
1

Sorting integer arrays:

security, speed, and verification

D. J. Bernstein

University of Illinois at Chicago,

Ruhr-University Bochum

2

Bob’s laptop screen:

From: Alice

Thank you for your

submission. We received

many interesting papers,

and unfortunately your

Bob assumes this message is

something Alice actually sent.

But today’s “security” systems

fail to guarantee this property.

Attacker could have modified

or forged the message.



1

Sorting integer arrays:

security, speed, and verification

D. J. Bernstein

University of Illinois at Chicago,

Ruhr-University Bochum

2

Bob’s laptop screen:

From: Alice

Thank you for your

submission. We received

many interesting papers,

and unfortunately your

Bob assumes this message is

something Alice actually sent.

But today’s “security” systems

fail to guarantee this property.

Attacker could have modified

or forged the message.

3

Trusted computing base (TCB)

TCB: portion of computer system

that is responsible for enforcing

the users’ security policy.



1

Sorting integer arrays:

security, speed, and verification

D. J. Bernstein

University of Illinois at Chicago,

Ruhr-University Bochum

2

Bob’s laptop screen:

From: Alice

Thank you for your

submission. We received

many interesting papers,

and unfortunately your

Bob assumes this message is

something Alice actually sent.

But today’s “security” systems

fail to guarantee this property.

Attacker could have modified

or forged the message.

3

Trusted computing base (TCB)

TCB: portion of computer system

that is responsible for enforcing

the users’ security policy.



1

Sorting integer arrays:

security, speed, and verification

D. J. Bernstein

University of Illinois at Chicago,

Ruhr-University Bochum

2

Bob’s laptop screen:

From: Alice

Thank you for your

submission. We received

many interesting papers,

and unfortunately your

Bob assumes this message is

something Alice actually sent.

But today’s “security” systems

fail to guarantee this property.

Attacker could have modified

or forged the message.

3

Trusted computing base (TCB)

TCB: portion of computer system

that is responsible for enforcing

the users’ security policy.



2

Bob’s laptop screen:

From: Alice

Thank you for your

submission. We received

many interesting papers,

and unfortunately your

Bob assumes this message is

something Alice actually sent.

But today’s “security” systems

fail to guarantee this property.

Attacker could have modified

or forged the message.

3

Trusted computing base (TCB)

TCB: portion of computer system

that is responsible for enforcing

the users’ security policy.



2

Bob’s laptop screen:

From: Alice

Thank you for your

submission. We received

many interesting papers,

and unfortunately your

Bob assumes this message is

something Alice actually sent.

But today’s “security” systems

fail to guarantee this property.

Attacker could have modified

or forged the message.

3

Trusted computing base (TCB)

TCB: portion of computer system

that is responsible for enforcing

the users’ security policy.

Bob’s security policy for this talk:

If message is displayed on

Bob’s screen as “From: Alice”

then message is from Alice.



2

Bob’s laptop screen:

From: Alice

Thank you for your

submission. We received

many interesting papers,

and unfortunately your

Bob assumes this message is

something Alice actually sent.

But today’s “security” systems

fail to guarantee this property.

Attacker could have modified

or forged the message.

3

Trusted computing base (TCB)

TCB: portion of computer system

that is responsible for enforcing

the users’ security policy.

Bob’s security policy for this talk:

If message is displayed on

Bob’s screen as “From: Alice”

then message is from Alice.

If TCB works correctly,

then message is guaranteed

to be from Alice, no matter what

the rest of the system does.



2

Bob’s laptop screen:

From: Alice

Thank you for your

submission. We received

many interesting papers,

and unfortunately your

Bob assumes this message is

something Alice actually sent.

But today’s “security” systems

fail to guarantee this property.

Attacker could have modified

or forged the message.

3

Trusted computing base (TCB)

TCB: portion of computer system

that is responsible for enforcing

the users’ security policy.

Bob’s security policy for this talk:

If message is displayed on

Bob’s screen as “From: Alice”

then message is from Alice.

If TCB works correctly,

then message is guaranteed

to be from Alice, no matter what

the rest of the system does.

4

Examples of attack strategies:

1. Attacker uses buffer overflow

in a device driver to control

Linux kernel on Alice’s laptop.



2

Bob’s laptop screen:

From: Alice

Thank you for your

submission. We received

many interesting papers,

and unfortunately your

Bob assumes this message is

something Alice actually sent.

But today’s “security” systems

fail to guarantee this property.

Attacker could have modified

or forged the message.

3

Trusted computing base (TCB)

TCB: portion of computer system

that is responsible for enforcing

the users’ security policy.

Bob’s security policy for this talk:

If message is displayed on

Bob’s screen as “From: Alice”

then message is from Alice.

If TCB works correctly,

then message is guaranteed

to be from Alice, no matter what

the rest of the system does.

4

Examples of attack strategies:

1. Attacker uses buffer overflow

in a device driver to control

Linux kernel on Alice’s laptop.



2

Bob’s laptop screen:

From: Alice

Thank you for your

submission. We received

many interesting papers,

and unfortunately your

Bob assumes this message is

something Alice actually sent.

But today’s “security” systems

fail to guarantee this property.

Attacker could have modified

or forged the message.

3

Trusted computing base (TCB)

TCB: portion of computer system

that is responsible for enforcing

the users’ security policy.

Bob’s security policy for this talk:

If message is displayed on

Bob’s screen as “From: Alice”

then message is from Alice.

If TCB works correctly,

then message is guaranteed

to be from Alice, no matter what

the rest of the system does.

4

Examples of attack strategies:

1. Attacker uses buffer overflow

in a device driver to control

Linux kernel on Alice’s laptop.



3

Trusted computing base (TCB)

TCB: portion of computer system

that is responsible for enforcing

the users’ security policy.

Bob’s security policy for this talk:

If message is displayed on

Bob’s screen as “From: Alice”

then message is from Alice.

If TCB works correctly,

then message is guaranteed

to be from Alice, no matter what

the rest of the system does.

4

Examples of attack strategies:

1. Attacker uses buffer overflow

in a device driver to control

Linux kernel on Alice’s laptop.



3

Trusted computing base (TCB)

TCB: portion of computer system

that is responsible for enforcing

the users’ security policy.

Bob’s security policy for this talk:

If message is displayed on

Bob’s screen as “From: Alice”

then message is from Alice.

If TCB works correctly,

then message is guaranteed

to be from Alice, no matter what

the rest of the system does.

4

Examples of attack strategies:

1. Attacker uses buffer overflow

in a device driver to control

Linux kernel on Alice’s laptop.

2. Attacker uses buffer overflow

in a web browser to control

disk files on Bob’s laptop.



3

Trusted computing base (TCB)

TCB: portion of computer system

that is responsible for enforcing

the users’ security policy.

Bob’s security policy for this talk:

If message is displayed on

Bob’s screen as “From: Alice”

then message is from Alice.

If TCB works correctly,

then message is guaranteed

to be from Alice, no matter what

the rest of the system does.

4

Examples of attack strategies:

1. Attacker uses buffer overflow

in a device driver to control

Linux kernel on Alice’s laptop.

2. Attacker uses buffer overflow

in a web browser to control

disk files on Bob’s laptop.

Device driver is in the TCB.

Web browser is in the TCB.

CPU is in the TCB. Etc.



3

Trusted computing base (TCB)

TCB: portion of computer system

that is responsible for enforcing

the users’ security policy.

Bob’s security policy for this talk:

If message is displayed on

Bob’s screen as “From: Alice”

then message is from Alice.

If TCB works correctly,

then message is guaranteed

to be from Alice, no matter what

the rest of the system does.

4

Examples of attack strategies:

1. Attacker uses buffer overflow

in a device driver to control

Linux kernel on Alice’s laptop.

2. Attacker uses buffer overflow

in a web browser to control

disk files on Bob’s laptop.

Device driver is in the TCB.

Web browser is in the TCB.

CPU is in the TCB. Etc.

Massive TCB has many bugs,

including many security holes.

Any hope of fixing this?



3

Trusted computing base (TCB)

TCB: portion of computer system

that is responsible for enforcing

the users’ security policy.

Bob’s security policy for this talk:

If message is displayed on

Bob’s screen as “From: Alice”

then message is from Alice.

If TCB works correctly,

then message is guaranteed

to be from Alice, no matter what

the rest of the system does.

4

Examples of attack strategies:

1. Attacker uses buffer overflow

in a device driver to control

Linux kernel on Alice’s laptop.

2. Attacker uses buffer overflow

in a web browser to control

disk files on Bob’s laptop.

Device driver is in the TCB.

Web browser is in the TCB.

CPU is in the TCB. Etc.

Massive TCB has many bugs,

including many security holes.

Any hope of fixing this?

5

Classic security strategy:

Rearchitect computer systems

to have a much smaller TCB.



3

Trusted computing base (TCB)

TCB: portion of computer system

that is responsible for enforcing

the users’ security policy.

Bob’s security policy for this talk:

If message is displayed on

Bob’s screen as “From: Alice”

then message is from Alice.

If TCB works correctly,

then message is guaranteed

to be from Alice, no matter what

the rest of the system does.

4

Examples of attack strategies:

1. Attacker uses buffer overflow

in a device driver to control

Linux kernel on Alice’s laptop.

2. Attacker uses buffer overflow

in a web browser to control

disk files on Bob’s laptop.

Device driver is in the TCB.

Web browser is in the TCB.

CPU is in the TCB. Etc.

Massive TCB has many bugs,

including many security holes.

Any hope of fixing this?

5

Classic security strategy:

Rearchitect computer systems

to have a much smaller TCB.



3

Trusted computing base (TCB)

TCB: portion of computer system

that is responsible for enforcing

the users’ security policy.

Bob’s security policy for this talk:

If message is displayed on

Bob’s screen as “From: Alice”

then message is from Alice.

If TCB works correctly,

then message is guaranteed

to be from Alice, no matter what

the rest of the system does.

4

Examples of attack strategies:

1. Attacker uses buffer overflow

in a device driver to control

Linux kernel on Alice’s laptop.

2. Attacker uses buffer overflow

in a web browser to control

disk files on Bob’s laptop.

Device driver is in the TCB.

Web browser is in the TCB.

CPU is in the TCB. Etc.

Massive TCB has many bugs,

including many security holes.

Any hope of fixing this?

5

Classic security strategy:

Rearchitect computer systems

to have a much smaller TCB.



4

Examples of attack strategies:

1. Attacker uses buffer overflow

in a device driver to control

Linux kernel on Alice’s laptop.

2. Attacker uses buffer overflow

in a web browser to control

disk files on Bob’s laptop.

Device driver is in the TCB.

Web browser is in the TCB.

CPU is in the TCB. Etc.

Massive TCB has many bugs,

including many security holes.

Any hope of fixing this?

5

Classic security strategy:

Rearchitect computer systems

to have a much smaller TCB.



4

Examples of attack strategies:

1. Attacker uses buffer overflow

in a device driver to control

Linux kernel on Alice’s laptop.

2. Attacker uses buffer overflow

in a web browser to control

disk files on Bob’s laptop.

Device driver is in the TCB.

Web browser is in the TCB.

CPU is in the TCB. Etc.

Massive TCB has many bugs,

including many security holes.

Any hope of fixing this?

5

Classic security strategy:

Rearchitect computer systems

to have a much smaller TCB.

Carefully audit the TCB.



4

Examples of attack strategies:

1. Attacker uses buffer overflow

in a device driver to control

Linux kernel on Alice’s laptop.

2. Attacker uses buffer overflow

in a web browser to control

disk files on Bob’s laptop.

Device driver is in the TCB.

Web browser is in the TCB.

CPU is in the TCB. Etc.

Massive TCB has many bugs,

including many security holes.

Any hope of fixing this?

5

Classic security strategy:

Rearchitect computer systems

to have a much smaller TCB.

Carefully audit the TCB.

e.g. Bob runs many VMs:

VM A
Alice data

VM C
Charlie data · · ·

TCB stops each VM from

touching data in other VMs.



4

Examples of attack strategies:

1. Attacker uses buffer overflow

in a device driver to control

Linux kernel on Alice’s laptop.

2. Attacker uses buffer overflow

in a web browser to control

disk files on Bob’s laptop.

Device driver is in the TCB.

Web browser is in the TCB.

CPU is in the TCB. Etc.

Massive TCB has many bugs,

including many security holes.

Any hope of fixing this?

5

Classic security strategy:

Rearchitect computer systems

to have a much smaller TCB.

Carefully audit the TCB.

e.g. Bob runs many VMs:

VM A
Alice data

VM C
Charlie data · · ·

TCB stops each VM from

touching data in other VMs.

Browser in VM C isn’t in TCB.

Can’t touch data in VM A,

if TCB works correctly.



4

Examples of attack strategies:

1. Attacker uses buffer overflow

in a device driver to control

Linux kernel on Alice’s laptop.

2. Attacker uses buffer overflow

in a web browser to control

disk files on Bob’s laptop.

Device driver is in the TCB.

Web browser is in the TCB.

CPU is in the TCB. Etc.

Massive TCB has many bugs,

including many security holes.

Any hope of fixing this?

5

Classic security strategy:

Rearchitect computer systems

to have a much smaller TCB.

Carefully audit the TCB.

e.g. Bob runs many VMs:

VM A
Alice data

VM C
Charlie data · · ·

TCB stops each VM from

touching data in other VMs.

Browser in VM C isn’t in TCB.

Can’t touch data in VM A,

if TCB works correctly.

Alice also runs many VMs.



4

Examples of attack strategies:

1. Attacker uses buffer overflow

in a device driver to control

Linux kernel on Alice’s laptop.

2. Attacker uses buffer overflow

in a web browser to control

disk files on Bob’s laptop.

Device driver is in the TCB.

Web browser is in the TCB.

CPU is in the TCB. Etc.

Massive TCB has many bugs,

including many security holes.

Any hope of fixing this?

5

Classic security strategy:

Rearchitect computer systems

to have a much smaller TCB.

Carefully audit the TCB.

e.g. Bob runs many VMs:

VM A
Alice data

VM C
Charlie data · · ·

TCB stops each VM from

touching data in other VMs.

Browser in VM C isn’t in TCB.

Can’t touch data in VM A,

if TCB works correctly.

Alice also runs many VMs.

6

Cryptography

How does Bob’s laptop know

that incoming network data

is from Alice’s laptop?

Cryptographic solution:

Message-authentication codes.

Alice’s message

��

k

vvauthenticated message

untrusted network��
authenticated message

��
Alice’s message koo



4

Examples of attack strategies:

1. Attacker uses buffer overflow

in a device driver to control

Linux kernel on Alice’s laptop.

2. Attacker uses buffer overflow

in a web browser to control

disk files on Bob’s laptop.

Device driver is in the TCB.

Web browser is in the TCB.

CPU is in the TCB. Etc.

Massive TCB has many bugs,

including many security holes.

Any hope of fixing this?

5

Classic security strategy:

Rearchitect computer systems

to have a much smaller TCB.

Carefully audit the TCB.

e.g. Bob runs many VMs:

VM A
Alice data

VM C
Charlie data · · ·

TCB stops each VM from

touching data in other VMs.

Browser in VM C isn’t in TCB.

Can’t touch data in VM A,

if TCB works correctly.

Alice also runs many VMs.

6

Cryptography

How does Bob’s laptop know

that incoming network data

is from Alice’s laptop?

Cryptographic solution:

Message-authentication codes.

Alice’s message

��

k

vvauthenticated message

untrusted network��
authenticated message

��
Alice’s message koo



4

Examples of attack strategies:

1. Attacker uses buffer overflow

in a device driver to control

Linux kernel on Alice’s laptop.

2. Attacker uses buffer overflow

in a web browser to control

disk files on Bob’s laptop.

Device driver is in the TCB.

Web browser is in the TCB.

CPU is in the TCB. Etc.

Massive TCB has many bugs,

including many security holes.

Any hope of fixing this?

5

Classic security strategy:

Rearchitect computer systems

to have a much smaller TCB.

Carefully audit the TCB.

e.g. Bob runs many VMs:

VM A
Alice data

VM C
Charlie data · · ·

TCB stops each VM from

touching data in other VMs.

Browser in VM C isn’t in TCB.

Can’t touch data in VM A,

if TCB works correctly.

Alice also runs many VMs.

6

Cryptography

How does Bob’s laptop know

that incoming network data

is from Alice’s laptop?

Cryptographic solution:

Message-authentication codes.

Alice’s message

��

k

vvauthenticated message

untrusted network��
authenticated message

��
Alice’s message koo



5

Classic security strategy:

Rearchitect computer systems

to have a much smaller TCB.

Carefully audit the TCB.

e.g. Bob runs many VMs:

VM A
Alice data

VM C
Charlie data · · ·

TCB stops each VM from

touching data in other VMs.

Browser in VM C isn’t in TCB.

Can’t touch data in VM A,

if TCB works correctly.

Alice also runs many VMs.

6

Cryptography

How does Bob’s laptop know

that incoming network data

is from Alice’s laptop?

Cryptographic solution:

Message-authentication codes.

Alice’s message

��

k

vvauthenticated message

untrusted network��
authenticated message

��
Alice’s message koo



5

Classic security strategy:

Rearchitect computer systems

to have a much smaller TCB.

Carefully audit the TCB.

e.g. Bob runs many VMs:

VM A
Alice data

VM C
Charlie data · · ·

TCB stops each VM from

touching data in other VMs.

Browser in VM C isn’t in TCB.

Can’t touch data in VM A,

if TCB works correctly.

Alice also runs many VMs.

6

Cryptography

How does Bob’s laptop know

that incoming network data

is from Alice’s laptop?

Cryptographic solution:

Message-authentication codes.

Alice’s message

��

k

vvauthenticated message

untrusted network��
modified message

��
“Alert: forgery!” koo



5

Classic security strategy:

Rearchitect computer systems

to have a much smaller TCB.

Carefully audit the TCB.

e.g. Bob runs many VMs:

VM A
Alice data

VM C
Charlie data · · ·

TCB stops each VM from

touching data in other VMs.

Browser in VM C isn’t in TCB.

Can’t touch data in VM A,

if TCB works correctly.

Alice also runs many VMs.

6

Cryptography

How does Bob’s laptop know

that incoming network data

is from Alice’s laptop?

Cryptographic solution:

Message-authentication codes.

Alice’s message

��

k

vvauthenticated message

untrusted network��
modified message

��
“Alert: forgery!” koo

7

Important for Alice and Bob

to share the same secret k.

What if attacker was spying

on their communication of k?



5

Classic security strategy:

Rearchitect computer systems

to have a much smaller TCB.

Carefully audit the TCB.

e.g. Bob runs many VMs:

VM A
Alice data

VM C
Charlie data · · ·

TCB stops each VM from

touching data in other VMs.

Browser in VM C isn’t in TCB.

Can’t touch data in VM A,

if TCB works correctly.

Alice also runs many VMs.

6

Cryptography

How does Bob’s laptop know

that incoming network data

is from Alice’s laptop?

Cryptographic solution:

Message-authentication codes.

Alice’s message

��

k

vvauthenticated message

untrusted network��
modified message

��
“Alert: forgery!” koo

7

Important for Alice and Bob

to share the same secret k .

What if attacker was spying

on their communication of k?



5

Classic security strategy:

Rearchitect computer systems

to have a much smaller TCB.

Carefully audit the TCB.

e.g. Bob runs many VMs:

VM A
Alice data

VM C
Charlie data · · ·

TCB stops each VM from

touching data in other VMs.

Browser in VM C isn’t in TCB.

Can’t touch data in VM A,

if TCB works correctly.

Alice also runs many VMs.

6

Cryptography

How does Bob’s laptop know

that incoming network data

is from Alice’s laptop?

Cryptographic solution:

Message-authentication codes.

Alice’s message

��

k

vvauthenticated message

untrusted network��
modified message

��
“Alert: forgery!” koo

7

Important for Alice and Bob

to share the same secret k .

What if attacker was spying

on their communication of k?



6

Cryptography

How does Bob’s laptop know

that incoming network data

is from Alice’s laptop?

Cryptographic solution:

Message-authentication codes.

Alice’s message

��

k

vvauthenticated message

untrusted network��
modified message

��
“Alert: forgery!” koo

7

Important for Alice and Bob

to share the same secret k .

What if attacker was spying

on their communication of k?



6

Cryptography

How does Bob’s laptop know

that incoming network data

is from Alice’s laptop?

Cryptographic solution:

Message-authentication codes.

Alice’s message

��

k

vvauthenticated message

untrusted network��
modified message

��
“Alert: forgery!” koo

7

Important for Alice and Bob

to share the same secret k .

What if attacker was spying

on their communication of k?

Solution 1:

Public-key encryption.

k private key a

��

oo

ciphertext

OO

public key aG

network��
ciphertext

network
OO

public key aGoo

k

OO



6

Cryptography

How does Bob’s laptop know

that incoming network data

is from Alice’s laptop?

Cryptographic solution:

Message-authentication codes.

Alice’s message

��

k

vvauthenticated message

untrusted network��
modified message

��
“Alert: forgery!” koo

7

Important for Alice and Bob

to share the same secret k .

What if attacker was spying

on their communication of k?

Solution 1:

Public-key encryption.

k private key a

��

oo

ciphertext

OO

public key aG

network��
ciphertext

network
OO

public key aGoo

k

OO

8

Solution 2:

Public-key signatures.

m

��

a

��ttsigned message

network��

aG

network
��

signed message

��

aG

oom



6

Cryptography

How does Bob’s laptop know

that incoming network data

is from Alice’s laptop?

Cryptographic solution:

Message-authentication codes.

Alice’s message

��

k

vvauthenticated message

untrusted network��
modified message

��
“Alert: forgery!” koo

7

Important for Alice and Bob

to share the same secret k.

What if attacker was spying

on their communication of k?

Solution 1:

Public-key encryption.

k private key a

��

oo

ciphertext

OO

public key aG

network��
ciphertext

network
OO

public key aGoo

k

OO

8

Solution 2:

Public-key signatures.

m

��

a

��ttsigned message

network��

aG

network
��

signed message

��

aG

oom



6

Cryptography

How does Bob’s laptop know

that incoming network data

is from Alice’s laptop?

Cryptographic solution:

Message-authentication codes.

Alice’s message

��

k

vvauthenticated message

untrusted network��
modified message

��
“Alert: forgery!” koo

7

Important for Alice and Bob

to share the same secret k.

What if attacker was spying

on their communication of k?

Solution 1:

Public-key encryption.

k private key a

��

oo

ciphertext

OO

public key aG

network��
ciphertext

network
OO

public key aGoo

k

OO

8

Solution 2:

Public-key signatures.

m

��

a

��ttsigned message

network��

aG

network
��

signed message

��

aG

oom



7

Important for Alice and Bob

to share the same secret k .

What if attacker was spying

on their communication of k?

Solution 1:

Public-key encryption.

k private key a

��

oo

ciphertext

OO

public key aG

network��
ciphertext

network
OO

public key aGoo

k

OO

8

Solution 2:

Public-key signatures.

m

��

a

��ttsigned message

network��

aG

network
��

signed message

��

aG

oom



7

Important for Alice and Bob

to share the same secret k .

What if attacker was spying

on their communication of k?

Solution 1:

Public-key encryption.

k private key a

��

oo

ciphertext

OO

public key aG

network��
ciphertext

network
OO

public key aGoo

k

OO

8

Solution 2:

Public-key signatures.

m

��

a

��ttsigned message

network��

aG

network
��

signed message

��

aG

oom

No more shared secret k

but Alice still has secret a.

Cryptography requires TCB

to protect secrecy of keys,

even if user has no other secrets.



7

Important for Alice and Bob

to share the same secret k .

What if attacker was spying

on their communication of k?

Solution 1:

Public-key encryption.

k private key a

��

oo

ciphertext

OO

public key aG

network��
ciphertext

network
OO

public key aGoo

k

OO

8

Solution 2:

Public-key signatures.

m

��

a

��ttsigned message

network��

aG

network
��

signed message

��

aG

oom

No more shared secret k

but Alice still has secret a.

Cryptography requires TCB

to protect secrecy of keys,

even if user has no other secrets.

9

Constant-time software

Large portion of CPU hardware:

optimizations depending on

addresses of memory locations.

Consider data caching,

instruction caching,

parallel cache banks,

store-to-load forwarding,

branch prediction, etc.



7

Important for Alice and Bob

to share the same secret k .

What if attacker was spying

on their communication of k?

Solution 1:

Public-key encryption.

k private key a

��

oo

ciphertext

OO

public key aG

network��
ciphertext

network
OO

public key aGoo

k

OO

8

Solution 2:

Public-key signatures.

m

��

a

��ttsigned message

network��

aG

network
��

signed message

��

aG

oom

No more shared secret k

but Alice still has secret a.

Cryptography requires TCB

to protect secrecy of keys,

even if user has no other secrets.

9

Constant-time software

Large portion of CPU hardware:

optimizations depending on

addresses of memory locations.

Consider data caching,

instruction caching,

parallel cache banks,

store-to-load forwarding,

branch prediction, etc.



7

Important for Alice and Bob

to share the same secret k .

What if attacker was spying

on their communication of k?

Solution 1:

Public-key encryption.

k private key a

��

oo

ciphertext

OO

public key aG

network��
ciphertext

network
OO

public key aGoo

k

OO

8

Solution 2:

Public-key signatures.

m

��

a

��ttsigned message

network��

aG

network
��

signed message

��

aG

oom

No more shared secret k

but Alice still has secret a.

Cryptography requires TCB

to protect secrecy of keys,

even if user has no other secrets.

9

Constant-time software

Large portion of CPU hardware:

optimizations depending on

addresses of memory locations.

Consider data caching,

instruction caching,

parallel cache banks,

store-to-load forwarding,

branch prediction, etc.



8

Solution 2:

Public-key signatures.

m

��

a

��ttsigned message

network��

aG

network
��

signed message

��

aG

oom

No more shared secret k

but Alice still has secret a.

Cryptography requires TCB

to protect secrecy of keys,

even if user has no other secrets.

9

Constant-time software

Large portion of CPU hardware:

optimizations depending on

addresses of memory locations.

Consider data caching,

instruction caching,

parallel cache banks,

store-to-load forwarding,

branch prediction, etc.



8

Solution 2:

Public-key signatures.

m

��

a

��ttsigned message

network��

aG

network
��

signed message

��

aG

oom

No more shared secret k

but Alice still has secret a.

Cryptography requires TCB

to protect secrecy of keys,

even if user has no other secrets.

9

Constant-time software

Large portion of CPU hardware:

optimizations depending on

addresses of memory locations.

Consider data caching,

instruction caching,

parallel cache banks,

store-to-load forwarding,

branch prediction, etc.

Many attacks show that this

portion of the CPU has trouble

keeping secrets. e.g. RIDL: 2019

Schaik–Milburn–Österlund–Frigo–

Maisuradze–Razavi–Bos–Giuffrida.



8

Solution 2:

Public-key signatures.

m

��

a

��ttsigned message

network��

aG

network
��

signed message

��

aG

oom

No more shared secret k

but Alice still has secret a.

Cryptography requires TCB

to protect secrecy of keys,

even if user has no other secrets.

9

Constant-time software

Large portion of CPU hardware:

optimizations depending on

addresses of memory locations.

Consider data caching,

instruction caching,

parallel cache banks,

store-to-load forwarding,

branch prediction, etc.

Many attacks show that this

portion of the CPU has trouble

keeping secrets. e.g. RIDL: 2019

Schaik–Milburn–Österlund–Frigo–

Maisuradze–Razavi–Bos–Giuffrida.

10

Typical literature on this topic:

Understand this portion of CPU.

But details are often proprietary,

not exposed to security review.

Try to push attacks further.

This becomes very complicated.

Tweak the attacked software

to try to stop the known attacks.



8

Solution 2:

Public-key signatures.

m

��

a

��ttsigned message

network��

aG

network
��

signed message

��

aG

oom

No more shared secret k

but Alice still has secret a.

Cryptography requires TCB

to protect secrecy of keys,

even if user has no other secrets.

9

Constant-time software

Large portion of CPU hardware:

optimizations depending on

addresses of memory locations.

Consider data caching,

instruction caching,

parallel cache banks,

store-to-load forwarding,

branch prediction, etc.

Many attacks show that this

portion of the CPU has trouble

keeping secrets. e.g. RIDL: 2019

Schaik–Milburn–Österlund–Frigo–

Maisuradze–Razavi–Bos–Giuffrida.

10

Typical literature on this topic:

Understand this portion of CPU.

But details are often proprietary,

not exposed to security review.

Try to push attacks further.

This becomes very complicated.

Tweak the attacked software

to try to stop the known attacks.



8

Solution 2:

Public-key signatures.

m

��

a

��ttsigned message

network��

aG

network
��

signed message

��

aG

oom

No more shared secret k

but Alice still has secret a.

Cryptography requires TCB

to protect secrecy of keys,

even if user has no other secrets.

9

Constant-time software

Large portion of CPU hardware:

optimizations depending on

addresses of memory locations.

Consider data caching,

instruction caching,

parallel cache banks,

store-to-load forwarding,

branch prediction, etc.

Many attacks show that this

portion of the CPU has trouble

keeping secrets. e.g. RIDL: 2019

Schaik–Milburn–Österlund–Frigo–

Maisuradze–Razavi–Bos–Giuffrida.

10

Typical literature on this topic:

Understand this portion of CPU.

But details are often proprietary,

not exposed to security review.

Try to push attacks further.

This becomes very complicated.

Tweak the attacked software

to try to stop the known attacks.



9

Constant-time software

Large portion of CPU hardware:

optimizations depending on

addresses of memory locations.

Consider data caching,

instruction caching,

parallel cache banks,

store-to-load forwarding,

branch prediction, etc.

Many attacks show that this

portion of the CPU has trouble

keeping secrets. e.g. RIDL: 2019

Schaik–Milburn–Österlund–Frigo–

Maisuradze–Razavi–Bos–Giuffrida.

10

Typical literature on this topic:

Understand this portion of CPU.

But details are often proprietary,

not exposed to security review.

Try to push attacks further.

This becomes very complicated.

Tweak the attacked software

to try to stop the known attacks.



9

Constant-time software

Large portion of CPU hardware:

optimizations depending on

addresses of memory locations.

Consider data caching,

instruction caching,

parallel cache banks,

store-to-load forwarding,

branch prediction, etc.

Many attacks show that this

portion of the CPU has trouble

keeping secrets. e.g. RIDL: 2019

Schaik–Milburn–Österlund–Frigo–

Maisuradze–Razavi–Bos–Giuffrida.

10

Typical literature on this topic:

Understand this portion of CPU.

But details are often proprietary,

not exposed to security review.

Try to push attacks further.

This becomes very complicated.

Tweak the attacked software

to try to stop the known attacks.

For researchers: This is great!



9

Constant-time software

Large portion of CPU hardware:

optimizations depending on

addresses of memory locations.

Consider data caching,

instruction caching,

parallel cache banks,

store-to-load forwarding,

branch prediction, etc.

Many attacks show that this

portion of the CPU has trouble

keeping secrets. e.g. RIDL: 2019

Schaik–Milburn–Österlund–Frigo–

Maisuradze–Razavi–Bos–Giuffrida.

10

Typical literature on this topic:

Understand this portion of CPU.

But details are often proprietary,

not exposed to security review.

Try to push attacks further.

This becomes very complicated.

Tweak the attacked software

to try to stop the known attacks.

For researchers: This is great!

For auditors: This is a nightmare.

Many years of security failures.

No confidence in future security.



9

Constant-time software

Large portion of CPU hardware:

optimizations depending on

addresses of memory locations.

Consider data caching,

instruction caching,

parallel cache banks,

store-to-load forwarding,

branch prediction, etc.

Many attacks show that this

portion of the CPU has trouble

keeping secrets. e.g. RIDL: 2019

Schaik–Milburn–Österlund–Frigo–

Maisuradze–Razavi–Bos–Giuffrida.

10

Typical literature on this topic:

Understand this portion of CPU.

But details are often proprietary,

not exposed to security review.

Try to push attacks further.

This becomes very complicated.

Tweak the attacked software

to try to stop the known attacks.

For researchers: This is great!

For auditors: This is a nightmare.

Many years of security failures.

No confidence in future security.

11

The “constant-time” solution:

Don’t give any secrets

to this portion of the CPU.

(1987 Goldreich, 1990 Ostrovsky:

Oblivious RAM; 2004 Bernstein:

domain-specific for better speed)



9

Constant-time software

Large portion of CPU hardware:

optimizations depending on

addresses of memory locations.

Consider data caching,

instruction caching,

parallel cache banks,

store-to-load forwarding,

branch prediction, etc.

Many attacks show that this

portion of the CPU has trouble

keeping secrets. e.g. RIDL: 2019

Schaik–Milburn–Österlund–Frigo–

Maisuradze–Razavi–Bos–Giuffrida.

10

Typical literature on this topic:

Understand this portion of CPU.

But details are often proprietary,

not exposed to security review.

Try to push attacks further.

This becomes very complicated.

Tweak the attacked software

to try to stop the known attacks.

For researchers: This is great!

For auditors: This is a nightmare.

Many years of security failures.

No confidence in future security.

11

The “constant-time” solution:

Don’t give any secrets

to this portion of the CPU.

(1987 Goldreich, 1990 Ostrovsky:

Oblivious RAM; 2004 Bernstein:

domain-specific for better speed)



9

Constant-time software

Large portion of CPU hardware:

optimizations depending on

addresses of memory locations.

Consider data caching,

instruction caching,

parallel cache banks,

store-to-load forwarding,

branch prediction, etc.

Many attacks show that this

portion of the CPU has trouble

keeping secrets. e.g. RIDL: 2019

Schaik–Milburn–Österlund–Frigo–

Maisuradze–Razavi–Bos–Giuffrida.

10

Typical literature on this topic:

Understand this portion of CPU.

But details are often proprietary,

not exposed to security review.

Try to push attacks further.

This becomes very complicated.

Tweak the attacked software

to try to stop the known attacks.

For researchers: This is great!

For auditors: This is a nightmare.

Many years of security failures.

No confidence in future security.

11

The “constant-time” solution:

Don’t give any secrets

to this portion of the CPU.

(1987 Goldreich, 1990 Ostrovsky:

Oblivious RAM; 2004 Bernstein:

domain-specific for better speed)



10

Typical literature on this topic:

Understand this portion of CPU.

But details are often proprietary,

not exposed to security review.

Try to push attacks further.

This becomes very complicated.

Tweak the attacked software

to try to stop the known attacks.

For researchers: This is great!

For auditors: This is a nightmare.

Many years of security failures.

No confidence in future security.

11

The “constant-time” solution:

Don’t give any secrets

to this portion of the CPU.

(1987 Goldreich, 1990 Ostrovsky:

Oblivious RAM; 2004 Bernstein:

domain-specific for better speed)



10

Typical literature on this topic:

Understand this portion of CPU.

But details are often proprietary,

not exposed to security review.

Try to push attacks further.

This becomes very complicated.

Tweak the attacked software

to try to stop the known attacks.

For researchers: This is great!

For auditors: This is a nightmare.

Many years of security failures.

No confidence in future security.

11

The “constant-time” solution:

Don’t give any secrets

to this portion of the CPU.

(1987 Goldreich, 1990 Ostrovsky:

Oblivious RAM; 2004 Bernstein:

domain-specific for better speed)

TCB analysis: Need this portion

of the CPU to be correct, but

don’t need it to keep secrets.

Makes auditing much easier.



10

Typical literature on this topic:

Understand this portion of CPU.

But details are often proprietary,

not exposed to security review.

Try to push attacks further.

This becomes very complicated.

Tweak the attacked software

to try to stop the known attacks.

For researchers: This is great!

For auditors: This is a nightmare.

Many years of security failures.

No confidence in future security.

11

The “constant-time” solution:

Don’t give any secrets

to this portion of the CPU.

(1987 Goldreich, 1990 Ostrovsky:

Oblivious RAM; 2004 Bernstein:

domain-specific for better speed)

TCB analysis: Need this portion

of the CPU to be correct, but

don’t need it to keep secrets.

Makes auditing much easier.

Good match for attitude and

experience of CPU designers: e.g.,

Intel issues errata for correctness

bugs, not for information leaks.



10

Typical literature on this topic:

Understand this portion of CPU.

But details are often proprietary,

not exposed to security review.

Try to push attacks further.

This becomes very complicated.

Tweak the attacked software

to try to stop the known attacks.

For researchers: This is great!

For auditors: This is a nightmare.

Many years of security failures.

No confidence in future security.

11

The “constant-time” solution:

Don’t give any secrets

to this portion of the CPU.

(1987 Goldreich, 1990 Ostrovsky:

Oblivious RAM; 2004 Bernstein:

domain-specific for better speed)

TCB analysis: Need this portion

of the CPU to be correct, but

don’t need it to keep secrets.

Makes auditing much easier.

Good match for attitude and

experience of CPU designers: e.g.,

Intel issues errata for correctness

bugs, not for information leaks.

12

Case study: Constant-time sorting

Serious risk within 10 years:

Attacker has quantum computer

breaking today’s most popular

public-key crypto (RSA and ECC;

e.g., finding a given aG).



10

Typical literature on this topic:

Understand this portion of CPU.

But details are often proprietary,

not exposed to security review.

Try to push attacks further.

This becomes very complicated.

Tweak the attacked software

to try to stop the known attacks.

For researchers: This is great!

For auditors: This is a nightmare.

Many years of security failures.

No confidence in future security.

11

The “constant-time” solution:

Don’t give any secrets

to this portion of the CPU.

(1987 Goldreich, 1990 Ostrovsky:

Oblivious RAM; 2004 Bernstein:

domain-specific for better speed)

TCB analysis: Need this portion

of the CPU to be correct, but

don’t need it to keep secrets.

Makes auditing much easier.

Good match for attitude and

experience of CPU designers: e.g.,

Intel issues errata for correctness

bugs, not for information leaks.

12

Case study: Constant-time sorting

Serious risk within 10 years:

Attacker has quantum computer

breaking today’s most popular

public-key crypto (RSA and ECC;

e.g., finding a given aG).



10

Typical literature on this topic:

Understand this portion of CPU.

But details are often proprietary,

not exposed to security review.

Try to push attacks further.

This becomes very complicated.

Tweak the attacked software

to try to stop the known attacks.

For researchers: This is great!

For auditors: This is a nightmare.

Many years of security failures.

No confidence in future security.

11

The “constant-time” solution:

Don’t give any secrets

to this portion of the CPU.

(1987 Goldreich, 1990 Ostrovsky:

Oblivious RAM; 2004 Bernstein:

domain-specific for better speed)

TCB analysis: Need this portion

of the CPU to be correct, but

don’t need it to keep secrets.

Makes auditing much easier.

Good match for attitude and

experience of CPU designers: e.g.,

Intel issues errata for correctness

bugs, not for information leaks.

12

Case study: Constant-time sorting

Serious risk within 10 years:

Attacker has quantum computer

breaking today’s most popular

public-key crypto (RSA and ECC;

e.g., finding a given aG).



11

The “constant-time” solution:

Don’t give any secrets

to this portion of the CPU.

(1987 Goldreich, 1990 Ostrovsky:

Oblivious RAM; 2004 Bernstein:

domain-specific for better speed)

TCB analysis: Need this portion

of the CPU to be correct, but

don’t need it to keep secrets.

Makes auditing much easier.

Good match for attitude and

experience of CPU designers: e.g.,

Intel issues errata for correctness

bugs, not for information leaks.

12

Case study: Constant-time sorting

Serious risk within 10 years:

Attacker has quantum computer

breaking today’s most popular

public-key crypto (RSA and ECC;

e.g., finding a given aG).



11

The “constant-time” solution:

Don’t give any secrets

to this portion of the CPU.

(1987 Goldreich, 1990 Ostrovsky:

Oblivious RAM; 2004 Bernstein:

domain-specific for better speed)

TCB analysis: Need this portion

of the CPU to be correct, but

don’t need it to keep secrets.

Makes auditing much easier.

Good match for attitude and

experience of CPU designers: e.g.,

Intel issues errata for correctness

bugs, not for information leaks.

12

Case study: Constant-time sorting

Serious risk within 10 years:

Attacker has quantum computer

breaking today’s most popular

public-key crypto (RSA and ECC;

e.g., finding a given aG).

2017: Hundreds of people

submit 69 complete proposals

to international competition for

post-quantum crypto standards.



11

The “constant-time” solution:

Don’t give any secrets

to this portion of the CPU.

(1987 Goldreich, 1990 Ostrovsky:

Oblivious RAM; 2004 Bernstein:

domain-specific for better speed)

TCB analysis: Need this portion

of the CPU to be correct, but

don’t need it to keep secrets.

Makes auditing much easier.

Good match for attitude and

experience of CPU designers: e.g.,

Intel issues errata for correctness

bugs, not for information leaks.

12

Case study: Constant-time sorting

Serious risk within 10 years:

Attacker has quantum computer

breaking today’s most popular

public-key crypto (RSA and ECC;

e.g., finding a given aG).

2017: Hundreds of people

submit 69 complete proposals

to international competition for

post-quantum crypto standards.

Subroutine in some submissions:

sort array of secret integers.

e.g. sort 768 32-bit integers.



11

The “constant-time” solution:

Don’t give any secrets

to this portion of the CPU.

(1987 Goldreich, 1990 Ostrovsky:

Oblivious RAM; 2004 Bernstein:

domain-specific for better speed)

TCB analysis: Need this portion

of the CPU to be correct, but

don’t need it to keep secrets.

Makes auditing much easier.

Good match for attitude and

experience of CPU designers: e.g.,

Intel issues errata for correctness

bugs, not for information leaks.

12

Case study: Constant-time sorting

Serious risk within 10 years:

Attacker has quantum computer

breaking today’s most popular

public-key crypto (RSA and ECC;

e.g., finding a given aG).

2017: Hundreds of people

submit 69 complete proposals

to international competition for

post-quantum crypto standards.

Subroutine in some submissions:

sort array of secret integers.

e.g. sort 768 32-bit integers.

13

How to sort secret data

without any secret addresses?



11

The “constant-time” solution:

Don’t give any secrets

to this portion of the CPU.

(1987 Goldreich, 1990 Ostrovsky:

Oblivious RAM; 2004 Bernstein:

domain-specific for better speed)

TCB analysis: Need this portion

of the CPU to be correct, but

don’t need it to keep secrets.

Makes auditing much easier.

Good match for attitude and

experience of CPU designers: e.g.,

Intel issues errata for correctness

bugs, not for information leaks.

12

Case study: Constant-time sorting

Serious risk within 10 years:

Attacker has quantum computer

breaking today’s most popular

public-key crypto (RSA and ECC;

e.g., finding a given aG).

2017: Hundreds of people

submit 69 complete proposals

to international competition for

post-quantum crypto standards.

Subroutine in some submissions:

sort array of secret integers.

e.g. sort 768 32-bit integers.

13

How to sort secret data

without any secret addresses?



11

The “constant-time” solution:

Don’t give any secrets

to this portion of the CPU.

(1987 Goldreich, 1990 Ostrovsky:

Oblivious RAM; 2004 Bernstein:

domain-specific for better speed)

TCB analysis: Need this portion

of the CPU to be correct, but

don’t need it to keep secrets.

Makes auditing much easier.

Good match for attitude and

experience of CPU designers: e.g.,

Intel issues errata for correctness

bugs, not for information leaks.

12

Case study: Constant-time sorting

Serious risk within 10 years:

Attacker has quantum computer

breaking today’s most popular

public-key crypto (RSA and ECC;

e.g., finding a given aG).

2017: Hundreds of people

submit 69 complete proposals

to international competition for

post-quantum crypto standards.

Subroutine in some submissions:

sort array of secret integers.

e.g. sort 768 32-bit integers.

13

How to sort secret data

without any secret addresses?



12

Case study: Constant-time sorting

Serious risk within 10 years:

Attacker has quantum computer

breaking today’s most popular

public-key crypto (RSA and ECC;

e.g., finding a given aG).

2017: Hundreds of people

submit 69 complete proposals

to international competition for

post-quantum crypto standards.

Subroutine in some submissions:

sort array of secret integers.

e.g. sort 768 32-bit integers.

13

How to sort secret data

without any secret addresses?



12

Case study: Constant-time sorting

Serious risk within 10 years:

Attacker has quantum computer

breaking today’s most popular

public-key crypto (RSA and ECC;

e.g., finding a given aG).

2017: Hundreds of people

submit 69 complete proposals

to international competition for

post-quantum crypto standards.

Subroutine in some submissions:

sort array of secret integers.

e.g. sort 768 32-bit integers.

13

How to sort secret data

without any secret addresses?

Typical sorting algorithms—

merge sort, quicksort, etc.—

choose load/store addresses

based on secret data. Usually

also branch based on secret data.



12

Case study: Constant-time sorting

Serious risk within 10 years:

Attacker has quantum computer

breaking today’s most popular

public-key crypto (RSA and ECC;

e.g., finding a given aG).

2017: Hundreds of people

submit 69 complete proposals

to international competition for

post-quantum crypto standards.

Subroutine in some submissions:

sort array of secret integers.

e.g. sort 768 32-bit integers.

13

How to sort secret data

without any secret addresses?

Typical sorting algorithms—

merge sort, quicksort, etc.—

choose load/store addresses

based on secret data. Usually

also branch based on secret data.

One submission to competition:

“Radix sort is used as

constant-time sorting algorithm.”

Some versions of radix sort

avoid secret branches.



12

Case study: Constant-time sorting

Serious risk within 10 years:

Attacker has quantum computer

breaking today’s most popular

public-key crypto (RSA and ECC;

e.g., finding a given aG).

2017: Hundreds of people

submit 69 complete proposals

to international competition for

post-quantum crypto standards.

Subroutine in some submissions:

sort array of secret integers.

e.g. sort 768 32-bit integers.

13

How to sort secret data

without any secret addresses?

Typical sorting algorithms—

merge sort, quicksort, etc.—

choose load/store addresses

based on secret data. Usually

also branch based on secret data.

One submission to competition:

“Radix sort is used as

constant-time sorting algorithm.”

Some versions of radix sort

avoid secret branches.

But data addresses in radix sort

still depend on secrets.



12

Case study: Constant-time sorting

Serious risk within 10 years:

Attacker has quantum computer

breaking today’s most popular

public-key crypto (RSA and ECC;

e.g., finding a given aG).

2017: Hundreds of people

submit 69 complete proposals

to international competition for

post-quantum crypto standards.

Subroutine in some submissions:

sort array of secret integers.

e.g. sort 768 32-bit integers.

13

How to sort secret data

without any secret addresses?

Typical sorting algorithms—

merge sort, quicksort, etc.—

choose load/store addresses

based on secret data. Usually

also branch based on secret data.

One submission to competition:

“Radix sort is used as

constant-time sorting algorithm.”

Some versions of radix sort

avoid secret branches.

But data addresses in radix sort

still depend on secrets.

14

Foundation of solution:

a comparator sorting 2 integers.

x y

• •

min{x; y} max{x; y}

Easy constant-time exercise in C.

Warning: C standard allows

compiler to screw this up.

Even easier exercise in asm.



12

Case study: Constant-time sorting

Serious risk within 10 years:

Attacker has quantum computer

breaking today’s most popular

public-key crypto (RSA and ECC;

e.g., finding a given aG).

2017: Hundreds of people

submit 69 complete proposals

to international competition for

post-quantum crypto standards.

Subroutine in some submissions:

sort array of secret integers.

e.g. sort 768 32-bit integers.

13

How to sort secret data

without any secret addresses?

Typical sorting algorithms—

merge sort, quicksort, etc.—

choose load/store addresses

based on secret data. Usually

also branch based on secret data.

One submission to competition:

“Radix sort is used as

constant-time sorting algorithm.”

Some versions of radix sort

avoid secret branches.

But data addresses in radix sort

still depend on secrets.

14

Foundation of solution:

a comparator sorting 2 integers.

x y

• •

min{x; y} max{x; y}

Easy constant-time exercise in C.

Warning: C standard allows

compiler to screw this up.

Even easier exercise in asm.



12

Case study: Constant-time sorting

Serious risk within 10 years:

Attacker has quantum computer

breaking today’s most popular

public-key crypto (RSA and ECC;

e.g., finding a given aG).

2017: Hundreds of people

submit 69 complete proposals

to international competition for

post-quantum crypto standards.

Subroutine in some submissions:

sort array of secret integers.

e.g. sort 768 32-bit integers.

13

How to sort secret data

without any secret addresses?

Typical sorting algorithms—

merge sort, quicksort, etc.—

choose load/store addresses

based on secret data. Usually

also branch based on secret data.

One submission to competition:

“Radix sort is used as

constant-time sorting algorithm.”

Some versions of radix sort

avoid secret branches.

But data addresses in radix sort

still depend on secrets.

14

Foundation of solution:

a comparator sorting 2 integers.

x y

• •

min{x; y} max{x; y}

Easy constant-time exercise in C.

Warning: C standard allows

compiler to screw this up.

Even easier exercise in asm.



13

How to sort secret data

without any secret addresses?

Typical sorting algorithms—

merge sort, quicksort, etc.—

choose load/store addresses

based on secret data. Usually

also branch based on secret data.

One submission to competition:

“Radix sort is used as

constant-time sorting algorithm.”

Some versions of radix sort

avoid secret branches.

But data addresses in radix sort

still depend on secrets.

14

Foundation of solution:

a comparator sorting 2 integers.

x y

• •

min{x; y} max{x; y}

Easy constant-time exercise in C.

Warning: C standard allows

compiler to screw this up.

Even easier exercise in asm.



13

How to sort secret data

without any secret addresses?

Typical sorting algorithms—

merge sort, quicksort, etc.—

choose load/store addresses

based on secret data. Usually

also branch based on secret data.

One submission to competition:

“Radix sort is used as

constant-time sorting algorithm.”

Some versions of radix sort

avoid secret branches.

But data addresses in radix sort

still depend on secrets.

14

Foundation of solution:

a comparator sorting 2 integers.

x y

• •

min{x; y} max{x; y}

Easy constant-time exercise in C.

Warning: C standard allows

compiler to screw this up.

Even easier exercise in asm.

15

Combine comparators into a

sorting network for more inputs.

Example of a sorting network:

• •

• •

• • • •

• •

• •



13

How to sort secret data

without any secret addresses?

Typical sorting algorithms—

merge sort, quicksort, etc.—

choose load/store addresses

based on secret data. Usually

also branch based on secret data.

One submission to competition:

“Radix sort is used as

constant-time sorting algorithm.”

Some versions of radix sort

avoid secret branches.

But data addresses in radix sort

still depend on secrets.

14

Foundation of solution:

a comparator sorting 2 integers.

x y

• •

min{x; y} max{x; y}

Easy constant-time exercise in C.

Warning: C standard allows

compiler to screw this up.

Even easier exercise in asm.

15

Combine comparators into a

sorting network for more inputs.

Example of a sorting network:

• •

• •

• • • •

• •

• •



13

How to sort secret data

without any secret addresses?

Typical sorting algorithms—

merge sort, quicksort, etc.—

choose load/store addresses

based on secret data. Usually

also branch based on secret data.

One submission to competition:

“Radix sort is used as

constant-time sorting algorithm.”

Some versions of radix sort

avoid secret branches.

But data addresses in radix sort

still depend on secrets.

14

Foundation of solution:

a comparator sorting 2 integers.

x y

• •

min{x; y} max{x; y}

Easy constant-time exercise in C.

Warning: C standard allows

compiler to screw this up.

Even easier exercise in asm.

15

Combine comparators into a

sorting network for more inputs.

Example of a sorting network:

• •

• •

• • • •

• •

• •



14

Foundation of solution:

a comparator sorting 2 integers.

x y

• •

min{x; y} max{x; y}

Easy constant-time exercise in C.

Warning: C standard allows

compiler to screw this up.

Even easier exercise in asm.

15

Combine comparators into a

sorting network for more inputs.

Example of a sorting network:

• •

• •

• • • •

• •

• •



14

Foundation of solution:

a comparator sorting 2 integers.

x y

• •

min{x; y} max{x; y}

Easy constant-time exercise in C.

Warning: C standard allows

compiler to screw this up.

Even easier exercise in asm.

15

Combine comparators into a

sorting network for more inputs.

Example of a sorting network:

• •

• •

• • • •

• •

• •

16

Positions of comparators

in a sorting network are

independent of the input.

Naturally constant-time.



14

Foundation of solution:

a comparator sorting 2 integers.

x y

• •

min{x; y} max{x; y}

Easy constant-time exercise in C.

Warning: C standard allows

compiler to screw this up.

Even easier exercise in asm.

15

Combine comparators into a

sorting network for more inputs.

Example of a sorting network:

• •

• •

• • • •

• •

• •

16

Positions of comparators

in a sorting network are

independent of the input.

Naturally constant-time.



14

Foundation of solution:

a comparator sorting 2 integers.

x y

• •

min{x; y} max{x; y}

Easy constant-time exercise in C.

Warning: C standard allows

compiler to screw this up.

Even easier exercise in asm.

15

Combine comparators into a

sorting network for more inputs.

Example of a sorting network:

• •

• •

• • • •

• •

• •

16

Positions of comparators

in a sorting network are

independent of the input.

Naturally constant-time.



15

Combine comparators into a

sorting network for more inputs.

Example of a sorting network:

• •

• •

• • • •

• •

• •

16

Positions of comparators

in a sorting network are

independent of the input.

Naturally constant-time.



15

Combine comparators into a

sorting network for more inputs.

Example of a sorting network:

• •

• •

• • • •

• •

• •

16

Positions of comparators

in a sorting network are

independent of the input.

Naturally constant-time.

But (n2 − n)=2 comparators

produce complaints about

performance as n increases.



15

Combine comparators into a

sorting network for more inputs.

Example of a sorting network:

• •

• •

• • • •

• •

• •

16

Positions of comparators

in a sorting network are

independent of the input.

Naturally constant-time.

But (n2 − n)=2 comparators

produce complaints about

performance as n increases.

Speed is a serious issue in the

post-quantum competition.

“Cost” is evaluation criterion;

“we’d like to stress this once

again on the forum that we’d

really like to see more platform-

optimized implementations”; etc.



15

Combine comparators into a

sorting network for more inputs.

Example of a sorting network:

• •

• •

• • • •

• •

• •

16

Positions of comparators

in a sorting network are

independent of the input.

Naturally constant-time.

But (n2 − n)=2 comparators

produce complaints about

performance as n increases.

Speed is a serious issue in the

post-quantum competition.

“Cost” is evaluation criterion;

“we’d like to stress this once

again on the forum that we’d

really like to see more platform-

optimized implementations”; etc.

17

void int32_sort(int32 *x,int64 n)

{ int64 t,p,q,i;

if (n < 2) return;

t = 1;

while (t < n - t) t += t;

for (p = t;p > 0;p >>= 1) {

for (i = 0;i < n - p;++i)

if (!(i & p))

minmax(x+i,x+i+p);

for (q = t;q > p;q >>= 1)

for (i = 0;i < n - q;++i)

if (!(i & p))

minmax(x+i+p,x+i+q);

}

}



15

Combine comparators into a

sorting network for more inputs.

Example of a sorting network:

• •

• •

• • • •

• •

• •

16

Positions of comparators

in a sorting network are

independent of the input.

Naturally constant-time.

But (n2 − n)=2 comparators

produce complaints about

performance as n increases.

Speed is a serious issue in the

post-quantum competition.

“Cost” is evaluation criterion;

“we’d like to stress this once

again on the forum that we’d

really like to see more platform-

optimized implementations”; etc.

17

void int32_sort(int32 *x,int64 n)

{ int64 t,p,q,i;

if (n < 2) return;

t = 1;

while (t < n - t) t += t;

for (p = t;p > 0;p >>= 1) {

for (i = 0;i < n - p;++i)

if (!(i & p))

minmax(x+i,x+i+p);

for (q = t;q > p;q >>= 1)

for (i = 0;i < n - q;++i)

if (!(i & p))

minmax(x+i+p,x+i+q);

}

}



15

Combine comparators into a

sorting network for more inputs.

Example of a sorting network:

• •

• •

• • • •

• •

• •

16

Positions of comparators

in a sorting network are

independent of the input.

Naturally constant-time.

But (n2 − n)=2 comparators

produce complaints about

performance as n increases.

Speed is a serious issue in the

post-quantum competition.

“Cost” is evaluation criterion;

“we’d like to stress this once

again on the forum that we’d

really like to see more platform-

optimized implementations”; etc.

17

void int32_sort(int32 *x,int64 n)

{ int64 t,p,q,i;

if (n < 2) return;

t = 1;

while (t < n - t) t += t;

for (p = t;p > 0;p >>= 1) {

for (i = 0;i < n - p;++i)

if (!(i & p))

minmax(x+i,x+i+p);

for (q = t;q > p;q >>= 1)

for (i = 0;i < n - q;++i)

if (!(i & p))

minmax(x+i+p,x+i+q);

}

}



16

Positions of comparators

in a sorting network are

independent of the input.

Naturally constant-time.

But (n2 − n)=2 comparators

produce complaints about

performance as n increases.

Speed is a serious issue in the

post-quantum competition.

“Cost” is evaluation criterion;

“we’d like to stress this once

again on the forum that we’d

really like to see more platform-

optimized implementations”; etc.

17

void int32_sort(int32 *x,int64 n)

{ int64 t,p,q,i;

if (n < 2) return;

t = 1;

while (t < n - t) t += t;

for (p = t;p > 0;p >>= 1) {

for (i = 0;i < n - p;++i)

if (!(i & p))

minmax(x+i,x+i+p);

for (q = t;q > p;q >>= 1)

for (i = 0;i < n - q;++i)

if (!(i & p))

minmax(x+i+p,x+i+q);

}

}



16

Positions of comparators

in a sorting network are

independent of the input.

Naturally constant-time.

But (n2 − n)=2 comparators

produce complaints about

performance as n increases.

Speed is a serious issue in the

post-quantum competition.

“Cost” is evaluation criterion;

“we’d like to stress this once

again on the forum that we’d

really like to see more platform-

optimized implementations”; etc.

17

void int32_sort(int32 *x,int64 n)

{ int64 t,p,q,i;

if (n < 2) return;

t = 1;

while (t < n - t) t += t;

for (p = t;p > 0;p >>= 1) {

for (i = 0;i < n - p;++i)

if (!(i & p))

minmax(x+i,x+i+p);

for (q = t;q > p;q >>= 1)

for (i = 0;i < n - q;++i)

if (!(i & p))

minmax(x+i+p,x+i+q);

}

}

18

Previous slide: C translation of

1973 Knuth “merge exchange”,

which is a simplified version of

1968 Batcher “odd-even merge”

sorting networks.

≈n(log2 n)2=4 comparators.

Much faster than bubble sort.

Warning: many other descriptions

of Batcher’s sorting networks

require n to be a power of 2.

Also, Wikipedia says “Sorting

networks : : : are not capable of

handling arbitrarily large inputs.”



16

Positions of comparators

in a sorting network are

independent of the input.

Naturally constant-time.

But (n2 − n)=2 comparators

produce complaints about

performance as n increases.

Speed is a serious issue in the

post-quantum competition.

“Cost” is evaluation criterion;

“we’d like to stress this once

again on the forum that we’d

really like to see more platform-

optimized implementations”; etc.

17

void int32_sort(int32 *x,int64 n)

{ int64 t,p,q,i;

if (n < 2) return;

t = 1;

while (t < n - t) t += t;

for (p = t;p > 0;p >>= 1) {

for (i = 0;i < n - p;++i)

if (!(i & p))

minmax(x+i,x+i+p);

for (q = t;q > p;q >>= 1)

for (i = 0;i < n - q;++i)

if (!(i & p))

minmax(x+i+p,x+i+q);

}

}

18

Previous slide: C translation of

1973 Knuth “merge exchange”,

which is a simplified version of

1968 Batcher “odd-even merge”

sorting networks.

≈n(log2 n)2=4 comparators.

Much faster than bubble sort.

Warning: many other descriptions

of Batcher’s sorting networks

require n to be a power of 2.

Also, Wikipedia says “Sorting

networks : : : are not capable of

handling arbitrarily large inputs.”



16

Positions of comparators

in a sorting network are

independent of the input.

Naturally constant-time.

But (n2 − n)=2 comparators

produce complaints about

performance as n increases.

Speed is a serious issue in the

post-quantum competition.

“Cost” is evaluation criterion;

“we’d like to stress this once

again on the forum that we’d

really like to see more platform-

optimized implementations”; etc.

17

void int32_sort(int32 *x,int64 n)

{ int64 t,p,q,i;

if (n < 2) return;

t = 1;

while (t < n - t) t += t;

for (p = t;p > 0;p >>= 1) {

for (i = 0;i < n - p;++i)

if (!(i & p))

minmax(x+i,x+i+p);

for (q = t;q > p;q >>= 1)

for (i = 0;i < n - q;++i)

if (!(i & p))

minmax(x+i+p,x+i+q);

}

}

18

Previous slide: C translation of

1973 Knuth “merge exchange”,

which is a simplified version of

1968 Batcher “odd-even merge”

sorting networks.

≈n(log2 n)2=4 comparators.

Much faster than bubble sort.

Warning: many other descriptions

of Batcher’s sorting networks

require n to be a power of 2.

Also, Wikipedia says “Sorting

networks : : : are not capable of

handling arbitrarily large inputs.”



17

void int32_sort(int32 *x,int64 n)

{ int64 t,p,q,i;

if (n < 2) return;

t = 1;

while (t < n - t) t += t;

for (p = t;p > 0;p >>= 1) {

for (i = 0;i < n - p;++i)

if (!(i & p))

minmax(x+i,x+i+p);

for (q = t;q > p;q >>= 1)

for (i = 0;i < n - q;++i)

if (!(i & p))

minmax(x+i+p,x+i+q);

}

}

18

Previous slide: C translation of

1973 Knuth “merge exchange”,

which is a simplified version of

1968 Batcher “odd-even merge”

sorting networks.

≈n(log2 n)2=4 comparators.

Much faster than bubble sort.

Warning: many other descriptions

of Batcher’s sorting networks

require n to be a power of 2.

Also, Wikipedia says “Sorting

networks : : : are not capable of

handling arbitrarily large inputs.”



17

void int32_sort(int32 *x,int64 n)

{ int64 t,p,q,i;

if (n < 2) return;

t = 1;

while (t < n - t) t += t;

for (p = t;p > 0;p >>= 1) {

for (i = 0;i < n - p;++i)

if (!(i & p))

minmax(x+i,x+i+p);

for (q = t;q > p;q >>= 1)

for (i = 0;i < n - q;++i)

if (!(i & p))

minmax(x+i+p,x+i+q);

}

}

18

Previous slide: C translation of

1973 Knuth “merge exchange”,

which is a simplified version of

1968 Batcher “odd-even merge”

sorting networks.

≈n(log2 n)2=4 comparators.

Much faster than bubble sort.

Warning: many other descriptions

of Batcher’s sorting networks

require n to be a power of 2.

Also, Wikipedia says “Sorting

networks : : : are not capable of

handling arbitrarily large inputs.”

19

This constant-time sorting code

vectorization
(for Haswell)
��

Constant-time sorting code

included in 2017

Bernstein–Chuengsatiansup–

Lange–van Vredendaal

“NTRU Prime” software release

revamped for
higher speed
��

New: djbsort

constant-time sorting code



17

void int32_sort(int32 *x,int64 n)

{ int64 t,p,q,i;

if (n < 2) return;

t = 1;

while (t < n - t) t += t;

for (p = t;p > 0;p >>= 1) {

for (i = 0;i < n - p;++i)

if (!(i & p))

minmax(x+i,x+i+p);

for (q = t;q > p;q >>= 1)

for (i = 0;i < n - q;++i)

if (!(i & p))

minmax(x+i+p,x+i+q);

}

}

18

Previous slide: C translation of

1973 Knuth “merge exchange”,

which is a simplified version of

1968 Batcher “odd-even merge”

sorting networks.

≈n(log2 n)2=4 comparators.

Much faster than bubble sort.

Warning: many other descriptions

of Batcher’s sorting networks

require n to be a power of 2.

Also, Wikipedia says “Sorting

networks : : : are not capable of

handling arbitrarily large inputs.”

19

This constant-time sorting code

vectorization
(for Haswell)
��

Constant-time sorting code

included in 2017

Bernstein–Chuengsatiansup–

Lange–van Vredendaal

“NTRU Prime” software release

revamped for
higher speed
��

New: djbsort

constant-time sorting code



17

void int32_sort(int32 *x,int64 n)

{ int64 t,p,q,i;

if (n < 2) return;

t = 1;

while (t < n - t) t += t;

for (p = t;p > 0;p >>= 1) {

for (i = 0;i < n - p;++i)

if (!(i & p))

minmax(x+i,x+i+p);

for (q = t;q > p;q >>= 1)

for (i = 0;i < n - q;++i)

if (!(i & p))

minmax(x+i+p,x+i+q);

}

}

18

Previous slide: C translation of

1973 Knuth “merge exchange”,

which is a simplified version of

1968 Batcher “odd-even merge”

sorting networks.

≈n(log2 n)2=4 comparators.

Much faster than bubble sort.

Warning: many other descriptions

of Batcher’s sorting networks

require n to be a power of 2.

Also, Wikipedia says “Sorting

networks : : : are not capable of

handling arbitrarily large inputs.”

19

This constant-time sorting code

vectorization
(for Haswell)
��

Constant-time sorting code

included in 2017

Bernstein–Chuengsatiansup–

Lange–van Vredendaal

“NTRU Prime” software release

revamped for
higher speed
��

New: djbsort

constant-time sorting code



18

Previous slide: C translation of

1973 Knuth “merge exchange”,

which is a simplified version of

1968 Batcher “odd-even merge”

sorting networks.

≈n(log2 n)2=4 comparators.

Much faster than bubble sort.

Warning: many other descriptions

of Batcher’s sorting networks

require n to be a power of 2.

Also, Wikipedia says “Sorting

networks : : : are not capable of

handling arbitrarily large inputs.”

19

This constant-time sorting code

vectorization
(for Haswell)
��

Constant-time sorting code

included in 2017

Bernstein–Chuengsatiansup–

Lange–van Vredendaal

“NTRU Prime” software release

revamped for
higher speed
��

New: djbsort

constant-time sorting code



18

Previous slide: C translation of

1973 Knuth “merge exchange”,

which is a simplified version of

1968 Batcher “odd-even merge”

sorting networks.

≈n(log2 n)2=4 comparators.

Much faster than bubble sort.

Warning: many other descriptions

of Batcher’s sorting networks

require n to be a power of 2.

Also, Wikipedia says “Sorting

networks : : : are not capable of

handling arbitrarily large inputs.”

19

This constant-time sorting code

vectorization
(for Haswell)
��

Constant-time sorting code

included in 2017

Bernstein–Chuengsatiansup–

Lange–van Vredendaal

“NTRU Prime” software release

revamped for
higher speed
��

New: djbsort

constant-time sorting code

20

The slowdown for constant time

How much speed did we lose

by refusing to use variable-time

quicksort, radix sort, etc.?

Cycles on Intel Haswell CPU core

to sort n = 768 32-bit integers:

26948 stdsort (variable-time)

22812 herf (variable-time)

17748 krasnov (variable-time)

16980 ipp 2019.5 (variable-time)

12672 sid1607 (variable-time)



18

Previous slide: C translation of

1973 Knuth “merge exchange”,

which is a simplified version of

1968 Batcher “odd-even merge”

sorting networks.

≈n(log2 n)2=4 comparators.

Much faster than bubble sort.

Warning: many other descriptions

of Batcher’s sorting networks

require n to be a power of 2.

Also, Wikipedia says “Sorting

networks : : : are not capable of

handling arbitrarily large inputs.”

19

This constant-time sorting code

vectorization
(for Haswell)
��

Constant-time sorting code

included in 2017

Bernstein–Chuengsatiansup–

Lange–van Vredendaal

“NTRU Prime” software release

revamped for
higher speed
��

New: djbsort

constant-time sorting code

20

The slowdown for constant time

How much speed did we lose

by refusing to use variable-time

quicksort, radix sort, etc.?

Cycles on Intel Haswell CPU core

to sort n = 768 32-bit integers:

26948 stdsort (variable-time)

22812 herf (variable-time)

17748 krasnov (variable-time)

16980 ipp 2019.5 (variable-time)

12672 sid1607 (variable-time)



18

Previous slide: C translation of

1973 Knuth “merge exchange”,

which is a simplified version of

1968 Batcher “odd-even merge”

sorting networks.

≈n(log2 n)2=4 comparators.

Much faster than bubble sort.

Warning: many other descriptions

of Batcher’s sorting networks

require n to be a power of 2.

Also, Wikipedia says “Sorting

networks : : : are not capable of

handling arbitrarily large inputs.”

19

This constant-time sorting code

vectorization
(for Haswell)
��

Constant-time sorting code

included in 2017

Bernstein–Chuengsatiansup–

Lange–van Vredendaal

“NTRU Prime” software release

revamped for
higher speed
��

New: djbsort

constant-time sorting code

20

The slowdown for constant time

How much speed did we lose

by refusing to use variable-time

quicksort, radix sort, etc.?

Cycles on Intel Haswell CPU core

to sort n = 768 32-bit integers:

26948 stdsort (variable-time)

22812 herf (variable-time)

17748 krasnov (variable-time)

16980 ipp 2019.5 (variable-time)

12672 sid1607 (variable-time)



19

This constant-time sorting code

vectorization
(for Haswell)
��

Constant-time sorting code

included in 2017

Bernstein–Chuengsatiansup–

Lange–van Vredendaal

“NTRU Prime” software release

revamped for
higher speed
��

New: djbsort

constant-time sorting code

20

The slowdown for constant time

How much speed did we lose

by refusing to use variable-time

quicksort, radix sort, etc.?

Cycles on Intel Haswell CPU core

to sort n = 768 32-bit integers:

26948 stdsort (variable-time)

22812 herf (variable-time)

17748 krasnov (variable-time)

16980 ipp 2019.5 (variable-time)

12672 sid1607 (variable-time)



19

This constant-time sorting code

vectorization
(for Haswell)
��

Constant-time sorting code

included in 2017

Bernstein–Chuengsatiansup–

Lange–van Vredendaal

“NTRU Prime” software release

revamped for
higher speed
��

New: djbsort

constant-time sorting code

20

The slowdown for constant time

How much speed did we lose

by refusing to use variable-time

quicksort, radix sort, etc.?

Cycles on Intel Haswell CPU core

to sort n = 768 32-bit integers:

26948 stdsort (variable-time)

22812 herf (variable-time)

17748 krasnov (variable-time)

16980 ipp 2019.5 (variable-time)

12672 sid1607 (variable-time)

5964 djbsort (constant-time)



19

This constant-time sorting code

vectorization
(for Haswell)
��

Constant-time sorting code

included in 2017

Bernstein–Chuengsatiansup–

Lange–van Vredendaal

“NTRU Prime” software release

revamped for
higher speed
��

New: djbsort

constant-time sorting code

20

The slowdown for constant time

How much speed did we lose

by refusing to use variable-time

quicksort, radix sort, etc.?

Cycles on Intel Haswell CPU core

to sort n = 768 32-bit integers:

26948 stdsort (variable-time)

22812 herf (variable-time)

17748 krasnov (variable-time)

16980 ipp 2019.5 (variable-time)

12672 sid1607 (variable-time)

5964 djbsort (constant-time)

No slowdown. New speed records!



19

This constant-time sorting code

vectorization
(for Haswell)
��

Constant-time sorting code

included in 2017

Bernstein–Chuengsatiansup–

Lange–van Vredendaal

“NTRU Prime” software release

revamped for
higher speed
��

New: djbsort

constant-time sorting code

20

The slowdown for constant time

How much speed did we lose

by refusing to use variable-time

quicksort, radix sort, etc.?

Cycles on Intel Haswell CPU core

to sort n = 768 32-bit integers:

26948 stdsort (variable-time)

22812 herf (variable-time)

17748 krasnov (variable-time)

16980 ipp 2019.5 (variable-time)

12672 sid1607 (variable-time)

5964 djbsort (constant-time)

No slowdown. New speed records!

21

How can an n(log n)2 algorithm

beat standard n log n algorithms?



19

This constant-time sorting code

vectorization
(for Haswell)
��

Constant-time sorting code

included in 2017

Bernstein–Chuengsatiansup–

Lange–van Vredendaal

“NTRU Prime” software release

revamped for
higher speed
��

New: djbsort

constant-time sorting code

20

The slowdown for constant time

How much speed did we lose

by refusing to use variable-time

quicksort, radix sort, etc.?

Cycles on Intel Haswell CPU core

to sort n = 768 32-bit integers:

26948 stdsort (variable-time)

22812 herf (variable-time)

17748 krasnov (variable-time)

16980 ipp 2019.5 (variable-time)

12672 sid1607 (variable-time)

5964 djbsort (constant-time)

No slowdown. New speed records!

21

How can an n(log n)2 algorithm

beat standard n log n algorithms?



19

This constant-time sorting code

vectorization
(for Haswell)
��

Constant-time sorting code

included in 2017

Bernstein–Chuengsatiansup–

Lange–van Vredendaal

“NTRU Prime” software release

revamped for
higher speed
��

New: djbsort

constant-time sorting code

20

The slowdown for constant time

How much speed did we lose

by refusing to use variable-time

quicksort, radix sort, etc.?

Cycles on Intel Haswell CPU core

to sort n = 768 32-bit integers:

26948 stdsort (variable-time)

22812 herf (variable-time)

17748 krasnov (variable-time)

16980 ipp 2019.5 (variable-time)

12672 sid1607 (variable-time)

5964 djbsort (constant-time)

No slowdown. New speed records!

21

How can an n(log n)2 algorithm

beat standard n log n algorithms?



20

The slowdown for constant time

How much speed did we lose

by refusing to use variable-time

quicksort, radix sort, etc.?

Cycles on Intel Haswell CPU core

to sort n = 768 32-bit integers:

26948 stdsort (variable-time)

22812 herf (variable-time)

17748 krasnov (variable-time)

16980 ipp 2019.5 (variable-time)

12672 sid1607 (variable-time)

5964 djbsort (constant-time)

No slowdown. New speed records!

21

How can an n(log n)2 algorithm

beat standard n log n algorithms?



20

The slowdown for constant time

How much speed did we lose

by refusing to use variable-time

quicksort, radix sort, etc.?

Cycles on Intel Haswell CPU core

to sort n = 768 32-bit integers:

26948 stdsort (variable-time)

22812 herf (variable-time)

17748 krasnov (variable-time)

16980 ipp 2019.5 (variable-time)

12672 sid1607 (variable-time)

5964 djbsort (constant-time)

No slowdown. New speed records!

21

How can an n(log n)2 algorithm

beat standard n log n algorithms?

Answer: well-known trends

in CPU design, reflecting

fundamental hardware costs

of various operations.



20

The slowdown for constant time

How much speed did we lose

by refusing to use variable-time

quicksort, radix sort, etc.?

Cycles on Intel Haswell CPU core

to sort n = 768 32-bit integers:

26948 stdsort (variable-time)

22812 herf (variable-time)

17748 krasnov (variable-time)

16980 ipp 2019.5 (variable-time)

12672 sid1607 (variable-time)

5964 djbsort (constant-time)

No slowdown. New speed records!

21

How can an n(log n)2 algorithm

beat standard n log n algorithms?

Answer: well-known trends

in CPU design, reflecting

fundamental hardware costs

of various operations.

Every cycle, Haswell core can do

8 “min” ops on 32-bit integers +

8 “max” ops on 32-bit integers.



20

The slowdown for constant time

How much speed did we lose

by refusing to use variable-time

quicksort, radix sort, etc.?

Cycles on Intel Haswell CPU core

to sort n = 768 32-bit integers:

26948 stdsort (variable-time)

22812 herf (variable-time)

17748 krasnov (variable-time)

16980 ipp 2019.5 (variable-time)

12672 sid1607 (variable-time)

5964 djbsort (constant-time)

No slowdown. New speed records!

21

How can an n(log n)2 algorithm

beat standard n log n algorithms?

Answer: well-known trends

in CPU design, reflecting

fundamental hardware costs

of various operations.

Every cycle, Haswell core can do

8 “min” ops on 32-bit integers +

8 “max” ops on 32-bit integers.

Loading a 32-bit integer from a

random address: much slower.

Conditional branch: much slower.



20

The slowdown for constant time

How much speed did we lose

by refusing to use variable-time

quicksort, radix sort, etc.?

Cycles on Intel Haswell CPU core

to sort n = 768 32-bit integers:

26948 stdsort (variable-time)

22812 herf (variable-time)

17748 krasnov (variable-time)

16980 ipp 2019.5 (variable-time)

12672 sid1607 (variable-time)

5964 djbsort (constant-time)

No slowdown. New speed records!

21

How can an n(log n)2 algorithm

beat standard n log n algorithms?

Answer: well-known trends

in CPU design, reflecting

fundamental hardware costs

of various operations.

Every cycle, Haswell core can do

8 “min” ops on 32-bit integers +

8 “max” ops on 32-bit integers.

Loading a 32-bit integer from a

random address: much slower.

Conditional branch: much slower.

22

Verification

Sorting software is in the TCB.

Does it work correctly?

Test the sorting software on many

random inputs, increasing inputs,

decreasing inputs. Seems to work.



20

The slowdown for constant time

How much speed did we lose

by refusing to use variable-time

quicksort, radix sort, etc.?

Cycles on Intel Haswell CPU core

to sort n = 768 32-bit integers:

26948 stdsort (variable-time)

22812 herf (variable-time)

17748 krasnov (variable-time)

16980 ipp 2019.5 (variable-time)

12672 sid1607 (variable-time)

5964 djbsort (constant-time)

No slowdown. New speed records!

21

How can an n(log n)2 algorithm

beat standard n log n algorithms?

Answer: well-known trends

in CPU design, reflecting

fundamental hardware costs

of various operations.

Every cycle, Haswell core can do

8 “min” ops on 32-bit integers +

8 “max” ops on 32-bit integers.

Loading a 32-bit integer from a

random address: much slower.

Conditional branch: much slower.

22

Verification

Sorting software is in the TCB.

Does it work correctly?

Test the sorting software on many

random inputs, increasing inputs,

decreasing inputs. Seems to work.



20

The slowdown for constant time

How much speed did we lose

by refusing to use variable-time

quicksort, radix sort, etc.?

Cycles on Intel Haswell CPU core

to sort n = 768 32-bit integers:

26948 stdsort (variable-time)

22812 herf (variable-time)

17748 krasnov (variable-time)

16980 ipp 2019.5 (variable-time)

12672 sid1607 (variable-time)

5964 djbsort (constant-time)

No slowdown. New speed records!

21

How can an n(log n)2 algorithm

beat standard n log n algorithms?

Answer: well-known trends

in CPU design, reflecting

fundamental hardware costs

of various operations.

Every cycle, Haswell core can do

8 “min” ops on 32-bit integers +

8 “max” ops on 32-bit integers.

Loading a 32-bit integer from a

random address: much slower.

Conditional branch: much slower.

22

Verification

Sorting software is in the TCB.

Does it work correctly?

Test the sorting software on many

random inputs, increasing inputs,

decreasing inputs. Seems to work.



21

How can an n(log n)2 algorithm

beat standard n log n algorithms?

Answer: well-known trends

in CPU design, reflecting

fundamental hardware costs

of various operations.

Every cycle, Haswell core can do

8 “min” ops on 32-bit integers +

8 “max” ops on 32-bit integers.

Loading a 32-bit integer from a

random address: much slower.

Conditional branch: much slower.

22

Verification

Sorting software is in the TCB.

Does it work correctly?

Test the sorting software on many

random inputs, increasing inputs,

decreasing inputs. Seems to work.



21

How can an n(log n)2 algorithm

beat standard n log n algorithms?

Answer: well-known trends

in CPU design, reflecting

fundamental hardware costs

of various operations.

Every cycle, Haswell core can do

8 “min” ops on 32-bit integers +

8 “max” ops on 32-bit integers.

Loading a 32-bit integer from a

random address: much slower.

Conditional branch: much slower.

22

Verification

Sorting software is in the TCB.

Does it work correctly?

Test the sorting software on many

random inputs, increasing inputs,

decreasing inputs. Seems to work.

But are there occasional inputs

where this sorting software

fails to sort correctly?

History: Many security problems

involve occasional inputs

where TCB works incorrectly.



21

How can an n(log n)2 algorithm

beat standard n log n algorithms?

Answer: well-known trends

in CPU design, reflecting

fundamental hardware costs

of various operations.

Every cycle, Haswell core can do

8 “min” ops on 32-bit integers +

8 “max” ops on 32-bit integers.

Loading a 32-bit integer from a

random address: much slower.

Conditional branch: much slower.

22

Verification

Sorting software is in the TCB.

Does it work correctly?

Test the sorting software on many

random inputs, increasing inputs,

decreasing inputs. Seems to work.

But are there occasional inputs

where this sorting software

fails to sort correctly?

History: Many security problems

involve occasional inputs

where TCB works incorrectly.

23

For each used n (e.g., 768):

C code

normal compiler
��

machine code

symbolic execution
��

fully unrolled code

new peephole optimizer
��

unrolled min-max code

new sorting verifier
��

yes, code works



21

How can an n(log n)2 algorithm

beat standard n log n algorithms?

Answer: well-known trends

in CPU design, reflecting

fundamental hardware costs

of various operations.

Every cycle, Haswell core can do

8 “min” ops on 32-bit integers +

8 “max” ops on 32-bit integers.

Loading a 32-bit integer from a

random address: much slower.

Conditional branch: much slower.

22

Verification

Sorting software is in the TCB.

Does it work correctly?

Test the sorting software on many

random inputs, increasing inputs,

decreasing inputs. Seems to work.

But are there occasional inputs

where this sorting software

fails to sort correctly?

History: Many security problems

involve occasional inputs

where TCB works incorrectly.

23

For each used n (e.g., 768):

C code

normal compiler
��

machine code

symbolic execution
��

fully unrolled code

new peephole optimizer
��

unrolled min-max code

new sorting verifier
��

yes, code works



21

How can an n(log n)2 algorithm

beat standard n log n algorithms?

Answer: well-known trends

in CPU design, reflecting

fundamental hardware costs

of various operations.

Every cycle, Haswell core can do

8 “min” ops on 32-bit integers +

8 “max” ops on 32-bit integers.

Loading a 32-bit integer from a

random address: much slower.

Conditional branch: much slower.

22

Verification

Sorting software is in the TCB.

Does it work correctly?

Test the sorting software on many

random inputs, increasing inputs,

decreasing inputs. Seems to work.

But are there occasional inputs

where this sorting software

fails to sort correctly?

History: Many security problems

involve occasional inputs

where TCB works incorrectly.

23

For each used n (e.g., 768):

C code

normal compiler
��

machine code

symbolic execution
��

fully unrolled code

new peephole optimizer
��

unrolled min-max code

new sorting verifier
��

yes, code works



22

Verification

Sorting software is in the TCB.

Does it work correctly?

Test the sorting software on many

random inputs, increasing inputs,

decreasing inputs. Seems to work.

But are there occasional inputs

where this sorting software

fails to sort correctly?

History: Many security problems

involve occasional inputs

where TCB works incorrectly.

23

For each used n (e.g., 768):

C code

normal compiler
��

machine code

symbolic execution
��

fully unrolled code

new peephole optimizer
��

unrolled min-max code

new sorting verifier
��

yes, code works



22

Verification

Sorting software is in the TCB.

Does it work correctly?

Test the sorting software on many

random inputs, increasing inputs,

decreasing inputs. Seems to work.

But are there occasional inputs

where this sorting software

fails to sort correctly?

History: Many security problems

involve occasional inputs

where TCB works incorrectly.

23

For each used n (e.g., 768):

C code

normal compiler
��

machine code

symbolic execution
��

fully unrolled code

new peephole optimizer
��

unrolled min-max code

new sorting verifier
��

yes, code works

24

Symbolic execution:

use existing angr.io toolkit,

with several tiny new patches for

eliminating byte splitting, adding

a few missing vector instructions.



22

Verification

Sorting software is in the TCB.

Does it work correctly?

Test the sorting software on many

random inputs, increasing inputs,

decreasing inputs. Seems to work.

But are there occasional inputs

where this sorting software

fails to sort correctly?

History: Many security problems

involve occasional inputs

where TCB works incorrectly.

23

For each used n (e.g., 768):

C code

normal compiler
��

machine code

symbolic execution
��

fully unrolled code

new peephole optimizer
��

unrolled min-max code

new sorting verifier
��

yes, code works

24

Symbolic execution:

use existing angr.io toolkit,

with several tiny new patches for

eliminating byte splitting, adding

a few missing vector instructions.



22

Verification

Sorting software is in the TCB.

Does it work correctly?

Test the sorting software on many

random inputs, increasing inputs,

decreasing inputs. Seems to work.

But are there occasional inputs

where this sorting software

fails to sort correctly?

History: Many security problems

involve occasional inputs

where TCB works incorrectly.

23

For each used n (e.g., 768):

C code

normal compiler
��

machine code

symbolic execution
��

fully unrolled code

new peephole optimizer
��

unrolled min-max code

new sorting verifier
��

yes, code works

24

Symbolic execution:

use existing angr.io toolkit,

with several tiny new patches for

eliminating byte splitting, adding

a few missing vector instructions.



23

For each used n (e.g., 768):

C code

normal compiler
��

machine code

symbolic execution
��

fully unrolled code

new peephole optimizer
��

unrolled min-max code

new sorting verifier
��

yes, code works

24

Symbolic execution:

use existing angr.io toolkit,

with several tiny new patches for

eliminating byte splitting, adding

a few missing vector instructions.



23

For each used n (e.g., 768):

C code

normal compiler
��

machine code

symbolic execution
��

fully unrolled code

new peephole optimizer
��

unrolled min-max code

new sorting verifier
��

yes, code works

24

Symbolic execution:

use existing angr.io toolkit,

with several tiny new patches for

eliminating byte splitting, adding

a few missing vector instructions.

Peephole optimizer:

recognize instruction patterns

equivalent to min, max.



23

For each used n (e.g., 768):

C code

normal compiler
��

machine code

symbolic execution
��

fully unrolled code

new peephole optimizer
��

unrolled min-max code

new sorting verifier
��

yes, code works

24

Symbolic execution:

use existing angr.io toolkit,

with several tiny new patches for

eliminating byte splitting, adding

a few missing vector instructions.

Peephole optimizer:

recognize instruction patterns

equivalent to min, max.

Sorting verifier: decompose

DAG into merging networks.

Verify each merging network

using generalization of 2007

Even–Levi–Litman, correction of

1990 Chung–Ravikumar.



23

For each used n (e.g., 768):

C code

normal compiler
��

machine code

symbolic execution
��

fully unrolled code

new peephole optimizer
��

unrolled min-max code

new sorting verifier
��

yes, code works

24

Symbolic execution:

use existing angr.io toolkit,

with several tiny new patches for

eliminating byte splitting, adding

a few missing vector instructions.

Peephole optimizer:

recognize instruction patterns

equivalent to min, max.

Sorting verifier: decompose

DAG into merging networks.

Verify each merging network

using generalization of 2007

Even–Levi–Litman, correction of

1990 Chung–Ravikumar.

25

Current djbsort release

(verified fast int32 on AVX2,

verified portable int32,

fast uint32, fast float32):

sorting.cr.yp.to

Includes the sorting code;

automatic build-time tests;

simple benchmarking program;

verification tools.

Web site shows how to

use the verification tools.

Next release planned:

verified ARM NEON code.



23

For each used n (e.g., 768):

C code

normal compiler
��

machine code

symbolic execution
��

fully unrolled code

new peephole optimizer
��

unrolled min-max code

new sorting verifier
��

yes, code works

24

Symbolic execution:

use existing angr.io toolkit,

with several tiny new patches for

eliminating byte splitting, adding

a few missing vector instructions.

Peephole optimizer:

recognize instruction patterns

equivalent to min, max.

Sorting verifier: decompose

DAG into merging networks.

Verify each merging network

using generalization of 2007

Even–Levi–Litman, correction of

1990 Chung–Ravikumar.

25

Current djbsort release

(verified fast int32 on AVX2,

verified portable int32,

fast uint32, fast float32):

sorting.cr.yp.to

Includes the sorting code;

automatic build-time tests;

simple benchmarking program;

verification tools.

Web site shows how to

use the verification tools.

Next release planned:

verified ARM NEON code.



23

For each used n (e.g., 768):

C code

normal compiler
��

machine code

symbolic execution
��

fully unrolled code

new peephole optimizer
��

unrolled min-max code

new sorting verifier
��

yes, code works

24

Symbolic execution:

use existing angr.io toolkit,

with several tiny new patches for

eliminating byte splitting, adding

a few missing vector instructions.

Peephole optimizer:

recognize instruction patterns

equivalent to min, max.

Sorting verifier: decompose

DAG into merging networks.

Verify each merging network

using generalization of 2007

Even–Levi–Litman, correction of

1990 Chung–Ravikumar.

25

Current djbsort release

(verified fast int32 on AVX2,

verified portable int32,

fast uint32, fast float32):

sorting.cr.yp.to

Includes the sorting code;

automatic build-time tests;

simple benchmarking program;

verification tools.

Web site shows how to

use the verification tools.

Next release planned:

verified ARM NEON code.



24

Symbolic execution:

use existing angr.io toolkit,

with several tiny new patches for

eliminating byte splitting, adding

a few missing vector instructions.

Peephole optimizer:

recognize instruction patterns

equivalent to min, max.

Sorting verifier: decompose

DAG into merging networks.

Verify each merging network

using generalization of 2007

Even–Levi–Litman, correction of

1990 Chung–Ravikumar.

25

Current djbsort release

(verified fast int32 on AVX2,

verified portable int32,

fast uint32, fast float32):

sorting.cr.yp.to

Includes the sorting code;

automatic build-time tests;

simple benchmarking program;

verification tools.

Web site shows how to

use the verification tools.

Next release planned:

verified ARM NEON code.


