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Constant-time software

Large portion of CPU hardware:

optimizations depending on
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Schaik–Milburn–Österlund–Frigo–

Maisuradze–Razavi–Bos–Giuffrida.

10

Typical literature on this topic:

Understand this portion of CPU.

But details are often proprietary,

not exposed to security review.

Try to push attacks further.

This becomes very complicated.

Tweak the attacked software

to try to stop the known attacks.

For researchers: This is great!



9

Constant-time software

Large portion of CPU hardware:

optimizations depending on

addresses of memory locations.

Consider data caching,

instruction caching,

parallel cache banks,

store-to-load forwarding,

branch prediction, etc.

Many attacks show that this

portion of the CPU has trouble

keeping secrets. e.g. RIDL: 2019

Schaik–Milburn–Österlund–Frigo–
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