Introduction to symmetric crypto

D. J. Bernstein

How HTTPS protects connection:

e Public-key encryption system
encrypts one secret message:
a random 256-bit session key.

e Public-key signature system
stops NSAITM attacks.

e [Fast authenticated cipher
uses the 256-bit session key
to protect further messages.
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Some cipher history

1973, and again in 1974:
U.S. National Bureau of
Standards solicits proposals

for a Data Encryption Standard.

1975: NBS publishes IBM DES
proposal. 64-bit block, 56-bit key.

1976: NSA meets Diffie and
Hellman to discuss criticism.
Claims “somewhere over
$400,000,000" to break a DES
key; “l don't think you can tell
any Congressman what's going to
be secure 25 years from now.”


https://web.archive.org/web/20170420171412/www.toad.com/des-stanford-meeting.html
https://web.archive.org/web/20170420171412/www.toad.com/des-stanford-meeting.html
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1977: DES is standardized.

1977: Dithie and Hellman
publish detailed design of
$20,000,000 machine to break
hundreds of DES keys per year.

1978: Congressional investigation

iInto NSA influence concludes
“NSA convinced IBM that a
reduced key size was sufficient” .

1983, 1988, 1993: Government
reaffirms DES standard.

Researchers publish new cipher
proposals and security analysis.
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1997: U.S. National Institute
of Standards and Technology
(NIST, formerly NBS) calls
for proposals for Advanced
Encryption Standard. 128-bit
block, 128/192/256-bit key.

1998: 15 AES proposals.

1998: EFF builds “Deep Crack”
for under $250000 to break
hundreds of DES keys per year.

1999: NIST selects five
AES finalists: MARS, RC6,

Rijndael, Serpent, Twofish.
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2000: NIST, advised by NSA,
selects Rijndael as AES.

“Security was the most important
factor in the evaluation”—Really?

"Rijndael appears to offer an
adequate security margin. ...
Serpent appears to offer a
high security margin.”

2004—-2008: eSTREAM
competition for stream ciphers.
2007-2012: SHA-3 competition.
2013-2019: CAESAR competition.
2019—now: NISTLWC competition.
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Main operations in AES:
add round key to block;
apply substitution box

254 in F256

X — X
to each byte in block;

linearly mix bits across block.

Extensive security analysis.
Even in a post-quantum world,
no serious threats to AES-256
in a strong security model,
“multi-target SPRP security” .

So why isn't AES-256 the end
of the symmetric-crypto story?



Google Security Blog

The latest news and insights from Google on security and safety
on the Internet

Speeding up and strengthening
HTTPS connections for Chrome on

Android
April 24, 2014

Posted by Elie Bursztein, Anti-Abuse Research Lead

Earlier this year, we deployed a new TLS cipher suite in
Chrome that operates three times faster than AES-

GCM on devices that dont have AES hardware



acceleration, including most Android phones,
wearable devices such as Google Glass and older
computers. This improves user experience, reducing
latency and saving battery life by cutting down the

amount of time spent encrypting and decrypting data.

To make this happen, Adam Langley, Wan-Teh Chang,
Ben Laurie and | began implementing new algorithms
- ChaCha 20 for symmetric encryption and Poly1305
for authentication - in OpenSSL and NSS in March
2013. It was a complex effort that required
implementing a new abstraction layer in OpenSSL in
order to support the Authenticated Encryption with
Associated Data (AEAD) encryption mode properly.
AEAD enables encryption and authentication to
happen concurrently, making it easier to use and
optimize than older, commonly-used modes such as
CBC. Moreover, recent attacks against RC4 and CBC

also prompted us to make this change.

The benefits of this new cipher suite include:



Date: 2018-08-06 22:32:51
Message-ID: 20180806223300.11389
[Download message RAW]

From: Eric Biggers <ebiggers@google.co
Hi all,
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Google Security Blog

The latest news and insights from Google on security and safety
on the Internet

Introducing Adiantum: Encryption for

the Next Billion Users
February 7, 2019

Posted by Paul Crowley and Eric Biggers, Android Security &

Privacy Team

Storage encryption protects your data if your phone
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HiesystLeirr aesigri.

Where AES is used, the conventional solution for disk
encryption is to use the XTS or CBC-ESSIV modes of
operation, which are length-preserving. Currently
Android supports AES-128-CBC-ESSIV for full-disk
encryption and AES-256-XTS for file-based encryption.
However, when AES performance is insufficient there
is no widely accepted alternative that has sufficient

performance on lower-end ARM processors.

To solve this problem, we have designed a new
encryption mode called Adiantum. Adiantum allows
us to use the ChaCha stream cipher in a length-
preserving mode, by adapting ideas from AES-based
proposals for length-preserving encryption such as
HCTR and HCH. On ARM Cortex-A7, Adiantum
encryption and decryption on 4096-byte sectors is
about 10.6 cycles per byte, around 5x faster than

AES-256-XTS.
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AES performance seems limited
in both hardware and software
oy small 128-bit block size,

neavy S-box design strategy.

AES software ecosystem is
complicated and dangerous.
Fast software implementations

of AES S-box often leak
secrets through timing.

Picture is worse for high-security
authenticated ciphers. 128-bit
block size limits “PRF" security.
Workarounds are hard to audit.

13



ChaCha creates safe systems
with much less work than AES.
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ChaCha creates safe systems
with much less work than AES.

More examples of how symmetric
primitives have been improving

speed, simplicity, security:
PRESENT is better than DES.

Skinny is better than
Simon and Speck.

Keccak, BLAKE2, Ascon
are better than MD5, SHA-O,
SHA-1, SHA-256, SHA-512.
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Authentication detalls

Standardize a prime p = 1000003.

Assume sender knows independent

uniform random secrets
rneq{0,1,..., 9999991},
rned{0,1,..., 999999},

rs €{0,1,...,999999},
s1 € {0,1,...,999999},

s100 € {0, 1,...,999999}.
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Assume receiver knows the same

secrets r1,n,...,r5,S81,-...,5100-

Later: Sender wants to send
100 messages my, ..., Mmoo,
each m, having 5 components

mn,L mn,27 mn,31 mn,47 mn,5

with m, ; € {0, 1, ...,999999}.

Sender transmits 30-digit
Mnp1,Mnp2,Mnp3, Mp4, Mphy
together with an authenticator
(mp1r + -+ mpsrs mod p)
s, mod 1000000

and the message number n.
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e.g. nn = 314159, rn = 265353,
r3 = 979323, rp, = 846264,

rs = 338327, sj0 = 950288,
m1o = 000006 000007 000000 000000 000000-
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e.g. nn = 314159, rn = 265353,
r3 = 979323, rp, = 846264,

rs = 338327, sj0 = 950288,
m1o = 000006 000007 000000 000000 000000

Sender computes authenticator
(6r1 + 7r» mod p)

+ s190 mod 1000000 =
(6 - 314159 + 7 - 265358

mod 1000003)

+ 950288 mod 1000000 =
742451 4+ 950288 mod 1000000 =
6927309.

Sender transmits
10 000006 000007 000000 000000 000000 692739.
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A MAC using fewer secrets

Instead of choosing independent

r,rn,..., s,s1,...,5100,
choose r, s1, 5, ..., 5100.
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A MAC using fewer secrets

Instead of choosing independent

r,rn,..., s,s1,...,5100,
choose r, s1, 5, ..., 5100.

Sender transmits 30-digit

Mp 1, Mp 2, Mp3, Mp4, MpHy

together with an authenticator

(mp1r+---+ mps5r° mod p)
+ s, mod 1000000

and the message number n.

i.e.: take r; = r' in previous
(mp1n +---+ mpsrs mod p)
s, mod 1000000.




e.g. r = 314159, s;9 = 265358,
m1o = 000006 000007 000000 000000 000000:
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m1o = 000006 000007 000000 000000 000000:

Sender computes authenticator
(6r 4+ 7r> mod p)

+ s10 mod 1000000 =
(6 - 314159 + 7 - 3141597

mod 1000003)

+ 265358 mod 1000000 =
953311 4 265358 mod 1000000 =
2186609.



19
e.g. r = 314159, s;9 = 265358,

m1o = 000006 000007 000000 000000 000000:

Sender computes authenticator
(6r 4+ 7r> mod p)

+ s10 mod 1000000 =
(6 - 314159 + 7 - 3141597

mod 1000003)

+ 265358 mod 1000000 =
953311 4 265358 mod 1000000 =
2186609.

Sender transmits
authenticated message

10000006 000007 000000 000000 000000 218669.



Security analysis

Attacker’s goal:

Find ', m’, 3’ such that

m' # m_ but 3’ =

(m'(r) mod p) + s,y mod 1000000.
Here m'(x) = 3_. m'[i]x".
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Security analysis

Attacker’s goal:

Find ', m’, 3’ such that

m' # m_ but 3’ =

(m'(r) mod p) + s,y mod 1000000.
Here m'(x) = 3_. m'[i]x".

Obvious attack:
Choose any m' # mj.

Choose uniform random a’.
Success chance 1/1000000.

Can repeat attack.
Each forgery has chance

1/1000000 of being accepted.



More subtle attack:

Choose m' # my so that

the polynomial m'(x) — my(x)
has 5 distinct roots

x € {0,1,...,999999}
modulo p. Choose &’ = a.
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Choose m' # my so that

the polynomial m'(x) — my(x)
has 5 distinct roots

x € {0,1,...,999999}
modulo p. Choose &’ = a.

e.g. m = (100,0,0,0,0),

m' = (125,1,0,0,1):

m'(x) — m1(x) = x> + x? + 25x
which has five roots mod p:

0,299012, 334447, 631403, 735144.

Success chance 5/1000000.
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Actually, success chance
can be above 5/1000000.
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Actually, success chance

can be above 5/1000000.

Example: If m1(334885) mod p
€ {1000000, 1000001, 1000002}
then a forgery (1, m’, a1) with
m'(x) = mi(x) + x> + x° + 25x
also succeeds for r = 334885;
success chance 6/1000000.
Reason: 334885 is a root of
m’(x) — m1(x) + 1000000.
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Actually, success chance

can be above 5/1000000.

Example: If m1(334885) mod p
€ {1000000, 1000001, 1000002}
then a forgery (1, m’, a1) with
m'(x) = mi(x) + x> + x° + 25x
also succeeds for r = 334885;
success chance 6/1000000.
Reason: 334885 is a root of
m’(x) — m1(x) + 1000000.

Can have as many as 15 roots
of (m'(x) — m1(x)) -

(m'(x) — mq(x) + 1000000) -
(m'(x) — m1(x) — 1000000).
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Underlying fact: < 15 roots
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Do better by varying a'?

No. Easy to prove: Every choice
of (n', m', a") with m' #£ m_,

has chance < 15/1000000

of being accepted by receiver.

Underlying fact: < 15 roots
of (m'(x) — mi(x)—a + a1) -

(m'(x) — m1(x) — a' + a1 + 10°) -
(m'(x) — mi(x) — & + a1 — 10°).

Warning: very easy to break
the oversimplified authenticator
(mn[l] + -+ mn[5]l’4 mod p)
s, mod 1000000:

solve m'(x) — mi(x) = a' — a1.
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Scaled up for serious security:

Poly1305 uses 128-bit r's,
with 22 bits cleared for speed.
Adds s, mod 2128
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Scaled up for serious security:

Poly1305 uses 128-bit r's,

with 22 bits cleared for speed.
Adds s, mod 2128

Assuming < [-byte messages:
Each forgery succeeds for

< 8|L/16] choices of r.
Probability < 8 [L/167 /219

D torgeries are all rejected
with probability
>1—8D[L/16] /2100

e.g. 294 forgeries, L = 1536:
Prlall rejected] > 0.9999999998.



Authenticator is still secure
for variable-length messages,
if different messages are
different polynomials mod p.
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Authenticator is

still secure

for variable-length messages,

if different messages are

different polynomials mod p.

Split string into
maybe with sma
append 1 to eac

16-byte chunks,
ller final chunk:

n chunk;

view as little-endian integers
in {1,2,3,...,2199},
Multiply flrst chunk by r,

add next chunk,

etc., last chunk,

mod 2130 — 5 add S, mod 2128

multiply by r,

multiply by r,
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