Sorting integer arrays: Bob's laptop screen:

security, speed, and verification .
From: Alice

D. J. Bernstein

University of lllinois at Chicago, Thank you for your

Ruhr—University Bochum submission. We received

many 1lnteresting papers,

and unfortunately your

Bob assumes this message is
something Alice actually sent.

But today's “security’ systems
fail to guarantee this property.
Attacker could have modified
or forged the message.

nteger arrays:
speed, and verification

rnstein

ty of lllinois at Chicago,
Iversity Bochum

Bob's laptop screen:

Trusted

From: Alice

Thank you for your
submission. We received

many 1interesting papers,

and unfortunately your

Bob assumes this message is
something Alice actually sent.

But today's “security’ systems
fail to guarantee this property.
Attacker could have modified
or forged the message.

TCB: pc
that is r
the user

ays:
d verification

is at Chicago,
ochum

Bob's laptop screen:

Trusted computin;

From: Alice

Thank you for your
submission. We received

many 1lnteresting papers,

and unfortunately your

Bob assumes this message is
something Alice actually sent.

But today's “security’ systems
fail to guarantee this property.
Attacker could have modified
or forged the message.

TCB: portion of ¢
that Is responsible
the users’ security

on

120,

Bob's laptop screen:

Trusted computing base (T¢

From: Alice

Thank you for your
submission. We received

many 1lnteresting papers,

and unfortunately your

Bob assumes this message is
something Alice actually sent.

But today's “security’ systems
fail to guarantee this property.
Attacker could have modified
or forged the message.

TCB: portion of computer s
that is responsible for enforc
the users’ security policy.

Bob's laptop screen: Trusted computing base (TCB)

From: Alice TCB: portion of computer system
that is responsible for enforcing

Thank you for your the users’ security policy.

submission. We received

many 1lnteresting papers,

and unfortunately your

Bob assumes this message is
something Alice actually sent.

But today's “security’ systems
fail to guarantee this property.
Attacker could have modified
or forged the message.

Bob's laptop screen:

Trusted computing base (TCB)

From: Alice

Thank you for your
submission. We received

many 1lnteresting papers,

and unfortunately your

Bob assumes this message is
something Alice actually sent.

But today's “security’ systems
fail to guarantee this property.
Attacker could have modified
or forged the message.

TCB: portion of computer system
that is responsible for enforcing
the users’ security policy.

Bob's security policy for this talk:

If message is displayed on
Bob's screen as “From: Alice’
then message is from Alice.

Bob's laptop screen:

Trusted computing base (TCB)

From: Alice

Thank you for your
submission. We received
many 1lnteresting papers,

and unfortunately your

Bob assumes this message is
something Alice actually sent.

But today's “security’ systems
fail to guarantee this property.
Attacker could have modified
or forged the message.

TCB: portion of computer system
that is responsible for enforcing
the users’ security policy.

Bob's security policy for this talk:

If message is displayed on
Bob's screen as “From: Alice’
then message is from Alice.

If TCB works correctly,

then message Is guaranteed

to be from Alice, no matter what
the rest of the system does.

ptop screen:

Trusted computing base (TCB)

: Alice

k you for your
ission. We receilved
interesting papers,

unfortunately your

imes this message Is
1g Alice actually sent.

y's security’ systems
sarantee this property.
- could have modified

1 the message.

TCB: portion of computer system
that is responsible for enforcing
the users’ security policy.

Bob's security policy for this talk:

If message is displayed on
Bob's screen as “From: Alice”
then message is from Alice.

If TCB works correctly,

then message Is guaranteed

to be from Alice, no matter what
the rest of the system does.

Example

1. Attac
IN A C

Linux

N

Trusted computing base (TCB)

- your
le received
ing papers,

tely your

message IS
“tually sent.

rity’ systems
his property.
/e modified
age.

TCB: portion of computer system
that is responsible for enforcing
the users’ security policy.

Bob's security policy for this talk:

If message is displayed on
Bob's screen as “From: Alice’
then message is from Alice.

If TCB works correctly,

then message Is guaranteed

to be from Alice, no matter what
the rest of the system does.

Examples of attac

1. Attacker uses k
In a device driv
Linux kernel on

Trusted computing base (TCB)

TCB: portion of computer system
that is responsible for enforcing
the users’ security policy.

Bob's security policy for this talk:

If message is displayed on
Bob's screen as “From: Alice”
then message is from Alice.

If TCB works correctly,

then message Is guaranteed

to be from Alice, no matter what
the rest of the system does.

Examples of attack strategie

1. Attacker uses buffer over
In a device driver to cont
Linux kernel on Alice’s |a

Trusted computing base (TCB) Examples of attack strategies:
TCB: portion of computer system 1. Attacker uses buffer overflow
that is responsible for enforcing in a device driver to control
the users’ security policy. Linux kernel on Alice's laptop.

Bob's security policy for this talk:

If message is displayed on
Bob's screen as “From: Alice’
then message is from Alice.

If TCB works correctly,

then message Is guaranteed

to be from Alice, no matter what
the rest of the system does.

Trusted computing base (TCB) Examples of attack strategies:
TCB: portion of computer system 1. Attacker uses buffer overflow
that is responsible for enforcing in a device driver to control
the users’ security policy. Linux kernel on Alice's laptop.
Bob's security policy for this talk: 2. Attacker uses buffer overflow
If message is displayed on in a web browser to control
Bob's screen as "From: Alice’ disk files on Bob's laptop.

then message is from Alice.

If TCB works correctly,

then message Is guaranteed

to be from Alice, no matter what
the rest of the system does.

Trusted computing base (TCB)

TCB: portion of computer system
that is responsible for enforcing
the users’ security policy.

Bob's security policy for this talk:

If message is displayed on
Bob's screen as “From: Alice’
then message is from Alice.

If TCB works correctly,

then message Is guaranteed

to be from Alice, no matter what
the rest of the system does.

Examples of attack

strategies:

1. Attacker uses buffer overtlow

In a device driver to control

Linux kernel on Alice’s laptop.

2. Attacker uses bu

ffer overflow

In a web browser to control

disk files on Bob

Device driver is in t

Web browser is in t
CPU is in the TCB.

's laptop.

ne TCB.

ne TCB.
Etc.

Trusted computing base (TCB)

TCB: portion of computer system
that is responsible for enforcing
the users’ security policy.

Bob's security policy for this talk:

If message is displayed on
Bob's screen as “From: Alice’
then message is from Alice.

If TCB works correctly,

then message Is guaranteed

to be from Alice, no matter what
the rest of the system does.

Examples of attack

strategies:

1. Attacker uses buffer overtlow

In a device driver to control

Linux kernel on Alice’s laptop.

2. Attacker uses buffer overflow

In a web browser to control

disk files on Bob's laptop.

Device driver is in t
Web browser is in t

CPU is in the TCB.

ne TCB.

ne TCB.
Etc.

Massive TCB has many bugs,

including many security holes.

Any hope of fixing this?

computing base (TCB)

rtion of computer system
esponsible for enforcing
s' security policy.

curity policy for this talk:

ge Is displayed on
reen as From: Alice’
ssage is from Alice.

vorks correctly,

ssage Is guaranteed

ym Alice, no matter what
of the system does.

Examples of attack

strategies:

1. Attacker uses buffer overftlow

In a device driver to control

Linux kernel on Alice’s laptop.

2. Attacker uses buffer overflow

In a web browser to control

disk files on Bob's laptop.

Device driver is In t
Web browser is in t

CPU is in the TCB.

ne TCB.

ne TCB.
Etc.

Massive TCB has many bugs,

including many security holes.

Any hope of fixing this?

Classic s

Rearchit
to have

r base (TCB)

omputer system
for enforcing

policy.

cy for this talk:
ayed on
'rom: Alice’

om Alice.

ectly,

jaranteed

no matter what
tem does.

Examples of attack

strategies:

1. Attacker uses buffer overtlow

In a device driver to control

Linux kernel on Alice’s laptop.

2. Attacker uses buffer overflow

In a web browser to control

disk files on Bob's laptop.

Device driver is in t
Web browser is in t

CPU is in the TCB.

ne TCB.

ne TCB.
Etc.

Massive TCB has many bugs,

including many security holes.

Any hope of fixing this?

Classic security stt

Rearchitect compt
to have a much sr

what

Examples of attack

strategies:

1. Attacker uses buffer overftlow

In a device driver to control

Linux kernel on Alice’s laptop.

2. Attacker uses buffer overflow

In a web browser to control

disk files on Bob's laptop.

Device driver is In t
Web browser is in t

CPU is in the TCB.

ne TCB.

ne TCB.
Etc.

Massive TCB has many bugs,

including many security holes.

Any hope of fixing this?

Classic security strategy:

Rearchitect computer systen
to have a much smaller TCE

Examples of attack strategies:

1. Attacker uses buffer overflow
In a device driver to control

Linux kernel on Alice’s laptop.

2. Attacker uses buffer overflow
In a web browser to control
disk files on Bob's laptop.

Device driver is in the TCB.
Web browser is in the TCB.
CPU is in the TCB. Etc.

Massive TCB has many bugs,

including many security holes.
Any hope of fixing this?

Classic security strategy:

Rearchitect computer systems
to have a much smaller TCB.

Examples of attack strategies:

1. Attacker uses buffer overflow
In a device driver to control

Linux kernel on Alice’s laptop.

2. Attacker uses buffer overflow
In a web browser to control
disk files on Bob's laptop.

Device driver is in the TCB.
Web browser is in the TCB.
CPU is in the TCB. Etc.

Massive TCB has many bugs,

including many security holes.
Any hope of fixing this?

Classic security strategy:

Rearchitect computer systems
to have a much smaller TCB.

Carefully audit the TCB.

Examples of attack strategies:

1. Attacker uses buffer overflow
In a device driver to control

Linux kernel on Alice’s laptop.

2. Attacker uses buffer overflow
In a web browser to control
disk files on Bob's laptop.

Device driver is in the TCB.
Web browser is in the TCB.
CPU is in the TCB. Etc.

Massive TCB has many bugs,

including many security holes.
Any hope of fixing this?

Classic security strategy:

Rearchitect computer systems
to have a much smaller TCB.

Carefully audit the TCB.

e.g. Bob runs many VMs:

VM A VM C

Alice data| | Charlie data

TCB stops each VM from
touching data in other VMs.

Examples of attack strategies:

1. Attacker uses buffer overflow
In a device driver to control

Linux kernel on Alice’s laptop.

2. Attacker uses buffer overflow
In a web browser to control
disk files on Bob's laptop.

Device driver is in the TCB.
Web browser is in the TCB.
CPU is in the TCB. Etc.

Massive TCB has many bugs,

including many security holes.
Any hope of fixing this?

Classic security strategy:

Rearchitect computer systems
to have a much smaller TCB.

Carefully audit the TCB.

e.g. Bob runs many VMs:

VM A VM C
Alice data| | Charlie data

TCB stops each VM from
touching data in other VMs.

Browser in VM C isn't in TCB.
Can't touch data in VM A,
if TCB works correctly.

Examples of attack

1. Attacker uses buffer overflow
In a device driver to control
Linux kernel on Alice’s laptop.

2. Attacker uses buffer overflow
In a2 web browser to control

strategies:

disk files on Bob's laptop.

Device driver is in t
Web browser is in t

CPU is in the TCB.

ne TCB.

ne TCB.
Etc.

Massive TCB has many bugs,

including many security holes.

Any hope of fixing this?

Classic security strategy:

Rearchitect computer systems
to have a much smaller TCB.

Carefully audit the TCB.

e.g. Bob runs many VMs:

VM A VM C

Alice data| | Charlie data

TCB stops each VM from
touching data in other VMs.

Browser in VM C isn't in TCB.

Can't touch data in VM A,
if TCB works correctly.

Alice also runs many VMs.

s of attack strategies:

ker uses buffer overflow
levice driver to control

. kernel on Alice's laptop.

ker uses buffer overflow
veb browser to control
1les on Bob's laptop.

Iriver I1s In the TCB.

wser i1s In the TCB.
n the TCB. Etc.

TCB has many bugs,

r many security holes.
e of fixing this?

Classic security strategy:

Rearchitect computer systems
to have a much smaller TCB.

Carefully audit the TCB.

e.g. Bob runs many VMs:

VM A VM C

Alice data| | Charlie data

TCB stops each VM from
touching data in other VMs.

Browser in VM C isn't in TCB.

Can't touch data in VM A,
if TCB works correctly.

Alice also runs many VMs.

Cryptog

How doc
that ince
Is from

Cryptog
Message

Alic

authent

authent

Alic

k strategies:

yuffer overflow
er to control

- Alice's laptop.

ywuffer overflow
er to control
b's laptop.

the TCB.
the TCB.
3. Etc.

many bugs,

curity holes.
- this?

Classic security strategy:

Rearchitect computer systems
to have a much smaller TCB.

Carefully audit the TCB.

e.g. Bob runs many VMs:

VM A VM C

Alice data| | Charlie data

TCB stops each VM from
touching data in other VMs.

Browser in VM C isn't in TCB.

Can't touch data in VM A,
if TCB works correctly.

Alice also runs many VMs.

Cryptography

How does Bob's I:
that incoming net
s from Alice's lap

Cryptographic solt
Message-authentic

Alice’'s messag

i

authenticated me

Vuntru

authenticated me

i

Alice’'s messag

S.

flow
rol

ptop.

flow

rol

S.

Classic security strategy:

Rearchitect computer systems
to have a much smaller TCB.

Carefully audit the TCB.

e.g. Bob runs many VMs:

VM A VM C

Alice data| | Charlie data

TCB stops each VM from
touching data in other VMs.

Browser in VM C isn't in TCB.

Can't touch data in VM A,
if TCB works correctly.

Alice also runs many VMs.

Cryptography

How does Bob's laptop kno
that incoming network data
is from Alice’s laptop?

Cryptographic solution:
Message-authentication cod

Alice’'s message

: -

authenticated message

vu ntrusted netw

authenticated message

i

Alice’'s message <

Classic security strategy:

Rearchitect computer systems
to have a much smaller TCB.

Carefully audit the TCB.

e.g. Bob runs many VMs:

VM A VM C
Alice data| | Charlie data

TCB stops each VM from
touching data in other VMs.

Browser in VM C isn't in TCB.

Can't touch data in VM A,
if TCB works correctly.

Alice also runs many VMs.

Cryptography

How does Bob's laptop know
that incoming network data
is from Alice’s laptop?

Cryptographic solution:
Message-authentication codes.

Alice’'s message k

—_—

authenticated message

vu ntrusted network

authenticated message

i

Alice’'s message i< k

Classic security strategy: Cryptography

Rearchitect computer systems How does Bob's laptop know
to have a much smaller TCB. that incoming network data

. o 7
Carefully audit the TCB. is from Alice’s laptop?

e.g. Bob runs many VMs: Cryptographic solution:

Message-authentication codes.

VM A VM C
Alice data| | Charlie data| Alice's message e
TCB stops each VM from i /
touching data in other VMs. authenticated message
Browser in VM C isn't in TCB. Vuntrusted NEtWork
Can't touch data in VM A, modified message
if TCB works correctly. ¢

“Alert: forgery!” i< k

Alice also runs many VMs.

ecurity strategy: Cryptography Importal
, to share

ect computer systems How does Bob's laptop know
a much smaller TCB. that incoming network data What if
is from Alice’s laptop? on their

/ audit the TCB.

' runs many VMs: Cryptographic solution:

\ VM C
ita | | Charlie data| Alice's message k

ps each VM from L /
- data in other VMs. authenticated message

Message-authentication codes.

in VM Cisn't in TCB Vuntrusted network
uch data in VM A modified message
vorks correctly. i

“Alert: forgery!l” < o

o runs many VMs.

ategy: Cryptography Important for Alic
h h

Iter systems How does Bob's laptop know to share the same

naller TCB. that incoming network data What if attacker v
. _ , . .

TCB is from Alice’s laptop: on their communic

v VMs: Cryptographic so.lut|<.>n:

. Message-authentication codes.

'M C

lie data| Alice’'s message k

M from i /
ther VMs.

authenticated message

't 0 TCR vuntrusted network
VM A modified message
ectly. ¢

“Alert: forgery!” < k

ny VMs.

1S

«)
W

Cryptography

How does Bob's laptop know
that incoming network data
is from Alice’s laptop?

Cryptographic solution:
Message-authentication codes.

Alice’'s message K

authenticated message /

vu ntrusted network

modified message

i

“Alert: forgery!” i< k

Important for Alice and Bok
to share the same secret k.

What if attacker was spying
on their communication of /

Cryptography

How does Bob's laptop know

that incoming network data
is from Alice’s laptop?

Cryptographic solution:
Message-authentication codes.

Alice’'s message

K

authenticated message /

untrusted network

Y
modified message

i

“Alert: forgery!” i< k

Important for Alice and Bob
to share the same secret k.

What if attacker was spying
on their communication of k7?7

Cryptography

How does Bob's laptop know
that incoming network data
is from Alice’s laptop?

Cryptographic solution:
Message-authentication codes.

Alice’'s message

K

authenticated message /

untrusted network

Y
modified message

i

Important for Alice and Bob
to share the same secret k.

What if attacker was spying
on their communication of k7?7

Solution 1
Public-key encryption.

k 1< private key a
ciphertext public key aG
Tnetwork Vnetwork

ciphertext < public key aG

“Alert: forgery!” i< k

T

K

raphy

s Bob's laptop know
oming network data
Alice's laptop?

raphic solution:
-authentication codes.

e's message

k

—_—

icated message

Y
fled message

i

untrusted network

Important for Alice and Bob

to share the same secret k.

What if attacker was spying

on their communication of k?

Solution 1:

Public-key encryption.

rt: forgery!” <

k 1< private key a
ciphertext public key aG
Tnetwork Vnetwork
ciphertext < public key aG
k

Solution
Public-k

r

\

signed |

\

signed |

\.
I

ptop know
nvork data
top?

1tion:
ation codes.

AS

K

7

ssage

sted network

ge

Important for Alice and Bob
to share the same secret k.

What if attacker was spying
on their communication of k7?7

Solution 1
Public-key encryption.

k 1< private key a
ciphertext public key aG
Tnetwork Vnetwork

ciphertext < public key aG

T

K

Solution 2:
Public-key signatu

m

i

Ve

sighed message

inetwork

sighed message

L

mé/

CS.

Important for Alice and Bob

to share the same secret k.

What if attacker was spying

on their communication of k?

Solution 1:

Public-key encryption.

k 1< private key a
ciphertext public key aG
Tnetwork Vnetwork
ciphertext < public key aG
k

Solution 2:
Public-key signatures.

m

L

sighed message

inetwork

sighed message

1

Important for Alice and Bob
to share the same secret k.

What if attacker was spying
on their communication of k7?7

Solution 1:

Public-key encryption.

k 1< private key a
ciphertext public key aG
Tnetwork Vnetwork

ciphertext < public key aG

T

K

Solution 2:
Public-key signatures.

m

i

sighed message

d

e

aG

inetwork

sighed message

lnetwork

aG

L

m

i

Important for Alice and Bob
to share the same secret k.

What if attacker was spying
on their communication of k7?7

Solution 1:

Public-key encryption.

k 1< private key a
ciphertext public key aG
Tnetwork Vnetwork

ciphertext < public key aG

T

K

Solution 2:
Public-key signatures.

m a
sighed message /aG

i network L network
sighed message aG

I

No more shared secret k

out Alice still has secret a.
Cryptography requires TCB
to protect secrecy of keys,
even if user has no other secrets.

1t for Alice and Bob
the same secret k.

attacker was spying
communication of k?

1:
ey encryption.

private key a

¢

Xt public key aG

twork v network

Xt < public key aG

Solution 2:
Public-key signatures.

m

d

L

sighed message

aG

inetwork

lnetwork

sighed message

aG

1

No more shared secret

k

but Alice still has secret a.

Cryptography requires TCB

to protect secrecy of

keys,

even If user has no other secrets.

Constan

Large pc¢
optimizea
addresse

Considel
Instructi
parallel «
store-to-
branch ¢

e and Bob
secret k.

vas spying
“ation of k7?7

on.

private key a

i

oublic key aG

v network

oublic key aG

Solution 2:
Public-key signatures.

m

i

sighed message

d

e

aG

inetwork

sighed message

lnetwork

aG

L

m

i

No more shared secret k
but Alice still has secret a.

Cryptography requires TCB

to protect secrecy of keys,

even 1If user has no other secrets.

Constant-time sof

Large portion of C
optimizations dep
addresses of memc

Consider data cacl
Instruction caching
parallel cache ban
store-to-load forw:
branch prediction,

-work

aG

Solution 2:
Public-key signatures.

m

d

L

sighed message

aG

inetwork

lnetwork

sighed message

aG

1

No more shared secret

k

but Alice still has secret a.

Cryptography requires TCB

to protect secrecy of

keys,

even If user has no other secrets.

Constant-time software

Large portion of CPU hardw
optimizations depending on
addresses of memory locatio

Consider data caching,
instruction caching,
parallel cache banks,
store-to-load forwarding,
branch prediction, etc.

Solution 2: Constant-time software

Public-key signatures. Large portion of CPU hardware:

m P optimizations depending on
i / L addresses of memory locations.
signed message aG Consider data caching,
inetwork lnetwork instruction caching,
signed message aG parallel cache banks,

i é/ store-to-load forwarding,
m

branch prediction, etc.

No more shared secret k

out Alice still has secret a.
Cryptography requires TCB
to protect secrecy of keys,
even if user has no other secrets.

Solution 2:
Public-key signatures.

m

d

sighed message

L

aG

inetwork

lnetwork

sighed message

aG

I

No more shared secret

k

but Alice still has secret a.

Cryptography requires TCB

to protect secrecy of

keys,

even 1If user has no other secrets.

Constant-time software

Large portion of CPU hardware:
optimizations depending on
addresses of memory locations.

Consider data caching,
Instruction caching,
parallel cache banks,
store-to-load forwarding,
branch prediction, etc.

Many attacks show that this
portion of the CPU has trouble
keeping secrets. e.g. RIDL: 2019

Schaik—Milburn—Osterlund—Frigo—
Maisuradze—Razavi—Bos—Giuffrida.

2:

ey signatures.

n

e

nessage

Lnetwork

nessage

"

d

aG

lnetwork

aG

» shared secret k

> still has secret a.

rraphy requires TCB

xct secrecy of keys,

iser has no other secrets.

Constant-time software

Large portion of CPU hardware:
optimizations depending on
addresses of memory locations.

Consider data caching,
instruction caching,
parallel cache banks,
store-to-load forwarding,
branch prediction, etc.

Many attacks show that this
portion of the CPU has trouble
keeping secrets. e.g. RIDL: 2019

Schaik—Milburn—Osterlund—Frigo—
Maisuradze—Razavi—Bos—Giuffrida.

Typical |

Underst:
But det:
not expc

Try to p
This bec

Tweak t
to try tc

res.

d

A

aG
lnetwork

aG
e

cret k

secret a.
juires TCB

y of keys,

) other secrets.

Constant-time software

Large portion of CPU hardware:
optimizations depending on
addresses of memory locations.

Consider data caching,
Instruction caching,
parallel cache banks,
store-to-load forwarding,
branch prediction, etc.

Many attacks show that this
portion of the CPU has trouble
keeping secrets. e.g. RIDL: 2019

Schaik—Milburn—Osterlund—Frigo—
Maisuradze—Razavi—Bos—Giuffrida.

Typical literature

Understand this p
But details are oft
not exposed to se

Try to push attacl
This becomes ven

Tweak the attacke
to try to stop the

work

“rets.

Constant-time software

Large portion of CPU hardware:
optimizations depending on
addresses of memory locations.

Consider data caching,
instruction caching,
parallel cache banks,
store-to-load forwarding,
branch prediction, etc.

Many attacks show that this
portion of the CPU has trouble
keeping secrets. e.g. RIDL: 2019

Schaik—Milburn—Osterlund—Frigo—
Maisuradze—Razavi—Bos—Giuffrida.

Typical literature on this toy

Understand this portion of (
But details are often proprie
not exposed to security revie

Try to push attacks further.
This becomes very complica

Tweak the attacked softwar:
to try to stop the known att

Constant-time software

Large portion of CPU hardware:
optimizations depending on
addresses of memory locations.

Consider data caching,
Instruction caching,
parallel cache banks,
store-to-load forwarding,
branch prediction, etc.

Many attacks show that this
portion of the CPU has trouble
keeping secrets. e.g. RIDL: 2019

Schaik—Milburn—Osterlund—Frigo—
Maisuradze—Razavi—Bos—Giuffrida.

10
Typical literature on this topic:

Understand this portion of CPU.
But details are often proprietary,
not exposed to security review.

Try to push attacks further.
This becomes very complicated.

Tweak the attacked software
to try to stop the known attacks.

Constant-time software

Large portion of CPU hardware:
optimizations depending on
addresses of memory locations.

Consider data caching,
Instruction caching,
parallel cache banks,
store-to-load forwarding,
branch prediction, etc.

Many attacks show that this
portion of the CPU has trouble
keeping secrets. e.g. RIDL: 2019

Schaik—Milburn—Osterlund—Frigo—
Maisuradze—Razavi—Bos—Giuffrida.

10
Typical literature on this topic:

Understand this portion of CPU.
But details are often proprietary,
not exposed to security review.

Try to push attacks further.
This becomes very complicated.

Tweak the attacked software
to try to stop the known attacks.

For researchers: This is great!

Constant-time software

Large portion of CPU hardware:
optimizations depending on
addresses of memory locations.

Consider data caching,
Instruction caching,
parallel cache banks,
store-to-load forwarding,
branch prediction, etc.

Many attacks show that this
portion of the CPU has trouble
keeping secrets. e.g. RIDL: 2019

Schaik—Milburn—Osterlund—Frigo—
Maisuradze—Razavi—Bos—Giuffrida.

10
Typical literature on this topic:

Understand this portion of CPU.
But details are often proprietary,
not exposed to security review.

Try to push attacks further.
This becomes very complicated.

Tweak the attacked software
to try to stop the known attacks.

For researchers: This is great!

For auditors: This is a nightmare.
Many years of security failures.
No confidence in future security.

t-time software

ortion of CPU hardware:
tions depending on
s of memory locations.

- data caching,
on caching,
~ache banks,
load forwarding,
rediction, etc.

tacks show that this

of the CPU has trouble
secrets. e.g. RIDL: 2019
VIiIburn—ésterIund—Frigo—

dze—Razavi—Bos—Giuffrida.

Typical literature on this topic:

Understand this portion of CPU.
But details are often proprietary,
not exposed to security review.

Try to push attacks further.
This becomes very complicated.

Tweak the attacked software
to try to stop the known attacks.

For researchers: This is great!

For auditors: This is a nightmare.
Many years of security failures.
No confidence in future security.

10

The “co
Don't gi
to this
(1987 G

Obliviou
domain-

fware

PU hardware:
ending on
ory locations.

ning,

)
>

kS,
arding,
etc.

v that this
J has trouble
g. RIDL: 2019

sterlund—Frigo—

1—Bos—Giuffrida.

Typical literature on this topic:

Understand this portion of CPU.
But details are often proprietary,
not exposed to security review.

Try to push attacks further.
This becomes very complicated.

Tweak the attacked software
to try to stop the known attacks.

For researchers: This Is great!

For auditors: This is a nightmare.
Many years of security failures.
No confidence in future security.

10

The “constant-tin
Don't give any sec

to this portion of -
(1987 Goldreich, 1
Oblivious RAM: 2

domain-specific fo

‘are.

ble
2019
-r1go—
Iffrida.

Typical literature on this topic:

Understand this portion of CPU.
But details are often proprietary,
not exposed to security review.

Try to push attacks further.
This becomes very complicated.

Tweak the attacked software
to try to stop the known attacks.

For researchers: This is great!

For auditors: This is a nightmare.
Many years of security failures.
No confidence in future security.

10

The “constant-time” solutio
Don't give any secrets

to this portion of the CPU.
(1987 Goldreich, 1990 Ostrc
Oblivious RAM: 2004 Berns

domain-specific for better sy

Typical literature on this topic:

Understand this portion of CPU.
But details are often proprietary,
not exposed to security review.

Try to push attacks further.
This becomes very complicated.

Tweak the attacked software
to try to stop the known attacks.

For researchers: This is great!

For auditors: This is a nightmare.

Many years of security failures.
No confidence in future security.

10

The “constant-time” solution:
Don't give any secrets
to this portion of the CPU.

(1987 Goldreich, 1990 Ostrovsky:

Oblivious RAM: 2004 Bernstein:
domain-specific for better speed)

11

Typical literature on this topic:

Understand this portion of CPU.
But details are often proprietary,
not exposed to security review.

Try to push attacks further.
This becomes very complicated.

Tweak the attacked software
to try to stop the known attacks.

For researchers: This is great!

For auditors: This is a nightmare.
Many years of security failures.
No confidence in future security.

10

The “constant-time” solution:
Don't give any secrets
to this portion of the CPU.

(1987 Goldreich, 1990 Ostrovsky:

Oblivious RAM: 2004 Bernstein:
domain-specific for better speed)

TCB analysis:
of the CPU to be correct, but
it to keep secrets.

Need this portion

don't neec

Makes auditing much easier.

11

Typical literature on this topic:

Understand this portion of CPU.
But details are often proprietary,
not exposed to security review.

Try to push attacks further.
This becomes very complicated.

Tweak the attacked software
to try to stop the known attacks.

For researchers: This is great!

For auditors: This is a nightmare.

Many years of security failures.
No confidence in future security.

10

11
The “constant-time’ solution:

Don't give any secrets

to this portion of the CPU.
(1987 Goldreich, 1990 Ostrovsky:
Oblivious RAM; 2004 Bernstein:

domain-specific for better speed)

TCB analysis: Need this portion
of the CPU to be correct, but
don't need It to keep secrets.

Makes auditing much easier.

Good match for attitude and
experience of CPU designers: e.g.,
Intel issues errata for correctness
bugs, not for information leaks.

Iterature on this topic:

and this portion of CPU.
ils are often proprietary,
sed to security review.

ush attacks further.
omes very complicated.

he attacked software
 stop the known attacks.

archers: This Is great!

tors: This is a nightmare.

ars of security failures.
dence in future security.

10

The “constant-time” solution:
Don't give any secrets

to this portion of the CPU.
(1987 Goldreich, 1990 Ostrovsky:
Oblivious RAM; 2004 Bernstein:

domain-specific for better speed)

TCB analysis: Need this portion
of the CPU to be correct, but
don't need it to keep secrets.

Makes auditing much easier.

Good match for attitude and
experience of CPU designers: e.g.,
Intel issues errata for correctness
bugs, not for information leaks.

11

Case stu

Serious
Attacket
oreaking
oublic-ke

e.g., finc

on this topic:

ortion of CPU.
en proprietary,

—urity review.

s further.
 complicated.

d software
known attacks.

his Is great!

Is a nightmare.

urity failures.
uture security.

10

The “constant-time” solution:
Don't give any secrets

to this portion of the CPU.
(1987 Goldreich, 1990 Ostrovsky:
Oblivious RAM: 2004 Bernstein:

domain-specific for better speed)

TCB analysis: Need this portion
of the CPU to be correct, but
don't need It to keep secrets.

Makes auditing much easier.

Good match for attitude and
experience of CPU designers: e.g.,
Intel issues errata for correctness
bugs, not for information leaks.

11

Case study: Const

Serious risk within
Attacker has quan
oreaking today’s n

oublic-key crypto
e.g., finding a give

)IC:

PU.
tary,

ted.

(v

acks.

mare.

€s.
Irity.

10

to this portion
(1987 Goldreic

TCB analysis:
of the CPU to

The “constant-time” solution:
Don't give any secrets

of the CPU.
n, 1990 Ostrovsky:

Oblivious RAM; 2004 Bernstein:
domain-specific for better speed)

Need this portion

he correct, but

don't need it to keep secrets.
Makes auditing much easier.

Good match for attitude and
experience of CPU designers: e.g.,
Intel issues errata for correctness
bugs, not for information leaks.

11

Case study: Constant-time :

Serious risk within 10 years:
Attacker has quantum comg
oreaking today’'s most popul
oublic-key crypto (RSA and
e.g., finding a given aG).

11 12
The “constant-time” solution: Case study: Constant-time sorting

Don't give any secrets

to this portion of the CPU.
(1987 Goldreich, 1990 Ostrovsky:
Oblivious RAM; 2004 Bernstein:

domain-specific for better speed)

Serious risk within 10 years:
Attacker has quantum computer
oreaking today's most popular

oublic-key crypto (RSA and ECC;
e.g., finding a given aG).

TCB analysis: Need this portion
of the CPU to be correct, but
don't need It to keep secrets.

Makes auditing much easier.

Good match for attitude and
experience of CPU designers: e.g.,
Intel issues errata for correctness
bugs, not for information leaks.

The “constant-time” solution:
Don't give any secrets

to this portion of the CPU.
(1987 Goldreich, 1990 Ostrovsky:
Oblivious RAM: 2004 Bernstein:

domain-specific for better speed)

TCB analysis:

of the CPU to
don't neec

Need this portion

ne correct, but

it to keep secrets.

Makes auditing much easier.

Good match for attitude and
experience of CPU designers: e.g.,
Intel issues errata for correctness
bugs, not for information leaks.

11

12
Case study: Constant-time sorting

Serious risk within 10 years:
Attacker has quantum computer
oreaking today's most popular

oublic-key crypto (RSA and ECC;
e.g., finding a given aG).

2017: Hundreds of people
submit 69 complete proposals
to international competition for
post-quantum crypto standards.

The “constant-time” solution:
Don't give any secrets

to this portion of the CPU.
(1987 Goldreich, 1990 Ostrovsky:
Oblivious RAM: 2004 Bernstein:

domain-specific for better speed)

TCB analysis:

of the CPU to
don't neec

Need this portion

ne correct, but
it to keep secrets.

Makes auditing much easier.

Good match for attitude and
experience of CPU designers: e.g.,
Intel issues errata for correctness
bugs, not for information leaks.

11

12
Case study: Constant-time sorting

Serious risk within 10 years:
Attacker has quantum computer
oreaking today's most popular

oublic-key crypto (RSA and ECC;
e.g., finding a given aG).

2017: Hundreds of people
submit 69 complete proposals
to international competition for
post-quantum crypto standards.

Subroutine in some submissions:
sort array of secret integers.
e.g. sort 768 32-bit integers.

nstant-time” solution:

Ve any secrets
ortion of the CPU.

oldreich, 1990 Ostrovsky:
s RAM; 2004 Bernstein:
specific for better speed)

alysis: Need this portion

PU to be correct, but
ed It to keep secrets.

uditing much easier.

atch for attitude and

ce of CPU designers: e.g.,
les errata for correctness
t for information leaks.

11

12
Case study: Constant-time sorting

Serious risk within 10 years:
Attacker has quantum computer
oreaking today's most popular
oublic-key crypto (RSA and ECC;

e.g., finding a given aG).

2017: Hundreds of people
submit 69 complete proposals
to international competition for
post-quantum crypto standards.

Subroutine in some submissions:
sort array of secret integers.
e.g. sort 768 32-bit integers.

How to
without

e’ solution:
rets

the CPU.

990 Ostrovsky:
004 Bernstein:

r better speed)

ad this portion
correct, but
ep secrets.
uch easier.

'titude and

| designers: e.g.,
for correctness
mation leaks.

11

12
Case study: Constant-time sorting

Serious risk within 10 years:
Attacker has quantum computer
oreaking today's most popular
oublic-key crypto (RSA and ECC;

e.g., finding a given aG).

2017: Hundreds of people
submit 69 complete proposals
to international competition for
post-quantum crypto standards.

Subroutine in some submissions:
sort array of secret integers.
e.g. sort 768 32-bit integers.

How to sort secret
without any secret

VSKy:
tein:
eed)

tion
Ut

‘ness
ks.

11

12
Case study: Constant-time sorting

Serious risk within 10 years:
Attacker has quantum computer
oreaking today's most popular

oublic-key crypto (RSA and ECC;
e.g., finding a given aG).

2017: Hundreds of people
submit 69 complete proposals
to international competition for
post-quantum crypto standards.

Subroutine in some submissions:
sort array of secret integers.
e.g. sort 768 32-bit integers.

How to sort secret data
without any secret addresse:

Case study: Constant-time sorting

Serious risk within 10 years:
Attacker has quantum computer
oreaking today's most popular
oublic-key crypto (RSA and ECC;

e.g., finding a given aG).

2017: Hundreds of people
submit 69 complete proposals
to international competition for
post-quantum crypto standards.

Subroutine in some submissions:
sort array of secret integers.
e.g. sort 768 32-bit integers.

12

How to sort secret data
without any secret addresses?

13

Case study: Constant-time sorting

Serious risk within 10 years:
Attacker has quantum computer
oreaking today's most popular

oublic-key crypto (RSA and ECC;
e.g., finding a given aG).

2017: Hundreds of people
submit 69 complete proposals
to international competition for
post-quantum crypto standards.

Subroutine in some submissions:
sort array of secret integers.
e.g. sort 768 32-bit integers.

12

How to sort secret data
without any secret addresses?

Typical sorting algorithms—
merge sort, quicksort, etc.—
choose load/store addresses
based on secret data. Usually

also branch based on secret data.

13

Case study: Constant-time sorting

Serious risk within 10 years:
Attacker has quantum computer
oreaking today's most popular
oublic-key crypto (RSA and ECC;

e.g., finding a given aG).

2017: Hundreds of people
submit 69 complete proposals
to international competition for
post-quantum crypto standards.

Subroutine in some submissions:
sort array of secret integers.
e.g. sort 768 32-bit integers.

12

How to sort secret data
without any secret addresses?

Typical sorting algorithms—
merge sort, quicksort, etc.—
choose load/store addresses
based on secret data. Usually

also branch based on secret data.

One submission to competition:
"Radix sort Is used as

constant-time sorting algorithm.”

Some versions of radix sort
avold secret branches.

13

Case study: Constant-time sorting

Serious risk within 10 years:
Attacker has quantum computer
oreaking today's most popular

oublic-key crypto (RSA and ECC;
e.g., finding a given aG).

2017: Hundreds of people
submit 69 complete proposals
to international competition for
post-quantum crypto standards.

Subroutine in some submissions:
sort array of secret integers.
e.g. sort 768 32-bit integers.

12

How to sort secret data
without any secret addresses?

Typical sorting algorithms—
merge sort, quicksort, etc.—
choose load/store addresses
based on secret data. Usually

also branch based on secret data.

One submission to competition:
"Radix sort Is used as

constant-time sorting algorithm.”

Some versions of radix sort
avold secret branches.

But data addresses in radix sort
still depend on secrets.

13

12 13

dy: Constant-time sorting How to sort secret data Foundat
sk within 10 years without any secret addresses? a comp:
~has quantum computer Typical sorting algorithms— »
today’'s most popular merge sort, quicksort, etc.—
sy crypto (RSA and ECC; choose load/store addresses I
ling a given aG). based on secret data. Usually

also branch based on secret data.

undreds of people min{x,

)9 complete proposals One submission to competition:

\ational competition for "Radix sort Is used as Easy cor

intum crypto standards. constant-time sorting algorithm.” Warning
Some versions of radix sort compiler

ne in some submissions:

. avoid secret branches.
y of secret integers. Even ea:

768 32-bit integers. But data addresses in radix sort

still depend on secrets.

ant-time sorting

10 years:
tum computer

nost popular
(RSA and ECC;

n aG).

f people

e proposals
mpetition for
bto standards.

e submissions:
L Integers.
t integers.

12

How to sort secret data
without any secret addresses?

Typical sorting algorithms—
merge sort, quicksort, etc.—
choose load/store addresses
based on secret data. Usually

also branch based on secret data.

One submission to competition:
"Radix sort Is used as

constant-time sorting algorithm.”

Some versions of radix sort
avold secret branches.

But data addresses in radix sort
still depend on secrets.

13

Foundation of solt
a comparator sor

X

min{x, y} |

Easy constant-tim
Warning: C stand.
compiler to screw

Even easier exercis

sorting

yuter
ar

ECC:

s
for
rds.

ons:

12

How to sort secret data
without any secret addresses?

Typical sorting algorithms—
merge sort, quicksort, etc.—
choose load/store addresses
based on secret data. Usually

also branch based on secret data.

One submission to competition:
"Radix sort is used as
constant-time sorting algorithm.”
Some versions of radix sort

avoid secret branches.

But data addresses in radix sort
still depend on secrets.

13

Foundation of solution:
a comparator sorting 2 inte

X Y
min{x, y} max{x, y}

Easy constant-time exercise
Warning: C standard allows
compiler to screw this up.

Even easier exercise in asm.

How to sort secret data
without any secret addresses?

Typical sorting algorithms—
merge sort, quicksort, etc.—
choose load/store addresses
based on secret data. Usually

also branch based on secret data.

One submission to competition:
“Radix sort is used as
constant-time sorting algorithm.”
Some versions of radix sort

avoid secret branches.

But data addresses in radix sort
still depend on secrets.

13

Foundation of solution:
a comparator sorting 2 integers.

X Y
min{x, y} max{x, y}

Easy constant-time exercise in C.
Warning: C standard allows
compiler to screw this up.

Even easier exercise in asm.

14

sort secret data
any secret addresses?

sorting algorithms—
ort, quicksort, etc.—
oad /store addresses
1 secret data. Usually

1ch based on secret data.

mission to competition:
ort Is used as

-time sorting algorithm.”
rsions of radix sort

cret branches.

y addresses In radix sort
ond on secrets.

13

Foundation of solution:

a comparator sorting 2 integers.

X Y
min{x, y} max{x, y}

Easy constant-time exercise in C.

Warning: C standard allows
compiler to screw this up.

Even easier exercise in asm.

14

Combine
sorting

Example

- data
- addresses?

orithms—
ort, etc.—
addresses
ita. Usually

on secret data.

 competition:
1 as

ing algorithm.”
adix sort

hes.

s In radix sort
rets.

13

Foundation of solution:

a comparator sorting 2 integers.

X Y
min{x, y} max{x, y}

Easy constant-time exercise in C.

Warning: C standard allows
compiler to screw this up.

Even easier exercise in asm.

14

Combine compara
sorting network f

Example of a sorti

® @
o—
®
o—
® @

data.

lon:

hm.

sort

13

Foundation of solution:

a comparator sorting 2 integers.

X Y
min{x, y} max{x, y}

Easy constant-time exercise in C.

Warning: C standard allows
compiler to screw this up.

Even easier exercise in asm.

14

Combine comparators into 2
sorting network for more ir

Example of a sorting networ

Foundation of solution:
a comparator sorting 2 integers.

X Y
min{x, y} max{x, y}

Easy constant-time exercise in C.
Warning: C standard allows
compiler to screw this up.

Even easier exercise in asm.

14

Combine comparators into a
sorting network for more inputs.

Example of a sorting network:

15

lon of solution:
arator sorting 2 integers.

Y

v} max{x, y }

1stant-time exercise in C.
- C standard allows
to screw this up.

sler exercise In asm.

14

Combine comparators into a
sorting network for more inputs.

Example of a sorting network:

15

Position:
In a sort
indepenc
Naturall

ition:
ting 2 Integers.

y

max{x, y}

e exercise in C.
ard allows
this up.

e 1IN asm.

14

Combine comparators into a
sorting network for more inputs.

Example of a sorting network:

15

Positions of comp.
In a sorting netwo
independent of the
Naturally constant

gers.

in C.

14

Combine comparators into a
sorting network for more inputs.

Example of a sorting network:

15

Positions of comparators
In a sorting network are
independent of the input.
Naturally constant-time.

Combine comparators into a
sorting network for more inputs.

Example of a sorting network:

15

Positions of comparators
In a sorting network are
independent of the input.
Naturally constant-time.

16

Combine comparators into a
sorting network for more inputs.

Example of a sorting network:

15

Positions of comparators
In a sorting network are
independent of the input.
Naturally constant-time.

But (n?> — n)/2 comparators
broduce complaints about

berformance as n increases.

16

Combine comparators into a

sorting network for more inputs.

Example of a sorting network:

15

Positions of comparators
In a sorting network are
independent of the input.
Naturally constant-time.

But (n?> — n)/2 comparators
broduce complaints about

berformance as n increases.

Speed is a serious issue in the
post-quantum competition.
“Cost’’ Is evaluation criterion:
“we'd like to stress this once
again on the forum that we'd
really like to see more platform-

optimized implementations’; etc.

16

> comparators Iinto a

network for more inputs.

 of a sorting network:

15

Positions of comparators
In a sorting network are
independent of the input.
Naturally constant-time.

But (n?> — n)/2 comparators
broduce complaints about

verformance as n increases.

Speed is a serious issue in the
post-quantum competition.
“Cost’ Is evaluation criterion:
"we'd like to stress this once
again on the forum that we'd
really like to see more platform-

optimized implementations’”; etc.

16

volid 1in
{ int64
if (n

t =1
while
for (;
for

1:

for

f

tors Into a

or more inputs.

ng network:
—9

® @
— 9

15

Positions of comparators
In a sorting network are
independent of the input.
Naturally constant-time.

But (n?> — n)/2 comparators
broduce complaints about

berformance as n increases.

Speed is a serious issue in the
post-quantum competition.
“Cost’’ Is evaluation criterion:
"we'd like to stress this once
again on the forum that we'd
really like to see more platform-

optimized implementations’; etc.

16

void int32 sort(

{ int64 t,p,q,i;

if (n < 2) ret
t = 1;

while (t < n -
for (p = t;p >
for (1 = 0;1
if (11 &
minmax (X
for (q = t;q
for (i = 0O

if (1 (1

minmax

\puUts.

15

Positions of comparators
In a sorting network are
independent of the input.
Naturally constant-time.

But (n?> — n)/2 comparators
broduce complaints about

verformance as n increases.

Speed is a serious issue in the
post-quantum competition.
“Cost’’ Is evaluation criterion:
"we'd like to stress this once
again on the forum that we'd
really like to see more platform-

optimized implementations’”; etc.

16

void int32_sort(int32 *x,
{ int64 t,p,q,1i;
if (n < 2) return;
t = 1;
while (t < n - t) t +=
for (p = t;p > 0;p >>=
for (i = 0;i < n - p;
if (M1 & p))
minmax (x+i,x+i+p)
for (q = t;q > p;q >>
for (1 = 0;1 < n -
if (M(i & p))

minmax (x+i+p,x+

Positions of comparators
In a sorting network are
independent of the input.
Naturally constant-time.

But (n?> — n)/2 comparators
broduce complaints about

berformance as n increases.

Speed is a serious issue in the
post-quantum competition.
“Cost’’ Is evaluation criterion:
"we'd like to stress this once
again on the forum that we'd
really like to see more platform-

optimized implementations’; etc.

16

17
void int32_sort(int32 *x,int64 n)

{ int64 t,p,q,i;
if (n < 2) return;
t = 1;
while (t < n - t) t += t;
for (p = t;p > O;p >>= 1) {
for (i = 0;i < n - p;++i)
if (11 & p))
minmax (x+i,x+i+p);
for (q = t;q > p;q >>= 1)
for (i = 0;1i < n - q;++i)
if (M1 & p))

minmax (x+i+p,x+i+q) ;

s of comparators
ing network are
lent of the input.
y constant-time.

— n)/2 comparators
complaints about
INCe as N INcreases.

“a serious Issue In the
intum competition.

s evaluation criterion:
e to stress this once
 the forum that we'd

e to see more platform-

d implementations” ; etc.

16

17
void int32_sort(int32 *x,int64 n)

{ int64 t,p,q,i;
if (n < 2) return;
t = 1;
while (t < n - t) t += t;
for (p = t;p > O;p >>= 1) {
for (i = 0;i < n - p;++i)
if ('(1 & p))
minmax (x+i,x+i+p) ;
for (q = t;q > p;q >>= 1)
for (i = 0;1i < n - q;++i)
if (M(i & p))

minmax (x+i+p,x+i+q) ;

Previous
1973 Kn
which is
1968 Ba
sorting r

%n(logz
Much fa

Warning
of Batct
require |
Also, W
network:
handling

arators
rk are
> Input.

—time.

mparators
s about
INCreases.

Issue In the
1petition.

N criterion;

s this once

n that we'd
ore platform-

antations’ ; etc.

16

17

void int32_sort(int32 *x,int64 n)
{ int64 t,p,q,i;

if (n < 2) return;
t = 1;
while (t < n - t) t += t;
for (p = t;p > O;p >>= 1) {
for (i = 0;i < n - p;++i)
if (M4 & p))
minmax (x+i,x+i+p);
for (q = t;q > p;q >>= 1)
for (i = 0;1i < n - q;++i)
if (M1 & p))

minmax (x+i+p,x+i+q) ;

Previous slide: C 1
1973 Knuth "mer;
which i1s a simplifi
1968 Batcher “od
sorting networks.

~n(log, n)?/4 con
Much faster than

Warning: many ot
of Batcher's sortin
require n to be a |
Also, Wikipedia sz
networks ... arer

handling arbitraril

1€

m-

- etc.

16

17
void int32_sort(int32 *x,int64 n)

{ int64 t,p,q,1i;
if (n < 2) return;
t = 1;
while (t < n - t) t += t;
for (p = t;p > O;p >>= 1) {
for (i = 0;i < n - p;++i)
if (M1 & p))
minmax (x+i,x+i+p);
for (q = t;q > p;q >>= 1)
for (i = 0;1i < n - q;++i)
if (M(1i & p))

minmax (x+i+p,x+i+q);

Previous slide: C translation
1973 Knuth “merge exchang
which is a simplified version

1968 Batcher “odd-even me
sorting networks.

~n(log, n)?/4 comparators.
Much faster than bubble sor

Warning: many other descri
of Batcher's sorting network
require n to be a power of 2
Also, Wikipedia says “Sortir
networks ... are not capabl
handling arbitrarily large inp

17
void int32_sort(int32 *x,int64 n)

{ int64 t,p,q,i;
if (n < 2) return;
t = 1;
while (t < n - t) t += t;
for (p = t;p > O;p >>= 1) {
for (i = 0;i < n - p;++i)
if (V4 & p))
minmax (x+i,x+i+p);
for (q = t;q > p;q >>= 1)
for (i = 0;1i < n - q;++i)
if (M1 & p))

minmax (x+i+p,x+i+q) ;

Previous slide: C translation of
1973 Knuth “merge exchange”,
which is a simplified version of

1968 Batcher “odd-even merge”
sorting networks.

~n(log, n)?/4 comparators.
Much faster than bubble sort.

Warning: many other descriptions
of Batcher's sorting networks
require n to be a power of 2.
Also, Wikipedia says “Sorting
networks ... are not capable of
handling arbitrarily large inputs.”

18

17

t32_sort(int32 *x,int64 n)

t,p,q,1;

< 2) return;

(t <n-1t) t +=t;
0 = t;p > O0;p >>= 1) {
(i = 0;i <n - p;++i)
f ('(i & p))

minmax (x+i,x+i+p);

(@ = t;q > p;q >>= 1)
or (i = 0;1i < n - q;++i)
if (M(1 & p))

minmax (x+i+p,x+i+q);

Previous slide: C translation of
1973 Knuth “"merge exchange”,
which is a simplified version of

1968 Batcher “odd-even merge”
sorting networks.

~n(log, n)?/4 comparators.
Much faster than bubble sort.

Warning: many other descriptions
of Batcher's sorting networks
require n to be a power of 2.
Also, Wikipedia says “Sorting
networks ... are not capable of
handling arbitrarily large inputs.”

18

This co

Cons

Berns
La
"NTRU

consit

17

int32 *x,int64 n)

urn;
t) t += t;
O;p >>= 1) {

< n - p;++i)
p))
+i,x+i+p) ;

> p;q >>= 1)
;i < n - q;++i)
& p))

(x+it+p,x+i+q);

Previous slide: C translation of
1973 Knuth “merge exchange”,
which is a simplified version of

1968 Batcher “odd-even merge”
sorting networks.

~n(log, n)?/4 comparators.
Much faster than bubble sort.

Warning: many other descriptions
of Batcher's sorting networks
require n to be a power of 2.
Also, Wikipedia says “Sorting
networks ... are not capable of

handling arbitrarily large inputs.”

18

This constant-tin

\

(

Y

Constant-time
included |
Bernstein—Chue

Lange—van V
"NTRU Prime” s

r

v
New: dj
constant-time

17
int64 n)

Previous slide: C translation of
1973 Knuth “merge exchange”,
which is a simplified version of

1968 Batcher “odd-even merge”
sorting networks.

~n(log, n)?/4 comparators.
Much faster than bubble sort.

Warning: many other descriptions
of Batcher's sorting networks
require n to be a power of 2.
Also, Wikipedia says “Sorting
networks ... are not capable of
handling arbitrarily large inputs.”

18

This constant-time sorting

vectorizati
(for Haswe

Y

Constant-time sorting co
included in 2017
Bernstein—Chuengsatianst
Lange—van Vredendaal
"NTRU Prime” software re

revamped
higher spe

Y
New: djbsort

constant-time sorting co

Previous slide: C translation of
1973 Knuth “merge exchange”,
which is a simplified version of

1968 Batcher “odd-even merge”
sorting networks.

~n(log, n)?/4 comparators.
Much faster than bubble sort.

Warning: many other descriptions
of Batcher's sorting networks
require n to be a power of 2.
Also, Wikipedia says “Sorting
networks ... are not capable of
handling arbitrarily large inputs.”

18

This constant-time sorting code

vectorization
(for Haswell)

Y

Constant-time sorting code
included in 2017
Bernstein—Chuengsatiansup—
Lange—van Vredendaal
"NTRU Prime” software release

revamped for
higher speed

Y
New: djbsort

constant-time sorting code

19

slide: C translation of
uth “merge exchange”,
a simplified version of

tcher “odd-even merge”
1etworks.

n)?/4 comparators.
ster than bubble sort.

: many other descriptions
ler's sorting networks

1 to be a power of 2.
kipedia says “Sorting

5 ... are not capable of
arbitrarily large inputs.”

18

This constant-time sorting code

Y

vectorization
(for Haswell)

Constant-time sorting code

included

Bernstein—Chuengsatiansup—

in 2017

Lange—van Vredendaal

"NTRU Prime" software release

Y

revamped for
higher speed

constant-time

New: djbsort

sorting code

19

T he slov

How mu
by refusi
quicksor

Cycles o
to sort r

20948 s
22812 h
17748 k
16930 i
12672 s

‘ranslation of
re exchange',
od version of

d-even merge”

1parators.
bubble sort.

her descriptions
g networks
yower of 2.

ys “Sorting

ot capable of

/ large inputs.”

18

This constant-time sorting code

vectorization
(for Haswell)

Y

Constant-time sorting code
included in 2017
Bernstein—Chuengsatiansup—
Lange—van Vredendaal
"NTRU Prime” software release

revamped for
higher speed

Y
New: djbsort

constant-time sorting code

19

The slowdown for

How much speed
by refusing to use
quicksort, radix so

Cycles on Intel Ha
to sort n = 768 32

26948 stdsort (v
22812 herf (varia
17748 krasnov (v
16980 ipp 2019.!
12672 s1d1607 (v

This constant-time sorting code

vectorization
(for Haswell)

Y

Constant-time sorting code

included in 2017

Bernstein—Chuengsatiansup—
Lange—van Vredendaal
"NTRU Prime” software release

revamped for
higher speed

Y

constant-time sorting code

New: djbsort

The slowdown for constant

How much speed did we los
by refusing to use variable-ti
quicksort, radix sort, etc.?

Cycles on Intel Haswell CPL
to sort n = 768 32-bit integ

26948 stdsort (variable-tin
22812 herf (variable-time)
17748 krasnov (variable-tir
16980 ipp 2019.5 (variable
12672 s1d1607 (variable-tir

19 20

This constant-time sorting code The slowdown for constant time

vectorization How much speed did we lose

(for Haswell) by refusing to use variable-time
Y quicksort, radix sort, etc.?
Constant-time sorting code
included in 2017 Cycles on Intel Haswell CPU core
Bernstein—Chuengsatiansup— to sort n = 768 32-bit integers:
Lange-van Vredendaal 26948 stdsort (variable-time)
"NTRU Prime" software release 29812 herf (variable—time)
revamped for 17748 krasnov (variable-time)
higher speed 16980 ipp 2019.5 (variable—time)
. 12672 s1d1607 (variable-time)

New: djbsort
constant-time sorting code

19 20

This constant-time sorting code The slowdown for constant time

vectorization How much speed did we lose

(for Haswell) by refusing to use variable-time
Y quicksort, radix sort, etc.?
Constant-time sorting code
included in 2017 Cycles on Intel Haswell CPU core
Bernstein—Chuengsatiansup— to sort n = 768 32-bit integers:
Lange-van Vredendaal 26948 stdsort (variable-time)
"NTRU Prime" software release 29812 herf (variable—time)
revamped for 17748 krasnov (variable-time)
higher speed 16980 ipp 2019.5 (variable—time)
. 12672 s1d1607 (variable-time)

New: djbsort

_ | 5964 djbsort (constant-time)
constant-time sorting code

19 20

This constant-time sorting code The slowdown for constant time

vectorization How much speed did we lose

(for Haswell) by refusing to use variable-time
—Y _ quicksort, radix sort, etc.?
Constant-time sorting code
included in 2017 Cycles on Intel Haswell CPU core
Bernstein—Chuengsatiansup— to sort n = 768 32-bit integers:
Lange-van Vredendaal 26948 stdsort (variable-time)
NTRU Prime” software release 22812 herf (variable-time)
revamped for 17748 krasnov (variable-time)
higher speed 16980 ipp 2019.5 (variable-time)
. 12672 s1d1607 (variable-time)

New: djbsort

_ | 5964 djbsort (constant-time)
constant-time sorting code

No slowdown. New speed records!

19 20

nstant-time sorting code The slowdown for constant time How car
vectorization How much speed did we lose beat sta
(for Haswell) by refusing to use variable-time
- —Y _ quicksort, radix sort, etc.?
tant-time sorting code
included in 2017 Cycles on Intel Haswell CPU core
tein—Chuengsatiansup— to sort n = 768 32-bit integers:
nge-van Vredendaal 26948 stdsort (variable-time)
Prime” software release 22812 herf (variable-time)
revamped for 17748 krasnov (variable-time)
higher speed 16980 ipp 2019.5 (variable-time)
! 12672 s1d1607 (variable-time)

New: djbsort

_ | 5964 djbsort (constant-time)
ant-time sorting code

No slowdown. New speed records!

, 19 20
e sorting code The slowdown for constant time How can an n(log

beat standard nlo

‘ectorization How much speed did we lose

for Haswell) by refusing to use variable-time

quicksort, radix sort, etc.?

sorting code

n 2017 Cycles on Intel Haswell CPU core
ngsatiansup— to sort n = 768 32-bit integers:
redendaal 26948 stdsort (variable-time)
oftware release 22812 herf (variable-time)
evamped for 17748 krasnov (variable-time)

vigher speed 16980 ipp 2019.5 (variable-time)
12672 sid1607 (variable-time)
5964 djbsort (constant-time)

bsort
sorting code

No slowdown. New speed records!

, 19 20
code The slowdown for constant time How can an n(log n)? algori
N How much speed did we lose beat standard nlog n algorit
1) by refusing to use variable-time
y quicksort, radix sort, etc.?
e
Cycles on Intel Haswell CPU core
Ip— to sort n = 768 32-bit integers:
26948 stdsort (variable-time)
ease 22812 herf (variable-time)
cor 17748 krasnov (variable-time)
ed 16980 ipp 2019.5 (variable-time)
— 12672 sid1607 (variable-time)
:I 5964 djbsort (constant-time)
e
- No slowdown. New speed records!

The slowdown for constant time

How much speed did we lose
by refusing to use variable-time
quicksort, radix sort, etc.?

Cycles on Intel Haswell CPU core
to sort n = 768 32-bit integers:

26948 stdsort (variable-time)

22812 herf (variable-time)

17748 krasnov (variable-time)
16980 ipp 2019.5 (variable-time)
12672 sid1607 (variable-time)
5964 djbsort (constant-time)

No slowdown. New speed records!

20

How can an n(log n)? algorithm
beat standard nlog n algorithms?

21

20 21
The slowdown for constant time How can an n(log n)? algorithm

' ?
How much speed did we lose beat standard nlog n algorithms:

by refusing to use variable-time Answer: well-known trends
quicksort, radix sort, etc.? in CPU design, reflecting

fundamental hardware costs
Cycles on Intel Haswell CPU core

L of various operations.
to sort n = 7638 32-bit integers: P

26948 stdsort (variable-time)

22812 herf (variable-time)

17748 krasnov (variable-time)
16980 ipp 2019.5 (variable-time)
12672 sid1607 (variable-time)
5964 djbsort (constant-time)

No slowdown. New speed records!

20 21
The slowdown for constant time How can an n(log n)? algorithm

' ?
How much speed did we lose beat standard nlog n algorithms:

by refusing to use variable-time Answer: well-known trends
quicksort, radix sort, etc.? in CPU design, reflecting

fundamental hardware costs

Cycles on Intel Haswell CPU core . |
L OT various operations.
to sort n = 7638 32-bit integers: P

26948 stdsort (variable-time) Every cycle, Haswell core can do

22812 herf (variable-time)

17748 krasnov (variable-time)
16980 ipp 2019.5 (variable-time)
12672 sid1607 (variable-time)
5964 djbsort (constant-time)

8 “min” ops on 32-bit integers +
8 “max’ ops on 32-bit integers.

No slowdown. New speed records!

The slowdown for constant time

How much speed did we lose
by refusing to use variable-time
quicksort, radix sort, etc.?

Cycles on Intel Haswell CPU core
to sort n = 768 32-bit integers:

26948 stdsort (variable-time)

22812 herf (variable-time)

17748 krasnov (variable-time)
16980 ipp 2019.5 (variable-time)
12672 sid1607 (variable-time)
5964 djbsort (constant-time)

No slowdown. New speed records!

20

21
How can an n(log n)? algorithm

beat standard nlog n algorithms?

Answer: well-known trends
in CPU design, reflecting
fundamental hardware costs
of various operations.

Every cycle, Haswell core can do

8 “min” ops on 32-bit integers +
8 “max’ ops on 32-bit integers.

Loading a 32-bit integer from a
random address: much slower.

Conditional branch: much slower.

vdown for constant time

ch speed did we lose
ng to use variable-time
t, radix sort, etc.?

n Intel Haswell CPU core
1 = 768 32-bit Integers:

tdsort (variable-time)
erf (variable-time)
rasnov (variable-time)
pp 2019.5 (variable-time)
1id1607 (variable-time)
jbsort (constant-time)

down. New speed records!

20

How can an n(log n)? algorithm
beat standard nlog n algorithms?

Answer: well-known trends
in CPU design, reflecting
fundamental hardware costs
of various operations.

Every cycle, Haswell core can do

8 “min” ops on 32-bit integers +
8 “max’ ops on 32-bit integers.

Loading a 32-bit integer from a
random address: much slower.

Conditional branch: much slower.

21

Verificat

Sorting
Does it

Test the
random
decreasi

constant time

did we lose
variable-time
rt, etc.?

swell CPU core
-bit Integers:

ariable-time)
ble-time)
ariable-time)

> (variable-time)
ariable-time)

onstant-time)

n speed records!

20

How can an n(log n)? algorithm
beat standard nlog n algorithms?

Answer: well-known trends
in CPU design, reflecting
fundamental hardware costs
of various operations.

Every cycle, Haswell core can do

8 “min” ops on 32-bit integers +
8 “max’ ops on 32-bit integers.

Loading a 32-bit integer from a
random address: much slower.

Conditional branch: much slower.

21

Verification

Sorting software s
Does it work corre

Test the sorting sc
random inputs, inc

decreasing inputs.

| core
ors:

ne)

e—time)
ne)

cords!

20

How can an n(log n)? algorithm
beat standard nlog n algorithms?

Answer: well-known trends
in CPU design, reflecting
fundamental hardware costs
of various operations.

Every cycle, Haswell core can do

8 “min” ops on 32-bit integers +
8 “max’ ops on 32-bit integers.

Loading a 32-bit integer from a
random address: much slower.

Conditional branch: much slower.

21

Verification

Sorting software is in the T(
Does it work correctly?

Test the sorting software on
random Inputs, Increasing In
decreasing inputs. Seems to

How can an n(log n)? algorithm
beat standard nlog n algorithms?

Answer: well-known trends
in CPU design, reflecting
fundamental hardware costs
of various operations.

Every cycle, Haswell core can do

8 “min” ops on 32-bit integers +
8 “max’ ops on 32-bit integers.

Loading a 32-bit integer from a
random address: much slower.

Conditional branch: much slower.

21

22
Verification

Sorting software is in the TCB.
Does it work correctly?

Test the sorting software on many
random inputs, increasing inputs,
decreasing inputs. Seems to work.

How can an n(log n)? algorithm
beat standard nlog n algorithms?

Answer: well-known trends
in CPU design, reflecting
fundamental hardware costs
of various operations.

Every cycle, Haswell core can do

8 “min” ops on 32-bit integers +
8 “max’ ops on 32-bit integers.

Loading a 32-bit integer from a
random address: much slower.

Conditional branch: much slower.

21

Verification

Sorting software is in the TCB.
Does it work correctly?

Test the sorting software on many
random inputs, increasing inputs,
decreasing inputs. Seems to work.

But are there occasional inputs
where this sorting software
fails to sort correctly?

History: Many security problems
iInvolve occasional inputs
where TCB works incorrectly.

22

v an n(log n)? algorithm
ndard nlog n algorithms?

well-known trends
design, reflecting
ntal hardware costs
IS operations.

cle, Haswell core can do

ops on 32-bit integers +
ops on 32-bit integers.

a 32-bit integer from a
address: much slower.

nal branch: much slower.

21

9.
Verification

Sorting software is in the TCB.
Does it work correctly?

Test the sorting software on many
random inputs, increasing inputs,
decreasing inputs. Seems to work.

But are there occasional inputs
where this sorting software
fails to sort correctly?

History: Many security problems
involve occasional inputs
where TCB works incorrectly.

For eackh

fully

unrollec

yes,

n)? algorithm
o n algorithms?

/n trends
lecting
vare costs

ns.

ell core can do

-bit Integers +
2-bit Integers.

nteger from a
nuch slower.

1: much slower.

21

22
Verification

Sorting software is in the TCB.
Does it work correctly?

Test the sorting software on many
random inputs, increasing inputs,
decreasing inputs. Seems to work.

But are there occasional inputs
where this sorting software
fails to sort correctly?

History: Many security problems
Involve occasional inputs
where TCB works incorrectly.

For each used n (¢

C code

norm

Y .
machine cod

symb
Y .
fully unrolled c

new |

Y

unrolled min-max

NEW ¢
Y

yes, code wor

n do

ars +
ers.

N 4

er.

lower.

21

9.
Verification

Sorting software is in the TCB.
Does it work correctly?

Test the sorting software on many
random inputs, increasing inputs,

decreasing inputs. Seems to work.

But are there occasional inputs
where this sorting software
fails to sort correctly?

History: Many security problems
involve occasional inputs
where TCB works incorrectly.

For each used n (e.g., 768):

C code

normal compile
Y

machine code

symbolic execu
Y

fully unrolled code

new peephole ¢

Y

unrolled min-max code

new sorting ver
Y

yes, code works

Verification

Sorting software is in the TCB.
Does it work correctly?

Test the sorting software on many
random inputs, increasing inputs,

decreasing inputs. Seems to work.

But are there occasional inputs
where this sorting software
fails to sort correctly?

History: Many security problems
Involve occasional inputs
where TCB works incorrectly.

22

23
For each used n (e.g., 768):

C code

normal compiler
Y

machine code

symbolic execution
Y

fully unrolled code

new peephole optimizer

Y

unrolled min-max code

new sorting verifier
Y

yes, code works

on

software i1s in the TCB.
work correctly?

sorting software on many
Inputs, Increasing inputs,
g inputs. Seems to work.

there occasional inputs
s sorting software
ort correctly?

Many security problems
yccasional inputs
CB works incorrectly.

22

For each used n (e.g., 768):

C code

normal compiler

Y
machine code

symbolic execution
Y

fully unrolled code

Y

unrolled min-max code

new sorting verifier
Y

yes, code works

23

new peephole optimizer

Symboli
use exist
with sev
eliminat;

a few m

1in the TCB.
ctly?

ftware on many
“reasing Inputs,
Seems to work.

1sional inputs
software
tly?

urity problems
Inputs
iIncorrectly.

22

For each used n (e.g., 768):

C code

normal compiler
Y

machine code

symbolic execution
Y

fully unrolled code

Y

unrolled min-max code

new sorting verifier
Y

yes, code works

23

new peephole optimizer

Symbolic executio
use existing angr.
with several tiny n
eliminating byte s
a few missing vect

many
puts,
-work.

Uts

lems

22

For each used n (e.g., 768):

C code

normal compiler
Y

machine code

symbolic execution
Y

fully unrolled code

Y

unrolled min-max code

new sorting verifier
Y

yes, code works

23

new peephole optimizer

Symbolic execution:

use existing angr.io toolkit
with several tiny new patche
eliminating byte splitting, ac
a few missing vector instruc

23

For each used n (e.g., 768):

C code

Y

normal compiler

machine code

Y

symbolic execution

fully unrolled code

Y

new peephole optimizer

unrolled min-max code

Y

new sorting verifier

yes, code works

24
Symbolic execution:

use existing angr.io toolkit,

with several tiny new patches for
eliminating byte splitting, adding
a few missing vector instructions.

23
For each used n (e.g., 768): Symbolic execution:

use existing angr.io toolkit,

C code

with several tiny new patches for
normal compiler eliminating byte splitting, adding

V
machine code a few missing vector instructions.
symbolic execution Peephole optimizer:
Y

recognize Instruction patterns
fully unrolled code

equivalent to min, max.

new peephole optimizer
Y

unrolled min-max code

new sorting verifier
Y

yes, code works

23
For each used n (e.g., 768):

C code

normal compiler
Y

machine code

symbolic execution
Y

fully unrolled code

new peephole optimizer

Y

unrolled min-max code

new sorting verifier
Y

yes, code works

24
Symbolic execution:

use existing angr.io toolkit,

with several tiny new patches for
eliminating byte splitting, adding
a few missing vector instructions.

Peephole optimizer:
recognize Instruction patterns

equivalent to min, max.

Sorting verifier: decompose
DAG into merging networks.
Verity each merging network
using generalization of 2007

Even—Levi—Litman, correction of
1990 Chung—Ravikumar.

23
 used n (e.g., 768):

C code

normal compiler
Y

chine code

symbolic execution
Y

unrolled code

new peephole optimizer

Y
| min-max code

new sorting verifier
Y

code works

Symbolic execution:

use existing angr.io toolkit,
with several tiny new patches for
eliminating byte splitting, adding
a few missing vector instructions.

Peephole optimizer:
recognize instruction patterns
equivalent to min, max.

Sorting verifier: decompose
DAG into merging networks.
Verify each merging network
using generalization of 2007
Even—Levi—-Litman, correction of

1990 Chung—Ravikumar.

24

Current
(verified
verified |
fast uin

sorting

Includes
automat
simple b
verificati

Web site
use the

Next rel
verified .

23

.g., 7168):

al compiler

a
-

olic execution

de

byeephole optimizer

code

orting verifier

KS

Symbolic execution:

use existing angr.io toolkit,
with several tiny new patches for
eliminating byte splitting, adding
a few missing vector instructions.

Peephole optimizer:
recognize Instruction patterns

equivalent to min, max.

Sorting verifier: decompose
DAG into merging networks.
Verify each merging network
using generalization of 2007
Even—Levi—Litman, correction of

1990 Chung—Ravikumar.

24

Current djbsort

(verified fast int3
verified portable i
fast uint32, fast

sorting.cr.yp."

Includes the sortin
automatic build-ti
simple benchmark
verification tools.

Web site shows hc
use the verificatiot

Next release plann
verified ARM NEC

23

Lion

ptimizer

ifler

Symbolic execution:

use existing angr.io toolkit,
with several tiny new patches for
eliminating byte splitting, adding
a few missing vector instructions.

Peephole optimizer:
recognize Instruction patterns
equivalent to min, max.

Sorting verifier: decompose
DAG into merging networks.
Verify each merging network
using generalization of 2007
Even—Levi—-Litman, correction of

1990 Chung—Ravikumar.

24

Current djbsort release
(verified fast int32 on AVX
verified portable int32,
fast uint32, fast float32):

sorting.cr.yp.to

Includes the sorting code;
automatic build-time tests:
simple benchmarking progra
verification tools.

Web site shows how to
use the verification tools.

Next release planned:
verified ARM NEON code.

Symbolic execution:

use existing angr.io toolkit,
with several tiny new patches for
eliminating byte splitting, adding

a few missing vector instructions.

Peephole optimizer:
recognize Instruction patterns

equivalent to min, max.

Sorting verifier: decompose
DAG into merging networks.
Verify each merging network
using generalization of 2007
Even—Levi—Litman, correction of

1990 Chung—Ravikumar.

24

25
Current djbsort release

(verified fast int32 on AVX2,
verified portable int32,
fast uint32, fast £loat32):

sorting.cr.yp.to

Includes the sorting code;
automatic build-time tests:
simple benchmarking program:;
verification tools.

Web site shows how to
use the verification tools.

Next release planned:
verified ARM NEON code.

