Quantum attacks
against isogenies

Daniel J. Bernstein

1994 Shor discrete-log algorithm:
Input prime p; g € F%; h € gz.

Define ¢ : Z X Z — F}, by
¢(a, b) = g?h®. Fast function.

If h=g> and g has order N
then Kerop = Z(N,0) + Z(s, —1).

Shor computes ¢ on quantum
superposition of many (a, b);
deduces Ker ¢; deduces s in Z/N.

Shor also generalizes

from F7 to other finite groups
with fast computations.

e.g. Fg for prime power g;
E(Fg) for elliptic curve E/F,.

Quantum attacks Shor also generalizes

against isogenies from F; to other finite groups
. . with fast computations.

Daniel J. Bernstein -p

e.g. Fg for prime power g;

E(Fg) for elliptic curve E/F,.

1994 Shor discrete-log algorithm:
1995 Boneh—Lipton:

. . % . VA
Input prime p; g € Fp; h € g%, Find “hidden” lattice L C Z",
Define ¢ : Z x Z — F}; by given fast function ¢ : Z" — X
¢(a, b) = g?h®. Fast function. that induces 2" /L — X.

If h=g> and g has order N
then Kerop = Z(N,0) + Z(s, —1).

Shor computes ¢ on quantum
superposition of many (a, b);
deduces Ker ¢; deduces s in Z/N.

Quantum attacks
against isogenies

Daniel J. Bernstein

1994 Shor discrete-log algorithm:
Input prime p; g € F%; h € gz.

Define ¢ : Z X Z — F}, by
¢(a, b) = g?h®. Fast function.

If h=g> and g has order N
then Kerop = Z(N,0) + Z(s, —1).

Shor computes ¢ on quantum
superposition of many (a, b);
deduces Ker ¢; deduces s in Z/N.

Shor also generalizes

from F7 to other finite groups
with fast computations.

e.g. Fg for prime power g;
E(Fg) for elliptic curve E/F,.

1995 Boneh—Lipton:
Find “hidden” lattice L C Z"

given fast function ¢ : Z" — X
that induces Z" /L — X.

Non-commutative generalizations:
e.g. find hidden subgroup H C §,,
given fast function ¢ : 5, — X
that induces S,/H — X7

Some progress, some obstacles.

n attacks
sogenies

. Bernstein

or discrete-log algorithm:
ime p; g € Fj; h & gt

L x Z — F} by
— g?hP. Fast function.

> and g has order N
rp=2Z(N,0) + Z(s, —1).

nputes ¢ on quantum
sition of many (a, b);
Ker ¢; deduces s in Z/N.

Shor also generalizes

from F7 to other finite groups
with fast computations.

e.g. Fg for prime power g;
E(Fg) for elliptic curve E/F,.

1995 Boneh—Lipton:
Find “hidden” lattice L C Z"

given fast function ¢ : Z" — X
that induces Z" /L — X.

Non-commutative generalizations:
e.g. find hidden subgroup H C §,,

given fast function ¢ : 5, — X
that induces S,/H — X7
Some progress, some obstacles.

T he hid

Given N
fo: Z/N
fi(a) =

Goal: Fi

-log algorithm:
-F5, he gt
N Fl"; by

ast function.

s order N
,0) + Z(s, —1).

On quantum
\any (a, b);
duces s in Z/N.

Shor also generalizes

from F7 to other finite groups
with fast computations.

e.g. Fg for prime power g;
E(Fg) for elliptic curve E/F,.

1995 Boneh—Lipton:
Find “hidden” lattice L C Z"

given fast function ¢ : Z" — X
that induces Z" /L — X.

Non-commutative generalizations:
e.g. find hidden subgroup H C §,,

given fast function ¢ : 5, — X
that induces S,/H — X7
Some progress, some obstacles.

The hidden-shift

Given Ne Z, N >
f()) Z//V —> X; fl
fi(a) = fo(a+ s)

Goal: Find s € Z/

ithm:

Shor also generalizes

from F7 to other finite groups
with fast computations.

e.g. Fg for prime power g;
E(Fg) for elliptic curve E/F,.

1995 Boneh—Lipton:
Find “hidden” lattice L C Z"

given fast function ¢ : Z" — X
that induces Z" /L — X.

Non-commutative generalizations:
e.g. find hidden subgroup H C §,,

given fast function ¢ : 5, — X
that induces S,/H — X7
Some progress, some obstacles.

The hidden-shift problem

Given N e Z, N > 0;
fo:Z/N— X; fi : Z/N —
fi(a) = fop(a+s) for all a €

Goal: Findse Z/N.

Shor also generalizes

from F7 to other finite groups
with fast computations.

e.g. Fg for prime power g;
E(Fg) for elliptic curve E/F,.

1995 Boneh—Lipton:
Find “hidden” lattice L C Z"

given fast function ¢ : Z" — X
that induces Z" /L — X.

Non-commutative generalizations:
e.g. find hidden subgroup H C §,,
given fast function ¢ : 5, — X
that induces S,/H — X7

Some progress, some obstacles.

The hidden-shift problem

Given N e Z, N > 0;
fo: Z/N— X; AL : Z/N — X;
fi(a) =fo(a+s) forallac Z/N.

Goal: Findse Z/N.

Shor also generalizes The hidden-shift problem

) .
from F}, to other finite groups Given N e Z, N > 0;

fo:Z/N — X; f1:Z/N — X,
fi(a) =fo(a+s) forallac Z/N.

with fast computations.
e.g. Fg for prime power g;
E(Fg) for elliptic curve E/F,.

| Goal: Findse Z/N.
1995 Boneh—Lipton:

Find “hidden” lattice L C Z", Dihedral group Dy = Z/N x Z/2:
given fast function ¢ : Z" — X (a, b)(c, d) = (a+(1)va b+ d).
that induces Z" /L — X.

Non-commutative generalizations:
e.g. find hidden subgroup H C §,,
given fast function ¢ : 5, — X
that induces S,/H — X7

Some progress, some obstacles.

Shor also generalizes

from F7 to other finite groups
with fast computations.

e.g. Fg for prime power g;
E(Fg) for elliptic curve E/F,.

1995 Boneh—Lipton:
Find “hidden” lattice L C Z"

given fast function ¢ : Z" — X
that induces Z" /L — X.

Non-commutative generalizations:
e.g. find hidden subgroup H C §,,

given fast function ¢ : 5, — X
that induces S,/H — X7
Some progress, some obstacles.

The hidden-shift problem

Given N e Z, N > 0;
fo: Z/N— X; AL : Z/N — X;
fi(a) =fo(a+s) forallac Z/N.

Goal: Findse Z/N.

Dihedral group Dy = Z/N x Z/2:
(a, b)(c,d) = (a+ (—1)°c, b+ d).
Define ¢ : Dy — X by

@(a, i) = fi(a). Then ¢ hides
subgroup {(0,0), (s, 1)} of Dy.

Shor also generalizes

from F7 to other finite groups
with fast computations.

e.g. Fg for prime power g;
E(Fg) for elliptic curve E/F,.

1995 Boneh—Lipton:
Find “hidden” lattice L C Z"

given fast function ¢ : Z" — X
that induces Z" /L — X.

Non-commutative generalizations:
e.g. find hidden subgroup H C §,,

given fast function ¢ : 5, — X
that induces S,/H — X7
Some progress, some obstacles.

The hidden-shift problem

Given N e Z, N > 0;
fo: Z/N— X; AL : Z/N — X;
fi(a) =fo(a+s) forallac Z/N.

Goal: Findse Z/N.

Dihedral group Dy = Z/N x Z/2:
(a, b)(c,d) = (a+(—1)Pc, b+ d).

Define ¢ : Dy — X by
@(a, i) = fi(a). Then ¢ hides
subgroup {(0,0), (s, 1)} of Dy.

These are the only “Shor-hard”
hidden subgroups of Dy.

0 generalizes

to other finite groups
t computations.

‘or prime power g;

or elliptic curve E/Fg.

neh—Lipton:

dden” lattice L C Z",
st function ¢ : Z" — X
uces Z" /L — X.

1mutative generalizations:
hidden subgroup H C §,,

st function ¢ 1 5, = X
uces Sp/H — X7
ogress, some obstacles.

The hidden-shift problem

Given N e Z, N > 0;
fo: Z/N— X; f1: Z/N — X;
fi(a) = fo(a+s) forallac Z/N.

Goal: Findse Z/N.

Dihedral group Dy = Z/N x Z/2:
(a, b)(c,d) = (a+ (—1)Pc, b+ d).

Define ¢ : Dy — X by
@(a, i) = fi(a). Then ¢ hides
subgroup {(0,0), (s,1)} of Dy.

These are the only “Shor-hard”
hidden subgroups of Dyy.

1998 Et
Solve hi
O(log N
huge -

7€es
Inite groups
tions.

ower g;
curve E/Fg.

n:
ice L CZ"
@ LT — X
— X,

generalizations:
bgroup H C 5,

VS, = X
[— X7

me obstacles.

The hidden-shift problem

Given N e Z, N > 0;
fo:Z/N — X; f1:Z/N — X,
fi(a) = fo(a+s) forallac Z/N.

Goal: Findse Z/N.

Dihedral group Dy = Z/N x Z/2:
(a, b)(c,d) = (a+ (—1)Pc, b+ d).

Define ¢ : Dy — X by
@(a, i) = fi(a). Then ¢ hides
subgroup {(0,0), (s, 1)} of Dy.

These are the only “Shor-hard”
hidden subgroups of Dy.

1998 Ettinger—Hg
Solve hidden-shift
O(log N) quantunr

huge ¢p-independe

n
’

> X

'tions:
g Sn,

- X

les.

The hidden-shift problem

Given N e Z, N > 0;
fo:Z/N— X; f1:Z/N — X,
fi(a) = fo(a+s) forallac Z/N.

Goal: Findse Z/N.

Dihedral group Dy = Z/N x Z/2:
(a, b)(c,d) = (a+ (—1)Pc, b+ d).

Define ¢ : Dy — X by
@(a, i) = fi(a). Then ¢ hides
subgroup {(0,0), (s,1)} of Dy.

These are the only “Shor-hard”
hidden subgroups of Dyy.

1998 Ettinger—Hgyer:
Solve hidden-shift problem

O(log N) quantum ¢ evalua
huge p-independent comput

The hidden-shift problem

Given N e Z, N > 0;
fo:Z/N — X; f1:Z/N — X,
fi(a) = fo(a+s) forallac Z/N.

Goal: Findse Z/N.

Dihedral group Dy = Z/N x Z/2:
(a, b)(c,d) = (a+ (—1)Pc, b+ d).
Define ¢ : Dy — X by

@(a, i) = fi(a). Then ¢ hides
subgroup {(0,0), (s, 1)} of Dy.

These are the only “Shor-hard”
hidden subgroups of Dy.

1998 Ettinger—Hgyer:
Solve hidden-shift problem using

O(log N) quantum ¢ evaluations,
huge p-independent computation.

The hidden-shift problem

Given N e Z, N > 0;
fo:Z/N — X; f1:Z/N — X,
fi(a) = fo(a+s) forallac Z/N.

Goal: Findse Z/N.

Dihedral group Dy = Z/N x Z/2:
(a, b)(c,d) = (a+ (—1)Pc, b+ d).
Define ¢ : Dy — X by

@(a, i) = fi(a). Then ¢ hides
subgroup {(0,0), (s, 1)} of Dy.

These are the only “Shor-hard”
hidden subgroups of Dy.

1998 Ettinger—Hgyer:
Solve hidden-shift problem using

O(log N) quantum ¢ evaluations,
huge p-independent computation.

(1999-2004 Ettinger—Hgyer—Knill:
Similarly few evaluations for
hidden subgroups of any group.)

The hidden-shift problem

Given N e Z, N > 0;
fo:Z/N — X; f1:Z/N — X,
fi(a) = fo(a+s) forallac Z/N.

Goal: Findse Z/N.

Dihedral group Dy = Z/N x Z/2:
(a, b)(c,d) = (a+ (—1)°c, b+ d).

Define ¢ : Dy — X by
@(a, i) = fi(a). Then ¢ hides
subgroup {(0,0), (s, 1)} of Dy.

These are the only “Shor-hard”
hidden subgroups of Dy.

1998 Ettinger—Hgyer:

So
O(

ve hidden-shift problem using

og N) quantum ¢ evaluations,

huge p-independent computation.

(1999-2004 Ettinger—Hgyer—Knill:
Similarly few evaluations for

hidden subgroups of any group.)

2003 Kuperberg:
Solve hidden-shift problem using

more quantum ¢ evaluations,

less p-Independent computation.

The hidden-shift problem

Given N e Z, N > 0;
fo:Z/N — X; f1:Z/N — X,
fi(a) = fo(a+s) forallac Z/N.

Goal: Findse Z/N.

Dihedral group Dy = Z/N x Z/2:
(a, b)(c,d) = (a+ (—1)°c, b+ d).

Define ¢ : Dy — X by
@(a, i) = fi(a). Then ¢ hides
subgroup {(0,0), (s, 1)} of Dy.

These are the only “Shor-hard”
hidden subgroups of Dy.

1998 Ettinger—Hgyer:

So
O(

ve hidden-shift problem using

og N) quantum ¢ evaluations,

huge p-independent computation.

(1999-2004 Ettinger—Hgyer—Knill:
Similarly few evaluations for

hidden subgroups of any group.)

2003 Kuperberg:
Solve hidden-shift problem using

more quantum ¢ evaluations,

less p-Independent computation.

2004 Regev, 2011 Kuperberg:
More tradeoffs, better tradeoftfs.

len-shift problem 1998 Ettinger—Hgyer: Attackin
cZ N>O0 Zo ve P;\l/dden—shlft problerln usllng CRS/CS
X Z/N S X h (log) juant:m ©p eva uatlo-ns, s froe
fo(a n 5) for all 3 & Z/N. uge E-independent computation. on a3 set

(1999-2004 Ettinger—Hgyer—Knill:
Similarly few evaluations for
group Dy = Z/N x Z/2: hidden subgroups of any group.)
d) = (a+(—1)°c, b+ d).

ndseZ/N.

2003 Kuperberg:

) Dy — X by Solve hidden-shift problem using
- fi(a). Then ¢ hides more quantum ¢ evaluations,
0 {(0,0),(s,1)} of Dy. less p-independent computation.
e the only “Shor-hard” 2004 Regev, 2011 Kuperberg:

ubgroups of Dy. More tradeoffs, better tradeoffs.

roblem

- 0;
- Z/N — X;
orallae Z/N.

N.

v =Z/N x Z/2:
(=1)Pc, b+ d).

X by
1en @ hides
:S, 1)} of D/\/.

r “Shor-hard”
of DN-

1998 Ettinger—Hgyer:
Solve hidden-shift problem using

O(log N) quantum ¢ evaluations,
huge p-independent computation.

(1999-2004 Ettinger—Hgyer—Knill:
Similarly few evaluations for
hidden subgroups of any group.)

2003 Kuperberg:

Solve hidden-shift problem using
more quantum ¢ evaluations,
less p-Independent computation.

2004 Regev, 2011 Kuperberg:
More tradeoffs, better tradeoftfs.

Attacking isogenie

CRS/CSIDH: Clas

acts freely and tra
on a set X of cun

1998 Ettinger—Hgyer:

So
O(

huge p-independent computation.

(1999-2004 Ettinger—Hgyer—Knill:

ve hidden-shift problem using

og N) quantum ¢ evaluations,

Similarly few evaluations for

hidden subgroups of any group.)

2003 Kuperberg:
Solve hidden-shift problem using

more quantum ¢ evaluations,

less p-Independent computation.

2004 Regev, 2011 Kuperberg:
More tradeoffs, better tradeoffs.

Attacking isogenies

CRS/CSIDH: Class group G
acts freely and transitively

on a set X of curves over F,

1998 Ettinger—Hgyer: Attacking isogenies

Solve hidden-shift problem using CRS/CSIDH: Class group G

acts freely and transitively

O(log N) quantum ¢ evaluations,

huge p-independent computation.
B¢ ¥ P P on a set X of curves over Fp.

(1999-2004 Ettinger—Hgyer—Knill:
Similarly few evaluations for
hidden subgroups of any group.)

2003 Kuperberg:

Solve hidden-shift problem using
more quantum ¢ evaluations,
less p-Independent computation.

2004 Regev, 2011 Kuperberg:
More tradeoffs, better tradeoftfs.

1998 Ettinger—Hgyer:
Solve hidden-shift problem using

O(log N) quantum ¢ evaluations,
huge p-independent computation.

(1999-2004 Ettinger—Hgyer—Knill:

Similarly few evaluations for
hidden subgroups of any group.)

2003 Kuperberg:

Solve hidden-shift problem using
more quantum ¢ evaluations,
less p-Independent computation.

2004 Regev, 2011 Kuperberg:
More tradeoffs, better tradeoftfs.

Attacking isogenies

CRS/CSIDH: Class group G

acts freely and transitively
on a set X of curves over Fp.

Usually G 22 Z/N with N ~ p'/2.

1998 Ettinger—Hgyer:
Solve hidden-shift problem using

O(log N) quantum ¢ evaluations,
huge p-independent computation.

(1999-2004 Ettinger—Hgyer—Knill:

Similarly few evaluations for
hidden subgroups of any group.)

2003 Kuperberg:

Solve hidden-shift problem using
more quantum ¢ evaluations,
less p-Independent computation.

2004 Regev, 2011 Kuperberg:
More tradeoffs, better tradeoftfs.

Attacking isogenies

CRS/CSIDH: Class group G

acts freely and transitively
on a set X of curves over Fp.

Usually G 22 Z/N with N ~ p'/2.
Compute N by Shor's algorithm.

1998 Ettinger—Hgyer:
Solve hidden-shift problem using

O(log N) quantum ¢ evaluations,
huge p-independent computation.

(1999-2004 Ettinger—Hgyer—Knill:

Similarly few evaluations for
hidden subgroups of any group.)

2003 Kuperberg:

Solve hidden-shift problem using
more quantum ¢ evaluations,
less p-Independent computation.

2004 Regev, 2011 Kuperberg:
More tradeoffs, better tradeoftfs.

Attacking isogenies

CRS/CSIDH: Class group G

acts freely and transitively
on a set X of curves over Fp.

Usually G 22 Z/N with N ~ p'/2.
Compute N by Shor's algorithm.
Find ideal I with G = [I]%.

1998 Ettinger—Hgyer:
Solve hidden-shift problem using

O(log N) quantum ¢ evaluations,
huge p-independent computation.

(1999-2004 Ettinger—Hgyer—Knill:

Similarly few evaluations for
hidden subgroups of any group.)

2003 Kuperberg:

Solve hidden-shift problem using
more quantum ¢ evaluations,
less p-Independent computation.

2004 Regev, 2011 Kuperberg:
More tradeoffs, better tradeoftfs.

Attacking isogenies

CRS/CSIDH: Class group G

acts freely and transitively
on a set X of curves over Fp.

Usually G 22 Z/N with N ~ p'/2.
Compute N by Shor's algorithm.
Find ideal I with G = [I]%.

Given Eq, E1 € X: define
f() : Z//V — X DY a :I:aEO;
fl : Z//V — X DYy a :I:aEl.

1998 Ettinger—Hgyer:
Solve hidden-shift problem using

O(log N) quantum ¢ evaluations,
huge p-independent computation.

(1999-2004 Ettinger—Hgyer—Knill:

Similarly few evaluations for
hidden subgroups of any group.)

2003 Kuperberg:

Solve hidden-shift problem using
more quantum ¢ evaluations,
less p-Independent computation.

2004 Regev, 2011 Kuperberg:
More tradeoffs, better tradeoftfs.

Attacking isogenies

CRS/CSIDH: Class group G

acts freely and transitively
on a set X of curves over Fp.

Usually G 22 Z/N with N ~ p'/2.
Compute N by Shor's algorithm.
Find ideal I with G = [I]%.

Given Eq, E1 € X: define
f() : Z//V — X DY a :I:aEO;
fl : Z//V — X DYy a :I:aEl.

E1 = [I]°Eqg for some s € Z/N.

1998 Ettinger—Hgyer:
Solve hidden-shift problem using

O(log N) quantum ¢ evaluations,
huge p-independent computation.

(1999-2004 Ettinger—Hgyer—Knill:

Similarly few evaluations for
hidden subgroups of any group.)

2003 Kuperberg:

Solve hidden-shift problem using
more quantum ¢ evaluations,
less p-Independent computation.

2004 Regev, 2011 Kuperberg:
More tradeoffs, better tradeoftfs.

Attacking isogenies

CRS/CSIDH: Class group G

acts freely and transitively
on a set X of curves over Fp.

Usually G 22 Z/N with N ~ p'/2.
Compute N by Shor's algorithm.
Find ideal I with G = [I]%.

Given Eq, E1 € X: define
f() : Z//V — X DY a :I:aEO;
fl : Z//V — X DYy a :I:aEl.

E1 = [I]°Eqg for some s € Z/N.
fi(a) = fo(a+s) forallac Z/N.

1998 Ettinger—Hgyer:
Solve hidden-shift problem using

O(log N) quantum ¢ evaluations,
huge p-independent computation.

(1999-2004 Ettinger—Hgyer—Knill:

Similarly few evaluations for
hidden subgroups of any group.)

2003 Kuperberg:

Solve hidden-shift problem using
more quantum ¢ evaluations,
less p-Independent computation.

2004 Regev, 2011 Kuperberg:
More tradeoffs, better tradeoftfs.

Attacking isogenies

CRS/CSIDH: Class group G
acts freely and transitively

on a set X of curves over Fp.

Usually G 22 Z/N with N ~ p'/2.
Compute N by Shor's algorithm.
Find ideal I with G = [I]%.

Given Eq, E1 € X: define
f() : Z//V — X DY a :I:aEO;
fl : Z//V — X DYy a :I:aEl.

E1 = [I]°Eqg for some s € Z/N.
fi(a) = fop(a+s) forallac Z/N.
Find the hidden shift s in fy, f1.

Linger—Hgyer:
dden-shift problem using

) quantum ¢ evaluations,
ndependent computation.

004 Ettinger—Hgyer—Knill:

 few evaluations for
ubgroups of any group.)

perberg:

dden-shift problem using
antum ¢ evaluations,
dependent computation.

gev, 2011 Kuperberg:
ydeoffs, better tradeoffs.

Attacking isogenies

CRS/CSIDH: Class group G
acts freely and transitively

on a set X of curves over Fp.

Usually G 22 Z/N with N ~ pl/2.
Compute N by Shor's algorithm.

Find ideal I with G = [I]4.

Given Eq, E1 € X: define
fo:Z/N— X by a—|[I

fi:Z/N < X by awrs [T

E1 = [I]°Eq for some s € Z/N.
fi(a) = fo(a+s) forallac Z/N.
Find the hidden shift s in fy, f;.

Eq.

How ma

Steps fo
fast algc
small [P
e.g., d-=

/er:
problem using

| ¢ evaluations,
nt computation.

rer—Hgyer—Knill:

1ations for
of any group.)

problem using
valuations,
L computation.

Kuperberg:
tter tradeoffs.

Attacking isogenies

CRS/CSIDH: Class group G

acts freely and transitively
on a set X of curves over Fp.

Usually G 22 Z/N with N ~ p'/2.
Compute N by Shor's algorithm.
Find ideal I with G = [I]%.

Given Eq, E1 € X: define
f() : Z//V — X DY a :I:aEO;
fl : Z//V — X DYy a :I:aEl.

Ei1 = [I]°Eq for some s € Z/N.
fi(a) = fop(a+s) forallac Z/N.
Find the hidden shift s in fy, f1.

How many steps Ii

Steps for CRS/CS
fast algorithms for
small [Pl], :PQ], [P
e.g., d =74 tor C

ISINg

tions,
ation.

-Knill:

up.)

ISINg

tion.

offs.

Attacking isogenies

CRS/CSIDH: Class group G

acts freely and transitively
on a set X of curves over Fp.

Usually G 22 Z/N with N ~ pl/2.

Compute N by Shor's algorithm.
Find ideal I with G = [I]4.

Given Eq, E1 € X: define
fo Z/N‘%X DY a _I_an;
. Z/N — X by a— [I]?E;.

Ei = [I]°Eq for some s € Z/N.

fi(a) = fo(a+s) forallac Z/N.

Find the hidden shift s in fy, f1.

How many steps in an actio

Steps for CRS/CSIDH users
fast algorithms for actions o
small [Pl] -PQ], [Pg] [Pd
e.g., d = 74 for CSIDH-512

Attacking isogenies

CRS/CSIDH: Class group G

acts freely and transitively
on a set X of curves over Fp.

Usually G 22 Z/N with N ~ p'/2.

Compute N by Shor's algorithm.
Find ideal I with G = [I]%.

Given Eq, E1 € X: define
f() Z/N‘%X DY a _I_aEO;
. Z/N — X by a— [I]?E;.

Ei1 = [I]?Eg for somes € Z/N.

fi(a) = fo(a+s) forallac Z/N.

Find the hidden shift s in fy, f1.

How many steps in an action?

Steps for CRS/CSIDH users:
fast algorithms for actions of
small [P], [P2], [P3]. ..., [Py].
e.g., d = 74 for CSIDH-512.

Attacking isogenies

CRS/CSIDH: Class group G

acts freely and transitively
on a set X of curves over Fp.

Usually G 22 Z/N with N ~ p'/2.

Compute N by Shor's algorithm.
Find ideal I with G = [I]%.

Given Eq, E1 € X: define
f() Z/N‘%X DY a _I_aEO;
. Z/N — X by a— [I]?E;.

Ei1 = [I]?Eg for somes € Z/N.

fi(a) = fo(a+s) forallac Z/N.

Find the hidden shift s in fy, f1.

How many steps in an action?

Steps for CRS/CSIDH users:
fast algorithms for actions of
small [P], [P2], [P3]. ..., [Py].
e.g., d = 74 for CSIDH-512.

[P1P[P>]*[P5]t: 10 steps.

Attacking isogenies

CRS/CSIDH: Class group G

acts freely and transitively
on a set X of curves over Fp.

Usually G 22 Z/N with N ~ p'/2.

Compute N by Shor's algorithm.
Find ideal I with G = [I]%.

Given Eq, E1 € X: define
f() Z/N‘%X DY a _I_aEO;
. Z/N — X by a— [I]?E;.

Ei1 = [I]?Eg for somes € Z/N.

fi(a) = fo(a+s) forallac Z/N.

Find the hidden shift s in fy, f1.

How many steps in an action?

Steps for CRS/CSIDH users:
fast algorithms for actions of
small [P], [P2], [P3]. ..., [Py].
e.g., d = 74 for CSIDH-512.

PP [P>]*[P5]Y: 10 steps.
;7038304916 7038304916 steps.

Attacking isogenies

CRS/CSIDH: Class group G

acts freely and transitively
on a set X of curves over Fp.

Usually G 22 Z/N with N ~ p'/2.

Compute N by Shor's algorithm.
Find ideal I with G = [I]%.

Given Eq, E1 € X: define
f() Z/N‘%X DY a _I_aEO;
. Z/N — X by a— [I]?E;.

Ei1 = [I]?Eg for somes € Z/N.

fi(a) = fo(a+s) forallac Z/N.

Find the hidden shift s in fy, f1.

How many steps in an action?

Steps for CRS/CSIDH users:
fast algorithms for actions of
small [P], [P2], [P3]. ..., [Py].
e.g., d = 74 for CSIDH-512.

PP [P>]*[P5]Y: 10 steps.
7038304916 7038304916 steps.
P;]? for huge a € Z/N: Hmmm.

Attacking isogenies How many steps in an action?

CRS/CSIDH: Class group G Steps for CRS/CSIDH users:

acts freely and transitively fast algorithms for actions of

on a set X of curves over Fp. small [P1], [P], [P3], ..., [Py].

Usually G = Z/N with N ~ pt/2, &8 d=T4ior CSIDH-512

Compute N by Shor's algorithm. P1P[Po]*[P5]t: 10 steps.

Find ideal I with G = [I]%. P,]7038304916. 7038304916 steps.
Py]? for huge a € Z/N: Hmmm.

Given Eq, E1 € X: define
fO Z/N — X by a+— [I]?Ep; Approach 1: Compute lattice L =
. Z/N — X by a— [I]7E;. Ker(ay, ..., ag +— [P1]7t - [Py]?d).

Ei = [I]°Eq for some s € Z/N.
fi(a) = fop(a+s) forallac Z/N.
Find the hidden shift s in fy, f1.

Attacking isogenies

CRS/CSIDH: Class group G
acts freely and transitively

on a set X of curves over Fp.

Usually G 22 Z/N with N ~ p'/2.

Compute N by Shor's algorithm.
Find ideal I with G = [I]%.

Given Eq, E1 € X: define
f() Z/N‘%X DY a _I_aEO;
. Z/N — X by a— [I]?E;.

Ei1 = [I]?Eg for somes € Z/N.

fi(a) = fo(a+s) forallac Z/N.

Find the hidden shift s in fy, f1.

How many steps in an action?

Steps for CRS/CSIDH users:
fast algorithms for actions of
small [P], [P2], [P3]. ..., [Py].
e.g., d = 74 for CSIDH-512.

PP [P>]*[P5]Y: 10 steps.
7038304916 7038304916 steps.
P;]? for huge a € Z/N: Hmmm.

Approach 1: Compute lattice L =
Ker(ay, ..., ag +— [P1]7t - [Py]?d).

Given a € Z9 find close v € L:
distance exp((log N)1/2+o(1))
using time exp((log N)1/2+o(1)),

g Isogenies

IDH: Class group G
ly and transitively
X of curves over Fy.

G =~ Z/N with N ~ p'/2,

e N by Shor's algorithm.
al I with G = [I]4.

y, E1 € X: define
— X by a— [I]?Ep;

< X by as [I]E;.

>Eq for some s € Z/N.

fo(a+s) forallac Z/N.

hidden shift s in fy, f1.

How many steps in an action?

Steps for CRS/CSIDH users:
fast algorithms for actions of

PP [P>]*[Ps]}: 10 steps.
P;]7038304916. 7038304916 steps.
P1]? for huge a € Z/N: Hmmm.

Approach 1: Compute lattice L =
Ker(ay, ..., ag +— [P1]t - [Pyg]?d).

Given a € Z9 find close v € L:
distance exp((log N)1/2+o(1))
using time exp((log N)1/2+o(1)y,

Approac

exp((log
randoml|

S

s group G
nsitively
es over Fp.

with N = pl/z.

or's algorithm.

5 = [I]%.
define

at— :I:aEO;

at— :I:aEl.

me s & Z/N.

orallaec Z/N.

1ift s in fy, f1.

How many steps in an action?

Steps for CRS/CSIDH users:
fast algorithms for actions of

PP [P>]*[P5]}: 10 steps.
7038304916 7038304916 steps.
P;]? for huge a € Z/N: Hmmm.

Approach 1: Compute lattice L =

Ker(ay, ..., ag +— [P1]t - [Py]?d).

Given a € Z9 find close v € L
distance exp((log N)1/2+o(1))
using time exp((log N)1/2+o(1)),

Approach 2: Incre
exp((log N)1/2—|—O(]
randomly for smal

thm.

How many steps in an action?

1/2

Steps for CRS/CSIDH users:
fast algorithms for actions of

PP [P>]*[Ps]}: 10 steps.
p;]7038304916. 7038304916 steps.
P1]? for huge a € Z/N: Hmmm.

Approach 1: Compute lattice L =
Ker(ay, ..., ag +— [P1]t - [Py]?d).

Given a € Z9 find close v € L:
distance exp((log N)1/2+o(1))
using time exp((log N)1/2+o(1)y,

Approach 2: Increase d up -
exp((log N)1/2+t0(1)) . Searc
randomly for small relations

How many steps in an action?

Steps for CRS/CSIDH users:
fast algorithms for actions of

PP [P>]*[P5]Y: 10 steps.
7038304916 7038304916 steps.
P;]? for huge a € Z/N: Hmmm.

Approach 1: Compute lattice L =
Ker(ay, ..., ag +— [P1]t - [Py]?d).

Given a € Z9 find close v € L:
distance exp((log N)1/2+o(1))
using time exp((log N)1/2+o(1)),

Approach 2: Increase d up to
exp((log N)1/2+t0(1)) . Search
randomly for small relations.

How many steps in an action? Approach 2: Increase d up to
exp((log N)1/2+t0(1)) . Search
randomly for small relations.

Steps for CRS/CSIDH users:
fast algorithms for actions of
small [P], [P2], [P3]. ..., [Py]. 2010 Childs—Jao—Soukharev:

A. Time exp((log N)1/2+o(1)) to
:'D1:5[P2]4[P3]13 10 steps. compute G action by Approach 2.
7038304916 7038304916 steps.
P;]? for huge a € Z/N: Hmmm.

Approach 1: Compute lattice L =
Ker(ay, ..., ag +— [P1]t - [Py]?d).

Given a € Z9 find close v € L:
distance exp((log N)1/2+o(1))
using time exp((log N)1/2+o(1)),

How many steps in an action? Approach 2: Increase d up to
exp((log N)1/2+t0(1)) . Search
randomly for small relations.

Steps for CRS/CSIDH users:
fast algorithms for actions of
small [P], [P2], [P3]. ..., [Py]. 2010 Childs—Jao—Soukharev:

A. Time exp((log N)1/2+°(1) to
:'D1:5[P2]4[P3]13 10 steps. compute G action by Approach 2.
7038304916 7038304916 steps.

- B. Unfixably flawed argument that
Py]? for huge a€ Z/N: Hmmm.

Approach 2 beats Approach 1.

Approach 1: Compute lattice L =
Ker(ay, ..., ag +— [P1]t - [Py]?d).

Given a € Z9 find close v € L:
distance exp((log N)1/2+o(1))
using time exp((log N)1/2+o(1)),

How many steps in an action?

Steps for CRS/CSIDH users:
fast algorithms for actions of

PP [P>]*[P5]Y: 10 steps.
7038304916 7038304916 steps.
P;]? for huge a € Z/N: Hmmm.

Approach 1: Compute lattice L =

Ker(ay, ..., ag +— [P1]t - [Py]?d).

Given a € Z9 find close v € L:
distance exp((log N)1/2+o(1))
using time exp((log N)1/2+o(1)),

Approach 2: Increase d up to
exp((log N)1/2+t0(1)) . Search
randomly for small relations.

2010 Childs—Jao—Soukharev:

A. Time exp((log N)1/2+o(1)) to
compute G action by Approach 2.

B. Unfixably flawed argument that
Approach 2 beats Approach 1.

C. Apply Kuperberg (or Regev):
Time exp((log N)1/2+o(1))
to find g € G with gEg = E;.

How many steps in an action?

Steps for CRS/CSIDH users:
fast algorithms for actions of

PP [P>]*[P5]Y: 10 steps.
7038304916 7038304916 steps.
P;]? for huge a € Z/N: Hmmm.

Approach 1: Compute lattice L =

Ker(ay, ..., ag +— [P1]t - [Py]?d).

Given a € Z9 find close v € L:
distance exp((log N)1/2+o(1))
using time exp((log N)1/2+o(1)),

Approach 2: Increase d up to
exp((log N)1/2+t0(1)) . Search
randomly for small relations.

2010 Childs—Jao—Soukharev:

A. Time exp((log N)1/2+o(1)) to
compute G action by Approach 2.

B. Unfixably flawed argument that
Approach 2 beats Approach 1.

C. Apply Kuperberg (or Regev):
Time exp((log N)1/2+o(1))
to find g € G with gEg = E;.

D. Proof assuming only GRH,
using provable-factoring ideas.

ny steps in an action?

r CRS/CSIDH users:
rithms for actions of

1*[P3]': 10 steps.
04916, 7038304916 steps.
“huge a € Z/N: Hmmm.

h 1: Compute lattice L =

L. ag = [P [Py]Rd).

c Z9, find close v € L:
exp((log N)1/2+o(1)
ne exp((log N)1/2+o(1)),

Approach 2: Increase d up to
exp((log N)1/2+t0(1)) . Search
randomly for small relations.

2010 Childs—Jao—Soukharev:

A. Time exp((log N)1/2+o(1)) to
compute G action by Approach 2.

B. Unfixably flawed argument that
Approach 2 beats Approach 1.

C. Apply Kuperberg (or Regev):
Time exp((log N)1/2+o(1))
to find g € G with gEg = E;.

D. Proof assuming only GRH,
using provable-factoring ideas.

Approac
Bernstel
Panny):
in {—c,
somewh.

Not muc
Surely g
nearly ul

n an action?

IDH users:
~actions of

SIDH-512.

) steps.
38304916 steps.
Z/N: Hmmm.

pute lattice L =

[,Dl]al . [,Dd]ad)_

| close v € L:
y\/)1/2+o(1))
o N)1/2+o(1))_

Approach 2: Increase d up to
exp((log N)1/2+t0(1)) . Search
randomly for small relations.

2010 Childs—Jao—Soukharev:

A. Time exp((log N)1/2+o(1)) to
compute G action by Approach 2.

B. Unfixably flawed argument that
Approach 2 beats Approach 1.

C. Apply Kuperberg (or Regev):
Time exp((log N)1/2+o(1))
to find g € G with gEg = E;.

D. Proof assuming only GRH,
using provable-factoring ideas.

Approach 3 (ment
Bernstein—Lange—|
Panny): Uniform |

somewhat larger t

Not much slowdov

Surely g = [P]?1
nearly uniformly d

steps.

1mim.

e [=

Py]?d).

(1))_

Approach 2: Increase d up to
exp((log N)1/2+t0(1)) . Search
randomly for small relations.

2010 Childs—Jao—Soukharev:

A. Time exp((log N)1/2+o(1)) to
compute G action by Approach 2.

B. Unfixably flawed argument that
Approach 2 beats Approach 1.

C. Apply Kuperberg (or Regev):
Time exp((log N)1/2+o(1))
to find g € G with gEg = E;.

D. Proof assuming only GRH,
using provable-factoring ideas.

Approach 3 (mentioned in 2
Bernstein—Lange—Martindale
Panny): Uniform (ay, ..., a,
in{—c,..., c}d. Choose ¢
somewhat larger than users

Not much slowdown in actic
Surely g = [P1]71 - [Py]7d
nearly uniformly distributed

Approach 2: Increase d up to
exp((log N)1/2+t0(1)) . Search
randomly for small relations.

2010 Childs—Jao—Soukharev:

A. Time exp((log N)1/2+o(1)) to
compute G action by Approach 2.

B. Unfixably flawed argument that
Approach 2 beats Approach 1.

C. Apply Kuperberg (or Regev):
Time exp((log N)1/2+o(1))
to find g € G with gEg = E;.

D. Proof assuming only GRH,
using provable-factoring ideas.

Approach 3 (mentioned in 2018
Bernstein—Lange—Martindale—
Panny): Uniform (ag, ..., aq)
in{—c,..., c}d. Choose ¢
somewhat larger than users do.

Not much slowdown in action.
Surely g = [P1]91 -+ - [P4]9d is
nearly uniformly distributed in G.

Approach 2: Increase d up to
exp((log N)1/2+t0(1)) . Search
randomly for small relations.

2010 Childs—Jao—Soukharev:

A. Time exp((log N)1/2+o(1)) to
compute G action by Approach 2.

B. Unfixably flawed argument that
Approach 2 beats Approach 1.

C. Apply Kuperberg (or Regev):
Time exp((log N)1/2+o(1))
to find g € G with gEg = E;.

D. Proof assuming only GRH,
using provable-factoring ideas.

Approach 3 (mentioned in 2018
Bernstein—Lange—Martindale—
Panny): Uniform (ag, ..., aq)
in{—c,..., c}d. Choose ¢
somewhat larger than users do.

Not much slowdown in action.
Surely g = [P1]91 -+ - [P4]9d is
nearly uniformly distributed in G.

Can quickly compute gEj
and image of g in Z/N.

Approach 2: Increase d up to
exp((log N)1/2+t0(1)) . Search
randomly for small relations.

2010 Childs—Jao—Soukharev:

A. Time exp((log N)1/2+o(1)) to
compute G action by Approach 2.

B. Unfixably flawed argument that
Approach 2 beats Approach 1.

C. Apply Kuperberg (or Regev):
Time exp((log N)1/2+o(1))
to find g € G with gEg = E;.

D. Proof assuming only GRH,
using provable-factoring ideas.

Approach 3 (mentioned in 2018
Bernstein—Lange—Martindale—
Panny): Uniform (ag, ..., aq)
in{—c,..., c}d. Choose ¢
somewhat larger than users do.

Not much slowdown in action.
Surely g = [P1]91 -+ - [P4]9d is
nearly uniformly distributed in G.

Can quickly compute gEj
and image of g in Z/N.

Need more analysis of impact of
these redundant representations

upon Kuperberg's algorithm.

h 2: Increase d up to
N)1/2+0(1)) " Search
y for small relations.

Ilds—Jao—Soukharev:

exp((log N)1/2+0(1)) to
» G action by Approach 2.

ably flawed argument that
h 2 beats Approach 1.

/ Kuperberg (or Regev):
p((log N)1/2+olL)
r € G with gEg = E;.

f assuming only GRH,
ovable-factoring ideas.

Approach 3 (mentioned in 2018
Bernstein—Lange—Martindale—
Panny): Uniform (ag, ..., aq)
in{—c,..., c}d. Choose ¢
somewhat larger than users do.

Not much slowdown in action.
Surely g = [P1]91 - - - [P4]%d is
nearly uniformly distributed in G.

Can quickly compute gE
and image of g in Z/N.

Need more analysis of impact of
these redundant representations

upon Kuperberg's algorithm.

How fas

e.g. CSI
on G, er

adequat

~2°1 by
Leonard

ase d up to
)). Search
| relations.

soukharev:

N)1/2+o(1)) to
by Approach 2.

d argument that
Approach 1.

rg (or Regev):
./2+o(1))

\ gEg = E;.

r only GRH,
toring ideas.

Approach 3 (mentioned in 2018
Bernstein—Lange—Martindale—
Panny): Uniform (ag, ..., ay)
in{—c,..., c}d. Choose ¢

somewhat larger than users do.

Not much slowdown in action.
Surely g = [P1]91 -+ - [P4]9d is
nearly uniformly distributed in G.

Can quickly compute gEj
and image of g in Z/N.

Need more analysis of impact of
these redundant representations

upon Kuperberg's algorithm.

How fast are the ¢

e.g. CSIDH-512, u
on G, error rate <
adequate?), nonlir

~2°1 by 2018 Jao
Leonardi—Ruiz-Loy

) to
ach 2.

1t that
1.

ev):

1S.

Approach 3 (mentioned in 2018
Bernstein—Lange—Martindale—
Panny): Uniform (ag, ..., ay)
in{—c,..., c}d. Choose ¢

somewhat larger than users do.

Not much slowdown in action.
Surely g = [P1]71 - - [Py]9d is
nearly uniformly distributed in G.

Can quickly compute gE
and image of g in Z/N.

Need more analysis of impact of
these redundant representations

upon Kuperberg's algorithm.

How fast are the steps?

e.g. CSIDH-512, user distrib
on G, error rate <2732 (is t
adequate?), nonlinear bit op

~2°1 by 2018 Jao—-LeGrow-
Leonardi—Ruiz-Lopez.

Approach 3 (mentioned in 2018 How fast are the steps?

Bernstein—Lange-Martindale- e.g. CSIDH-512, user distribution

on G, error rate <273 (is this
adequate?), nonlinear bit ops:

Panny): Uniform (ag, ..., ay)
in{—c,..., c}d. Choose ¢

somewhat larger than users do.
~2°1 by 2018 Jao—-LeGrow-

Not much slowdown in action. . .
Leonardi—Ruiz-Lopez.

Surely g = [P1]91 -+ - [P4]9d is
nearly uniformly distributed in G.

Can quickly compute gEj
and image of g in Z/N.

Need more analysis of impact of
these redundant representations

upon Kuperberg's algorithm.

Approach 3 (mentioned in 2018
Bernstein—Lange—Martindale—
Panny): Uniform (ag, ..., aq)
in{—c,..., c}d. Choose ¢
somewhat larger than users do.

Not much slowdown in action.
Surely g = [Py]?1 -+ - [Py4]9d is
nearly uniformly distributed in G.

Can quickly compute gEy,
and image of g in Z/N.

Need more analysis of impact of
these redundant representations

upon Kuperberg's algorithm.

How fast are the steps?

e.g. CSIDH-512, user distribution
on G, error rate <2732 (is this
adequate?), nonlinear bit ops:

~2°1 by 2018 Jao—-LeGrow-
Leonardi—Ruiz-Lopez.

Many optimizations, detailed
analysis: 765325228976 ~ 0.7 - 240
by 2018 BLMP Algorithm 8.1.

Approach 3 (mentioned in 2018
Bernstein—Lange—Martindale—
Panny): Uniform (ag, ..., aq)
in{—c,..., c}d. Choose ¢
somewhat larger than users do.

Not much slowdown in action.
Surely g = [P1]91 -+ - [P4]9d is

nearly uniformly distributed in G.

Can quickly compute gEy,
and image of g in Z/N.

Need more analysis of impact of
these redundant representations

upon Kuperberg's algorithm.

How fast are the steps?

e.g. CSIDH-512, user distribution
on G, error rate <2732 (is this
adequate?), nonlinear bit ops:

~2°1 by 2018 Jao—-LeGrow-
Leonardi—Ruiz-Lopez.

Many optimizations, detailed
analysis: 765325228976 ~ 0.7 - 240
by 2018 BLMP Algorithm 8.1.

quantum.isogenies.org:
full software and 56-page paper;
variations in 512, distrib, 2732,

Approach 3 (mentioned in 2018
Bernstein—Lange—Martindale—
Panny): Uniform (ag, ..., ay)
in{—c,..., c}d. Choose ¢

somewhat larger than users do.

Not much slowdown in action.
Surely g = [P1]91 -+ - [P4]9d is

nearly uniformly distributed in G.

Can quickly compute gEj
and image of g in Z/N.

Need more analysis of impact of
these redundant representations

upon Kuperberg's algorithm.

How fast are the steps?

e.g. CSIDH-512, user distribution
on G, error rate <2732 (is this
adequate?), nonlinear bit ops:

~2°1 by 2018 Jao—-LeGrow-
Leonardi—Ruiz-Lopez.

Many optimizations, detailed
analysis: 765325228976 ~ 0.7 - 240
by 2018 BLMP Algorithm 8.1.

quantum.isogenies.org:
full software and 56-page paper;
variations in 512, distrib, 2732,

Next big challenge: AT analysis.

h 3 (mentioned in 2018
n—Lange—Martindale—
Uniform (ay, ..., a,)
.., c}9. Choose ¢

at larger than users do.

“h slowdown in action.

niformly distributed in G.

“kly compute gk
ge of g in Z/N.

ore analysis of impact of
Jundant representations

Iperberg’s algorithm.

How fast are the steps?

e.g. CSIDH-512, user distribution
on G, error rate <2732 (is this
adequate?), nonlinear bit ops:

~2°1 by 2018 Jao—-LeGrow-
Leonardi—Ruiz-Lopez.

Many optimizations, detailed
analysis: 765325228976 ~ 0.7 - 240
by 2018 BLMP Algorithm 8.1.

quantum.isogenies.org:
full software and 56-page paper;
variations in 512, distrib, 2732,

Next big challenge: AT analysis.

How ma

2011 Ku
exp((0.9

compare
exp((1.2

ioned in 2018
Vlartindale—

han users do.

vn In action.
L [Pd]ad 1S

Istributed in G.

ute gk
Z/N.

s of impact of
presentations
algorithm.

How fast are the steps?

e.g. CSIDH-512, user distribution
on G, error rate <2732 (is this
adequate?), nonlinear bit ops:

~2°1 by 2018 Jao—-LeGrow-
Leonardi—Ruiz-Lopez.

Many optimizations, detailed
analysis: 765325228976 ~ 0.7 - 240
by 2018 BLMP Algorithm 8.1.

quantum.isogenies.org:
full software and 56-page paper;
variations in 512, distrib, 2732,

Next big challenge: AT analysis.

How many actions

2011 Kuperberg e:
exp((0.98...+ o
compares to 2003

exp((1.23...+ of

013

;—

in G.

t of
ons

How fast are the steps?

e.g. CSIDH-512, user distribution
on G, error rate <2732 (is this
adequate?), nonlinear bit ops:

~2°1 by 2018 Jao—-LeGrow-
Leonardi—Ruiz-Lopez.

Many optimizations, detailed
analysis: 765325228976 ~ 0.7 - 240
by 2018 BLMP Algorithm 8.1.

quantum.isogenies.org:
full software and 56-page paper;
variations in 512, distrib, 2732,

Next big challenge: AT analysis.

How many actions + other

2011 Kuperberg estimates *

exp((0.98...+ o(1))(log, N
compares to 2003 Kuperber;

exp((1.23... 4+ o(1))(log, N

How fast are the steps?

e.g. CSIDH-512, user distribution
on G, error rate <2732 (is this
adequate?), nonlinear bit ops:

~2°1 by 2018 Jao—-LeGrow-
Leonardi—Ruiz-Lopez.

Many optimizations, detailed
analysis: 765325228976 ~ 0.7 - 240
by 2018 BLMP Algorithm 8.1.

quantum.isogenies.org:
full software and 56-page paper;
variations in 512, distrib, 2732,

Next big challenge: AT analysis.

10
How many actions + other costs?

2011 Kuperberg estimates “time"
exp((0.98.. .. + o(1))(logy, N)1/2);
compares to 2003 Kuperberg:

exp((1.23 ... + o(1))(log, N)1/2).

9 10

How fast are the steps? How many actions + other costs?
e.g. CSIDH-512, user distribution 2011 Kuperberg estimates “time”
on G, error rate <273 (is this exp((0.98... + o(1))(log, N)1/?);
adequate?), nonlinear bit ops: compares to 2003 Kuperberg:
exp((1.23 ... + o(1))(log, N)1/2).

~2°1 by 2018 Jao—-LeGrow-
Leonardi—Ruiz-Lopez. Open: Do better than 1/27

?
Many optimizations, detailed Do better than 0.98.. .

analysis: 765325228976 ~ 0.7 - 240
by 2018 BLMP Algorithm 8.1.

quantum.isogenies.org:
full software and 56-page paper;
variations in 512, distrib, 2732,

Next big challenge: AT analysis.

How fast are the steps?

e.g. CSIDH-512, user distribution
on G, error rate <2732 (is this
adequate?), nonlinear bit ops:

~2°1 by 2018 Jao—-LeGrow-
Leonardi—Ruiz-Lopez.

Many optimizations, detailed
analysis: 765325228976 ~ 0.7 - 240
by 2018 BLMP Algorithm 8.1.

quantum.isogenies.org:
full software and 56-page paper;
variations in 512, distrib, 2732,

Next big challenge: AT analysis.

10
How many actions + other costs?

2011 Kuperberg estimates “time"

exp((0.98.. .. + o(1))(log, N)1/2);
compares to 2003 Kuperberg:
exp((1.23 ... + o(1))(log, N)1/2).

Open: Do better than 1/27
Do better than 0.938...7

Exact number of actions? Some
work on analysis+optimization:
2003 Kuperberg; 2011 Kuperberg;
2018 Bonnetain—Naya-Plasencia;
2018 Bonnetain—Schrottenloher;
2019 Kuperberg; 2019 Peikert;
2019 Bonnetain—Schrottenloher.

