Skylake
2014 Broadwell
2013 Haswell
2012 lvy Bridge

#1: ChaChal2. #2: AES-256.

Keccak team says: Xoofff takes
0.51 cycles/byte on Skylake-X.

Deck functions are “a new useful
APl to make modes trivial’:
they “allow efficient ciphers”.

Syntax of deck function:
Fi : ({0,1}*)* — {0, 1}°°.

Security goal: PRF.

Huge influence of CPU.

Intel cycles/byte for two ciphers:

41 42

Intel microarchitecture

Deck functions: e.g., Xoofft

0.37 0.68
0.38 0.88
0.338 0.89
1.94 1.90
0.77 0.986
0.74 0.95
0.77 1.01
0.77 1.03
1.71 1.29

#1: ChaChal2. #2: AES-256.

2018 Cannon Lake
2017 Cascade Lake
2017 Skylake-X

2016 Go
2016 Ka

dmont

oy Lake

2015 Skylake
2014 Broadwell
2013 Haswell
2012 lvy Bridge

Keccak team says: Xoofff takes
0.51 cycles/byte on Skylake-X.

Deck functions are “a new useful
APl to make modes trivial’:
they “allow efficient ciphers”.

Syntax of deck function:
Fi : ({0,1}*)* — {0, 1}°°.

Security goal: PRF.

Efficiency goal: quickly compute
substring of Fx(Xg), then
substring of Fj(Xp, X1), then
substring of F,(Xg, X1, X2), etc.

luence of CPU.
les/byte for two ciphers:

;2 Intel microarchitecture

Deck functions: e.g., Xoofff

812018 Cannon Lake
8| 2017 Cascade Lake
9 | 2017 Skylake-X

0| 2016 Go
812016 Ka

dmont

oy Lake

512015 Skylake
112014 Broadwell
312013 Haswell
912012 Ivy Bridge

yChal2. #2: AES-256.

Keccak team says: Xoofff takes
0.51 cycles/byte on Skylake-X.

Deck functions are “a new useful
APl to make modes trivial’:
they “allow efficient ciphers”.

Syntax of deck function:
Fi : ({0,1}*)* — {0, 1}*°.

Security goal: PRF.

Efficiency goal: quickly compute

substring of Fx(Xg), then
substring of F(Xp, X1), then
substring of F, (X, X1, X2), etc.

Deck-St

CPU.
or two ciphers:

Icroarchitecture

Deck functions: e.g., Xoofft

annon Lake
ascade Lake
kylake-X
oldmont

aby Lake
kylake
roadwell
laswell

y Bridge

£2: AES-256.

Keccak team says: Xoofff takes
0.51 cycles/byte on Skylake-X.

Deck functions are “a new useful
APl to make modes trivial’:
they “allow efficient ciphers”.

Syntax of deck function:
Fi : ({0,1}*)* — {0, 1}°°.

Security goal: PRF.

Efficiency goal: quickly compute
substring of Fx(Xg), then
substring of Fj(Xp, X1), then
substring of F,(Xg, X1, X2), etc.

Deck-Stream: F(

hers:

2cture

Deck functions: e.g., Xoofff

e
ke

50.

Keccak team says: Xoofff takes
0.51 cycles/byte on Skylake-X.

Deck functions are “a new useful
APl to make modes trivial’:
they “allow efficient ciphers”.

Syntax of deck function:
Fi : ({0,1}*)* — {0, 1}*°.

Security goal: PRF.

Efficiency goal: quickly compute

substring of Fx(Xg), then
substring of F(Xp, X1), then
substring of F, (X, X1, X2), etc.

Deck-Stream: Fy(N).

Deck functions: e.g., Xoofft

Keccak team says: Xoofff takes
0.51 cycles/byte on Skylake-X.

Deck functions are “a new useful
APl to make modes trivial’:
they “allow efficient ciphers”.

Syntax of deck function:
Fi : ({0,1}*)* — {0, 1}°°.

Security goal: PRF.

Efficiency goal: quickly compute
substring of Fx(Xg), then
substring of F(Xp, X1), then
substring of F,(Xg, X1, X2), etc.

Deck-Stream: Fy(N).

Deck functions: e.g., Xoofft

Keccak team says: Xoofff takes
0.51 cycles/byte on Skylake-X.

Deck functions are “a new useful
APl to make modes trivial’:
they “allow efficient ciphers”.

Syntax of deck function:
Fi : ({0,1}*)* — {0, 1}°°.

Security goal: PRF.

Efficiency goal: quickly compute
substring of Fx(Xg), then
substring of F(Xp, X1), then
substring of F,(Xg, X1, X2), etc.

Deck-Stream: Fy(N).
Deck-MAC: 128 bits of Fi(M).

Deck functions: e.g., Xoofft

Keccak team says: Xoofff takes
0.51 cycles/byte on Skylake-X.

Deck functions are “a new useful
APl to make modes trivial’:
they “allow efficient ciphers”.

Syntax of deck function:
Fi : ({0,1}*)* — {0, 1}°°.

Security goal: PRF.

Efficiency goal: quickly compute
substring of Fx(Xg), then
substring of F(Xp, X1), then
substring of F,(Xg, X1, X2), etc.

Deck-Stream: Fy(N).
Deck-MAC: 128 bits of Fi(M).

Deck-SANE session:

128 bits of Fx(N) — tag;
use more bits of Fy(N)

as stream — ciphertext Cy;
128 bits of Fi(N, A1, C1) — tag;
etc.

Deck functions: e.g., Xoofft

Keccak team says: Xoofff takes
0.51 cycles/byte on Skylake-X.

Deck functions are “a new useful
APl to make modes trivial’:
they “allow efficient ciphers”.

Syntax of deck function:
Fi : ({0,1}*)* — {0, 1}°°.

Security goal: PRF.

Efficiency goal: quickly compute
substring of Fx(Xg), then
substring of F(Xp, X1), then
substring of F,(Xg, X1, X2), etc.

Deck-Stream: Fy(N).
Deck-MAC: 128 bits of Fi(M).

Deck-SANE session:

128 bits of Fx(N) — tag;
use more bits of Fy(N)

as stream — ciphertext Cy;

128 bits of Fi(N, A1, C1) — tag;
etc.

Deck-SANSE: misuse resistance.

Deck functions: e.g., Xoofft

Keccak team says: Xoofff takes
0.51 cycles/byte on Skylake-X.

Deck functions are “a new useful
APl to make modes trivial’:
they “allow efficient ciphers”.

Syntax of deck function:
Fi : ({0,1}*)* — {0, 1}°°.

Security goal: PRF.

Efficiency goal: quickly compute
substring of Fx(Xg), then
substring of F(Xp, X1), then
substring of F,(Xg, X1, X2), etc.

Deck-Stream: Fy(N).
Deck-MAC: 128 bits of Fi(M).

Deck-SANE session:

128 bits of Fx(N) — tag;
use more bits of Fy(N)

as stream — ciphertext Cy;

128 bits of Fi(N, A1, C1) — tag;
etc.

Deck-SANSE: misuse resistance.

Deck-WBC: wide-block cipher.

For speed, the wide-block cipher

combines Xoofff and Xoofffie,
(sort of) built from Xoodoo.

1ctions: e.g., Xoofff

team says: Xoofff takes
les/byte on Skylake-X.

1ctions are “a new useful

nake modes trivial:

low efficient ciphers”.

f deck function:

1}

) — {0, 1}°.

goal: PRF.

y goal: quickly compute

5 O

* Fi.(Xp), then

2, O

i Fk(Xo, Xl), then

> of Fk(Xo, X1, XQ), etc.

Deck-Stream: Fy(N).
Deck-MAC: 128 bits of Fi(M).

Deck-SANE session:
128 bits of Fx(N) — tag;
use more bits of Fy(N)

as stream — ciphertext Cy;
128 bits of Fx(N, A1, C1) — tag;
etc.

Deck-SANSE: misuse resistance.

Deck-WBC: wide-block cipher.

For speed, the wide-block cipher
combines Xoofff and Xoofffie,

(sort of) built from Xoodoo.

MAC sp

2014 Be
29 bit o
using mi

(I've sta
bit ops f

g., Xoofft

- Xoofff takes
n Skylake-X.

» "3 new useful
os trivial;

nt ciphers”.

1ction:
{0, 1}*°.

-

lickly compute
)),then
),Xl), then
),Xl,XQ), etc.

Deck-Stream: Fy(N).
Deck-MAC: 128 bits of F,(M).

Deck-SANE session:
128 bits of Fx(N) — tag;
use more bits of Fy(N)

as stream — ciphertext Cy;
128 bits of Fi(N, A1, C1) — tag;
etc.

Deck-SANSE: misuse resistance.

Deck-WBC: wide-block cipher.

For speed, the wide-block cipher

combines Xoofff and Xoofffie,
(sort of) built from Xoodoo.

MAC speed

2014 Bernstein—Cl
29 bit ops per me:
using mults in fiel

(I've started inves
bit ops for integer

kes
X.

1Iseful

pute

etc.

Deck-Stream: Fy(N).
Deck-MAC: 128 bits of Fi(M).

Deck-SANE session:
128 bits of Fi(N) — tag;
use more bits of Fy(N)

as stream — ciphertext Cy;
128 bits of Fx(N, A1, C1) — tag;
etc.

Deck-SANSE: misuse resistance.

Deck-WBC: wide-block cipher.

For speed, the wide-block cipher

combines Xoofff and Xoofffie,
(sort of) built from Xoodoo.

MAC speed

2014 Bernstein—Chou AuthZ
29 bit ops per message bit,
using mults in field of size 2

(I've started investigating
bit ops for integer mults.)

Deck-Stream: Fy(N).
Deck-MAC: 128 bits of Fi(M).

Deck-SANE session:

128 bits of Fx(N) — tag;
use more bits of Fy(N)

as stream — ciphertext Cy;

128 bits of Fi(N, A1, C1) — tag;
etc.

Deck-SANSE: misuse resistance.

Deck-WBC: wide-block cipher.

For speed, the wide-block cipher

combines Xoofff and Xoofffie,
(sort of) built from Xoodoo.

MAC speed

2014 Bernstein—Chou Auth256:
29 bit ops per message bit,
using mults in field of size 22°°.

(I've started investigating
bit ops for integer mults.)

Deck-Stream: Fy(N).
Deck-MAC: 128 bits of Fi(M).

Deck-SANE session:

128 bits of Fx(N) — tag;
use more bits of Fy(N)

as stream — ciphertext Cy;

128 bits of Fi(N, A1, C1) — tag;

etc.
Deck-SANSE: misuse resistance.

Deck-WBC: wide-block cipher.

For speed, the wide-block cipher

combines Xoofff and Xoofffie,
(sort of) built from Xoodoo.

MAC speed

2014 Bernstein—Chou Auth256:
29 bit ops per message bit,
using mults in field of size 22°°.

(I've started investigating
bit ops for integer mults.)

Encryption sounds slower, but
aims for PRF or PRP or SPRP.
How many rounds are needed
in the context of a MAC?

Deck-Stream: Fy(N).
Deck-MAC: 128 bits of Fi(M).

Deck-SANE session:

128 bits of Fx(N) — tag;
use more bits of Fy(N)

as stream — ciphertext Cy;

128 bits of Fi(N, A1, C1) — tag;
etc.

Deck-SANSE: misuse resistance.

Deck-WBC: wide-block cipher.

For speed, the wide-block cipher
combines Xoofff and Xoofffie,

(sort of) built from Xoodoo.

MAC speed

2014 Bernstein—Chou Auth256:
29 bit ops per message bit,
using mults in field of size 22°°.

(I've started investigating
bit ops for integer mults.)

Encryption sounds slower, but
aims for PRF or PRP or SPRP.
How many rounds are needed
in the context of a MAC?

OCB etc. try to skip MAC,
but can these modes safely use
as few rounds as counter mode?

ream: Fyi(N).
AC: 128 bits of Fi(M).

\NE session:

of Fx(N) — tag;

> bits of Fi(N)

n — ciphertext Cy;

of Fx(N, A1, C1) — tag;

\NSE: misuse resistance.
BC: wide-block cipher.

d, the wide-block cipher
s Xoofff and Xoofffie,
' built from Xoodoo.

MAC speed

2014 Bernstein—Chou Auth256:
29 bit ops per message bit,
using mults in field of size 22°°.

(I've started investigating
bit ops for integer mults.)

Encryption sounds slower, but
aims for PRF or PRP or SPRP.
How many rounds are needed
in the context of a MAC?

OCB etc. try to skip MAC,
but can these modes safely use
as few rounds as counter mode?

Bit oper

(assumir

key

ops

256
256
128
128
128
256
256
128
256
123
123
256

Y

(¢

8¢
10(
117
12¢
144
147
15¢
162
20
28:

N).
its of Fk(M).

n:
— tag;

k(N)
rtext Cq;
Aq, Cl) — tag;

use resistance.
block cipher.

le-block cipher
nd Xoofffie,
n Xoodoo.

MAC speed

2014 Bernstein—Chou Auth256:
29 bit ops per message bit,
using mults in field of size 22°°.

(I've started investigating
bit ops for integer mults.)

Encryption sounds slower, but
aims for PRF or PRP or SPRP.
How many rounds are needed
in the context of a MAC?

OCB etc. try to skip MAC,

but can these modes safely use
as few rounds as counter mode?

Bit operations per

(assuming precom

key | ops/bit | ciph
256 | b4 Chat
256 | 78 Chat
128 | 88 Sime
128|100 NOE
128|117 Skin
256|126 Chat
256 | 144 Simce
128 |147.2 | PRE
256 | 156 Skin
128 1162.75 | Picc
128 1202.5 | AES
256 | 283.5 | AES

- tag;

NCe.

pher

MAC speed

2014 Bernstein—Chou Auth256:
29 bit ops per message bit,
using mults in field of size 22°°.

(I've started investigating
bit ops for integer mults.)

Encryption sounds slower, but
aims for PRF or PRP or SPRP.
How many rounds are needed
in the context of a MAC?

OCB etc. try to skip MAC,

but can these modes safely use
as few rounds as counter mode?

Bit operations per bit of pla

(assuming precomputed sub

key | ops/bit | cipher

256 | 54 ChaCha8
256 | 78 ChaChal?2
128 | 88 Simon: 62 ops
128 | 100 NOEKEON
128 | 117 Skinny

256 | 126 ChaCha20
256 | 144 Simon: 106 or
128 |147.2 | PRESENT
256 | 156 Skinny

128 [162.75 | Piccolo

128 1202.5 |AES

256 |283.5 | AES

MAC speed

2014 Bernstein—Chou Auth256:
29 bit ops per message bit,
using mults in field of size 22°°.

(I've started investigating
bit ops for integer mults.)

Encryption sounds slower, but
aims for PRF or PRP or SPRP.
How many rounds are needed
in the context of a MAC?

OCB etc. try to skip MAC,

but can these modes safely use
as few rounds as counter mode?

10

Bit operations per bit of plaintext

(assuming precomputed subkeys):

key | ops/bit | cipher

256 | 54 ChaCha8

256 | 78 ChaChal?2

128 | 88 Simon: 62 ops broken
128 | 100 NOEKEON

128 | 117 Skinny

256 | 126 ChaCha20

256 | 144 Simon: 106 ops broken
128 [147.2 |PRESENT

256 | 156 Skinny

128 | 162.75 | Piccolo

128 1202.5 | AES

256 |283.5 | AES

eed

rnstein—Chou Auth256:
DS per message bit,
1lts in field of size 2220

rted investigating
or integer mults.)

on sounds slower, but
PRF or PRP or SPRP.

ny rounds are needed
ontext of a MAC?

. try to skip MAC,
these modes safely use
ounds as counter mode?

10

Bit operations per bit of plaintext

(assuming precomputed subkeys):
key | ops/bit | cipher

256 | 54 ChaCha8

256 | 78 ChaChal?2

128 | 88 Simon: 62 ops broken
128|100 NOEKEON

128 | 117 Skinny

256|126 ChaCha20

256 | 144 Simon: 106 ops broken
128 |147.2 |PRESENT

256 | 156 Skinny

128 | 162.75 | Piccolo

128 202.5 |AES

256 283.5 | AES

More vir
e Fasy r
e Binary

code-k
e Intege

lattice
e Use e>

1ou Auth256:

ssage bit,

i of size 22°9.

igating
mults.)

slower, but

RP or SPRP.

are needed
y MAC?

ap MAC,
les safely use

ounter mode?

10

Bit operations per bit of plaintext

(assuming precomputed subkeys):

key | ops/bit | cipher

256 | 54 ChaCha8

256 | 78 ChaChal?2

128 | 88 Simon: 62 ops broken
128 | 100 NOEKEON

128 | 117 Skinny

256 | 126 ChaCha?20

256 | 144 Simon: 106 ops broken
128 [147.2 |PRESENT

256 | 156 Skinny

128 |162.75 | Piccolo

128 1202.5 | AES

256 |283.5 | AES

More virtues of m

e Easy masking.

e Binary mults: S
code-based cryp

o Integer mults: S
lattice-based cry

e Use existing CP!

256

ut

RP.

LISE

yde?

10

Bit operations per bit of plaintext

(assuming precomputed subkeys):

key | ops/bit | cipher

256 | 54 ChaCha8

256 | 78 ChaChal?2

128 | 88 Simon: 62 ops broken
128|100 NOEKEON

128 | 117 Skinny

256 | 126 ChaCha20

256 | 144 Simon: 106 ops broken
128 |147.2 |PRESENT

256 | 156 Skinny

128 | 162.75 | Piccolo

128 1202.5 | AES

256 1283.5 | AES

More virtues of mult-based

e Easy masking.

e Binary mults: Share area:
code-based crypto.

e Integer mults: Share area
lattice-based crypto and E

e Use existing CPU multipli

10

Bit operations per bit of plaintext

(assuming precomputed subkeys):

key | ops/bit | cipher

256 | 54 ChaCha8

256 | 78 ChaChal?2

128 | 88 Simon: 62 ops broken
128|100 NOEKEON

128 | 117 Skinny

256 | 126 ChaCha?20

256 | 144 Simon: 106 ops broken
128 [147.2 | PRESENT

256 | 156 Skinny

128 |162.75 | Piccolo

128 1202.5 | AES

256 |283.5 | AES

More virtues of mult-based MACs:

e Easy masking.

e Binary mults: Share area with
code-based crypto.

e Integer mults: Share area with
lattice-based crypto and ECC.

e Use existing CPU multipliers.

11

10

Bit operations per bit of plaintext

(assuming precomputed subkeys):

key | ops/bit | cipher

256 | 54 ChaCha8

256 | 78 ChaChal?2

128 | 88 Simon: 62 ops broken
128|100 NOEKEON

128 | 117 Skinny

256 | 126 ChaCha?20

256 | 144 Simon: 106 ops broken
128 [147.2 | PRESENT

256 | 156 Skinny

128 |162.75 | Piccolo

128 1202.5 | AES

256 |283.5 | AES

More virtues of mult-based MACs:

e Easy masking.

e Binary mults: Share area with
code-based crypto.

e Integer mults: Share area with
lattice-based crypto and ECC.

e Use existing CPU multipliers.

If int mults are available anyway,
should we renew attention to
ciphers that use some mults?

11

10

Bit operations per bit of plaintext

(assuming precomputed subkeys):

key | ops/bit | cipher

256 | 54 ChaCha8

256 | 78 ChaChal?2

128 | 88 Simon: 62 ops broken
128|100 NOEKEON

128 | 117 Skinny

256 | 126 ChaCha?20

256 | 144 Simon: 106 ops broken
128 [147.2 | PRESENT

256 | 156 Skinny

128 |162.75 | Piccolo

128 1202.5 | AES

256 |283.5 | AES

11
More virtues of mult-based MACs:

e Easy masking.

e Binary mults: Share area with
code-based crypto.

e Integer mults: Share area with
lattice-based crypto and ECC.

e Use existing CPU multipliers.

If int mults are available anyway,
should we renew attention to
ciphers that use some mults?

e.g. x *= 0xdf26£f9 i1s same as
x—=x<<3; x—-=x<<8; x+=x<<13.
Mix with =, >>>16, maybe +.
Try 16-bit mults for Intel, ARM.

