Quantum algorithms

Daniel J. Bernstein

“Quantum algorithm”
means an algorithm that
a quantum computer can run.

I.e. a sequence of instructions,
where each instruction is
In a quantum computer’s
supported Instruction set.

How do we know which
instructions a quantum
computer will support?

Quantum computer type 1 (QC1):
contains many “qubits”;

can efficiently perform

"NOT gate”, “Hadamard gate”,
“controlled NOT gate”, “T gate”.



Quantum algorithms

Daniel J. Bernstein

“Quantum algorithm”
means an algorithm that
a quantum computer can run.

I.e. a sequence of instructions,
where each instruction is
In a quantum computer’s
supported Instruction set.

How do we know which
instructions a quantum
computer will support?

Quantum computer type 1 (QC1):
contains many “qubits”;

can efficiently perform

"NOT gate”, “Hadamard gate”,
“controlled NOT gate”, “T gate”.

Making these instructions work
is the main goal of quantum-
computer engineering.



Quantum algorithms

Daniel J. Bernstein

“Quantum algorithm”
means an algorithm that
a quantum computer can run.

I.e. a sequence of instructions,
where each instruction is
In a quantum computer’s
supported Instruction set.

How do we know which
instructions a quantum
computer will support?

Quantum computer type 1 (QC1):
contains many “qubits”;

can efficiently perform

"NOT gate”, “Hadamard gate”,
“controlled NOT gate”, “T gate”.

Making these instructions work
is the main goal of quantum-
computer engineering.

Combine these instructions

to compute “Toffoli gate”;
“Simon’s algorithm”;
“Shor’s algorithm”; etc.



Quantum algorithms

Daniel J. Bernstein

“Quantum algorithm”
means an algorithm that
a quantum computer can run.

I.e. a sequence of instructions,
where each instruction is
In a quantum computer’s
supported Instruction set.

How do we know which
instructions a quantum
computer will support?

Quantum computer type 1 (QC1):
contains many “qubits”;

can efficiently perform

"NOT gate”, “Hadamard gate”,
“controlled NOT gate”, “T gate”.

Making these instructions work
is the main goal of quantum-
computer engineering.

Combine these instructions

to compute “Toffoli gate”;
“Simon’s algorithm”;
“Shor’s algorithm”; etc.

General belief: Traditional CPU
isn't QCI1; e.g. can't factor quickly.



n algorithms

. Bernstein

im algorithm”
n algorithm that

Im computer can run.

juence of instructions,
1ch instruction is
ntum computer’s
d Instruction set.

 we know which
ions a quantum
er will support?

Quantum computer type 1 (QC1):
contains many “qubits”;

can efficiently perform

"NOT gate”, “Hadamard gate”,
“controlled NOT gate”, “T gate”.

Making these instructions work
is the main goal of quantum-
computer engineering.

Combine these instructions

to compute “Toffoli gate”;
“Simon’s algorithm”;
“Shor’s algorithm” ; etc.

General belief: Traditional CPU
isn't QCI1; e.g. can't factor quickly.

Quantur
stores a
efficientl
laws of ¢
with as

This i1s t
quantun
by 1982
physics



nsS

m
m that

ter can run.

Instructions,
“tion Is
puter’s
lon set.

1 which
antum
pport?

Quantum computer type 1 (QC1):
contains many “qubits”;

can efficiently perform

"‘NOT gate”, “Hadamard gate”,
“controlled NOT gate”, “T gate”.

Making these instructions work
is the main goal of quantum-
computer engineering.

Combine these instructions

to compute “Toffoli gate”;
“Simon’s algorithm”;
“Shor’s algorithm”; etc.

General belief: Traditional CPU
isn't QCI1; e.g. can't factor quickly.

Quantum compute
stores a simulated
efficiently simulate
laws of quantum g
with as much acclt

This Is the origina
quantum compute

by 1982 Feynman
physics with comg



1S,

Quantum computer type 1 (QC1):
contains many “qubits”;

can efficiently perform

"NOT gate”, “Hadamard gate”,
“controlled NOT gate”, “T gate”.

Making these instructions work
is the main goal of quantum-
computer engineering.

Combine these instructions
to compute “Toffoli gate”;
. “Simon’s algorithm”;

. “Shor’s algorithm”; etc.

General belief: Traditional CPU
isn't QCI1; e.g. can't factor quickly.

Quantum computer type 2 (
stores a simulated universe:
efficiently simulates the
laws of quantum physics
with as much accuracy as di

This Is the original concept
quantum computers introdu
by 1982 Feynman “Simulati
physics with computers’ .



Quantum computer type 1 (QC1):
contains many “qubits”;

can efficiently perform

"‘NOT gate”, “Hadamard gate”,
“controlled NOT gate”, “T gate”.

Making these instructions work
is the main goal of quantum-
computer engineering.

Combine these instructions
to compute “Toffoli gate”;
. “Simon’s algorithm”;

. “Shor’s algorithm”; etc.

General belief: Traditional CPU
isn't QCI1; e.g. can't factor quickly.

Quantum computer type 2 (QC2):
stores a simulated universe;
efficiently simulates the

laws of quantum physics

with as much accuracy as desired.

This is the original concept of

quantum computers introduced
by 1982 Feynman “Simulating

physics with computers’ .



Quantum computer type 1 (QC1):
contains many “qubits”;

can efficiently perform

"‘NOT gate”, “Hadamard gate”,
“controlled NOT gate”, “T gate”.

Making these instructions work
is the main goal of quantum-
computer engineering.

Combine these instructions
to compute “Toffoli gate”;
. “Simon’s algorithm”;

. “Shor’s algorithm”; etc.

General belief: Traditional CPU

isn't QCI1; e.g. can't factor quickly.

Quantum computer type 2 (QC2):
stores a simulated universe;
efficiently simulates the

laws of quantum physics

with as much accuracy as desired.

This is the original concept of

quantum computers introduced
by 1982 Feynman “Simulating

physics with computers’ .

General belief: any QC1 is a QC2.
Partial proof: see, e.g.,
2011 Jordan—Lee—Preskill
“Quantum algorithms for
quantum field theories" .



n computer type 1 (QC1):
many “qubits’;
lently perform

ate”, "Hadamard gate’,
led NOT gate”, “T gate”.

these instructions work
1ain goal of quantum-
er engineering.

> these instructions
ute “Toffoli gate”;
1on’'s algorithm'™;
or's algorithm™ ; etc.

belief: Traditional CPU

1; e.g. can't factor quickly.

Quantum computer type 2 (QC2):
stores a simulated universe:
efficiently simulates the

laws of quantum physics

with as much accuracy as desired.

This is the original concept of

quantum computers introduced
by 1982 Feynman “Simulating

physics with computers’ .

General belief: any QC1 is a QC2.
Partial proof: see, e.g.,

2011 Jordan—Lee—Preskill
“Quantum algorithms for
quantum field theories” .

3

Quantur
efficientl
that any
compute



r type 1 (QC1):
1bits” :

orm

damard gate’,
rate’, T gate’.

tructions work
of quantum-
ering.

tructions
|l gate’’;
rithm'

hm" : etc.

aditional CPU
1't factor quickly.

Quantum computer type 2 (QC2):

stores a simulated universe;
efficiently simulates the
laws of quantum physics

with as much accuracy as desired.

This is the original concept of

quantum computers introduced
by 1982 Feynman “Simulating

physics with computers’ .

General belief: any QC1 is a QC2.

Partial proof: see, e.g.,
2011 Jordan—Lee—Preskill
“Quantum algorithms for
quantum field theories" .

Quantum compute
efficiently comput:
that any possible |
computer can con



QC1):

1te
gate” .

work
Im-

PU

quickly.

Quantum computer type 2 (QC2):

stores a simulated universe:
efficiently simulates the
laws of quantum physics

with as much accuracy as desired.

This is the original concept of

quantum computers introduced
by 1982 Feynman “Simulating

physics with computers’ .

General belief: any QC1 is a QC2.

Partial proof: see, e.g.,
2011 Jordan—Lee—Preskill
“Quantum algorithms for
quantum field theories" .

Quantum computer type 3 (
efficiently computes anythin

that any possible physica
computer can compute effic



3 4

Quantum computer type 2 (QC2): Quantum computer type 3 (QC3):
stores a simulated universe; efficiently computes anything
efficiently simulates the that any possible physica

laws of quantum physics computer can compute efficiently.

with as much accuracy as desired.

This is the original concept of

quantum computers introduced
by 1982 Feynman “Simulating

physics with computers’ .

General belief: any QC1 is a QC2.
Partial proof: see, e.g.,

2011 Jordan—Lee—Preskill
“Quantum algorithms for
quantum field theories" .




Quantum computer type 2 (QC2):

stores a simulated universe;
efficiently simulates the
laws of quantum physics

with as much accuracy as desired.

This is the original concept of

quantum computers introduced
by 1982 Feynman “Simulating

physics with computers’ .

General belief: any QC1 is a QC2.

Partial proof: see, e.g.,
2011 Jordan—Lee—Preskill
“Quantum algorithms for
quantum field theories" .

Quantum computer type 3 (QC3):
efficiently computes anything

that any possible physica
computer can compute efficiently.

General belief: any QC2 is a QC3.
Argument for belief:

any physical computer must
follow the laws of quantum
physics, so a QC2 can efficiently
simulate any physical computer.



Quantum computer type 2 (QC2):

stores a simulated universe;
efficiently simulates the
laws of quantum physics

with as much accuracy as desired.

This is the original concept of

quantum computers introduced
by 1982 Feynman “Simulating

physics with computers’ .

General belief: any QC1 is a QC2.

Partial proof: see, e.g.,
2011 Jordan—Lee—Preskill
“Quantum algorithms for
quantum field theories" .

Quantum computer type 3 (QC3):
efficiently computes anything

that any possible physica
computer can compute efficiently.

General belief: any QC2 is a QC3.
Argument for belief:

any physical computer must
follow the laws of quantum
physics, so a QC2 can efficiently
simulate any physical computer.

General belief: any QC3 is a QC1.
Argument for belief:
look, we're building a QCI.



n computer type 2 (QC2):

simulated universe;
y simulates the
juantum physics

much accuracy as desired.

he original concept of

' computers introduced
Feynman “Simulating

Nith computers’ .

belief: any QC1 is a QC2.

roof: see, e.g.,
dan—Lee—Preskill
im algorithms for
1 field theories™ .

Quantum computer type 3 (QC3):

efficiently computes anything

that any possible physica
computer can compute efficiently.

General belief: any QC2 is a QCS3.

Argument for belief:

any physical computer must
follow the laws of quantum
physics, so a QC2 can efficiently
simulate any physical computer.

General belief: any QC3 is a QC1.

Argument for belief:
look, we're building a QC1.

A note ¢

Apparen
Current
from D-
can ber
simulate



r type 2 (QC2):

universe:
s the
hysics

Iracy as desired.

| concept of

rs introduced
“Simulating

uters’ .

vy QC1 is a QC2.

e.g.,
Preskill

1ms for
ories .

Quantum computer type 3 (QC3):

efficiently computes anything

that any possible physica
computer can compute efficiently.

General belief: any QC2 is a QCS3.

Argument for belief:

any physical computer must
follow the laws of quantum
physics, so a QC2 can efficiently
simulate any physical computer.

General belief: any QC3 is a QC1.

Argument for belief:
look, we're building a QC1.

A note on D-Wave

Apparent scientific
Current “quanturm
from D-Wave are
can be more cost-
simulated by tradi



QC2):

asired.

of
ced

ng

' QC2.

Quantum computer type 3 (QC3):

efficiently computes anything

that any possible physica
computer can compute efficiently.

General belief: any QC2 is a QCS3.

Argument for belief:

any physical computer must
follow the laws of quantum
physics, so a QC2 can efficiently
simulate any physical computer.

General belief: any QC3 is a QC1.

Argument for belief:
look, we're building a QC1.

A note on D-Wave

Apparent scientific consensu
Current “quantum compute
from D-Wave are useless—
can be more cost-effectively
simulated by traditional CPl



Quantum computer type 3 (QC3): A note on D-Wave
efficiently computes anything

Apparent scientific consensus:

that any possible physica » ’
y P PRy Current “quantum computers

computer can compute efficiently. tom D-Wave are useless—
General belief: any QC2 is a QCS3. can be more cost-effectively
Argument for belief: simulated by traditional CPUs.
any physical computer must
follow the laws of quantum
physics, so a QC2 can efficiently

simulate any physical computer.

General belief: any QC3 is a QC1.
Argument for belief:
look, we're building a QC1.




Quantum computer type 3 (QC3): A note on D-Wave
efficiently computes anything

Apparent scientific consensus:

that any possible physica » ’
y P PRy Current “quantum computers

computer can compute efficiently. tom D-Wave are useless—
General belief: any QC2 is a QCS3. can be more cost-effectively
Argument for belief: simulated by traditional CPUs.

any physical computer must But D-Wave ic

follow the laws of quantum . .
e collecting venture capital;

physics, so a QC2 can efficiently
simulate any physical computer.

General belief: any QC3 is a QC1.
Argument for belief:

look, we're building a QC1.




Quantum computer type 3 (QC3): A note on D-Wave
efficiently computes anything

Apparent scientific consensus:

that any possible physica » ’
y P PRy Current “quantum computers

computer can compute efficiently. tom D-Wave are useless—
General belief: any QC2 is a QCS3. can be more cost-effectively
Argument for belief: simulated by traditional CPUs.

any physical computer must But D-Wave ic

follow the laws of quantum . .
e collecting venture capital;

physics, so a QC2 can efficiently

| | e selling some machines;
simulate any physical computer.

General belief: any QC3 is a QC1.
Argument for belief:
look, we're building a QC1.




Quantum computer type 3 (QC3):

efficiently computes anything

that any possible physica
computer can compute efficiently.

General belief: any QC2 is a QCS3.

Argument for belief:

any physical computer must
follow the laws of quantum
physics, so a QC2 can efficiently
simulate any physical computer.

General belief: any QC3 is a QC1.

Argument for belief:
look, we're building a QC1.

A note on D-Wave

Apparent scientific consensus:
Current “quantum computers”
from D-Wave are useless—
can be more cost-effectively
simulated by traditional CPUs.

But D-Wave is

e collecting venture capital;

e selling some machines;

e collecting possibly useful
engineering expertise;



Quantum computer type 3 (QC3):

efficiently computes anything

that any possible physica
computer can compute efficiently.

General belief: any QC2 is a QCS3.

Argument for belief:

any physical computer must
follow the laws of quantum
physics, so a QC2 can efficiently
simulate any physical computer.

General belief: any QC3 is a QC1.

Argument for belief:
look, we're building a QC1.

A note on D-Wave

Apparent scientific consensus:
Current “quantum computers”
from D-Wave are useless—
can be more cost-effectively
simulated by traditional CPUs.

But D-Wave is

e collecting venture capital;

e selling some machines;

e collecting possibly useful
engineering expertise;

e not being punished

for deceiving people.



Quantum computer type 3 (QC3):

efficiently computes anything

that any possible physica
computer can compute efficiently.

General belief: any QC2 is a QCS3.

Argument for belief:

any physical computer must
follow the laws of quantum
physics, so a QC2 can efficiently
simulate any physical computer.

General belief: any QC3 is a QC1.

Argument for belief:
look, we're building a QC1.

A note on D-Wave

Apparent scientific consensus:
Current “quantum computers”
from D-Wave are useless—
can be more cost-effectively
simulated by traditional CPUs.

But D-Wave is

e collecting venture capital;

e selling some machines;

e collecting possibly useful
engineering expertise;

e not being punished

for deceiving people.

Is D-Wave a bad investment?



n computer type 3 (QC3):

y computes anything

- possible physica
r can compute efficiently.

belief: any QC2 is a QC3.

1t for belief:

sical computer must

1e laws of quantum

so a QC2 can efficiently
any physical computer.

belief: any QC3 is a QC1.

1t for belief:
're building a QC1.

A note on D-Wave

Apparent scientific consensus:

Current “quantum computers”

from D-Wave are useless—
can be more cost-effectively

simulated by traditional CPUs.

But D-Wave is

e collecting venture capital;

e selling some machines;

e collecting possibly useful
engineering expertise;

e not being punished

for deceiving people.

Is D-Wave a bad investment?

T he stat

Data (
a list of

e.g.. (0,



r type 3 (QC3): A note on D-Wave The state of a cor
eiar?ytfnng Apparent scientific consensus: Data ( “state”) stc
’ ysmafr - Current “quantum computers” a list of 3 element
pute etmciently. from D-Wave are useless— e.g.: (0,0,0).

y QC2 is a QCS3. can be more cost-effectively

of simulated by traditional CPUs.

uter must But D-Wave is

quantum

e collecting venture capital;

can efficientl . .
Y e selling some machines;

cal computer. . .
P e collecting possibly useful

vy QC3 is a QC1. engineering expertise;
of e not being punished
g a QCI. for deceiving people.

Is D-Wave a bad investment?




QC3): A note on D-Wave The state of a computer

5 Apparent scientific consensus: Data ( “state” ) stored in 3 &
S Current “quantum computers” a list of 3 elements of {0, 1}
ently. from D-Wave are useless— e.g.: (0,0,0).

' QC3. can be more cost-effectively

simulated by traditional CPUs.

But D-Wave is

e collecting venture capital;
ntly . .

e selling some machines;
Iter. . .

e collecting possibly useful
' QC1. engineering expertise;

e not being punished

for deceiving people.

Is D-Wave a bad investment?




A note on D-Wave

Apparent scientific consensus:
Current “quantum computers”
from D-Wave are useless—
can be more cost-effectively
simulated by traditional CPUs.

But D-Wave is

e collecting venture capital;

e selling some machines;

e collecting possibly useful
engineering expertise;

e not being punished

for deceiving people.

Is D-Wave a bad investment?

The state of a computer

Data ( “state”) stored in 3 bits:
a list of 3 elements of {0, 1}.
e.g.. (0,0,0).



A note on D-Wave

Apparent scientific consensus:
Current “quantum computers”
from D-Wave are useless—
can be more cost-effectively
simulated by traditional CPUs.

But D-Wave is

e collecting venture capital;

e selling some machines;

e collecting possibly useful
engineering expertise;

e not being punished

for deceiving people.

Is D-Wave a bad investment?

The state of a computer

Data ( “state”) stored in 3 bits:
a list of 3 elements of {0, 1}.
e.g.. (0,0,0).

eg: (1,1,1).



A note on D-Wave

Apparent scientific consensus:

Current “quantum computers”

from D-Wave are useless—
can be more cost-effectively

simulated by traditional CPUs.

But D-Wave is

e collecting venture capital;

e selling some machines;

e collecting possibly useful
engineering expertise;

e not being punished

for deceiving people.

Is D-Wave a bad investment?

The state of a computer

Data ( “state”) stored in 3 bits:
a list of 3 elements of {0, 1}.

e.g.. (0,0,0).
eg: (1,1,1)
e.g.. (0,1,1).



A note on D-Wave

Apparent scientific consensus:

Current “quantum computers”

from D-Wave are useless—
can be more cost-effectively

simulated by traditional CPUs.

But D-Wave is

e collecting venture capital;

e selling some machines;

e collecting possibly useful
engineering expertise;

e not being punished

for deceiving people.

Is D-Wave a bad investment?

The state of a computer

Data ( “state”) stored in 3 bits:
a list of 3 elements of {0, 1}.

e.g.. (0,0,0).
eg: (1,1,1)
e.g.: (0,1,1).

Data stored in 64 bits:
a list of 64 elements of {0, 1}.



A note on D-Wave

Apparent scientific consensus:

Current “quantum computers”

from D-Wave are useless—
can be more cost-effectively

simulated by traditional CPUs.

But D-Wave is

e collecting venture capital;

e selling some machines;

e collecting possibly useful
engineering expertise;

e not being punished

for deceiving people.

Is D-Wave a bad investment?

The state of a computer

Data ( “state”) stored in 3 bits:
a list of 3 elements of {0, 1}.

e.g.. (0,0,0).
eg: (1,1,1)
e.g.: (0,1,1).

Data stored in 64 bits:

a list of 64 elements of {0, 1}.
eg: (1,1,1,1,1,0,0,0,1,
0,0,0,000,1,1,0,0,0,
0,10,0,1,0,0,0,0,0,1,
1,0,1,0,0,0,1,0,0,0,1,
0,0,1,1,1,0,0,1,0,0,0,
1,1,0,1,1,0,0,1,0,0,1).



n D-Wave

t scientific consensus:

“quantum computers”

\Wave are useless—
nore cost-effectively

d by traditional CPUs.

Vave Is

Ing venture capital;
some machines;
ing possibly useful
ering expertise;
ing punished
“elving people.

ve a bad investment?

The state of a computer

Data ( “state”) stored in 3 bits:

a list of 3 elements of {0, 1}.

e.g.: (0,0,0).
eg: (1,1,1)
e.g.: (0,1,1).

Data stored in 64 bits:

a list of 64 elements of {0, 1}.
eg: (1,1,1,1,1,0,0,0,1,
0,0,0,0,00,1,1,0,0,0,
0,10,0,1,0,0,0,0,0,1,
1,0,1,0,0,0,1,0,0,0,1,
0,0,1,1,1,0,0,1,0,0,0,
1,1,0,1,1,0,0,1,0,0,1).

T he stat

Data stc
a list of

e.g.. (3



v

. consensus.

 computers”

useless—
effectively

tional CPUs.

e capital;
chines;

ly useful
rtise;

1ed

ople.

nvestment?

The state of a computer

Data ( “state”) stored in 3 bits:

a list of 3 elements of {0, 1}.
e.g.. (0,0,0).
eg.: (1,1,1).
eg.: (0,1,1).

Data stored in 64 bits:

a list of 64 elements of {0, 1}.
eg: (1,1,1,1,1,0,0,0,1,
0,0,0,0001,1,0,0,0,
0,10,0,1,0,0,0,0,0,1,
1,0,1,0,0,0,1,0,0,0,1,
0,0,1,1,1,0,0,1,0,0,0,
1,1,0,1,1,0,0,1,0,0,1).

The state of a qus

Data stored in 3 ¢

a list of 8 number

e.g.:

(3,1,4,1,5,



The state of a computer The state of a quantum con
Data ( “state”) stored in 3 bits: Data stored in 3 qubits:

a list of 3 elements of {0, 1}. a list of 8 numbers, not all :
e.g.: (0,0,0). eg.: (3,1,4,1,509,2,6).
eg: (1,1,1).

e.g.: (0,1,1).

Data stored in 64 bits:

a list of 64 elements of {0, 1}.
eg: (1,1,1,1,1,0,0,0,1,
0,0,0,000,1,1,0,0,0,
0,10,0,1,0,0,0,0,0,1,
1,0,1,0,0,0,1,0,0,0,1,
0,0,1,1,1,0,0,1,0,0,0,
1,1,0,1,1,0,0,1,0,0,1).




The state of a computer

Data ( “state”) stored in 3 bits:

a list of 3 elements of {0, 1}.
e.g.. (0,0,0).
eg: (1,1,1).
e.g.: (0,1,1).

Data stored in 64 bits:

a list of 64 elements of {0, 1}.
eg: (1,1,1,1,1,0,0,0,1,
0,0,0,000,1,1,0,0,0,
0,10,0,1,0,0,0,0,0,1,
,0,1,0,0,0,1,0,0,0,1,
0,0,1,1,1,0,0,1,0,0,0,
1,1,0,1,1,0,0,1,0,0,1).

The state of a quantum computer

Data stored in 3 qubits:

a list of 8 numbers, not all zero.
e.g.:

(3,1,4,1,5,9,2,6).

7



The state of a computer

Data ( “state”) stored in 3 bits:

a list of 3 elements of {0, 1}.
e.g.. (0,0,0).
eg: (1,1,1).
e.g.: (0,1,1).

Data stored in 64 bits:

a list of 64 elements of {0, 1}.
eg: (1,1,1,1,1,0,0,0,1,
0,0,0,000,1,1,0,0,0,
0,10,0,1,0,0,0,0,0,1,
,0,1,0,0,0,1,0,0,0,1,
0,0,1,1,1,0,0,1,0,0,0,
1,1,0,1,1,0,0,1,0,0,1).

The state of a quantum computer

Data stored in 3 qubits:

a list of 8 numbers, not all zero.
e.g.: (3,1,4,1,5,9,2,6).

eg.: (—2,7,—1,8,1,—-8,-2,8).



The state of a computer

Data ( “state”) stored in 3 bits:

a list of 3 elements of {0, 1}.
e.g.. (0,0,0).
eg: (1,1,1).
e.g.: (0,1,1).

Data stored in 64 bits:

a list of 64 elements of {0, 1}.
eg: (1,1,1,1,1,0,0,0,1,
0,0,0,000,1,1,0,0,0,
0,10,0,1,0,0,0,0,0,1,
,0,1,0,0,0,1,0,0,0,1,
0,0,1,1,1,0,0,1,0,0,0,
1,1,0,1,1,0,0,1,0,0,1).

The state of a quantum computer

Data stored in 3 qubits:

a list of 8 numbers, not all zero.
e.g.: (3,1,4,1,5,9,2,6).

eg.: (—2,7,—1,8,1,—-8,-2,8).
e.g.: (0,0,0,0,0,1,0,0).



The state of a computer

Data ( “state”) stored in 3 bits:

a list of 3 elements of {0, 1}.
e.g.. (0,0,0).
eg: (1,1,1).
e.g.: (0,1,1).

Data stored in 64 bits:

a list of 64 elements of {0, 1}.
eg: (1,1,1,1,1,0,0,0,1,
0,0,0,000,1,1,0,0,0,
0,10,0,1,0,0,0,0,0,1,
,0,1,0,0,0,1,0,0,0,1,
0,0,1,1,1,0,0,1,0,0,0,
1,1,0,1,1,0,0,1,0,0,1).

7
The state of a quantum computer

Data stored in 3 qubits:

a list of 8 numbers, not all zero.
e.g.: (3,1,4,1,5,9,2,6).

eg.: (—2,7,—1,8,1,—-8,-2,8).
e.g.: (0,0,0,0,0,1,0,0).

Data stored in 4 qubits: a list of
16 numbers, not all zero. e.g.:

(3,1,4,1,5,9,2,6,5,3,5,8,9,7,9,3).



The state of a computer

Data ( “state”) stored in 3 bits:

a list of 3 elements of {0, 1}.
e.g.. (0,0,0).
eg: (1,1,1).
e.g.: (0,1,1).

Data stored in 64 bits:

a list of 64 elements of {0, 1}.
eg: (1,1,1,1,1,0,0,0,1,
0,0,0,000,1,1,0,0,0,
0,10,0,1,0,0,0,0,0,1,
,0,1,0,0,0,1,0,0,0,1,
0,0,1,1,1,0,0,1,0,0,0,
1,1,0,1,1,0,0,1,0,0,1).

The state of a quantum computer

Data stored in 3 qubits:

a list of 8 numbers, not all zero.

e.g.: (3,1,4,1,5,9,2,6).

eg.: (—2,7,—1,8,1,—8,—2,8).

e.g.: (0,0,0,0,0,1,0,0).

Data stored in 4 qubits: a list of

16 numbers, not all zero. e.g.:

7

(3,1,4,1,5,9,2,6,5,3,5,8,9,7,9,3).

Data stored in 64 qubits:

3 list of 2°* numbers. not all zero.



The state of a computer

Data ( “state”) stored in 3 bits:

a list of 3 elements of {0, 1}.
e.g.. (0,0,0).
eg: (1,1,1).
e.g.: (0,1,1).

Data stored in 64 bits:

a list of 64 elements of {0, 1}.
eg: (1,1,1,1,1,0,0,0,1,
0,0,0,000,1,1,0,0,0,
0,10,0,1,0,0,0,0,0,1,
,0,1,0,0,0,1,0,0,0,1,
0,0,1,1,1,0,0,1,0,0,0,
1,1,0,1,1,0,0,1,0,0,1).

The state of a quantum computer

Data stored in 3 qubits:

a list of 8 numbers, not all zero.

e.g.: (3,1,4,1,5,9,2,6).

eg.: (—2,7,—1,8,1,—8,—2,8).

e.g.: (0,0,0,0,0,1,0,0).

Data stored in 4 qubits: a list of

16 numbers, not all zero. e.g.:

7

(3,1,4,1,5,9,2,6,5,3,5,8,9,7,9,3).

Data stored in 64 qubits:

3 list of 2°* numbers. not all zero.

Data stored in 1000 qubits: a list

of 21000 numbers, not all zero.



e of a computer

state” ) stored in 3 bits:

3 elements of {0, 1}.
0,0).
1,1).
1,1).

red in 64 bits:

64 elements of {0, 1}.
1,1,1,1,0,0,0, 1,
.0,0,1,1,0,0,0,
.1,0,0,0,0,0,1,
.0,0,1,0,0,0,1,
.1,0,0,1,0,0,0,
.1,0,0,1,0,0,1).

7
The state of a quantum computer

Data stored in 3 qubits:

a list of 8 numbers, not all zero.
e.g.: (3,1,4,1,5,9,2,6).

eg.: (—2,7,—1,8,1,—-8,-2,8).
e.g.: (0,0,0,0,0,1,0,0).

Data stored in 4 qubits: a list of
16 numbers, not all zero. e.g.:

(3,1,4,1,5,9,2,6,5,3,5,8,9,7,9,3).

Data stored in 64 qubits:
3 list of 2°* numbers. not all zero.

Data stored in 1000 qubits: a list
of 21000 numbers, not all zero.

Measuri

Can sim
Cannot
of numb



nputer

red in 3 bits:

s of {0, 1}.

bits:

ts of {0, 1}.
),0,0,1,
0,0,0,
0,0,1,
0,0,1,
0,0,0,
0,0,1).

7
The state of a quantum computer

Data stored in 3 qubits:

a list of 8 numbers, not all zero.
e.g.: (3,1,4,1,5,9,2,6).

eg.: (—2,7,—1,8,1,-8,-2,8).
e.g.: (0,0,0,0,0,1,0,0).

Data stored in 4 qubits: a list of
16 numbers, not all zero. e.g.:

(3,1,4,1,5,9,2,6,5,3,5,8,9,7,9,3).

Data stored in 64 qubits:
3 list of 2°* numbers. not all zero.

Data stored in 1000 qubits: a list

of 21000 numbers, not all zero.

Measuring a quan

Can simply look a
Cannot simply loo
of numbers stored



1ts:

7
The state of a quantum computer

Data stored in 3 qubits:

a list of 8 numbers, not all zero.
e.g.: (3,1,4,1,5,9,2,6).

eg.: (—2,7,—1,8,1,—-8,-2,8).
e.g.: (0,0,0,0,0,1,0,0).

Data stored in 4 qubits: a list of
16 numbers, not all zero. e.g.:

(3,1,4,1,5,9,2,6,5,3,5,8,9,7,9,3).

Data stored in 64 qubits:

264

a list of numbers, not all zero.

Data stored in 1000 qubits: a list
of 21000 numbers, not all zero.

Measuring a quantum comp

Can simply look at a bit.
Cannot simply look at the |
of numbers stored in n qubr’



7
The state of a quantum computer

Data stored in 3 qubits:

a list of 8 numbers, not all zero.
e.g.: (3,1,4,1,5,9,2,6).

eg.: (—2,7,—1,8,1,—-8,-2,8).
e.g.: (0,0,0,0,0,1,0,0).

Data stored in 4 qubits: a list of
16 numbers, not all zero. e.g.:

(3,1,4,1,5,9,2,6,5,3,5,8,9,7,9,3).

Data stored in 64 qubits:

264

a list of numbers, not all zero.

Data stored in 1000 qubits: a list

of 21000 numbers, not all zero.

Measuring a quantum computer

Can simply look at a bit.
Cannot simply look at the list
of numbers stored in n qubits.



7
The state of a quantum computer

Data stored in 3 qubits:

a list of 8 numbers, not all zero.
e.g.: (3,1,4,1,5,9,2,6).

eg.: (—2,7,—1,8,1,—-8,-2,8).
e.g.: (0,0,0,0,0,1,0,0).

Data stored in 4 qubits: a list of
16 numbers, not all zero. e.g.:

(3,1,4,1,5,9,2,6,5,3,5,8,9,7,9,3).

Data stored in 64 qubits:

264

a list of numbers, not all zero.

Data stored in 1000 qubits: a list

of 21000 numbers, not all zero.

Measuring a quantum computer

Can simply look at a bit.
Cannot simply look at the list
of numbers stored in n qubits.

Measuring n qubits
e produces n bits and
e destroys the state.



The state of a quantum computer

Data stored in 3 qubits:

a list of 8 numbers, not all zero.
e.g.: (3,1,4,1,5,9,2,6).

eg.: (—2,7,—1,8,1,—-8,-2,8).
e.g.: (0,0,0,0,0,1,0,0).

Data stored in 4 qubits: a list of
16 numbers, not all zero. e.g.:

(3,1,4,1,5,9,2,6,5,3,5,8,9,7,9,3).

Data stored in 64 qubits:

264

a list of numbers, not all zero.

Data stored in 1000 qubits: a list

of 21000 numbers, not all zero.

Measuring a quantum computer

Can simply look at a bit.
Cannot simply look at the list
of numbers stored in n qubits.

Measuring n qubits
e produces n bits and
e destroys the state.

If n qubits have state

(ao, a1, ..
measurement produces g

with probability |ag|?/ Y, |ar|?.

.,aQn_l) then



The state of a quantum computer

Data stored in 3 qubits:

a list of 8 numbers, not all zero.
e.g.: (3,1,4,1,5,9,2,6).

eg.: (—2,7,—1,8,1,—-8,-2,8).
e.g.: (0,0,0,0,0,1,0,0).

Data stored in 4 qubits: a list of
16 numbers, not all zero. e.g.:

(3,1,4,1,5,9,2,6,5,3,5,8,9,7,9,3).

Data stored in 64 qubits:

264

a list of numbers, not all zero.

Data stored in 1000 qubits: a list

of 21000 numbers, not all zero.

Measuring a quantum computer

Can simply look at a bit.
Cannot simply look at the list
of numbers stored in n qubits.

Measuring n qubits
e produces n bits and
e destroys the state.

If n qubits have state

(ao, a1, ..
measurement produces g

with probability |ag|?/ Y, |ar|?.

.,aQn_l) then

State is then all zeros
except 1 at position q.



e of a quantum computer

red In 3 qubits:

8 numbers, not all zero.
1,4,1,5,9,2,6).
2,7,—1,8,1, -8, -2, 8).
0,0,0,0,1,0,0).

red in 4 qubits: a list of

vers, not all zero. e.g.:
,5,9,2,6,5,3,5,8,9,7,9, 3).

red In 64 qubits:

004 numbers, not all zero.

red In 1000 qubits: a list
numbers, not all zero.

Measuring a quantum computer

Can simply look at a bit.
Cannot simply look at the list
of numbers stored in n qubits.

Measuring n qubits
e produces n bits and
e destroys the state.

If n qubits have state

(ao, a1, ..
measurement produces g

with probability |ag|?/ Y, |ar|?.

Y azn_l) then

State is then all zeros
except 1 at position q.

e.g.. Sa
(1,1,1,:



Intum_computer

ubits:

s, not all zero.
),2,06).

' 1,—-8,—-2,8).
1,0,0).

ubits: a list of

Il zero. e.g.:
.5,3,5,8,9,7,9, 3).

qubits:
ers, not all zero.

)0 qubits: a list
not all zero.

Measuring a quantum computer

Can simply look at a bit.
Cannot simply look at the list
of numbers stored in n qubits.

Measuring n qubits
e produces n bits and
e destroys the state.

If n qubits have state

(ao, a1, ..
measurement produces g

with probability |ag|?/ Y, |ar|?.

Y aQn_l) then

State is then all zeros
except 1 at position q.

e.g.: Say 3 qubits
(1,1,1,1,1,1,1,1



1puter

’E€ro.

st of

| zero.

a list
ro.

Measuring a quantum computer

0,7,9,3).

Can simply look at a bit.
Cannot simply look at the list
of numbers stored in n qubits.

Measuring n qubits
e produces n bits and
e destroys the state.

If n qubits have state

(ag, a1,...,a»_1) then
measurement produces g

with probability |ag|?/ Y, |ar|?.

State is then all zeros
except 1 at position q.

e.g.: Say 3 qubits have stat:
(1,1,1,1,1,1,1,1).



Measuring a quantum computer

Can simply look at a bit.
Cannot simply look at the list
of numbers stored in n qubits.

Measuring n qubits
e produces n bits and
e destroys the state.

If n qubits have state

(ag, a1,...,a»_1) then
measurement produces g

with probability |ag|?/ Y, |ar|?.

State is then all zeros
except 1 at position q.

e.g.: Say 3 qubits have state
(1,1,1,1,1,1,1,1).



Measuring a quantum computer

Can simply look at a bit.
Cannot simply look at the list
of numbers stored in n qubits.

Measuring n qubits
e produces n bits and
e destroys the state.

If n qubits have state

(a0, a1, ..., arn_1) then
measurement produces g

with probability |ag|?/ Y, |ar|?.

State is then all zeros
except 1 at position q.

e.g.: Say 3 qubits have state
(1,1,1,1,1,1,1,1).

Measurement produces

000 = 0 with
001 = 1 with
010 = 2 with
011 = 3 with
100 = 4 with
101 = 5 with
110 = 6 with

111 = 7 with

Dropanbil
Dropanbil

Dropanbil

DFroPanl

probabi

DrFroPanl

DFroPanl

ility 1/8;
ility 1/8;
ility 1/8;
ility 1/8;
ility 1/8;
ility 1/8;
ility 1/8;
orobability 1/8.



Measuring a quantum computer

Can simply look at a bit.
Cannot simply look at the list
of numbers stored in n qubits.

Measuring n qubits
e produces n bits and
e destroys the state.

If n qubits have state

(a0, a1, ..., arn_1) then
measurement produces g

with probability |ag|?/ Y, |ar|?.

State is then all zeros
except 1 at position q.

e.g.: Say 3 qubits have state
(1,1,1,1,1,1,1,1).

Measurement produces

000 = 0 with probability 1/8;
001 = 1 with probability 1/8;
010 = 2 with probability 1/8;
011 = 3 with probability 1/8;
100 = 4 with probability 1/8;
101 = 5 with probability 1/8;
110 = 6 with probability 1/8;
111 = 7 with probability 1/8.

“Quantum RNG.”



Measuring a quantum computer

Can simply look at a bit.
Cannot simply look at the list
of numbers stored in n qubits.

Measuring n qubits
e produces n bits and
e destroys the state.

If n qubits have state

(a0, a1, ..., arn_1) then
measurement produces g

with probability |ag|?/ Y, |ar|?.

State is then all zeros
except 1 at position q.

e.g.: Say 3 qubits have state
(1,1,1,1,1,1,1,1).

Measurement produces

000 = 0 with probability 1/8;
001 = 1 with probability 1/8;
010 = 2 with probability 1/8;
011 = 3 with probability 1/8;
100 = 4 with probability 1/8;
101 = 5 with probability 1/8;
110 = 6 with probability 1/8;
111 = 7 with probability 1/8.

“Quantum RNG.”

Warning: Quantum RNGs sold
today are measurably biased.




N1g a quantum computer

ply look at a bit.
simply look at the list
ers stored in n qubits.

iNng n qubits
“es n bits and
vs the state.

ts have state
e azn_l) then
ment produces g

bability |aq|?/S_, |ar|?.

then all zeros
at position g.

e.g.. Say 3 qubits have state
(1,1,1,1,1,1,1,1).

Measurement produces

000 = 0 with probability 1/8;
001 = 1 with probability 1/8;
010 = 2 with probability 1/8;
011 = 3 with probability 1/8;
100 = 4 with probability 1/8;
101 = 5 with probability 1/8;
110 = 6 with probability 1/8;
111 = 7 with probability 1/8.

“Quantum RNG.”

Warning: Quantum RNGs sold
today are measurably biased.

e.g.. Sa
(3,1,4,:



(um_computer

t a bit.
k at the list
in n qubits.

ts
and
e.

ate
then
luces g

al?/ X rlarl?.

2ros

n q.

e.g.: Say 3 qubits have state
(1,1,1,1,1,1,1,1).

Measurement produces

000 = 0 with probability 1/8;
001 = 1 with probability 1/8;
010 = 2 with probability 1/8;
011 = 3 with probability 1/8;
100 = 4 with probability 1/8;
101 = 5 with probability 1/8;
110 = 6 with probability 1/8;
111 = 7 with probability 1/8.

“Quantum RNG.”

Warning: Quantum RNGs sold
today are measurably biased.

e.g.. Say 3 qubits
(3,1,4,1,5,9,2,6



uter

St
[S.

e.g.: Say 3 qubits have state

(1,1,1,1,1,1,1,1).

Measurement produces

000 = 0 with probabi
001 = 1 with probabi

010 = 2 with probabi

011 = 3 with probabi
100 = 4 with probabi

101 = 5 with probabi

110 = 6 with probabi

ility 1/8;
ility 1/8;
ility 1/8;
ility 1/8;
ility 1/8;
ility 1/8;
ility 1/8;

111 = 7 with probability 1/8.

“Quantum RNG.”

Warning: Quantum RNGs sold

today are measurably

vlased.

e.g.: Say 3 qubits have stat:
(3,1,4,1,5,9,2,6).



e.g.: Say 3 qubits have state

(1,1,1,1,1,1,1,1).

Measurement produces

000 = 0 with probabi
001 = 1 with probabi

010 = 2 with probabi

011 = 3 with probabi
100 = 4 with probabi

101 = 5 with probabi

110 = 6 with probabi

ility 1/8;
ility 1/8;
ility 1/8;
ility 1/8;
ility 1/8;
ility 1/8;
ility 1/8;

111 = 7 with probability 1/8.

“Quantum RNG.”

Warning: Quantum RNGs sold

today are measurably

hlased.

e.g.: Say 3 qubits have state
(3,1,4,1,5,9,2,6).

10



e.g.: Say 3 qubits have state
(1,1,1,1,1,1,1,1).

Measurement produces

orobability 1/8;
orobability 1/8;

orobability 1/8;

orobability 1/8;

n probability 1/8;

000 = 0 with
001 = 1 with
010 = 2 with
011 = 3 with
100 = 4 wit

101 = 5 with
110 = 6 with
111 = 7 with

orobability 1/8;

orobability 1/8;

orobability 1/8.

“Quantum RNG.”

Warning: Quantum RNGs sold

today are measurably biased.

e.g.: Say 3 qubits have state
(3,1,4,1,5,9,2,6).

Measurement produces

000 = 0 with
001 = 1 with
010 = 2 with
011 = 3 with
100 = 4 with
101 = 5 with
110 = 6 with
111 = 7 with

Dropanbil
Dropanil

Dropanil

DFroPaDl

probabi

DrFroPanl

DFroPanl

ility 9/173;
lity 1/173;
ility 16/173;
lity 1/173;
ility 25/173;
lity 81/173;
lity 4/173;
orobability 36/173.

10



e.g.: Say 3 qubits have state
(1,1,1,1,1,1,1,1).

Measurement produces

orobability 1/8;
orobability 1/8;

orobability 1/8;

orobability 1/8;

n probability 1/8;

000 = 0 with
001 = 1 with
010 = 2 with
011 = 3 with
100 = 4 wit

101 = 5 with
110 = 6 with
111 = 7 with

orobability 1/8;

orobability 1/8;

orobability 1/8.

“Quantum RNG.”

Warning: Quantum RNGs sold

today are measurably biased.

e.g.: Say 3 qubits have state
(3,1,4,1,5,9,2,6).

Measurement produces

000 = 0 with
001 = 1 with
010 = 2 with
011 = 3 with
100 = 4 with
101 = 5 with
110 = 6 with
111 = 7 with

Dropanbil
Dropanil

Dropanil

DFroPaDl

probabi

DrFroPanl

DFroPanl

ility 9/173;
lity 1/173;
ility 16/173;
lity 1/173;
ility 25/173;
lity 81/173;
lity 4/173;
orobability 36/173.

5 1s most likely outcome.

10



v 3 qubits have state

,1,1,1,1).

ment produces

wit
wit
wit
wit
wit
wit

wit

N

N

N

N

olge
olge

olge

Do

N pro

N

N

with

olgo
olge

Dd
Dd
Dd
Dd
Dd

Dd

Dd

DI
DI
DI
DI

DI

DI

DI

ility 1/8;
ility 1/8;
ility 1/8;
ility 1/8;
ility 1/8;
ility 1/8;
ility 1/8;

orobability 1/8.

im RNG.”

- Quantum RNGs sold
e measurably

vlased.

e.g.: Say 3 qubits have state

(3,1,4,1,5,9,2,6).

Measurement produces

000 = 0 with
001 = 1 with
010 = 2 with
011 = 3 with
100 = 4 with
101 = 5 with
110 = 6 with
111 = 7 with

olge
olge

olge

Dro
pro
Oro
Oro

Dd
Dd
Dd
Dd
Dd

Dd

Dd

DI
DI
DI
DI

DI

DI

DI

ility 9/173;
lity 1/173;
ility 16/173;
lity 1/173;
ility 25/173;
lity 81/173;
lity 4/173;
orobability 36/173.

5 1s most likely outcome.

10

e.g.. Sa
(0,0,0,(



have state

luces

ability 1/8;
ability 1/8;
ability 1/8;
ability 1/8;
ability 1/8;
ability 1/8;
ability 1/8;
ability 1/8.

n RNGs sold
bly biased.

e.g.: Say 3 qubits have state
(3,1,4,1,5,9,2,6).

Measurement produces
000 = 0 with probability 9/173;
001 = 1 with probability 1/173;

010 = 2 with probability 16/173;

011 = 3 with probability 1/173;

100 = 4 with probability 25/173;
101 = 5 with probability 81/173;

110 = 6 with probability 4/173;

111 = 7 with probability 36/173.

5 1s most likely outcome.

10

e.g.. Say 3 qubits
(0,0,0,0,0,1,0,0



D

W GN WGWVV WGV WV VW W WV

old

e.g.: Say 3 qubits have state
(3,1,4,1,5,9,2,6).

Measurement produces
000 = 0 with probability 9/173;
001 = 1 with probability 1/173;

010 = 2 with probability 16/173;

011 = 3 with probability 1/173;

100 = 4 with probability 25/173;
101 = 5 with probability 81/173;

110 = 6 with probability 4/173;

111 = 7 with probability 36/173.

5 1s most likely outcome.

10

e.g.: Say 3 qubits have stat:
(0,0,0,0,0,1,0,0).



e.g.: Say 3 qubits have state
(3,1,4,1,5,9,2,6).

Measurement produces
000 = 0 with probability 9/173;
001 = 1 with probability 1/173;

010 = 2 with probability 16/173;

011 = 3 with probability 1/173;

100 = 4 with probability 25/173;
101 = 5 with probability 81/173;

110 = 6 with probability 4/173;

111 = 7 with probability 36/173.

5 1s most likely outcome.

10

e.g.: Say 3 qubits have state
(0,0,0,0,0,1,0,0).

11



e.g.. Say 3 qubits have state : e.g.: Say 3 qubits have state
(3,1,4,1,5,9,2,6). (0,0,0,0,0,1,0,0).
Measurement produces Measurement produces
000 = 0 with probability 9/173; 000 = O with probability O;
001 = 1 with probability 1/173; 001 = 1 with probability 0;
010 = 2 with probability 16/173; 010 = 2 with probability 0;
011 = 3 with probability 1/173; 011 = 3 with probability 0;
100 = 4 with probability 25/173; 100 = 4 with probability O
101 = 5 with probability 81/173; 101 = 5 with probability 1;
110 = 6 with probability 4/173; 110 = 6 with probability O;
111 = 7 with probability 36/173. 111 = 7 with probability 0.
5 1s most likely outcome.




e.g.. Say 3 qubits have state : e.g.: Say 3 qubits have state
(3,1,4,1,5,9,2,6). (0,0,0,0,0,1,0,0).
Measurement produces Measurement produces
000 = 0 with probability 9/173; 000 = O with probability O;
001 = 1 with probability 1/173; 001 = 1 with probability 0;
010 = 2 with probability 16/173; 010 = 2 with probability 0;
011 = 3 with probability 1/173; 011 = 3 with probability 0;
100 = 4 with probability 25/173; 100 = 4 with probability O
101 = 5 with probability 81/173; 101 = 5 with probability 1;
110 = 6 with probability 4/173; 110 = 6 with probability 0;
111 = 7 with probability 36/173. 111 = 7 with probability O.
5 is most likely outcome. b Is guaranteed outcome.




v 3 qubits have state

,5,9,2,6).

ment produces

wit
wit
wit
wit
wit
wit

wit

N

N

N

N

olge
olge

olge

Do

N pro

N

N

with

olgo
olge

Dd
Dd
Dd
Dd
Dd

Dd

Dd

DI
DI
DI
DI

DI

DI

DI

ility 9/173;
lity 1/173;
ility 16/173;
lity 1/173;
ility 25/173;
lity 81/173;
ility 4/173;
orobability 36/173.

t likely outcome.

10

e.g.: Say 3 qubits have state
(0,0,0,0,0,1,0,0).

Measurement produces

000 = 0 with probability O;
001 = 1 with probability O;
010 = 2 with probability O;
011 = 3 with probability O;
100 = 4 with probability O;
101 = 5 with probability 1;
110 = 6 with probability O;
111 = 7 with probability O.

b Is guaranteed outcome.

11

NOT ga

NOTq g
(3,1,4,:
(1,3, 1,



have state

luces
ability 9/173;
ability 1/173;

ability 1/173;

ability 4/173;

ability 36/173.

tcome.

ability 16/173;

ability 25/173;
ability 81/173;

10

11
e.g.: Say 3 qubits have state

(0,0,0,0,0,1,0,0).

Measurement produces
000 = 0 with probability O;
001 = 1 with probability O;

010 = 2 with probability O;

011 = 3 with probability O;
100 = 4 with probability O;

101 = 5 with probability 1;

110 = 6 with probability O;
111 = 7 with probability 0.

5 Is guaranteed outcome.

NOT gates

NOTp gate on 3 ¢
(3,1,4,1,5,9,2,6
(1,3,1,4,9,5,6,2



D

73;
73;

/173;

|7 3:

/173;
/173;

[ 73;

/173.

10

e.g.: Say 3 qubits have state
(0,0,0,0,0,1,0,0).

Measurement produces
000 = 0 with probability O;
001 = 1 with probability O;

010 = 2 with probability O;

011 = 3 with probability O;
100 = 4 with probability O;

101 = 5 with probability 1;

110 = 6 with probability O;
111 = 7 with probability 0.

b Is guaranteed outcome.

11

NOT gates

NOTy gate on 3 qubits:
(3,1,4,1,5,9,2,6) —
(1,3,1,4,9,5,6,2).



e.g.: Say 3 qubits have state
(0,0,0,0,0,1,0,0).

Measurement produces
000 = 0 with probability O;
001 = 1 with probability O;

010 = 2 with probability O;

011 = 3 with probability O;
100 = 4 with probability O;

101 = 5 with probability 1;

110 = 6 with probability O;
111 = 7 with probability 0.

5 Is guaranteed outcome.

11

NOT gates

NOTy gate on 3 qubits:
(3,1,4,1,5,9,2,6) —
(1,3,1,4,9,5,6,2).

12



e.g.: Say 3 qubits have state
(0,0,0,0,0,1,0,0).

Measurement produces
000 = 0 with probability O;
001 = 1 with probability O;

010 = 2 with probability O;

011 = 3 with probability O;
100 = 4 with probability O;

101 = 5 with probability 1;

110 = 6 with probability O;
111 = 7 with probability 0.

5 Is guaranteed outcome.

11

NOT gates

NOTy gate on 3 qubits:
(3,1,4,1,5,9,2,6) —
(1,3,1,4,9,5,6,2).

NOTy gate on 4 qubits:
(3,1,4,1,5,9,2,6,5,3,5,8,9,7,9,3) —
(1,3,1,4,9,5,6,2,3,5,8,5,7,9,3,9).

12



e.g.: Say 3 qubits have state
(0,0,0,0,0,1,0,0).

Measurement produces
000 = 0 with probability O;
001 = 1 with probability O;

010 = 2 with probability O;

011 = 3 with probability O;
100 = 4 with probability O;

101 = 5 with probability 1;

110 = 6 with probability O;
111 = 7 with probability 0.

5 Is guaranteed outcome.

11

NOT gates

NOTy gate on 3 qubits:
(3,1,4,1,5,9,2,6) —
(1,3,1,4,9,5,6,2).

NOTy gate on 4 qubits:
(3,1,4,1,5,9,2,6,5,3,5,8,9,7,9,3) —
(1,3,1,4,9,5,6,2,3,5,8,5,7,9,3,9).

NOT; gate on 3 qubits:
(3,1,4,1,5,9,2,6) —
(4,1,3,1,2,6,5,9).

12



e.g.: Say 3 qubits have state
(0,0,0,0,0,1,0,0).

Measurement produces
000 = 0 with probability O;
001 = 1 with probability O;

010 = 2 with probability O;

011 = 3 with probability O;
100 = 4 with probability O;

101 = 5 with probability 1;

110 = 6 with probability O;
111 = 7 with probability 0.

5 Is guaranteed outcome.

11

NOT gates

NOTy gate on 3 qubits:
(3,1,4,1,5,9,2,6) —
(1,3,1,4,9,5,6,2).

NOTy gate on 4 qubits:
(3,1,4,1,5,9,2,6,5,3,5,8,9,7,9,3) —
(1,3,1,4,9,5,6,2,3,5,8,5,7,9,3,9).

NOT; gate on 3 qubits:
(3,1,4,1,5,9,2,6) —
(4,1,3,1,2,6,5,9).

NOT, gate on 3 qubits:
(3,1,4,1,5,9,2,6) —
(5,9,2,6,3,1,4,1).

12



v 3 qubits have state
),0,1,0,0).

ment produces
with probability O;
with probability O;

with probability O;

with probability O;
with probability 0O;

with probability 1;

with probability O;
with probability O.

-anteed outcome.

11 12
NOT gates

NOTy gate on 3 qubits:
(3,1,4,1,5,9,2,6) —
(1,3,1,4,9,5,6,2).

NOTy gate on 4 qubits:
(3,1,4,1,5,9,2,6,5,3,5,8,9,7,9,3) —
(1,3,1,4,9,5,6,2,3,5,8,5,7,9,3,9).

NOT; gate on 3 qubits:
(3,1,4,1,5,9,2,6) —
(4,1,3,1,2,6,5,9).

NOT, gate on 3 qubits:
(3,1,4,1,5,9,2,6) —
(5,9,2,6,3,1,4,1).

Operatic
NOTy, s
Operatic

flipping
Flip: ou



have state

).

luces

abl
abl
abl
abl
abl

abl

abl

ity O;
ity O;
ity O;
ity O;
ity O;
ity 1;
ity O;
ability 0.

tcome.

11 12
NOT gates

NOTy gate on 3 qubits:
(3,1,4,1,5,9,2,6) —
(1,3,1,4,9,5,6,2).

NOTy gate on 4 qubits:
(3,1,4,1,5,9,2,6,5,3,5,8,9,7,9,3) —
(1,3,1,4,9,5,6,2,3,5,8,5,7,9,3,9).

NOT; gate on 3 qubits:
(3,1,4,1,5,9,2,6) —
(4,1,3,1,2,6,5,9).

NOT, gate on 3 qubits:
(3,1,4,1,5,9,2,6) —
(5,9,2,6,3,1,4,1).

Sstate
(1,0,0,0,0,0,0, (
(0,1,0,0,0,0,0, (
(0,0,1,0,0,0,0, (
(0,0,0,1,0,0,0, (
(0,0,0,0,1,0,0, (
(0,0,0,0,0,1,0,
(0,0,0,0,0,0,1, (
(0,0,0,0,0,0,0,

Operation on quail
NOTp, swapping |
Operation after m

flipping bit 0 of re
Flip: output iIs nof



D

12
NOT gates

state Measure

NOT, gate on 3 qubits: (1,0,0,0,0,0,0,0) 000
(3.1,4,1,5,9,2, 6) (0,1,0,0,0,0,0,0) 001
(1,3,1,4,9,5,6,2). (0,0,1,0,0,0,0,0) 010
NOTgy gate on 4 qubits: (0,0,0,1,0,0,0,0) 011
(314.1592653580793)— 0001000 100
(1,3,1,4,9,5.6.2,3,5,8,5,7,9,3,9) (0.0,0,0,0,1,0,0) 101
(0,0,0,0,0,0,1,0) 110

NOT; gate on 3 qubits: (0,0,0,0,0,0,0, 1) 111

(3,1,4,1,5,9,2,6) —

(4,1,3,1,2,6,5,9). Operation on quantum state

NOTp, swapping pairs.
NOT> gate on 3 qubits: Operation after measuremer
(3,1,4,1,5,9,2,6) — flipping bit O of result.
(5,9,2,6,3,1,4,1). Flip: output Is not input.




NOT gates

NOTy gate on 3 qubits:
(3,1,4,1,5,9,2,6) —
(1,3,1,4,9,5,6,2).

NOTy gate on 4 qubits:
(3,1,4,1,5,9,2,6,5,3,5,8,9,7,9,3) —
(1,3,1,4,9,5,6,2,3,5,8,5,7,9,3,9).

NOT; gate on 3 qubits:
(3,1,4,1,5,9,2,6) —
(4,1,3,1,2,6,5,9).

NOT, gate on 3 qubits:
(3,1,4,1,5,9,2,6) —
(5,9,2,6,3,1,4,1).

12

state measurement
(1,0,0,0,0,0,0,0) 000 >
(0,1,0,0,0,0,0,0) 001
(0,0,1,0,0,0,0,0) 010 >
(0,0,0,1,0,0,0,0) 011
(0,0,0,0,1,0,0,0) 100 >
(0,0,0,0,0,1,0,0) 101
(0,0,0,0,0,0,1,0) 110 >
(0,0,0,0,0,0,0,1) 111

Operation on quantum state:
NOTp, swapping pairs.
Operation after measurement:

flipping bit 0 of result.
Flip: output is not input.

13



tes

ate on 3 qubits:
,5,9,2,6) —
1,9,5,6,2).

ate on 4 qubits:
5,9,2,6,5,3,5,8,9,7,9,3) —
9,5,6,2,3,5,8,5,7,9,3,9).

ate on 3 qubits:
,5,9,2,6) —
[,2,6,5,9).

ate on 3 qubits:
,5,9,2,6) —
,3,1,4,1).

12

state measurement
(1,0,0,0,0,0,0,0) 000 >
(0,1,0,0,0,0,0,0) 001
(0,0,1,0,0,0,0,0) 010 >
(0,0,0,1,0,0,0,0) 011
(0,0,0,0,1,0,0,0) 100 >
(0,0,0,0,0,1,0,0) 101
(0,0,0,0,0,0,1,0) 110 >
(0,0,0,0,0,0,0,1) 111

Operation on quantum state:
NOTp, swapping pairs.
Operation after measurement:

flipping bit 0 of result.
Flip: output is not input.

13

Controll

e.g. C1N
(3,1,4,:
(3,1,1,¢



ubits:
) —
).
ubits:

3,5,8,9,7,9,3)
5,8,5,7,9,3,9).

ubits:

12

state measurement
(1,0,0,0,0,0,0,0) 000 >
(0,1,0,0,0,0,0,0) 001
(0,0,1,0,0,0,0,0) 010 >
(0,0,0,1,0,0,0,0) 011
(0,0,0,0,1,0,0,0) 100 >
(0,0,0,0,0,1,0,0) 101
(0,0,0,0,0,0,1,0) 110 >
(0,0,0,0,0,0,0,1) 111

Operation on quantum state:
NOTg, swapping pairs.
Operation after measurement:

flipping bit 0 of result.
Flip: output is not input.

13

Controlled-NOT (

€.g. ClNOToi
(3,1,4,1,5,9,2,6
(3,1,1,4,5,9,6,2



12

state measurement
(1,0,0,0,0,0,0,0) 000 >
(0,1,0,0,0,0,0,0) 001
(0,0,1,0,0,0,0,0) 010 >
(0,0,0,1,0,0,0,0) 011
(0,0,0,0,1,0,0,0) 100 >
(0,0,0,0,0,1,0,0) 101
(0,0,0,0,0,0,1,0) 110 >
(0,0,0,0,0,0,0,1) 111

Operation on quantum state:
NOTp, swapping pairs.
Operation after measurement:

flipping bit 0 of result.
Flip: output Is not input.

13

Controlled-NOT (CNOQOT) gz

€.g. ClNOT():
(3,1,4,1,5,9,2,6) —
(3,1,1,4,5,9,6,2).



state measurement
(1,0,0,0,0,0,0,0) 000 >
(0,1,0,0,0,0,0,0) 001
(0,0,1,0,0,0,0,0) 010 >
(0,0,0,1,0,0,0,0) 011
(0,0,0,0,1,0,0,0) 100 >
(0,0,0,0,0,1,0,0) 101
(0,0,0,0,0,0,1,0) 110 >
(0,0,0,0,0,0,0,1) 111

Operation on quantum state:
NOTg, swapping pairs.
Operation after measurement:

flipping bit 0 of result.
Flip: output is not input.

13

Controlled-NOT (CNOQOT) gates

€.g. ClNOToi
(3,1,4,1,5,9,2,6) —
(3,1,1,4,5,9,6,2).

14



state measurement
(1,0,0,0,0,0,0,0) 000 >
(0,1,0,0,0,0,0,0) 001
(0,0,1,0,0,0,0,0) 010 >
(0,0,0,1,0,0,0,0) 011
(0,0,0,0,1,0,0,0) 100 >
(0,0,0,0,0,1,0,0) 101
(0,0,0,0,0,0,1,0) 110 >
(0,0,0,0,0,0,0,1) 111

Operation on quantum state:
NOTg, swapping pairs.
Operation after measurement:

flipping bit 0 of result.
Flip: output is not input.

13

14

Controlled-NOT (CNOQOT) gates

€.g. ClNOToi
(3,1,4,1,5,9,2,6) —
(3,1,1,4,5,9,6,2).

Operation after measurement:
flipping bit 0 /f bit 1 is set; i.e.,




state measurement
(1,0,0,0,0,0,0,0) 000 >
(0,1,0,0,0,0,0,0) 001
(0,0,1,0,0,0,0,0) 010 >
(0,0,0,1,0,0,0,0) 011
(0,0,0,0,1,0,0,0) 100 >
(0,0,0,0,0,1,0,0) 101
(0,0,0,0,0,0,1,0) 110 >
(0,0,0,0,0,0,0,1) 111

Operation on quantum state:
NOTg, swapping pairs.
Operation after measurement:

flipping bit 0 of result.
Flip: output is not input.

13

14

Controlled-NOT (CNOQOT) gates

€.g. ClNOToi
(3,1,4,1,5,9,2,6) —
(3,1,1,4,5,9,6,2).

Operation after measurement:
flipping bit 0 /f bit 1 is set; i.e.,
€.g. CQNOTo:

(3,1,4,1,5,9,2,6) —
(3,1,4,1,9,5,6,2).




state measurement
(1,0,0,0,0,0,0,0) 000 >
(0,1,0,0,0,0,0,0) 001
(0,0,1,0,0,0,0,0) 010 >
(0,0,0,1,0,0,0,0) 011
(0,0,0,0,1,0,0,0) 100 >
(0,0,0,0,0,1,0,0) 101
(0,0,0,0,0,0,1,0) 110 >
(0,0,0,0,0,0,0,1) 111

Operation on quantum state:
NOTg, swapping pairs.
Operation after measurement:

flipping bit 0 of result.
Flip: output is not input.

13

Controlled-NOT (CNOQOT) gates

€.g. ClNOToi
(3,1,4,1,5,9,2,6) —
(3,1,1,4,5,9,6,2).

Operation after measurement:
flipping bit 0 /f bit 1 is set; i.e.,
€.g. CQNOTo:

(3,1,4,1,5,9,2,6) —
(3,1,4,1,9,5,6,2).

€.g. CQNOT2:
(3,1,4,1,5,9,2,6) —
(3.9.4,6,5,1,2,1).

14



state measurement
0,0,0,0,0 000
0,0,0,0, O; 001 >
0,0,0,0,0 010

1 0,0,0,0; 011 >
0,1,0,0,0 100

0 O,l,0,0; 101>
0,0,0,1,0)

)n on quantum state:
wapping pairs.

n after measurement:
bit 0 of result.

tput Is not Iinput.

13

Controlled-NOT (CNQOT) gates

€.g. ClNOT():
(3,1,4,1,5,9,2,6) —
(3,1,1,4,5,9,6,2).

Operation after measurement:

(92,91, 90) — (g2,91. 90 D q1).

€.g. CQNOT():
(3,1,4,1,5,9,2,6) —
(3,1,4,1,9,5,6,2).

€.g. C()NOTQZ
(3,1,4,1,5,9,2,6) —
(3.9.4,6,5,1,2,1).

flipping bit 0 /f bit 1 is set; i.e.,

14

Toffoli g

Also knc
controlle

e.g. Cr(C
(3,1,4,:
(3,1,4,:



measurement

1tum state:
alrs.
easurement:
sult.

. Input.

13

Controlled-NOT (CNOQOT) gates

€.g. ClNOToi
(3,1,4,1,5,9,2,6) —
(3,1,1,4,5,9,6,2).

Operation after measurement:

flipping bit 0 /f bit 1 is set; i.e.,

(g2, 91.90) — (92,91, 90 D q1).

€.g. CQNOTo:
(3,1,4,1,5,9,2,6) —
(3,1,4,1,9,5,6,2).

€.g. CQNOT2:
(3,1,4,1,5,9,2,6) —
(3,9,4,6,5,1,2,1).

14

Toffoli gates

Also known as CC
controlled-controll

e.g. CHoC{NOTy:
(3.1,4.1,5,9,2,6
(3,1,4,1,5,9,6,2



ment

VARVARVARY

—t

1T.

13

Controlled-NOT (CNOQOT) gates

€.g. ClNOT():
(3.1,4,1,5,9,2,6) —
(3,1,1,4,5,9,6,2).

Operation after measurement:

flipping bit 0 /f bit 1 is set; i.e.,

(92,91, 90) — (g2, 91. 90 D q1).

€.g. CQNOT():
(3.1,4,1,5,9,2,6) —
(3,1,4,1,9,5,6,2).

€.g. C()NOTQZ
(3,1,4,1,5,9,2,6) —
(3,9,4,6,5,1,2,1).

14

Toffoli gates

Also known as CCNOT gate
controlled-controlled-NOT g

e.g. CHoC{NOTy:
(3,1,4,1,5,9,2,6) —
(3,1,4,1,5,9,6,2).



Controlled-NOT (CNOQOT) gates

€.g. ClNOToi
(3,1,4,1,5,9,2,6) —
(3.1,1,4,5,9,6,2).

Operation after measurement:
flipping bit 0 /f bit 1 is set; i.e.,
€.g. CQNOTo:

(3,1,4,1,5,9,2,6) —
(3,1,4,1,9,5,6,2).

€.g. CQNOT2:
(3,1,4,1,5,9,2,6) —
(3,9,4,6,5,1,2,1).

14

Toffoli gates

Also known as CCNOT gates:
controlled-controlled-NOT gates.

e.g. CHC{NOTy:
(3,1,4,1,5,9,2,6) —
(3,1,4,1,5,9,6,2).

15



Controlled-NOT (CNOQOT) gates

€.g. ClNOToi
(3,1,4,1,5,9,2,6) —
(3.1,1,4,5,9,6,2).

Operation after measurement:

flipping bit 0 /f bit 1 is set; i.e.,

(g2, 91.90) — (92,91, 90 D q1).

€.g. CQNOTo:
(3,1,4,1,5,9,2,6) —
(3,1,4,1,9,5,6,2).

€.g. CQNOT2:
(3,1,4,1,5,9,2,6) —
(3,9,4,6,5,1,2,1).

14

15
Toffoli gates

Also known as CCNOT gates:
controlled-controlled-NOT gates.

e.g. CHoC{NOTy:
(3,1,4,1,5,9,2,6) —
(3,1,4,1,5,9,6,2).

Operation after measurement:
(92, 91, 90) — (g2, 91, 90 @ q192).



14 15

Controlled-NOT (CNOQOT) gates Toffoli gates
e.g. C4NOTy: Also known as CCNOT gates:
(3,1,4,1,5,9,2,6) — controlled-controlled-NOT gates.

(3,1,1,4,5,9,6,2)- e.g. C2C1NOTOZ

Operation after measurement: (3,1,4,1,5,9,2,6) —
flipping bit 0 if bit 1 is set; i.e., (3,1,4,1,5,9,6,2).

(g2, 91.90) — (92,91, 90 D q1).

Operation after measurement:

e.g. CONOTy: (92,91, 90) — (92,91, 90 D q192).
(3.1,4,1,5,9,2,6) - e.g. CoCiNOT»:

(3,1,4.1,9,5,6,2) (3,1,4,1,5,9,2,6) —
e.g. CoNOT: (3,1,4,6,5,9,2,1).
(3,1,4,1,5,9,2,6) —
(3,9,4,6,5,1,2,1).




ed-NOT (CNOT) gates

IO Ty:
,5,9,2,6) —
1,5,9,6,2).

n after measurement:

bit O /f bit 1 is set: i.e.,

70) — (g2, 91,90 @ q1)-

IO Tp:
,5,9,2,6) —
[,9,5,6,2).

IOT»:
,5,9,2,6) —
,5,1,2,1).

14

15
Toffoli gates

Also known as CCNOT gates:
controlled-controlled-NOT gates.

e.g. CHoC{NOTy:
(3,1,4,1,5,9,2,6) —
(3,1,4,1,5,9,6,2).

Operation after measurement:
(92, 91, 90) — (92, 91, 90 @ q192).

e.g. COC1NOT2:
(3,1,4,1,5,9,2,6) —
(3, 1,4,6,5,9, 2, 1).

More sh

Combine
to build



CNOT) gates

) —
).

easurement:

t 1 1s set; I.e..

g1, 90 D q1)-

14

Toffoli gates

Also known as CCNOT gates:
controlled-controlled-NOT gates.

e.g. CHoC{NOTy:
(3,1,4,1,5,9,2,6) —
(3,1,4,1,5,9,6,2).

Operation after measurement:

(92,91, 90) — (92,91, 90 ® q192).

€.g. COC1NOT2:
(3,1,4,1,5,9,2,6) —
(3, 1,4,6,5,9,2, 1).

15

More shuffling

Combine NOT, CI
to build other pert



1tes

1t:

l.e.,

71).

14

Toffoli gates

Also known as CCNOT gates:
controlled-controlled-NOT gates.

e.g. CHoC{NOTy:
(3,1,4,1,5,9,2,6) —
(3,1,4,1,5,9,6,2).

Operation after measurement:

(92,91, 90) — (92,91, 90 ® q192).

e.g. COC1NOT2:
(3,1,4,1,5,9,2,6) —
(3, 1,4,0,5,9, 2, 1).

15

More shuftfling

Combine NOT, CNOT, Toff
to build other permutations.



Toffoli gates

Also known as CCNOT gates:
controlled-controlled-NOT gates.

e.g. CHoC{NOTy:
(3,1,4,1,5,9,2,6) —
(3,1,4,1,5,9,6,2).

Operation after measurement:
(92, 91, 90) — (92, 91, 90 @ q192).

€.g. COC1NOT2:
(3,1,4,1,5,9,2,6) —
(3, 1,4,0,5,9, 2, 1).

15

More shuffling

Combine NOT, CNOT, Toffoli
to build other permutations.

16



15 16

Toffoli gates More shuffling

Also known as CCNOT gates: Combine NOT, CNOT, Toffol

controlled-controlled-NOT gates. to build other permutations.

e.g. CHC{NOTyp: e.g. series of gates to

(3,1,4,1,5,9,2,6) — rotate 8 positions by distance 1:

(3.1,4,1,5,9,6,2). 3141509026

Operation after measurement: CoC1NOT>

(92, g1, 0) — (g2, q1, G0 © G192). 31406592l

('3g'121159;'6) 36415120
,,,,,,, —

(3,1,4,6,5,9,2,1) NOTo >< >< >< ><
"""" | 6 31415092




ates

wn as CCNOT gates:
d-controlled-NOT gates.

1NOTy:
,5,9,2,6) —
[,5,9,6,2).

n after measurement:
70) — (g2, 91, 90 D g192).

1NOT»>:
,5,9,2,6) —
,5,9,2,1).

15

More shuftfling

Combine NOT, CNOT, Toffoli
to build other permutations.

e.g. series of gates to
rotate 8 positions by distance 1:

314159 26

CoCiNOT>
31465921

convot, X X

36415129

NO Ty >< >< >< ><

6 3141592

16

Hadama

Hadama

(a, b) —

3 1
X |
4 2



NOT gates:
ed-NOT gates.

) —

).

easurement:
.41, G0 D q1G2).

) —

).

15

More shuffling

Combine NOT, CNOT, Toffoli
to build other permutations.

e.g. series of gates to
rotate 8 positions by distance 1:

314159 26

CoCi{NOT>
31465921

convot, X X

364151209

NO Ty >< >< >< ><

6 3141592

16

Hadamard gates

Hadamardp:

(a,b) — (a+ b, a

3 1 4 1
XX
4 2 5 3



ates.

1t
7192)-

15

More shuftfling

Combine NOT, CNOT, Toffoli
to build other permutations.

e.g. series of gates to
rotate 8 positions by distance 1:

314159 26

CoCi{NOT>
31465921

convot, X X

36415129

NO Ty >< >< >< ><

6 3141592

16

Hadamard gates

Hadamardp:

(a, b) — (a+ b,a— b).

3 1 4 1
XX
4 2 5 3

ﬂ

5 0
X

14 —4 ¢




More shuffling

Combine NOT, CNOT, Toffoli
to build other permutations.

e.g. series of gates to
rotate 8 positions by distance 1:

314159 26

CoCi{NOT>
31465921

conoT, X X

364151209

NO Ty >< >< >< ><

6 3141592

16

Hadamard gates

Hadamardp:

(a, b) — (a+ b,a— b).

3 1 4 1
XX
4 2 5 3

2

X TX

14 —4 8

6

—4

17



More shuffling

Combine NOT, CNOT, Toffoli
to build other permutations.

e.g. series of gates to
rotate 8 positions by distance 1:

314159 26

CoCi{NOT>
31465921

X X

364151209

X XX X

6 3141592

CoNOT

NOT,

16

17
Hadamard gates

Hadamardp:

(a, b) — (a+ b,a— b).

31 4 1 5 90 2 6
X IXT X IX
4 2 5 3 14 —4 8 -4
Hadamards:
(a, b, c,d)—

(a+c,b+d,a—c,b—d).

R

1

KK

—10l



uffling

> NOT, CNOT, Toffol
other permutations.

s of gates to
positions by distance 1:

314159 26

P

R

6 3141592

1

16

Hadamard gates

Hadamardg:

(a, b) — (a+ b,a—b).

31 4 1 5 9 2 6
X IXT XX
4 2 5 3 14 —4 8 —4
Hadamardj:

(a, b, c,d)—

(a+c,b+d,a—c,b—d).
RSK T RK

2 —1 15 3

17

Some us

Hadama

3 1
N

X

4
\

>

2
7



NOT, Toffoll
mutations.

1O
by distance 1:

16

Hadamard gates

Hadamardp:

(a, b) — (a+ b,a— b).

31 4 1 5 9 2 6
X IX] X TX
4 2 5 3 14 —4 8 —4
Hadamard;:
(a, b, c,d)—

(a+c,b+d,a—c,b—d).

3 1 4 T T 9 26‘5

17

Some uses of Had

Hadamardg, NOT

4 N
2><4 3><5 :
AL X



| — N
5 E _
3 T ST |
= - VA4 < -
(T o LO — | —
O =
2O .
(-
o = > <X X<
o 5 Y ——w M —— ©
v ®
-
2 E aa e
2 TS
A T H—= N—— ©
Ne
i
N —— 00 Y ™
A~
< o
- LO)
P | o —
Q > Q
| o — U o—~
\
c |
S -
m Q —— T —N— O
S| T = Y0 - -~ T < |
5 5 1 5 ©
- - — —— & O o — N
Qv Qv \ID} Qv b..
33 2 X 8 %4
T T & o <~ T &2 &8 ™ M~
=
O — 9VA2
B i 2<2 N o
O D O @) . L0



18

Some uses of Hadamard gates
Hadamardg, NOTg, Hadamardp:

XX

5
\

X

—2 10 —18 4 —12

17

Hadamard gates
Hadamardp:

(a, b) — (a+ b,a— b).

Hadamards:

(a, b, c,d)—

(a+c,b+d,a—c,b—d).



Hadamard gates

Hadamardp:

(a, b) — (a+ b,a— b).

3 1 4 1 5 9 2
X IX X IX
4 2 5 3 14 —4 8
Hadamards:

(a, b, c,d)—

(a+c,b+d,a—c,b—d).

3 1 4 T T 9 2

6
\

—4

|
3

17

Some uses of Hadamard gates

Hadamardg, NOTg, Hadamardp:

3 1 4 1 ,
X IXT X IX
4 2 5 3 4 8 —4

14>< ><

T 4 14 —4 8

XXX

—2 10 —18 4 —12

X1 1X]

>
>

>
>

2 4
| X |
6 -2

“"Multiply each amplitude by 2."
This i1s not physically observable.

18



Hadamard gates

Hadamardp:

(a, b) — (a+ b,a— b).

3 1 4 1 5 9 2 6
XL IXE X TX
4 2 5 3 14 —4 8 —4

Hadamards:

(a, b, c,d)—

(a+c,b+d,a—c,b—d).

3 1 4 T T 9 2 6‘3

17

Some uses of Hadamard gates

Hadamardg, NOTg, Hadamardp:

3 1 4 1 ,
X IXE IXTIX
4 2 5 3 —4 8 —4

14>< ><

T—414—48

XXX

—2 10 —18 4 —12

X1 1X]

>
>

>
>

2 4
| X |
6 -2

“"Multiply each amplitude by 2."
This i1s not physically observable.

“Negate amplitude if gg is set.”
No effect on measuring now.

18



rd gates

rdp:

(a+ b,a—b).

X X

14 —4
rdy:

5 0 2 6
XX
8

4

d) —
y+d,a—c,b—d).

K1 K]

17

Some uses of Hadamard gates

Hadamardg, NOTg, Hadamardp:

3 1 4 1 5 9 2 6
X IXT X IX
4 2 5 3 14 —4 8 —4
X X X X
2 4 3 5 —4 14 —4 8
X | \X\ X] X
6 -2 8 —2 10 —18 4 —12

“Multiply each amplitude by 2."
This i1s not physically observable.

“"Negate amplitude if gg is set.”
No effect on measuring now.

Fancier
"Negate
Assumes

CoC1N(

Hadam:

NOT

Hadam:

CoCq N



17

Some uses of Hadamard gates

Hadamardg, NOTgy, Hadamardp:

3 1 4 1 ,
X IXE IXTIX
4 2 5 3 —4 8 —4

14>< ><

T 4 14 —4 8

XXX

—2 10 —18 4 —12

Xl 1]

>
>

>
>

2 4
X |
6 —2

“"Multiply each amplitude by 2."
This i1s not physically observable.

“Negate amplitude if gg is set.”
No effect on measuring now.

18

Fancier example:
“"Negate amplitud
Assumes g» = O:

31
CoCiNOT>

Hadamard»

LW—Ww

NG\ U (N

NOT»,

Hadamard»

S ——W

CoCi{NOT>

(@)
N



N

LW ———O

17

18
Some uses of Hadamard gates

Hadamardg, NOTgy, Hadamardp:

3 1 4 1 5 9 2 6
X IXT X IX
4 2 5 3 14 —4 8 —4

X X X X

> 4 3 5 —4 14 —4 8

XL IXT X IX

6 —2 8 —2 10 —18 4 —12
“Multiply each amplitude by 2."

This I1s not physically observable.

"Negate amplitude if gg is set.”
No effect on measuring now.

Fancier example:

“Negate amplitude if gggy I

Assumes g» = O:

CoCi{NOT>

Hadamard»

NOT»,

Hadamard»

CoCi{NOT>

3141

|
3

3 14—

1

4

“ancilla” ¢

0
N
00

1 4713

3

 PREE

62380

6 2 3—-2

0
\
//
0



18
Some uses of Hadamard gates Fancier example:

Hadamardg, NOTg, Hadamardy: Negate amplitude if ggqy Is set.

Assumes go» = 0: “ancilla” qubit.

3 1 4 1 5 9 2 6

X IX X IX 31410000
4 2 5 3 14 -4 8 —4 CoCiNOT> ><
>< >< >< >< 314070001
2 4 3 5 —4 14 —4 8 Hadamard» ‘ ‘
X1 IXT IXT IX 3AUL3 L4
6 —2 8 -2 10 —18 4 —-12 NOT»

3'1°4—-131 41

“Multiply each amplitude by 2." Hodarmard ‘ ‘
This I1s not physically observable. ° ; 6280000 -2
“Negate amplitude if qg is set.” CoCiNOT>

No effect on measuring now. 6 28-20000




es of Hadamard gates

rdo, NOTo, HadamardO:

4 1 5 9 2 6
X IXT X
5 3 14 —4 8§ —4

X X X

3 5 —4 14 —4 8

XL IXT X

8 —2 10 —18 4 —12
y each amplitude by 2.”

ot physically observable.

amplitude if qg is set.”
t on measuring now.

18

Fancier example:
"Negate amplitude if ggqg; Is set.”
Assumes g» = O:

“ancilla” qubit.

31410000

CoCi{NOT>

31400001

Hadamard> ‘

31413 1 4-1

NOT»,

3 14—

Hadamard> ‘

623000 0-2

CoCi{NOT>

31 4°1

6 2 3-20000

19

Affects |
amplituc
(3,1,4,



18 19

amard gates Fancier example: Affects measurems
. Hadamardy: Negate amplitude if q-0q1 IS se.t. amplitude around
Assumes go = 0: “ancilla” qubit. (3,1,4,1) — (1.5,

2

5 9 6
X | X 31410000

14 -4 8 —4 CoCiNOT>

X X 31400>0<01

-4 14 —4 8 Hadamard» ‘W‘

X X 3717417314 —1

10 —-18 4 —12 NOT,
31 4-13 141
litude by 2."
PITHEE DY Hadamard» ‘ ‘
lly observable. 62807000 —2
2 if gg Is set.” CoC{NOT»

uring now. 6 2 8—-20 0 00




18

Fancier example:

"Negate amplitude if ggqg; Is set.”

Assumes go» = 0: “ancilla” qubit.

CoCi{NOT>

Hadamard»

NOT»,

Hadamard»

CoCi{NOT>

31410000

31400001

PR

3141 31 4-1
T14—314T

623000 0-2

6 2 3-20000

19

Affects measurements: “Nej

amplitude around its averag
(3,1,4,1) — (1.5,3.5,0.5,3



Fancier example:

"Negate amplitude if ggqgy is set.”

Assumes go» = 0: “ancilla” qubit.

CoCiNOT>

Hadamard»

NOT»,

Hadamard»

CoCi{NOT>

31410000

31400001

PR

314131 4-1
T14—314T

623000 0-2

6 2 320000

19

Affects measurements: “Negate

amplitude around its average.”
(3,1,4,1) — (1.5,3.5,0.5,3.5).

20



Fancier example:
"Negate amplitude if ggqgy is set.”
Assumes go» = 0: “ancilla” qubit.

31410000

CoCiNOT>

31400001

Hadamard» ‘

314131 4-1

NOT»,

31 4-131 41

Hadamard» ‘

623000 0-2

CoCi{NOT>

6 2 320000

Affects measurements: “Negate

amplitude around its average.”
(3,1,4,1) — (1.5,3.5,0.5,3.5).

-9 5 -1 -1

Ho ‘><‘

—4-14-2 0

il ‘>K>K‘

—6—14-2-14

X

O——mO ——O —O —O —0O

20



example:
amplitude if ggqgy is set.”

> go = 0: “ancilla” qubit.

31410000

)TH
31400001

. R
3’14131 4-1

31 4-13 141

| SRERED
6280 00 0-2

)TH
6 23—-20000

19

Affects measurements: “Negate

amplitude around its average.”

(3,1,4,1) — (1.5,3.5,0.5,3.5).
31 4 1 0 0 O

i IXL X IXT X
4 2 5 3 0 0 0

| RO XK
NS
95 -1-10 0 0

Ho \X\ XXX
14-2 0 0 0 0

W | KK KK
6-14-2-14 0" 00

20

Simon's

Assumpt

e Given
can ef

e Nonze

o f(u) =
e f has

Goal: Fi



2 if gogy Is set.”
“ancilla’ qubit.

4 1 0000

4 00 001

413 1 4-1
4—-13 1 41

8000 0-2

8—-20 000

19

Affects measurements: “Negate

amplitude around its average.”
(3,1,4,1) — (1.5,3.5,0.5,3.5).

31 4 1 0 0 O
W X IX1 X [X
4 2 5 3 0 0 O
W DRKT RK
RENRER
-9 5 —-1-10 0 O
W X IXT X [X
—4-14-2 0 0 0 O
W ORK | RK
—6—-14-2—-14 0 0 O

O——mO ——O —O —O —0O

20

Simon’s algorithm

Assumptions:

e Given any u € {
can efficiently cc

e Nonzero s € {0,

o f(u)="f(uds)

e f has no other ¢

Goal: Figure out ¢



19

Affects measurements: “Negate

amplitude around its average.”

(3,1,4,1) — (1.5,3.5,0.5,3.5).
31 4 1 0 0 O

i IXL X IXT X
4 2 5 3 0 0 0

| O XK
NEEREE
95 -1-10 0 0

Ho \X\ XXX
14-2 0 0 0 0

W | KK KK
6-14-2-14 0" 00

20

Simon’s algorithm

Assumptions:

e Given any u € {0,1}",
can efficiently compute f(

e Nonzero s € {0,1}".

o f(u)="f(uds) for all u.

e f has no other collisions.

Goal: Figure out s.



Affects measurements: “Negate

amplitude around its average.”

(3,1,4,1) — (1.5,3.5,0.5,3.5).
3 1 4 1 0 0 O

i IXL X IXT X
4 2 5 3 0 0 O

| O | K
NN
95 -1-10 0 0

Ho \X\ XXX
14-2 0 0 0 0

W | KK KK
6-14-2-14 0" 00

O——mO ——O —O —O —0O

20

Simon’s algorithm

Assumptions:
e Given any u € {0,1}",

can efficiently compute f(u).

e Nonzero s € {0,1}".
e f(u)=Ff(ues) for all u.
e  has no other collisions.

Goal: Figure out s.

21



Affects measurements: “Negate

amplitude around its average.”

(3,1,4,1) — (1.5,3.5,0.5,3.5).
3 1 4 1 0 0 O

i IXL X IXT X
4 2 5 3 0 0 O

o | KK
NN
95 -1-10 0 0

Ho \X\ \X\ XX
(‘) 0 O

il ‘>K>K‘

6-14-2-14 0 0 O

O——mO ——O —O —O —0O

20

Simon’s algorithm

Assumptions:
e Given any u € {0,1}",

can efficiently compute f(u).

e Nonzero s € {0,1}".
e f(u)=Ff(ues) for all u.
e  has no other collisions.

Goal: Figure out s.

Traditional algorithm to find s:

compute f for many inputs,
hope to find collision.

21



Affects measurements: “Negate

amplitude around its average.”
(3,1,4,1) — (1.5,3.5,0.5,3.5).

31 4 1 0 0 0 O
W X I X)X
4 2 5 3 0 0 0 O
W KK RK
RENREES
-9 5 -1 -10 0 0 O
W X IXT X)X
4—-14—-2 0 (‘) 0 0(‘)

il ‘>K>K‘

6-14-2-140 0 0 O

20

Simon’s algorithm

Assumptions:
e Given any u € {0,1}",
can efficiently compute f(u).
e Nonzero s € {0,1}".
e f(u)="Ff(uds) for all u.
e f has no other collisions.

Goal: Figure out s.

Traditional algorithm to find s:
compute f for many inputs,
hope to find collision.

Simon’s algorithm finds s with
~n quantum computations of f.

21



neasurements: “Negate
le around its average.”
[) — (1.5,3.5,0.5,3.5).

1 4 1 0 0 0 O
<X IX IX
KK T KK

[T ]

5 —‘1 —‘1 0 0 0 O
<X IXT IX
—14 -2 0 (‘) 0 O (‘)

KK

—14-2-140 0 0 O

20

21
Simon’s algorithm

Assumptions:
e Given any u € {0,1}",
can efficiently compute f(u).
e Nonzero s € {0,1}".
e f(u)y="Ff(uds) for all u.
e f has no other collisions.

Goal: Figure out s.

Traditional algorithm to find s:
compute f for many inputs,

hope to find collision.

Simon’s algorithm finds s with
~n quantum computations of f.

Example

Step 1.

0,

e e

e e



20 21

ants: “Negate Simon'’s algorithm Example of Simon

'ts average. Assumptions: Step 1. Set up pu

3.5,0.5,3.5) e Given any u € {0,1}" 1,0,0,0, 0,0, (
can efficiently compute f(u). 0,0 0 000, (

L0000 g Nonzero s € {0, 1}, 0, 0,0, 0, 0, 0, (

‘ ‘><‘ ‘><‘ o f(u)=Ff(uds) for all u. 0,0,0 00,0, (

3 0.0 00 e f has no other collisions. 0,0, 0,0 0,0, (

‘ ‘>’<>’<‘ - 0, 0,0, 0,0, 0, (

1 07070 "0 @ Goal: Figure out s. 0.0.00 0 0

‘ ‘ ‘ ‘ ‘ Traditional algorithm to find s: 0.0 0 0 0 0 (

-1 0 0 0 O compute f for many inputs,

‘ ‘><‘ ‘><‘ hope to find collision.

0 0 0 0 O _ | _ . .

‘ ‘ >K>4< ‘ Simon's algorithm fmds. s with

14070750 0 ~n quantum computations of f.




20 21

compute f for many inputs,

hope to find collision.

Simon’s algorithm finds s with
~n quantum computations of f.

rate Simon'’s algorithm Example of Simon's algorith
eé Assumptions: Step 1. Set up pure zero st:
5); e Given any u € {0, 1}", 1, 0,0, 0,0, 0, 0, O,
can efficiently compute f(u). 0,0000,0,0,HQ0,
0 e Nonzero s € {0, 1}". 0, 0, 0, 0, 0, 0, 0, 0,
‘>< o f(u)="f(uds) forall u. 0,0,0,0,0,0, 0, 0,
;>T< e f has no other collisions. 0, 0,0,0,0,0, 0,0,
0 Goal: Figure out s. U 0,0,0,0,0,0,°0,
0,0, 0, 0,0 0,0, 0,
‘ Traditional algorithm to find s: 0.0.0 0 0 0 0 O.
0
X
0

O——OO —O — O — O —0O




Simon’s algorithm

Assumptions:
e Given any u € {0,1}",
can efficiently compute f(u).
e Nonzero s € {0,1}".
e f(u)="Ff(uds) for all u.
e f has no other collisions.

Goal: Figure out s.

Traditional algorithm to find s:
compute f for many inputs,
hope to find collision.

Simon’s algorithm finds s with
~n quantum computations of f.

21

22
Example of Simon’s algorithm

Step 1. Set up pure zero state:
0, 0, O, 0,

I e
I e
I
I e

O O O O O O O
ocoooo9oo
coooooQo



Simon’s algorithm

Assumptions:
e Given any u € {0,1}",
can efficiently compute f(u).
e Nonzero s € {0,1}".
e f(u)="Ff(uds) for all u.
e f has no other collisions.

Goal: Figure out s.

Traditional algorithm to find s:
compute f for many inputs,
hope to find collision.

Simon’s algorithm finds s with
~n quantum computations of f.

21

22
Example of Simon’s algorithm

Step 2. Hadamardp:
1, 0, 0O, 0,

I e
I e
I
e R e

O O 0O O o0 o o
O OO O O O O
e e e
e e



Simon’s algorithm

Assumptions:
e Given any u € {0,1}",
can efficiently compute f(u).
e Nonzero s € {0,1}".
e f(u)="Ff(uds) for all u.
e f has no other collisions.

Goal: Figure out s.

Traditional algorithm to find s:
compute f for many inputs,
hope to find collision.

Simon’s algorithm finds s with
~n quantum computations of f.

21

22
Example of Simon’s algorithm

Step 3. Hadamards:
1, 1, 0,

I e
I
e R e

O OO OO o o
R e
O O OO0 O o o
£ 9L L 22
O O O O O O O



21

Simon'’s algorithm Example of Simon’s algorithm
Assumptions: Step 4. Hadamards:
e Given any u € {0,1}", 1,1, 1.1, 1,1, 1,1
can efficiently compute f(u). 0,0000,0,0,0Q0,
e Nonzero s € {0, 1}". 0,0, 0, 0, 0,0, 0,0,
o f(u)="f(uds) forall u. 0,0 0,00, 0, 0, 0,
e f has no other collisions. 0, 0,0, 0,0, 0,0, O,
Goal: Figure out s. U, 0,0,0, 00,0, 0,
0,0 0,00, 0, 0, 0,
Traditional algorithm to find s: 0.0 0 0 0 0 0 O

compute f for many inputs,

. . Each column is a parallel universe.
hope to find collision.

Simon’s algorithm finds s with
~n quantum computations of f.




Simon’s algorithm

Assumptions:
e Given any u € {0,1}",
can efficiently compute f(u).
e Nonzero s € {0,1}".
e f(u)="Ff(uds) for all u.
e f has no other collisions.

Goal: Figure out s.

Traditional algorithm to find s:
compute f for many inputs,
hope to find collision.

Simon’s algorithm finds s with
~n quantum computations of f.

21

22
Example of Simon’s algorithm

Step 5. CgNOT3:

O OO O OO O -
O OO OO O Rr O
O O OO O O O
I e
e
O OO OO O Rr O
O O OO O O O
O O OO O O+ O

Each column is a parallel universe
performing its own computations.



Simon’s algorithm

Assumptions:
e Given any u € {0,1}",
can efficiently compute f(u).
e Nonzero s € {0,1}".
e f(u)="Ff(uds) for all u.
e f has no other collisions.

Goal: Figure out s.

Traditional algorithm to find s:
compute f for many inputs,
hope to find collision.

Simon’s algorithm finds s with
~n quantum computations of f.

21

Example of Simon’s algorithm

Step 5b. More shuffling:

O OO OO O O K
O O OO O O Kr O

O OO+ OO O O
O O H OO O O O
O OO H O O O O
O O H OO O O O

Each column is a parallel universe
performing its own computations.

22



Simon’s algorithm

Assumptions:
e Given any u € {0,1}",
can efficiently compute f(u).
e Nonzero s € {0,1}".
e f(u)="Ff(uds) for all u.
e f has no other collisions.

Goal: Figure out s.

Traditional algorithm to find s:
compute f for many inputs,
hope to find collision.

Simon’s algorithm finds s with
~n quantum computations of f.

21

Example of Simon’s algorithm

Step 5c. More shuffling:

O O OO0 O r OO
O O OO r O O O

O OO R OO O O
O O OO O O O
O H OO OO O O
H O O O O O O O

Each column is a parallel universe
performing its own computations.

22



Simon’s algorithm

Assumptions:
e Given any u € {0,1}",
can efficiently compute f(u).
e Nonzero s € {0,1}".
e f(u)="Ff(uds) for all u.
e f has no other collisions.

Goal: Figure out s.

Traditional algorithm to find s:
compute f for many inputs,
hope to find collision.

Simon’s algorithm finds s with
~n quantum computations of f.

21

Example of Simon’s algorithm

Step 5d. More shuffling:

O OO OO KR OO
O O OO O O Kr O

O OO R OO O O
H O O O O O O O
O H OO OO O O
O O OO O O O

Each column is a parallel universe
performing its own computations.

22



Simon’s algorithm

Assumptions:
e Given any u € {0,1}",
can efficiently compute f(u).
e Nonzero s € {0,1}".
e f(u)="Ff(uds) for all u.
e f has no other collisions.

Goal: Figure out s.

Traditional algorithm to find s:
compute f for many inputs,
hope to find collision.

Simon’s algorithm finds s with
~n quantum computations of f.

21

Example of Simon’s algorithm

Step 5e. More shuffling:

O OO OO KR OO
O O OO O O Kr O

O OO R OO O O
O R OO OO O O
O H OO O O O O
O OO+ OO O O

Each column is a parallel universe
performing its own computations.

22



Simon’s algorithm

Assumptions:
e Given any u € {0,1}",
can efficiently compute f(u).
e Nonzero s € {0,1}".
e f(u)="Ff(uds) for all u.
e f has no other collisions.

Goal: Figure out s.

Traditional algorithm to find s:
compute f for many inputs,
hope to find collision.

Simon’s algorithm finds s with

~n quantum computations of f.

21

Example of Simon’s algorithm

Step 5f. More shuffling:
0,0 000, 1,D0, 0,

Each column is a parallel universe
performing its own computations.

22



Simon’s algorithm

Assumptions:
e Given any u € {0,1}",
can efficiently compute f(u).
e Nonzero s € {0,1}".
e f(u)="Ff(uds) for all u.
e f has no other collisions.

Goal: Figure out s.

Traditional algorithm to find s:
compute f for many inputs,
hope to find collision.

Simon’s algorithm finds s with
~n quantum computations of f.

21

Example of Simon’s algorithm

Step 5g. More shuffling:

O OO 0O O+ O
O OO OO+ O O

H O O O O o o o
O O H OO O O O
O O OO O o O
H O O O O O O O

Each column is a parallel universe
performing its own computations.

22



Simon’s algorithm

Assumptions:
e Given any u € {0,1}",
can efficiently compute f(u).
e Nonzero s € {0,1}".
e f(u)="Ff(uds) for all u.
e f has no other collisions.

Goal: Figure out s.

Traditional algorithm to find s:
compute f for many inputs,
hope to find collision.

Simon’s algorithm finds s with
~n quantum computations of f.

21

Example of Simon’s algorithm

Step 5h. More shuffling:

O O OO O O O
O RO OO O O O

O O 0O O Kr O oo
O O OO O O+ O
O OO OO O+ O
O OO O O O O

Each column is a parallel universe
performing its own computations.

22



Simon’s algorithm

Assumptions:
e Given any u € {0,1}",
can efficiently compute f(u).
e Nonzero s € {0,1}".
e f(u)="Ff(uds) for all u.
e f has no other collisions.

Goal: Figure out s.

Traditional algorithm to find s:
compute f for many inputs,
hope to find collision.

Simon’s algorithm finds s with

~n quantum computations of f.

21

Example of Simon’s algorithm

Step 5i. More shuffling:
0,00 0,00, 1,0,

Each column is a parallel universe
performing its own computations.

22



Simon’s algorithm

Assumptions:
e Given any u € {0,1}",
can efficiently compute f(u).
e Nonzero s € {0,1}".
e f(u)="Ff(uds) for all u.
e f has no other collisions.

Goal: Figure out s.

Traditional algorithm to find s:
compute f for many inputs,
hope to find collision.

Simon’s algorithm finds s with
~n quantum computations of f.

21

Example of Simon’s algorithm

Step 5j. Final shuffling:
0,00, 00,0, 0,0,

Each column is a parallel universe
performing its own computations.

22



Simon’s algorithm

Assumptions:
e Given any u € {0,1}",
can efficiently compute f(u).
e Nonzero s € {0,1}".
e f(u)="Ff(uds) for all u.
e f has no other collisions.

Goal: Figure out s.

Traditional algorithm to find s:
compute f for many inputs,
hope to find collision.

Simon’s algorithm finds s with
~n quantum computations of f.

21

Example of Simon’s algorithm

Step 5j. Final shuffling:
0,00, 00,0, 0,0,

Each column is a parallel universe
performing its own computations.
Surprise: u and u @ 101 match.

22



21

Simon'’s algorithm Example of Simon’s algorithm
Assumptions: Step 6. Hadamardp:
e Given any u € {0,1}", 0,0,0,0,0, 0,0, 0,
can efficiently compute f(u). 0,0 1,1, 0,0, 1, 1,
e Nonzero s € {0,1}". 0,0 000,00, 0,
o f(u)="Ff(uds) for all u. 0,0, 1,10 0 1, 1,
e f has no other collisions. 1.1.0,0 1 1, 0 0
Goal: Figure out s. U, 0,0,0,0,0,0, 0,
0,0, 0,0,0,0,0, 0,
Traditional algorithm to find s: 1.1.0 0 1.1 0 0.

compute f for many inputs,

. . Notation: 1 means —1.
hope to find collision.

Simon’s algorithm finds s with
~n quantum computations of f.




Simon’s algorithm

Assumptions:
e Given any u € {0,1}",
can efficiently compute f(u).
e Nonzero s € {0,1}".
e f(u)="Ff(uds) for all u.
e f has no other collisions.

Goal: Figure out s.

Traditional algorithm to find s:
compute f for many inputs,
hope to find collision.

Simon’s algorithm finds s with
~n quantum computations of f.

21

22
Example of Simon’s algorithm

Step 7. Hadamards:

= O | O
|—\I_CD_|—*_CD

_ O O FH R O Rk O
RO O = RO B O
= O O R H O K O
RO O = =k O O

—_— O O == O = O
_prl—t_l—\lo_l—\lp

= O O Y
_l—\ppl—\l



Simon’s algorithm

Assumptions:
e Given any u € {0,1}",
can efficiently compute f(u).
e Nonzero s € {0,1}".
e f(u)="Ff(uds) for all u.
e f has no other collisions.

Goal: Figure out s.

Traditional algorithm to find s:
compute f for many inputs,
hope to find collision.

Simon’s algorithm finds s with
~n quantum computations of f.

21

22
Example of Simon’s algorithm

Step 8. Hadamardo:

0, 0, 0,0,0,0, 0, O,
2, 0,20 0,2 0, 2
0, 0,0,0,0,0, 0, O,
2, 0,20 0,2 0,2,
2, 0,20 0,2 0,2,
0, 0,0, 0,0, 0,0, 0,
0, 0,0, 0,0,0,0, 0,
2, 0,2, 0,0, 2, 0, 2.



21 22

Simon'’s algorithm Example of Simon’s algorithm
Assumptions: Step 8. Hadamards:
e Given any u € {0,1}", 0, 0,00 0,0, 0,0,
can efficiently compute f(u). 2, 0,2, 0,02, 0,2
e Nonzero s € {0, 1}". 0,0, 0, 0, 0,0, 0,0,
o f(u)="f(uds) forall u. 2.0, 2 0, 0, 2 0, 2,
e f has no other collisions. 2.0,2, 0,0, 2, 0,2
Goal: Figure out s. U 0,0,0,0,0,0,°0,
0,0, 0,000, 0,0,
Traditional algorithm to find s: 2 0.2 0.0 2 0 2

compute f for many inputs,

hope to find collision. Step 9: Measure. Obtain some

information about the surprise: a

Simon’s algorithm finds s with random vector orthogonal to 101.
~n quantum computations of f.




algorithm

10NS:

any u € 4{0,1}",
ficiently compute f(u).
ros €{0,1}".

- f(u @ s) for all u.

no other collisions.

gure out s.

1al algorithm to find s:
 f for many inputs,

find collision.

algorithm finds s with
1tum computations of f.

21

Example of Simon’s algorithm

Step 8. Hadamardy:

O O OO O O o o
N O O NN O N O
e
O O OO OO o o

N O N O
N O N O

N O O N NONO
O O OO0 O o o o

N O O N
N O O N

Step 9: Measure. Obtain some
information about the surprise: a
random vector orthogonal to 101.

22

Repeat |



0,1}",
mpute f(u).
117,

for all u.
ollisions.

;I

hm to find s:
ny Inputs,
on.

finds s with
butations of f.

21

Example of Simon’s algorithm

Step 8. Hadamardo:
0,

N O O DN O DN O

Step 9: Measure. Obtain some
information about the surprise: a
random vector orthogonal to 101.

0,

e e e

N

o o N NOoO N

0,

0,

I

I e

N O Nl o

N O O N

0,

e e e

N N O

o o N

2.

22

Repeat to figure o



| s:

th
of f.

21

Example of Simon’s algorithm

Step 8. Hadamardy:
0,

N ©O O b Db O DN O

Step 9: Measure. Obtain some
information about the surprise: a
random vector orthogonal to 101.

O O O O O O O

0,

N © O DN N O N

0,

0,

e e

e e

N O N O

N O O N

0,

R e

N o N O

o O N

2.

22

Repeat to figure out 101.



Example of Simon’s algorithm

Step 8. Hadamardo:
0,

N O O DN O DN O
O O O O O O O

Step 9: Measure. Obtain some
information about the surprise: a
random vector orthogonal to 101.

0,

o O N NOoO N

N

0,

0,

O O O o o o

I e

N O N o

N O O N

0,

I e e

N N O

o o N

2.

22

Repeat to figure out 101.

23



Example of Simon’s algorithm

Step 8. Hadamardo:
0,

N O O DN O DN O
O O O O O O O

Step 9: Measure. Obtain some
information about the surprise: a
random vector orthogonal to 101.

0,

o O N NOoO N

N

0,

0,

R

I e

N O N o

N O O N

0,

I e e

N N O

o o N

2.

22

Repeat to figure out 101.

Generalize Step 5 to any function
u— f(u) with f(u) = f(u e s).
“Usually” algorithm figures out s.

23



Example of Simon’s algorithm

Step 8. Hadamardo:

N O O NN O N O
R e
N ©O O NN O N O
O OO O O O o o
O OO OO O o o

N O N O
N O N O

O O OO0 O o o o
o o N

N O O N

2.

Step 9: Measure. Obtain some
information about the surprise: a
random vector orthogonal to 101.

22

Repeat to figure out 101.

Generalize Step 5 to any function
u— f(u) with f(u) = f(u e s).

“Usually” algorithm figures out s.

Shor’s algorithm replaces @

with more general -

- operation.

Many spectacular a

oplications.

23



Example of Simon’s algorithm

Step 8. Hadamardo:

N O N O
N O N O

O OO O O O o o
N ©O O NN O N O
O OO O O O o o
O OO OO O o o

O O OO0 O o o o
o o N

N O O NDNONO
N O O N

2.

Step 9: Measure. Obtain some
information about the surprise: a
random vector orthogonal to 101.

22

Repeat to figure out 101.

Generalize Step 5 to any function
u— f(u) with f(u) = f(u e s).

“Usually” algorithm figures out s.

Shor’s algorithm replaces @

with more general -

- operation.

Many spectacular a

e.g. Shor finds “ran

oplications.

dom’ s with

2U mod N = 2Y75 mod N.

Easy to factor N us

ing this.

23



Example of Simon’s algorithm

Step 8. Hadamardo:

N O O NN O N O
R e
N ©O O NN O N O
O OO O O O o o
O OO OO O o o

N O N O
N O N O

O O OO0 O o o o
o o N

N O O N

2.

Step 9: Measure. Obtain some
information about the surprise: a
random vector orthogonal to 101.

22

Repeat to figure out 101.

Generalize Step 5 to any function
u— f(u) with f(u) = f(u e s).
“Usually” algorithm figures out s.

Shor’s algorithm replaces @
with more general + operation.

Many spectacular applications.

e.g. Shor finds “random” s with
2Y mod N = 2Y"5 mod N.
Easy to factor N using this.

e.g. Shor finds “random” s, t with
4Y9Y mod p = 49759Vt mod p.
Easy to compute discrete logs.

23



' of Simon’s algorithm

Hadamards:

0, 0, 0, 0, 0,
0, 0, 2, 0, 2,
0, 0, 0, 0, 0,
0, 0, 2, 0, 2,
0, 0, 2,0, 2,
0, 0, 0, 0, 0,
0, 0, 0, 0, 0,
0, 0, 2, 0, 2.

Measure. Obtain some
ion about the surprise: a
vector orthogonal to 101.

22

Repeat to figure out 101.

Generalize Step 5 to any function
u— f(u) with f(u) = f(u e s).
“Usually” algorithm figures out s.

Shor’s algorithm replaces @

with more general -

- operation.

Many spectacular a

oplications.

e.g. Shor finds “random” s with
2Y mod N = 2975 mod N.

Easy to factor N us

ing this.

e.g. Shor finds “random” s, t with

4Y9Y mod p = 44T*s

9Vt mod p.

Easy to compute discrete logs.

23

Grover's

Assume:
has f(s)

Traditiol
compute
hope to

Success
until 1



‘s algorithm

- N

O O NNO N O

-—r N N N N N N

N

Obtain some
the surprise: a
hogonal to 101.

22

Repeat to figure out 101.

Generalize Step 5 to any function
u— f(u) with f(u) = f(u e s).

“Usually” algorithm

figures out s.

Shor’s algorithm replaces @

with more general -

- operation.

Many spectacular a

e.g. Shor finds “ran

oplications.

dom’ s with

2U mod N = 2Y75 mod N.

Easy to factor N us

e.g. Shor finds “ran

ing this.

dom’ s, t with

4Y9Y mod p = 4Y759V"t mod p.
Easy to compute discrete logs.

23

Grover's algorithm

Assume: unique s
has f(s) = 0.

Traditional algorit
compute f for ma
hope to find outpt

Success probabilit
until #£inputs appt



se: a
y 101.

22

Repeat to figure out 101.

Generalize Step 5 to any function

u— f(u) with f(u)
“Usually” algorithm

= f(u®s).
figures out s.

Shor’s algorithm replaces @

with more general 4+ operation.

Many spectacular a

oplications.

e.g. Shor finds “random” s with
2Y mod N = 2975 mod N.

Easy to factor N us

ing this.

e.g. Shor finds “random” s, t with

4Y9Y mod p = 44T*s

9Vt mod p.

Easy to compute discrete logs.

23

Grover's algorithm

Assume: unique s € {0, 1}"
has f(s) = 0.

Traditional algorithm to finc
compute f for many inputs,
hope to find output O.

Success probability is very Ic
until #inputs approaches 2"



Repeat to figure out 101.

Generalize Step 5 to any function

u— f(u) with f(u)
“Usually” algorithm

= f(us).

figures out s.

Shor’s algorithm replaces @

with more general + operation.

Many spectacular a

oplications.

e.g. Shor finds “random” s with
2Y mod N = 2475 mod N.

Easy to factor N us

e.g. Shor finds “random” s, t with

4Y9Y mod p = 44Ts

ing this.

9Vt mod p.

Easy to compute discrete logs.

23

24
Grover's algorithm

Assume: unique s € {0, 1}"
has f(s) = 0.

Traditional algorithm to find s:
compute f for many inputs,
hope to find output O.

Success probability is very low
until #inputs approaches 2",



23 24

Repeat to figure out 101. Grover's algorithm
Generalize Step 5 to any function Assume: unique s € {0,1}"
u— f(u) with f(u) = f(u e s). has f(s) = 0.

Usually” algorithm figures out s. Traditional algorithm to find s:

Shor’s algorithm replaces @ compute f for many inputs,
with more general 4+ operation. hope to find output O.
Many spectacular applications. Success probability is very low

L )
e.g. Shor finds “random” s with until #inputs approaches 2°.

2Y mod N = 2475 mod N. Grover's algorithm takes only 2n/2
Easy to factor N using this. reversible computations of f.

e.g. Shor finds “random” s, ¢ with Typically: reversibility overhead

4Y9Y mod p = 4Y759V*t mod p.
Easy to compute discrete logs.

Is small enough that this

easily beats traditional algorithm.




o figure out 101.

ze Step 5 to any function
) with f(u) = f(u & s).
" algorithm figures out s.

lgorithm replaces &

re general -

- operation.

ectacular a

oplications.

r finds “random’ s with
N = 2Y75 mod N.

factor N us

ing this.

r finds “random’ s, t with
d p = 4YT59V"Tt mod p.
compute discrete logs.

23

24
Grover's algorithm

Assume: unique s € {0, 1}"
has f(s) = 0.

Traditional algorithm to find s:
compute f for many inputs,
hope to find output O.

Success probability is very low
until #inputs approaches 2",

Grover's algorithm takes only on/2
reversible computations of f.
Typically: reversibility overhead

Is small enough that this

easily beats traditional algorithm.

Start frc
over all



ut 101.

to any function
1) =f(uds).
m figures out s.

eplaces @
+ operation.

applications.

ndom” s with
mod N.
Ising this.

ndom’ s, t with
59Vt mod p.

liscrete logs.

23

Grover's algorithm

Assume: unique s € {0, 1}"
has f(s) = 0.

Traditional algorithm to find s:

compute f for many inputs,

hope to find output O.
Success pro

nability 1s very low

until #inputs approaches 2",

Grover's algorithm takes only on/2

reversi
Typica
IS SMa

ole computations of f.

ly: reversibility
| enough that t

easily

heats traditiona

overhead

NIS

algorithm.

24

Start from uniforn
over all n-bit strin



1ction
) S).
out s.

on.

ns.

with

23

Grover's algorithm

24

Assume: unique s € {0, 1}"
has f(s) = 0.

Traditional algorithm to find s:

compute f
hope to finc
Success pro

output 0.

‘or many inputs,

nability 1s very low

until #inputs approaches 2",

Grover's algorithm takes only on/2

reversible computations of f.

Typically: reversibility overhead

IS SMa
easlly

| enough that t

heats traditiona

IS

algorithm.

Start from uniform superpos
over all n-bit strings u.



24 25
Grover's algorithm Start from uniform superposition

Assume: unique s € {0, 117 over all n-bit strings u.

has f(s) = 0.

Traditional algorithm to find s:
compute f for many inputs,
hope to find output O.

Success probability is very low
until #inputs approaches 2",

Grover's algorithm takes only on/2
reversible computations of f.

Typically: reversibility overhead
Is small enough that this

easily beats traditional algorithm.




Grover's algorithm

Assume: unique s € {0, 1}"

has f(s) = 0.

Traditional algorithm to find s:

compute f for many inputs,

hope to find output O.

Success probability is very low

until #inputs approaches 2",

Grover's algorithm takes only on/2

reversible computations of f.

Typically: reversibility
Is small enough that t

easily beats traditiona

overhead

IS

algorithm.

24

Start from uniform superposition
over all n-bit strings wu.

Step 1: Set a < b where
by, = —ay if f(u) =0,

b, = a, otherwise.

This is fast.

25



Grover's algorithm

Assume: unique s € {0, 1}"
has f(s) = 0.

Traditional algorithm to find s:
compute f for many inputs,
hope to find output O.

Success probability is very low
until #inputs approaches 2",

Grover's algorithm takes only on/2
reversible computations of f.

Typically: reversibility overhead
Is small enough that this

easily beats traditional algorithm.

24

Start from uniform superposition
over all n-bit strings wu.

Step 1: Set a < b where
by, = —ay if f(u) =0,

b, = a, otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

25



Grover's algorithm

Assume: unique s € {0, 1}"
has f(s) = 0.

Traditional algorithm to find s:
compute f for many inputs,
hope to find output O.

Success probability is very low
until #inputs approaches 2",

Grover's algorithm takes only on/2
reversible computations of f.

Typically: reversibility overhead
Is small enough that this

easily beats traditional algorithm.

24

Start from uniform superposition
over all n-bit strings wu.

Step 1: Set a < b where
by, = —ay if f(u) =0,

b, = a, otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

25



Grover's algorithm

Assume: unique s € {0, 1}"
has f(s) = 0.

Traditional algorithm to find s:
compute f for many inputs,
hope to find output O.

Success probability is very low
until #inputs approaches 2",

Grover's algorithm takes only on/2
reversible computations of f.

Typically: reversibility overhead
Is small enough that this

easily beats traditional algorithm.

24

Start from uniform superposition
over all n-bit strings wu.

Step 1: Set a < b where
by, = —ay if f(u) =0,

b, = a, otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.

With high probability this finds s.

25



“algorithm

unique s € {0, 1}"
= 0.

1al algorithm to find s:
 f for many inputs,
find output O.

probability is very low
1puts approaches 2.

algorithm takes only 2//2
e computations of f.

/. reversibility overhead
enough that this

ats traditional algorithm.

24

Start from uniform superposition
over all n-bit strings u.

Step 1: Set a < b where
b, = —ay if f(u) =0,

b, = a, otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

25

Normali;
for an e
after O s

1.0—

—0.5+

-1.0—



24 25
|_ Start from uniform superposition Normalized graph

over all n-bit strings u. for an example wii
c {0,1}" 5 p

Step 1: Set a < b where after O steps:

4 _ 1.0
hm to find s: by = —ay 1t f(u) 0 |
. b, = a, otherwise.
Ny INputs, o
it 0. This is fast. 05l
/ 1S very low Step 2: “Grover diffusion”.
-0aches 2" Negate a around Its average. 00

takes only n/2 This is also fast.

itions of f. Repeat Step 1 4+ Step 2 05
ility overhead about 0.58 - 2927 times.

at this | Measure the n qubits. ~1.0!
onal algorithm.

With high probability this finds s.




| s:

W

24

Start from uniform superposition
over all n-bit strings u.

Step 1: Set a < b where
b, = —ay if f(u) =0,

b, = a, otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

25

Normalized graph of u+ a,

for an example with n = 12

after O steps:

1.0

0.5

0.0

—-0.5

-1.0




Start from uniform superposition
over all n-bit strings wu.

Step 1: Set a < b where
by, = —ay if f(u) =0,

b, = a, otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

25

Normalized graph of u+— ay

for an example with n = 12

after O steps:

1.0

0.5

0.0

-0.5

-1.0




Start from uniform superposition
over all n-bit strings wu.

Step 1: Set a < b where
by, = —ay if f(u) =0,

b, = a, otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

25

Normalized graph of u+— ay

for an example with n = 12
after Step 1:

1.0

0.5

0.0

-0.5

-1.0




Start from uniform superposition
over all n-bit strings wu.

Step 1: Set a < b where
by, = —ay if f(u) =0,

b, = a, otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

25

Normalized graph of u+— ay

for an example with n = 12
after Step 1 + Step 2:

1.0

0.5

0.0

-0.5

-1.0




Start from uniform superposition
over all n-bit strings wu.

Step 1: Set a < b where
by, = —ay if f(u) =0,

b, = a, otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

25

Normalized graph of u+— ay

for an example with n = 12
after Step 1 + Step 2 + Step 1:

1.0

0.5

0.0

-0.5

-1.0




Start from uniform superposition
over all n-bit strings wu.

Step 1: Set a < b where
by, = —ay if f(u) =0,

b, = a, otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

25

Normalized graph of u+— ay

for an example with n = 12
after 2 x (Step 1 + Step 2):

1.0

0.5

0.0

-0.5

-1.0




Start from uniform superposition
over all n-bit strings wu.

Step 1: Set a < b where
by, = —ay if f(u) =0,

b, = a, otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

25

Normalized graph of u+— ay

for an example with n = 12
after 3 x (Step 1 + Step 2):

1.0

0.5

0.0

-0.5

-1.0




Start from uniform superposition
over all n-bit strings wu.

Step 1: Set a < b where
by, = —ay if f(u) =0,

b, = a, otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

25

Normalized graph of u+— ay

for an example with n = 12
after 4 x (Step 1 + Step 2):

1.0

0.5

0.0

-0.5

-1.0




Start from uniform superposition
over all n-bit strings wu.

Step 1: Set a < b where
by, = —ay if f(u) =0,

b, = a, otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

25

Normalized graph of u+— ay

for an example with n = 12
after 5 x (Step 1 + Step 2):

1.0

0.5

0.0

-0.5

-1.0




Start from uniform superposition
over all n-bit strings wu.

Step 1: Set a < b where
by, = —ay if f(u) =0,

b, = a, otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

25

Normalized graph of u+— ay

for an example with n = 12
after 6 x (Step 1 + Step 2):

1.0

0.5

0.0

-0.5

-1.0




Start from uniform superposition
over all n-bit strings wu.

Step 1: Set a < b where
by, = —ay if f(u) =0,

b, = a, otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

25

Normalized graph of u+— ay

for an example with n = 12
after 7 x (Step 1 + Step 2):

1.0

0.5

0.0

-0.5

-1.0




Start from uniform superposition
over all n-bit strings wu.

Step 1: Set a < b where
by, = —ay if f(u) =0,

b, = a, otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

25

Normalized graph of u+— ay

for an example with n = 12
after 8 x (Step 1 + Step 2):

1.0

0.5

0.0

-0.5

-1.0




Start from uniform superposition
over all n-bit strings wu.

Step 1: Set a < b where
by, = —ay if f(u) =0,

b, = a, otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

25

Normalized graph of u+— ay

for an example with n = 12
after 9 x (Step 1 + Step 2):

1.0

0.5

0.0

-0.5

-1.0




Start from uniform superposition
over all n-bit strings wu.

Step 1: Set a < b where
by, = —ay if f(u) =0,

b, = a, otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

25

Normalized graph of u+— ay

for an example with n = 12
after 10 x (Step 1 + Step 2):

1.0

0.5

0.0

-0.5

-1.0




Start from uniform superposition
over all n-bit strings wu.

Step 1: Set a < b where
by, = —ay if f(u) =0,

b, = a, otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

25

Normalized graph of u+— ay

for an example with n = 12
after 11 x (Step 1 + Step 2):

1.0

0.5

0.0

-0.5

-1.0




Start from uniform superposition
over all n-bit strings wu.

Step 1: Set a < b where
by, = —ay if f(u) =0,

b, = a, otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

25

Normalized graph of u+— ay

for an example with n = 12
after 12 x (Step 1 + Step 2):

1.0

0.5

0.0

-0.5

-1.0




Start from uniform superposition
over all n-bit strings wu.

Step 1: Set a < b where
by, = —ay if f(u) =0,

b, = a, otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

25

Normalized graph of u+— ay

for an example with n = 12
after 13 x (Step 1 + Step 2):

1.0

0.5

0.0

-0.5

-1.0




Start from uniform superposition
over all n-bit strings wu.

Step 1: Set a < b where
by, = —ay if f(u) =0,

b, = a, otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

25

Normalized graph of u+— ay

for an example with n = 12
after 14 x (Step 1 + Step 2):

1.0

0.5

0.0

-0.5

-1.0




Start from uniform superposition
over all n-bit strings wu.

Step 1: Set a < b where
by, = —ay if f(u) =0,

b, = a, otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

25

Normalized graph of u+— ay

for an example with n = 12
after 15 x (Step 1 + Step 2):

1.0

0.5

0.0

-0.5

-1.0




Start from uniform superposition
over all n-bit strings wu.

Step 1: Set a < b where
by, = —ay if f(u) =0,

b, = a, otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

25

Normalized graph of u+— ay

for an example with n = 12
after 16 x (Step 1 + Step 2):

1.0

0.5

0.0

-0.5

-1.0




Start from uniform superposition
over all n-bit strings wu.

Step 1: Set a < b where
by, = —ay if f(u) =0,

b, = a, otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

25

Normalized graph of u+— ay

for an example with n = 12
after 17 x (Step 1 + Step 2):

1.0

0.5

0.0

-0.5

-1.0




Start from uniform superposition
over all n-bit strings wu.

Step 1: Set a < b where
by, = —ay if f(u) =0,

b, = a, otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

25

Normalized graph of u+— ay

for an example with n = 12
after 18 x (Step 1 + Step 2):

1.0

0.5

0.0

-0.5

-1.0




Start from uniform superposition
over all n-bit strings wu.

Step 1: Set a < b where
by, = —ay if f(u) =0,

b, = a, otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

25

Normalized graph of u+— ay

for an example with n = 12
after 19 x (Step 1 + Step 2):

1.0

0.5

0.0

-0.5

-1.0




Start from uniform superposition
over all n-bit strings wu.

Step 1: Set a < b where
by, = —ay if f(u) =0,

b, = a, otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

25

Normalized graph of u+— ay

for an example with n = 12
after 20 x (Step 1 + Step 2):

1.0

0.5

0.0

-0.5

-1.0




Start from uniform superposition
over all n-bit strings wu.

Step 1: Set a < b where
by, = —ay if f(u) =0,

b, = a, otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

25

Normalized graph of u+— ay

for an example with n = 12
after 25 x (Step 1 + Step 2):

1.0

0.5

0.0

-0.5

-1.0




Start from uniform superposition
over all n-bit strings wu.

Step 1: Set a < b where
by, = —ay if f(u) =0,

b, = a, otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

25

Normalized graph of u+— ay

for an example with n = 12
after 30 x (Step 1 + Step 2):

1.0

0.5

0.0

-0.5

-1.0




Start from uniform superposition
over all n-bit strings wu.

Step 1: Set a < b where
by, = —ay if f(u) =0,

b, = a, otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

25

26
Normalized graph of u+— ay

for an example with n = 12
after 35 x (Step 1 + Step 2):

1.0

0.5+ -

OO N E—————————— -

-0.5+ -

-1.0

Good moment to stop, measure.



Start from uniform superposition
over all n-bit strings wu.

Step 1: Set a < b where
by, = —ay if f(u) =0,

b, = a, otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

25

Normalized graph of u+— ay

for an example with n = 12
after 40 x (Step 1 + Step 2):

1.0

0.5

0.0

-0.5

-1.0




Start from uniform superposition
over all n-bit strings wu.

Step 1: Set a < b where
by, = —ay if f(u) =0,

b, = a, otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

25

26
Normalized graph of u+— ay

for an example with n = 12
after 45 x (Step 1 + Step 2):

1.0

0.5+ -

0.0

-0.5+ -

-1.0




Start from uniform superposition
over all n-bit strings wu.

Step 1: Set a < b where
by, = —ay if f(u) =0,

b, = a, otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

25

Normalized graph of u+— ay
for an example with n = 12

after 50 x (Step 1 + Step 2):

1.0

0.5+

0.0

-0.5+

-1.0

Traditional stopping point.

26



Start from uniform superposition
over all n-bit strings wu.

Step 1: Set a < b where
by, = —ay if f(u) =0,

b, = a, otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

25

Normalized graph of u+— ay

for an example with n = 12
after 60 x (Step 1 + Step 2):

1.0

0.5

0.0

-0.5

-1.0




Start from uniform superposition
over all n-bit strings wu.

Step 1: Set a < b where
by, = —ay if f(u) =0,

b, = a, otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

25

Normalized graph of u+— ay

for an example with n = 12
after 70 x (Step 1 + Step 2):

1.0

0.5

0.0

-0.5

-1.0




Start from uniform superposition
over all n-bit strings wu.

Step 1: Set a < b where
by, = —ay if f(u) =0,

b, = a, otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

25

Normalized graph of u+— ay

for an example with n = 12
after 80 x (Step 1 + Step 2):

1.0

0.5

0.0

-0.5

-1.0




Start from uniform superposition
over all n-bit strings wu.

Step 1: Set a < b where
by, = —ay if f(u) =0,

b, = a, otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

25

Normalized graph of u+— ay

for an example with n = 12
after 90 x (Step 1 + Step 2):

1.0

0.5

0.0

-0.5

-1.0




Start from uniform superposition
over all n-bit strings wu.

Step 1: Set a < b where
by, = —ay if f(u) =0,

b, = a, otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

25

Normalized graph of u+— ay
for an example with n = 12

after 100 x (Step 1 + Step 2):

1.0

0.5+

-0.5+

-1.0

10710 ) o

Very bad stopping point.

26



m uniform superposition
n-bit strings u.

Set a < b where
y if f(u) =0,
otherwise.

ast.

“Grover diffusion” .
3 around Its average.
Iso fast.

>tep 1 + Step 2
58 - 2097 times.

' the n qubits.

rh probability this finds s.

25

26
Normalized graph of u+— ay

for an example with n = 12
after 100 x (Step 1 + Step 2):

1.0

0.5+ -

0.0 b o |

—0.5+ -

-1.0

Very bad stopping point.

u— a,
by a vec
(with fix
(1) ay f
(2) ay, f¢



1 superposition
gs U.

) where
- O,

iffusion’ .

LS average.

Step 2
times.

Its.
lity this finds s.

25

26
Normalized graph of u+— ay

for an example with n = 12
after 100 x (Step 1 + Step 2):

1.0

0.0 b o |

-0.5+ -

-1.0

Very bad stopping point.

u+— a, 1s complet
by a vector of two
(with fixed multip
(1) a, for roots u;
(2) ay for non-roo



1tion

1ds s.

25

26
Normalized graph of u+— ay

for an example with n = 12
after 100 x (Step 1 + Step 2):

1.0

0.0 b o |

-1.0

Very bad stopping point.

u — a, Is completely descril
by a vector of two numbers
(with fixed multiplicities):
(1) a, for roots u;

(2) ay for non-roots u.



Normalized graph of u+— ay
for an example with n = 12

after 100 x (Step 1 + Step 2):

1.0

0.0 b o

-0.5+

-1.0

Very bad stopping point.

26

u +— a, 1s completely described
by a vector of two numbers
(with fixed multiplicities):

(1) a, for roots u;

(2) a, for non-roots u.

27



Normalized graph of u+— ay
for an example with n = 12

after 100 x (Step 1 + Step 2):

1.0

0.0 b o

-0.5+

-1.0

26

Very bad stopping point.

u +— a, 1s completely described
by a vector of two numbers
(with fixed multiplicities):

(1) a, for roots u;

(2) a, for non-roots u.

Step 1 + Step 2
act linearly on this vector.

27



Normalized graph of u+— ay
for an example with n = 12

after 100 x (Step 1 + Step 2):

1.0

0.0 b o

-0.5+

-1.0

Very bad stopping point.

26

27
u +— a, 1s completely described

by a vector of two numbers
(with fixed multiplicities):
(1) a, for roots u;

(2) a, for non-roots u.

Step 1 + Step 2
act linearly on this vector.

Easily compute eigenvalues
and powers of this linear map
to understand evolution

of state of Grover's algorithm.
= Probability i1s =1

after ~(7/4)2%°>" iterations.



zed graph of u+— ay
cample with n = 12
) X (Step 1 + Step 2):

1 stopping point.

26

u +— a, 1s completely described
by a vector of two numbers
(with fixed multiplicities):

(1) a, for roots u;

(2) ay for non-roots u.

Step 1 + Step 2
act linearly on this vector.

Easily compute eigenvalues
and powers of this linear map

to understand evolution

of state of Grover's algorithm.
= Probability i1s =1

after ~(7/4)2%°" iterations.

27

Many m

Shor ger

e.g., pol
“cycloto
STOC 2

encrypti

Grover g
e.g., fas
use “‘qus

Not just

e.g., suk
CRS/CS
uses “Ki



of u+— a,
h n=12

1 4 Step 2):

point.

26

u +— a, 1s completely described
by a vector of two numbers
(with fixed multiplicities):

(1) a, for roots u;

(2) a, for non-roots u.

Step 1 + Step 2
act linearly on this vector.

Easily compute eigenvalues
and powers of this linear map
to understand evolution

of state of Grover's algorithm.
= Probability i1s =1

after ~(7/4)2%°" iterations.

21

Many more applic

Shor generalizatiol
e.g., poly-time att
“cyclotomic” case

STOC 2009 “Fully
encryption using I

Grover generalizat
e.g., fastest subse

use “quantum wal

Not just Shor and

e.g., subexponenti
CRS/CSIDH isoge
uses "Kuperberg's



26

I\J
v

u +— a, 1s completely described
by a vector of two numbers
(with fixed multiplicities):

(1) a, for roots u;

(2) ay for non-roots u.

Step 1 + Step 2
act linearly on this vector.

Easily compute eigenvalues
and powers of this linear map

to understand evolution

of state of Grover's algorithm.
= Probability i1s =1

after ~(7/4)2%°" iterations.

27

Many more applications

Shor generalizations:
e.g., poly-time attack breaki
“cyclotomic” case of Gentry

STOC 2009 “Fully homomo
encryption using ideal lattice

Grover generalizations:
e.g., fastest subset-sum atta
use “quantum walks" .

Not just Shor and Grover:
e.g., subexponential-time

CRS/CSIDH isogeny attack
uses "Kuperberg's algorithrr



u +— a, 1s completely described
by a vector of two numbers
(with fixed multiplicities):

(1) a, for roots u;

(2) a, for non-roots u.

Step 1 + Step 2
act linearly on this vector.

Easily compute eigenvalues
and powers of this linear map
to understand evolution

of state of Grover's algorithm.
= Probability i1s =1

after ~(7/4)2%°" iterations.

21

28
Many more applications

Shor generalizations:
e.g., poly-time attack breaking
“cyclotomic” case of Gentry

STOC 2009 “Fully homomorphic
encryption using ideal lattices” .

Grover generalizations:
e.g., fastest subset-sum attacks
use “quantum walks" .

Not just Shor and Grover:
e.g., subexponential-time

CRS/CSIDH isogeny attack
uses "Kuperberg's algorithm™.



