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Reporting some recent

symmetric-speed discussions,
especially from RWC 2020.

Not included in this talk:
e NISTLWC.

e Short inputs.
e FHE/MPC ciphers.

Crowley: “| have a problem
where | need to make some
cryptography faster, and I'm
setting up a $1000 competition
funded from my own pocket for
work towards the solution.”

Not fast enough: Signing H(M),
where M iIs a long message.

“[On a] 900MHz Cortex-A7
[SHA-256] takes 28.86 cpb ...
BLAKE2b is nearly twice as
fast ... However, this is still a
lot slower than I'm happy with.”
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More virtues of mult-based MACs:

e Easy masking.

e Binary mults: Share area with
code-based crypto.

e Integer mults: Share area with
lattice-based crypto and ECC.

e Use existing CPU multipliers.

If int mults are available anyway,
should we renew attention to
ciphers that use some mults?

e.g. x *= 0xdf26£f9 i1s same as
x—=x<<3; x—-=x<<8; x+=x<<13.
Mix with =, >>>16, maybe +.
Try 16-bit mults for Intel, ARM.




