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(a0; a1; : : : ; a2n−1) then
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P
r |ar |2.
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13

state measurement

(1; 0; 0; 0; 0; 0; 0; 0) 000 ll
rr

(0; 1; 0; 0; 0; 0; 0; 0) 001

(0; 0; 1; 0; 0; 0; 0; 0) 010 ll
rr

(0; 0; 0; 1; 0; 0; 0; 0) 011

(0; 0; 0; 0; 1; 0; 0; 0) 100 ll
rr

(0; 0; 0; 0; 0; 1; 0; 0) 101

(0; 0; 0; 0; 0; 0; 1; 0) 110 ll
rr

(0; 0; 0; 0; 0; 0; 0; 1) 111

Operation on quantum state:

NOT0, swapping pairs.

Operation after measurement:

flipping bit 0 of result.

Flip: output is not input.
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14

Controlled-NOT (CNOT) gates

e.g. C1NOT0:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 1; 4; 5; 9; 6; 2).



12

NOT gates

NOT0 gate on 3 qubits:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(1; 3; 1; 4; 9; 5; 6; 2).

NOT0 gate on 4 qubits:

(3;1;4;1;5;9;2;6;5;3;5;8;9;7;9;3) 7→
(1;3;1;4;9;5;6;2;3;5;8;5;7;9;3;9).

NOT1 gate on 3 qubits:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(4; 1; 3; 1; 2; 6; 5; 9).

NOT2 gate on 3 qubits:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(5; 9; 2; 6; 3; 1; 4; 1).

13

state measurement

(1; 0; 0; 0; 0; 0; 0; 0) 000 ll
rr

(0; 1; 0; 0; 0; 0; 0; 0) 001

(0; 0; 1; 0; 0; 0; 0; 0) 010 ll
rr

(0; 0; 0; 1; 0; 0; 0; 0) 011

(0; 0; 0; 0; 1; 0; 0; 0) 100 ll
rr

(0; 0; 0; 0; 0; 1; 0; 0) 101

(0; 0; 0; 0; 0; 0; 1; 0) 110 ll
rr

(0; 0; 0; 0; 0; 0; 0; 1) 111

Operation on quantum state:

NOT0, swapping pairs.

Operation after measurement:

flipping bit 0 of result.

Flip: output is not input.

14

Controlled-NOT (CNOT) gates

e.g. C1NOT0:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 1; 4; 5; 9; 6; 2).



12

NOT gates

NOT0 gate on 3 qubits:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(1; 3; 1; 4; 9; 5; 6; 2).

NOT0 gate on 4 qubits:

(3;1;4;1;5;9;2;6;5;3;5;8;9;7;9;3) 7→
(1;3;1;4;9;5;6;2;3;5;8;5;7;9;3;9).

NOT1 gate on 3 qubits:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(4; 1; 3; 1; 2; 6; 5; 9).

NOT2 gate on 3 qubits:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(5; 9; 2; 6; 3; 1; 4; 1).

13

state measurement

(1; 0; 0; 0; 0; 0; 0; 0) 000 ll
rr

(0; 1; 0; 0; 0; 0; 0; 0) 001

(0; 0; 1; 0; 0; 0; 0; 0) 010 ll
rr

(0; 0; 0; 1; 0; 0; 0; 0) 011

(0; 0; 0; 0; 1; 0; 0; 0) 100 ll
rr

(0; 0; 0; 0; 0; 1; 0; 0) 101

(0; 0; 0; 0; 0; 0; 1; 0) 110 ll
rr

(0; 0; 0; 0; 0; 0; 0; 1) 111

Operation on quantum state:

NOT0, swapping pairs.

Operation after measurement:

flipping bit 0 of result.

Flip: output is not input.

14

Controlled-NOT (CNOT) gates

e.g. C1NOT0:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 1; 4; 5; 9; 6; 2).



13

state measurement

(1; 0; 0; 0; 0; 0; 0; 0) 000 ll
rr

(0; 1; 0; 0; 0; 0; 0; 0) 001

(0; 0; 1; 0; 0; 0; 0; 0) 010 ll
rr

(0; 0; 0; 1; 0; 0; 0; 0) 011

(0; 0; 0; 0; 1; 0; 0; 0) 100 ll
rr

(0; 0; 0; 0; 0; 1; 0; 0) 101

(0; 0; 0; 0; 0; 0; 1; 0) 110 ll
rr

(0; 0; 0; 0; 0; 0; 0; 1) 111

Operation on quantum state:

NOT0, swapping pairs.

Operation after measurement:

flipping bit 0 of result.

Flip: output is not input.

14

Controlled-NOT (CNOT) gates

e.g. C1NOT0:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 1; 4; 5; 9; 6; 2).



13

state measurement

(1; 0; 0; 0; 0; 0; 0; 0) 000 ll
rr

(0; 1; 0; 0; 0; 0; 0; 0) 001

(0; 0; 1; 0; 0; 0; 0; 0) 010 ll
rr

(0; 0; 0; 1; 0; 0; 0; 0) 011

(0; 0; 0; 0; 1; 0; 0; 0) 100 ll
rr

(0; 0; 0; 0; 0; 1; 0; 0) 101

(0; 0; 0; 0; 0; 0; 1; 0) 110 ll
rr

(0; 0; 0; 0; 0; 0; 0; 1) 111

Operation on quantum state:

NOT0, swapping pairs.

Operation after measurement:

flipping bit 0 of result.

Flip: output is not input.

14

Controlled-NOT (CNOT) gates

e.g. C1NOT0:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 1; 4; 5; 9; 6; 2).

Operation after measurement:

flipping bit 0 if bit 1 is set; i.e.,

(q2; q1; q0) 7→ (q2; q1; q0 ⊕ q1).



13

state measurement

(1; 0; 0; 0; 0; 0; 0; 0) 000 ll
rr

(0; 1; 0; 0; 0; 0; 0; 0) 001

(0; 0; 1; 0; 0; 0; 0; 0) 010 ll
rr

(0; 0; 0; 1; 0; 0; 0; 0) 011

(0; 0; 0; 0; 1; 0; 0; 0) 100 ll
rr

(0; 0; 0; 0; 0; 1; 0; 0) 101

(0; 0; 0; 0; 0; 0; 1; 0) 110 ll
rr

(0; 0; 0; 0; 0; 0; 0; 1) 111

Operation on quantum state:

NOT0, swapping pairs.

Operation after measurement:

flipping bit 0 of result.

Flip: output is not input.

14

Controlled-NOT (CNOT) gates

e.g. C1NOT0:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 1; 4; 5; 9; 6; 2).

Operation after measurement:

flipping bit 0 if bit 1 is set; i.e.,

(q2; q1; q0) 7→ (q2; q1; q0 ⊕ q1).

e.g. C2NOT0:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 4; 1; 9; 5; 6; 2).



13

state measurement

(1; 0; 0; 0; 0; 0; 0; 0) 000 ll
rr

(0; 1; 0; 0; 0; 0; 0; 0) 001

(0; 0; 1; 0; 0; 0; 0; 0) 010 ll
rr

(0; 0; 0; 1; 0; 0; 0; 0) 011

(0; 0; 0; 0; 1; 0; 0; 0) 100 ll
rr

(0; 0; 0; 0; 0; 1; 0; 0) 101

(0; 0; 0; 0; 0; 0; 1; 0) 110 ll
rr

(0; 0; 0; 0; 0; 0; 0; 1) 111

Operation on quantum state:

NOT0, swapping pairs.

Operation after measurement:

flipping bit 0 of result.

Flip: output is not input.

14

Controlled-NOT (CNOT) gates

e.g. C1NOT0:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 1; 4; 5; 9; 6; 2).

Operation after measurement:

flipping bit 0 if bit 1 is set; i.e.,

(q2; q1; q0) 7→ (q2; q1; q0 ⊕ q1).

e.g. C2NOT0:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 4; 1; 9; 5; 6; 2).

e.g. C0NOT2:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 9; 4; 6; 5; 1; 2; 1).



13

state measurement

(1; 0; 0; 0; 0; 0; 0; 0) 000 ll
rr

(0; 1; 0; 0; 0; 0; 0; 0) 001

(0; 0; 1; 0; 0; 0; 0; 0) 010 ll
rr

(0; 0; 0; 1; 0; 0; 0; 0) 011

(0; 0; 0; 0; 1; 0; 0; 0) 100 ll
rr

(0; 0; 0; 0; 0; 1; 0; 0) 101

(0; 0; 0; 0; 0; 0; 1; 0) 110 ll
rr

(0; 0; 0; 0; 0; 0; 0; 1) 111

Operation on quantum state:

NOT0, swapping pairs.

Operation after measurement:

flipping bit 0 of result.

Flip: output is not input.

14

Controlled-NOT (CNOT) gates

e.g. C1NOT0:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 1; 4; 5; 9; 6; 2).

Operation after measurement:

flipping bit 0 if bit 1 is set; i.e.,

(q2; q1; q0) 7→ (q2; q1; q0 ⊕ q1).

e.g. C2NOT0:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 4; 1; 9; 5; 6; 2).

e.g. C0NOT2:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 9; 4; 6; 5; 1; 2; 1).

15

Toffoli gates

Also known as CCNOT gates:

controlled-controlled-NOT gates.

e.g. C2C1NOT0:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 4; 1; 5; 9; 6; 2).



13

state measurement

(1; 0; 0; 0; 0; 0; 0; 0) 000 ll
rr

(0; 1; 0; 0; 0; 0; 0; 0) 001

(0; 0; 1; 0; 0; 0; 0; 0) 010 ll
rr

(0; 0; 0; 1; 0; 0; 0; 0) 011

(0; 0; 0; 0; 1; 0; 0; 0) 100 ll
rr

(0; 0; 0; 0; 0; 1; 0; 0) 101

(0; 0; 0; 0; 0; 0; 1; 0) 110 ll
rr

(0; 0; 0; 0; 0; 0; 0; 1) 111

Operation on quantum state:

NOT0, swapping pairs.

Operation after measurement:

flipping bit 0 of result.

Flip: output is not input.

14

Controlled-NOT (CNOT) gates

e.g. C1NOT0:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 1; 4; 5; 9; 6; 2).

Operation after measurement:

flipping bit 0 if bit 1 is set; i.e.,

(q2; q1; q0) 7→ (q2; q1; q0 ⊕ q1).

e.g. C2NOT0:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 4; 1; 9; 5; 6; 2).

e.g. C0NOT2:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 9; 4; 6; 5; 1; 2; 1).

15

Toffoli gates

Also known as CCNOT gates:

controlled-controlled-NOT gates.

e.g. C2C1NOT0:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 4; 1; 5; 9; 6; 2).



13

state measurement

(1; 0; 0; 0; 0; 0; 0; 0) 000 ll
rr

(0; 1; 0; 0; 0; 0; 0; 0) 001

(0; 0; 1; 0; 0; 0; 0; 0) 010 ll
rr

(0; 0; 0; 1; 0; 0; 0; 0) 011

(0; 0; 0; 0; 1; 0; 0; 0) 100 ll
rr

(0; 0; 0; 0; 0; 1; 0; 0) 101

(0; 0; 0; 0; 0; 0; 1; 0) 110 ll
rr

(0; 0; 0; 0; 0; 0; 0; 1) 111

Operation on quantum state:

NOT0, swapping pairs.

Operation after measurement:

flipping bit 0 of result.

Flip: output is not input.

14

Controlled-NOT (CNOT) gates

e.g. C1NOT0:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 1; 4; 5; 9; 6; 2).

Operation after measurement:

flipping bit 0 if bit 1 is set; i.e.,

(q2; q1; q0) 7→ (q2; q1; q0 ⊕ q1).

e.g. C2NOT0:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 4; 1; 9; 5; 6; 2).

e.g. C0NOT2:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 9; 4; 6; 5; 1; 2; 1).

15

Toffoli gates

Also known as CCNOT gates:

controlled-controlled-NOT gates.

e.g. C2C1NOT0:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 4; 1; 5; 9; 6; 2).



14

Controlled-NOT (CNOT) gates

e.g. C1NOT0:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 1; 4; 5; 9; 6; 2).

Operation after measurement:

flipping bit 0 if bit 1 is set; i.e.,

(q2; q1; q0) 7→ (q2; q1; q0 ⊕ q1).

e.g. C2NOT0:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 4; 1; 9; 5; 6; 2).

e.g. C0NOT2:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 9; 4; 6; 5; 1; 2; 1).

15

Toffoli gates

Also known as CCNOT gates:

controlled-controlled-NOT gates.

e.g. C2C1NOT0:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 4; 1; 5; 9; 6; 2).



14

Controlled-NOT (CNOT) gates

e.g. C1NOT0:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 1; 4; 5; 9; 6; 2).

Operation after measurement:

flipping bit 0 if bit 1 is set; i.e.,

(q2; q1; q0) 7→ (q2; q1; q0 ⊕ q1).

e.g. C2NOT0:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 4; 1; 9; 5; 6; 2).

e.g. C0NOT2:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 9; 4; 6; 5; 1; 2; 1).

15

Toffoli gates

Also known as CCNOT gates:

controlled-controlled-NOT gates.

e.g. C2C1NOT0:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 4; 1; 5; 9; 6; 2).

Operation after measurement:

(q2; q1; q0) 7→ (q2; q1; q0 ⊕ q1q2).



14

Controlled-NOT (CNOT) gates

e.g. C1NOT0:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 1; 4; 5; 9; 6; 2).

Operation after measurement:

flipping bit 0 if bit 1 is set; i.e.,

(q2; q1; q0) 7→ (q2; q1; q0 ⊕ q1).

e.g. C2NOT0:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 4; 1; 9; 5; 6; 2).

e.g. C0NOT2:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 9; 4; 6; 5; 1; 2; 1).

15

Toffoli gates

Also known as CCNOT gates:

controlled-controlled-NOT gates.

e.g. C2C1NOT0:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 4; 1; 5; 9; 6; 2).

Operation after measurement:

(q2; q1; q0) 7→ (q2; q1; q0 ⊕ q1q2).

e.g. C0C1NOT2:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 4; 6; 5; 9; 2; 1).



14

Controlled-NOT (CNOT) gates

e.g. C1NOT0:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 1; 4; 5; 9; 6; 2).

Operation after measurement:

flipping bit 0 if bit 1 is set; i.e.,

(q2; q1; q0) 7→ (q2; q1; q0 ⊕ q1).

e.g. C2NOT0:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 4; 1; 9; 5; 6; 2).

e.g. C0NOT2:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 9; 4; 6; 5; 1; 2; 1).

15

Toffoli gates

Also known as CCNOT gates:

controlled-controlled-NOT gates.

e.g. C2C1NOT0:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 4; 1; 5; 9; 6; 2).

Operation after measurement:

(q2; q1; q0) 7→ (q2; q1; q0 ⊕ q1q2).

e.g. C0C1NOT2:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 4; 6; 5; 9; 2; 1).

16

More shuffling

Combine NOT, CNOT, Toffoli

to build other permutations.



14

Controlled-NOT (CNOT) gates

e.g. C1NOT0:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 1; 4; 5; 9; 6; 2).

Operation after measurement:

flipping bit 0 if bit 1 is set; i.e.,

(q2; q1; q0) 7→ (q2; q1; q0 ⊕ q1).

e.g. C2NOT0:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 4; 1; 9; 5; 6; 2).

e.g. C0NOT2:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 9; 4; 6; 5; 1; 2; 1).

15

Toffoli gates

Also known as CCNOT gates:

controlled-controlled-NOT gates.

e.g. C2C1NOT0:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 4; 1; 5; 9; 6; 2).

Operation after measurement:

(q2; q1; q0) 7→ (q2; q1; q0 ⊕ q1q2).

e.g. C0C1NOT2:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 4; 6; 5; 9; 2; 1).

16

More shuffling

Combine NOT, CNOT, Toffoli

to build other permutations.



14

Controlled-NOT (CNOT) gates

e.g. C1NOT0:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 1; 4; 5; 9; 6; 2).

Operation after measurement:

flipping bit 0 if bit 1 is set; i.e.,

(q2; q1; q0) 7→ (q2; q1; q0 ⊕ q1).

e.g. C2NOT0:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 4; 1; 9; 5; 6; 2).

e.g. C0NOT2:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 9; 4; 6; 5; 1; 2; 1).

15

Toffoli gates

Also known as CCNOT gates:

controlled-controlled-NOT gates.

e.g. C2C1NOT0:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 4; 1; 5; 9; 6; 2).

Operation after measurement:

(q2; q1; q0) 7→ (q2; q1; q0 ⊕ q1q2).

e.g. C0C1NOT2:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 4; 6; 5; 9; 2; 1).

16

More shuffling

Combine NOT, CNOT, Toffoli

to build other permutations.



15

Toffoli gates

Also known as CCNOT gates:

controlled-controlled-NOT gates.

e.g. C2C1NOT0:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 4; 1; 5; 9; 6; 2).

Operation after measurement:

(q2; q1; q0) 7→ (q2; q1; q0 ⊕ q1q2).

e.g. C0C1NOT2:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 4; 6; 5; 9; 2; 1).

16

More shuffling

Combine NOT, CNOT, Toffoli

to build other permutations.



15

Toffoli gates

Also known as CCNOT gates:

controlled-controlled-NOT gates.

e.g. C2C1NOT0:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 4; 1; 5; 9; 6; 2).

Operation after measurement:

(q2; q1; q0) 7→ (q2; q1; q0 ⊕ q1q2).

e.g. C0C1NOT2:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 4; 6; 5; 9; 2; 1).

16

More shuffling

Combine NOT, CNOT, Toffoli

to build other permutations.

e.g. series of gates to

rotate 8 positions by distance 1:

3 1 4 1

LLLLLLLLL5 9 2 6

sssssssss

C0C1NOT2
3 1

999994 6

�����
5 9

999992 1

�����
C0NOT1

3

,,,, 6

����
4

,,,, 1

����
5

,,,, 1

����
2

,,,, 9

����
NOT0

6 3 1 4 1 5 9 2



15

Toffoli gates

Also known as CCNOT gates:

controlled-controlled-NOT gates.

e.g. C2C1NOT0:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 4; 1; 5; 9; 6; 2).

Operation after measurement:

(q2; q1; q0) 7→ (q2; q1; q0 ⊕ q1q2).

e.g. C0C1NOT2:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 4; 6; 5; 9; 2; 1).

16

More shuffling

Combine NOT, CNOT, Toffoli

to build other permutations.

e.g. series of gates to

rotate 8 positions by distance 1:

3 1 4 1

LLLLLLLLL5 9 2 6

sssssssss

C0C1NOT2
3 1

999994 6

�����
5 9

999992 1

�����
C0NOT1

3

,,,, 6

����
4

,,,, 1

����
5

,,,, 1

����
2

,,,, 9

����
NOT0

6 3 1 4 1 5 9 2

17

Hadamard gates

Hadamard0:

(a; b) 7→ (a + b; a− b).

3

4444 1






4

4444 1






5

4444 9






2

4444 6







4 2 5 3 14 −4 8 −4



15

Toffoli gates

Also known as CCNOT gates:

controlled-controlled-NOT gates.

e.g. C2C1NOT0:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 4; 1; 5; 9; 6; 2).

Operation after measurement:

(q2; q1; q0) 7→ (q2; q1; q0 ⊕ q1q2).

e.g. C0C1NOT2:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 4; 6; 5; 9; 2; 1).

16

More shuffling

Combine NOT, CNOT, Toffoli

to build other permutations.

e.g. series of gates to

rotate 8 positions by distance 1:

3 1 4 1

LLLLLLLLL5 9 2 6

sssssssss

C0C1NOT2
3 1

999994 6

�����
5 9

999992 1

�����
C0NOT1

3

,,,, 6

����
4

,,,, 1

����
5

,,,, 1

����
2

,,,, 9

����
NOT0

6 3 1 4 1 5 9 2

17

Hadamard gates

Hadamard0:

(a; b) 7→ (a + b; a− b).

3

4444 1






4

4444 1






5

4444 9






2

4444 6







4 2 5 3 14 −4 8 −4



15

Toffoli gates

Also known as CCNOT gates:

controlled-controlled-NOT gates.

e.g. C2C1NOT0:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 4; 1; 5; 9; 6; 2).

Operation after measurement:

(q2; q1; q0) 7→ (q2; q1; q0 ⊕ q1q2).

e.g. C0C1NOT2:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 4; 6; 5; 9; 2; 1).

16

More shuffling

Combine NOT, CNOT, Toffoli

to build other permutations.

e.g. series of gates to

rotate 8 positions by distance 1:

3 1 4 1

LLLLLLLLL5 9 2 6

sssssssss

C0C1NOT2
3 1

999994 6

�����
5 9

999992 1

�����
C0NOT1

3

,,,, 6

����
4

,,,, 1

����
5

,,,, 1

����
2

,,,, 9

����
NOT0

6 3 1 4 1 5 9 2

17

Hadamard gates

Hadamard0:

(a; b) 7→ (a + b; a− b).

3

4444 1






4

4444 1






5

4444 9






2

4444 6







4 2 5 3 14 −4 8 −4



16

More shuffling

Combine NOT, CNOT, Toffoli

to build other permutations.

e.g. series of gates to

rotate 8 positions by distance 1:

3 1 4 1

LLLLLLLLL5 9 2 6

sssssssss

C0C1NOT2
3 1

999994 6

�����
5 9

999992 1

�����
C0NOT1

3

,,,, 6

����
4

,,,, 1

����
5

,,,, 1

����
2

,,,, 9

����
NOT0

6 3 1 4 1 5 9 2

17

Hadamard gates

Hadamard0:

(a; b) 7→ (a + b; a− b).

3

4444 1






4

4444 1






5

4444 9






2

4444 6







4 2 5 3 14 −4 8 −4



16

More shuffling

Combine NOT, CNOT, Toffoli

to build other permutations.

e.g. series of gates to

rotate 8 positions by distance 1:

3 1 4 1

LLLLLLLLL5 9 2 6

sssssssss

C0C1NOT2
3 1

999994 6

�����
5 9

999992 1

�����
C0NOT1

3

,,,, 6

����
4

,,,, 1

����
5

,,,, 1

����
2

,,,, 9

����
NOT0

6 3 1 4 1 5 9 2

17

Hadamard gates

Hadamard0:

(a; b) 7→ (a + b; a− b).

3

4444 1






4

4444 1






5

4444 9






2

4444 6







4 2 5 3 14 −4 8 −4

Hadamard1:

(a; b; c; d) 7→
(a + c; b + d; a− c; b − d).

3

FFFFFFF 1

FFFFFFF 4

xxxxxxx 1

xxxxxxx 5

FFFFFFF 9

FFFFFFF 2

xxxxxxx 6

xxxxxxx

7 2 −1 0 7 15 3 3



16

More shuffling

Combine NOT, CNOT, Toffoli

to build other permutations.

e.g. series of gates to

rotate 8 positions by distance 1:

3 1 4 1

LLLLLLLLL5 9 2 6

sssssssss

C0C1NOT2
3 1

999994 6

�����
5 9

999992 1

�����
C0NOT1

3

,,,, 6

����
4

,,,, 1

����
5

,,,, 1

����
2

,,,, 9

����
NOT0

6 3 1 4 1 5 9 2

17

Hadamard gates

Hadamard0:

(a; b) 7→ (a + b; a− b).

3

4444 1






4

4444 1






5

4444 9






2

4444 6







4 2 5 3 14 −4 8 −4

Hadamard1:

(a; b; c; d) 7→
(a + c; b + d; a− c; b − d).

3

FFFFFFF 1

FFFFFFF 4

xxxxxxx 1

xxxxxxx 5

FFFFFFF 9

FFFFFFF 2

xxxxxxx 6

xxxxxxx

7 2 −1 0 7 15 3 3

18

Some uses of Hadamard gates

Hadamard0, NOT0, Hadamard0:

3

4444 1






4

4444 1






5

4444 9






2

4444 6







4

4444 2






5

4444 3






14

4444 −4






8

4444 −4







2

4444 4






3

4444 5






−4

4444 14






−4

4444 8







6 −2 8 −2 10 −18 4 −12



16

More shuffling

Combine NOT, CNOT, Toffoli

to build other permutations.

e.g. series of gates to

rotate 8 positions by distance 1:

3 1 4 1

LLLLLLLLL5 9 2 6

sssssssss

C0C1NOT2
3 1

999994 6

�����
5 9

999992 1

�����
C0NOT1

3

,,,, 6

����
4

,,,, 1

����
5

,,,, 1

����
2

,,,, 9

����
NOT0

6 3 1 4 1 5 9 2

17

Hadamard gates

Hadamard0:

(a; b) 7→ (a + b; a− b).

3

4444 1






4

4444 1






5

4444 9






2

4444 6







4 2 5 3 14 −4 8 −4

Hadamard1:

(a; b; c; d) 7→
(a + c; b + d; a− c; b − d).

3

FFFFFFF 1

FFFFFFF 4

xxxxxxx 1

xxxxxxx 5

FFFFFFF 9

FFFFFFF 2

xxxxxxx 6

xxxxxxx

7 2 −1 0 7 15 3 3

18

Some uses of Hadamard gates

Hadamard0, NOT0, Hadamard0:

3

4444 1






4

4444 1






5

4444 9






2

4444 6







4

4444 2






5

4444 3






14

4444 −4






8

4444 −4







2

4444 4






3

4444 5






−4

4444 14






−4

4444 8







6 −2 8 −2 10 −18 4 −12



16

More shuffling

Combine NOT, CNOT, Toffoli

to build other permutations.

e.g. series of gates to

rotate 8 positions by distance 1:

3 1 4 1

LLLLLLLLL5 9 2 6

sssssssss

C0C1NOT2
3 1

999994 6

�����
5 9

999992 1

�����
C0NOT1

3

,,,, 6

����
4

,,,, 1

����
5

,,,, 1

����
2

,,,, 9

����
NOT0

6 3 1 4 1 5 9 2

17

Hadamard gates

Hadamard0:

(a; b) 7→ (a + b; a− b).

3

4444 1






4

4444 1






5

4444 9






2

4444 6







4 2 5 3 14 −4 8 −4

Hadamard1:

(a; b; c; d) 7→
(a + c; b + d; a− c; b − d).

3

FFFFFFF 1

FFFFFFF 4

xxxxxxx 1

xxxxxxx 5

FFFFFFF 9

FFFFFFF 2

xxxxxxx 6

xxxxxxx

7 2 −1 0 7 15 3 3

18

Some uses of Hadamard gates

Hadamard0, NOT0, Hadamard0:

3

4444 1






4

4444 1






5

4444 9






2

4444 6







4

4444 2






5

4444 3






14

4444 −4






8

4444 −4







2

4444 4






3

4444 5






−4

4444 14






−4

4444 8







6 −2 8 −2 10 −18 4 −12



17

Hadamard gates

Hadamard0:

(a; b) 7→ (a + b; a− b).

3

4444 1






4

4444 1






5

4444 9






2

4444 6







4 2 5 3 14 −4 8 −4

Hadamard1:

(a; b; c; d) 7→
(a + c; b + d; a− c; b − d).

3

FFFFFFF 1

FFFFFFF 4

xxxxxxx 1

xxxxxxx 5

FFFFFFF 9

FFFFFFF 2

xxxxxxx 6

xxxxxxx

7 2 −1 0 7 15 3 3

18

Some uses of Hadamard gates

Hadamard0, NOT0, Hadamard0:

3

4444 1






4

4444 1






5

4444 9






2

4444 6







4

4444 2






5

4444 3






14

4444 −4






8

4444 −4







2

4444 4






3

4444 5






−4

4444 14






−4

4444 8







6 −2 8 −2 10 −18 4 −12



17

Hadamard gates

Hadamard0:

(a; b) 7→ (a + b; a− b).

3

4444 1






4

4444 1






5

4444 9






2

4444 6







4 2 5 3 14 −4 8 −4

Hadamard1:

(a; b; c; d) 7→
(a + c; b + d; a− c; b − d).

3

FFFFFFF 1

FFFFFFF 4

xxxxxxx 1

xxxxxxx 5

FFFFFFF 9

FFFFFFF 2

xxxxxxx 6

xxxxxxx

7 2 −1 0 7 15 3 3

18

Some uses of Hadamard gates

Hadamard0, NOT0, Hadamard0:

3

4444 1






4

4444 1






5

4444 9






2

4444 6







4

4444 2






5

4444 3






14

4444 −4






8

4444 −4







2

4444 4






3

4444 5






−4

4444 14






−4

4444 8







6 −2 8 −2 10 −18 4 −12

“Multiply each amplitude by 2.”

This is not physically observable.



17

Hadamard gates

Hadamard0:

(a; b) 7→ (a + b; a− b).

3

4444 1






4

4444 1






5

4444 9






2

4444 6







4 2 5 3 14 −4 8 −4

Hadamard1:

(a; b; c; d) 7→
(a + c; b + d; a− c; b − d).

3

FFFFFFF 1

FFFFFFF 4

xxxxxxx 1

xxxxxxx 5

FFFFFFF 9

FFFFFFF 2

xxxxxxx 6

xxxxxxx

7 2 −1 0 7 15 3 3

18

Some uses of Hadamard gates

Hadamard0, NOT0, Hadamard0:

3

4444 1






4

4444 1






5

4444 9






2

4444 6







4

4444 2






5

4444 3






14

4444 −4






8

4444 −4







2

4444 4






3

4444 5






−4

4444 14






−4

4444 8







6 −2 8 −2 10 −18 4 −12

“Multiply each amplitude by 2.”

This is not physically observable.

“Negate amplitude if q0 is set.”

No effect on measuring now.



17

Hadamard gates

Hadamard0:

(a; b) 7→ (a + b; a− b).

3

4444 1






4

4444 1






5

4444 9






2

4444 6







4 2 5 3 14 −4 8 −4

Hadamard1:

(a; b; c; d) 7→
(a + c; b + d; a− c; b − d).

3

FFFFFFF 1

FFFFFFF 4

xxxxxxx 1

xxxxxxx 5

FFFFFFF 9

FFFFFFF 2

xxxxxxx 6

xxxxxxx

7 2 −1 0 7 15 3 3

18

Some uses of Hadamard gates

Hadamard0, NOT0, Hadamard0:

3

4444 1






4

4444 1






5

4444 9






2

4444 6







4

4444 2






5

4444 3






14

4444 −4






8

4444 −4







2

4444 4






3

4444 5






−4

4444 14






−4

4444 8







6 −2 8 −2 10 −18 4 −12

“Multiply each amplitude by 2.”

This is not physically observable.

“Negate amplitude if q0 is set.”

No effect on measuring now.

19

Fancier example:

“Negate amplitude if q0q1 is set.”

Assumes q2 = 0: “ancilla” qubit.

3 1 4 1

LLLLLLLLL0 0 0 0

sssssssss

C0C1NOT2
3

LLLLLLLLL1

LLLLLLLLL4

LLLLLLLLL0

LLLLLLLL0

sssssssss 0

sssssssss 0

sssssssss 1

sssssssss

Hadamard2
3

LLLLLLLLL1

LLLLLLLLL4

LLLLLLLLL1

LLLLLLLLL3

sssssssss 1

sssssssss 4

sssssssss −1

sssssss
NOT2

3

LLLLLLLLL1

LLLLLLLLL4

LLLLLLLLL−1

LLLLLLL3

sssssssss 1

sssssssss 4

sssssssss 1

sssssssss

Hadamard2
6 2 8 0

LLLLLLLLL0 0 0 −2

sssssss
C0C1NOT2

6 2 8 −2 0 0 0 0



17

Hadamard gates

Hadamard0:

(a; b) 7→ (a + b; a− b).

3

4444 1






4

4444 1






5

4444 9






2

4444 6







4 2 5 3 14 −4 8 −4

Hadamard1:

(a; b; c; d) 7→
(a + c; b + d; a− c; b − d).

3

FFFFFFF 1

FFFFFFF 4

xxxxxxx 1

xxxxxxx 5

FFFFFFF 9

FFFFFFF 2

xxxxxxx 6

xxxxxxx

7 2 −1 0 7 15 3 3

18

Some uses of Hadamard gates

Hadamard0, NOT0, Hadamard0:

3

4444 1






4

4444 1






5

4444 9






2

4444 6







4

4444 2






5

4444 3






14

4444 −4






8

4444 −4







2

4444 4






3

4444 5






−4

4444 14






−4

4444 8







6 −2 8 −2 10 −18 4 −12

“Multiply each amplitude by 2.”

This is not physically observable.

“Negate amplitude if q0 is set.”

No effect on measuring now.

19

Fancier example:

“Negate amplitude if q0q1 is set.”

Assumes q2 = 0: “ancilla” qubit.

3 1 4 1

LLLLLLLLL0 0 0 0

sssssssss

C0C1NOT2
3

LLLLLLLLL1

LLLLLLLLL4

LLLLLLLLL0

LLLLLLLL0

sssssssss 0

sssssssss 0

sssssssss 1

sssssssss

Hadamard2
3

LLLLLLLLL1

LLLLLLLLL4

LLLLLLLLL1

LLLLLLLLL3

sssssssss 1

sssssssss 4

sssssssss −1

sssssss
NOT2

3

LLLLLLLLL1

LLLLLLLLL4

LLLLLLLLL−1

LLLLLLL3

sssssssss 1

sssssssss 4

sssssssss 1

sssssssss

Hadamard2
6 2 8 0

LLLLLLLLL0 0 0 −2

sssssss
C0C1NOT2

6 2 8 −2 0 0 0 0



17

Hadamard gates

Hadamard0:

(a; b) 7→ (a + b; a− b).

3

4444 1






4

4444 1






5

4444 9






2

4444 6







4 2 5 3 14 −4 8 −4

Hadamard1:

(a; b; c; d) 7→
(a + c; b + d; a− c; b − d).

3

FFFFFFF 1

FFFFFFF 4

xxxxxxx 1

xxxxxxx 5

FFFFFFF 9

FFFFFFF 2

xxxxxxx 6

xxxxxxx

7 2 −1 0 7 15 3 3

18

Some uses of Hadamard gates

Hadamard0, NOT0, Hadamard0:

3

4444 1






4

4444 1






5

4444 9






2

4444 6







4

4444 2






5

4444 3






14

4444 −4






8

4444 −4







2

4444 4






3

4444 5






−4

4444 14






−4

4444 8







6 −2 8 −2 10 −18 4 −12

“Multiply each amplitude by 2.”

This is not physically observable.

“Negate amplitude if q0 is set.”

No effect on measuring now.

19

Fancier example:

“Negate amplitude if q0q1 is set.”

Assumes q2 = 0: “ancilla” qubit.

3 1 4 1

LLLLLLLLL0 0 0 0

sssssssss

C0C1NOT2
3

LLLLLLLLL1

LLLLLLLLL4

LLLLLLLLL0

LLLLLLLL0

sssssssss 0

sssssssss 0

sssssssss 1

sssssssss

Hadamard2
3

LLLLLLLLL1

LLLLLLLLL4

LLLLLLLLL1

LLLLLLLLL3

sssssssss 1

sssssssss 4

sssssssss −1

sssssss
NOT2

3

LLLLLLLLL1

LLLLLLLLL4

LLLLLLLLL−1

LLLLLLL3

sssssssss 1

sssssssss 4

sssssssss 1

sssssssss

Hadamard2
6 2 8 0

LLLLLLLLL0 0 0 −2

sssssss
C0C1NOT2

6 2 8 −2 0 0 0 0



18

Some uses of Hadamard gates

Hadamard0, NOT0, Hadamard0:

3

4444 1






4

4444 1






5

4444 9






2

4444 6







4

4444 2






5

4444 3






14

4444 −4






8

4444 −4







2

4444 4






3

4444 5






−4

4444 14






−4

4444 8







6 −2 8 −2 10 −18 4 −12

“Multiply each amplitude by 2.”

This is not physically observable.

“Negate amplitude if q0 is set.”

No effect on measuring now.

19

Fancier example:

“Negate amplitude if q0q1 is set.”

Assumes q2 = 0: “ancilla” qubit.

3 1 4 1

LLLLLLLLL0 0 0 0

sssssssss

C0C1NOT2
3

LLLLLLLLL1

LLLLLLLLL4

LLLLLLLLL0

LLLLLLLL0

sssssssss 0

sssssssss 0

sssssssss 1

sssssssss

Hadamard2
3

LLLLLLLLL1

LLLLLLLLL4

LLLLLLLLL1

LLLLLLLLL3

sssssssss 1

sssssssss 4

sssssssss −1

sssssss
NOT2

3

LLLLLLLLL1

LLLLLLLLL4

LLLLLLLLL−1

LLLLLLL3

sssssssss 1

sssssssss 4

sssssssss 1

sssssssss

Hadamard2
6 2 8 0

LLLLLLLLL0 0 0 −2

sssssss
C0C1NOT2

6 2 8 −2 0 0 0 0



18

Some uses of Hadamard gates

Hadamard0, NOT0, Hadamard0:

3

4444 1






4

4444 1






5

4444 9






2

4444 6







4

4444 2






5

4444 3






14

4444 −4






8

4444 −4







2

4444 4






3

4444 5






−4

4444 14






−4

4444 8







6 −2 8 −2 10 −18 4 −12

“Multiply each amplitude by 2.”

This is not physically observable.

“Negate amplitude if q0 is set.”

No effect on measuring now.

19

Fancier example:

“Negate amplitude if q0q1 is set.”

Assumes q2 = 0: “ancilla” qubit.

3 1 4 1

LLLLLLLLL0 0 0 0

sssssssss

C0C1NOT2
3

LLLLLLLLL1

LLLLLLLLL4

LLLLLLLLL0

LLLLLLLL0

sssssssss 0

sssssssss 0

sssssssss 1

sssssssss

Hadamard2
3

LLLLLLLLL1

LLLLLLLLL4

LLLLLLLLL1

LLLLLLLLL3

sssssssss 1

sssssssss 4

sssssssss −1

sssssss
NOT2

3

LLLLLLLLL1

LLLLLLLLL4

LLLLLLLLL−1

LLLLLLL3

sssssssss 1

sssssssss 4

sssssssss 1

sssssssss

Hadamard2
6 2 8 0

LLLLLLLLL0 0 0 −2

sssssss
C0C1NOT2

6 2 8 −2 0 0 0 0

20

Affects measurements: “Negate

amplitude around its average.”

(3; 1; 4; 1) 7→ (1:5; 3:5; 0:5; 3:5).
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Example of Simon’s algorithm
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Each column is a parallel universe.
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0; 0; 0; 0; 0; 0; 0; 0:

Each column is a parallel universe

performing its own computations.
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Example of Simon’s algorithm

Step 5b. More shuffling:

1; 0; 0; 0; 1; 0; 0; 0;

0; 1; 0; 0; 0; 1; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;
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0; 0; 0; 0; 0; 0; 0; 0:

Each column is a parallel universe

performing its own computations.



21

Simon’s algorithm

Assumptions:

• Given any u ∈ {0; 1}n,

can efficiently compute f (u).

• Nonzero s ∈ {0; 1}n.

• f (u) = f (u ⊕ s) for all u.

• f has no other collisions.

Goal: Figure out s.

Traditional algorithm to find s:

compute f for many inputs,

hope to find collision.

Simon’s algorithm finds s with

≈n quantum computations of f .

22

Example of Simon’s algorithm

Step 5c. More shuffling:

1; 0; 0; 0; 0; 0; 0; 0;

0; 1; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 1; 0; 0; 0;

0; 0; 0; 0; 0; 1; 0; 0;
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0; 0; 0; 0; 0; 0; 0; 1:

Each column is a parallel universe

performing its own computations.
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Each column is a parallel universe

performing its own computations.
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information about the surprise: a

random vector orthogonal to 101.
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23

Repeat to figure out 101.
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24

Grover’s algorithm

Assume: unique s ∈ {0; 1}n

has f (s) = 0.

Traditional algorithm to find s:

compute f for many inputs,

hope to find output 0.

Success probability is very low

until #inputs approaches 2n.
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over all n-bit strings u.
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Assume: unique s ∈ {0; 1}n

has f (s) = 0.

Traditional algorithm to find s:

compute f for many inputs,

hope to find output 0.

Success probability is very low

until #inputs approaches 2n.

Grover’s algorithm takes only 2n=2

reversible computations of f .

Typically: reversibility overhead

is small enough that this

easily beats traditional algorithm.
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bu = au otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.
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over all n-bit strings u.

Step 1: Set a← b where

bu = −au if f (u) = 0,

bu = au otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.
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over all n-bit strings u.

Step 1: Set a← b where

bu = −au if f (u) = 0,

bu = au otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.
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Start from uniform superposition

over all n-bit strings u.

Step 1: Set a← b where

bu = −au if f (u) = 0,

bu = au otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

26

Normalized graph of u 7→ au
for an example with n = 12

after 3× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0



25

Start from uniform superposition

over all n-bit strings u.

Step 1: Set a← b where

bu = −au if f (u) = 0,

bu = au otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.
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Start from uniform superposition

over all n-bit strings u.

Step 1: Set a← b where

bu = −au if f (u) = 0,

bu = au otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.
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Start from uniform superposition

over all n-bit strings u.

Step 1: Set a← b where

bu = −au if f (u) = 0,

bu = au otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

26

Normalized graph of u 7→ au
for an example with n = 12
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Start from uniform superposition

over all n-bit strings u.

Step 1: Set a← b where

bu = −au if f (u) = 0,

bu = au otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

26

Normalized graph of u 7→ au
for an example with n = 12

after 7× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0



25

Start from uniform superposition

over all n-bit strings u.

Step 1: Set a← b where

bu = −au if f (u) = 0,

bu = au otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.
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Start from uniform superposition

over all n-bit strings u.

Step 1: Set a← b where

bu = −au if f (u) = 0,

bu = au otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.
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Start from uniform superposition

over all n-bit strings u.

Step 1: Set a← b where

bu = −au if f (u) = 0,

bu = au otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.
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Start from uniform superposition

over all n-bit strings u.

Step 1: Set a← b where

bu = −au if f (u) = 0,

bu = au otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.
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over all n-bit strings u.

Step 1: Set a← b where

bu = −au if f (u) = 0,

bu = au otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2
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Start from uniform superposition

over all n-bit strings u.

Step 1: Set a← b where

bu = −au if f (u) = 0,

bu = au otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2
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Start from uniform superposition

over all n-bit strings u.

Step 1: Set a← b where

bu = −au if f (u) = 0,

bu = au otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.
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over all n-bit strings u.

Step 1: Set a← b where

bu = −au if f (u) = 0,

bu = au otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.
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Step 1: Set a← b where
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bu = au otherwise.

This is fast.
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Negate a around its average.
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bu = au otherwise.
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bu = −au if f (u) = 0,

bu = au otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.
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over all n-bit strings u.

Step 1: Set a← b where

bu = −au if f (u) = 0,

bu = au otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.
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Start from uniform superposition

over all n-bit strings u.

Step 1: Set a← b where

bu = −au if f (u) = 0,

bu = au otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.
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Start from uniform superposition

over all n-bit strings u.

Step 1: Set a← b where

bu = −au if f (u) = 0,

bu = au otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.
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Start from uniform superposition

over all n-bit strings u.

Step 1: Set a← b where

bu = −au if f (u) = 0,

bu = au otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.
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Start from uniform superposition

over all n-bit strings u.

Step 1: Set a← b where

bu = −au if f (u) = 0,

bu = au otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

26

Normalized graph of u 7→ au
for an example with n = 12

after 35× (Step 1 + Step 2):
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Good moment to stop, measure.
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Start from uniform superposition

over all n-bit strings u.

Step 1: Set a← b where

bu = −au if f (u) = 0,

bu = au otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.
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Start from uniform superposition

over all n-bit strings u.

Step 1: Set a← b where

bu = −au if f (u) = 0,

bu = au otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.
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Start from uniform superposition

over all n-bit strings u.

Step 1: Set a← b where

bu = −au if f (u) = 0,

bu = au otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.
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Normalized graph of u 7→ au
for an example with n = 12

after 50× (Step 1 + Step 2):
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Traditional stopping point.
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over all n-bit strings u.

Step 1: Set a← b where

bu = −au if f (u) = 0,

bu = au otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.
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over all n-bit strings u.

Step 1: Set a← b where

bu = −au if f (u) = 0,

bu = au otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2
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Start from uniform superposition

over all n-bit strings u.

Step 1: Set a← b where

bu = −au if f (u) = 0,

bu = au otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.
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over all n-bit strings u.

Step 1: Set a← b where

bu = −au if f (u) = 0,

bu = au otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.
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Normalized graph of u 7→ au
for an example with n = 12

after 90× (Step 1 + Step 2):
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Many more applications

Shor generalizations:

e.g., poly-time attack breaking

“cyclotomic” case of Gentry

STOC 2009 “Fully homomorphic

encryption using ideal lattices”.

Grover generalizations:

e.g., fastest subset-sum attacks

use “quantum walks”.

Not just Shor and Grover:

e.g., subexponential-time

CRS/CSIDH isogeny attack

uses “Kuperberg’s algorithm”.
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