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The state of a computer
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100 = 4 with probability O;

101 = 5 with probability 1;

110 = 6 with probability O;
111 = 7 with probability 0.

5 Is guaranteed outcome.

NOT gates

NOTp gate on 3 ¢
(3,1,4,1,5,9,2,6
(1,3,1,4,9,5,6,2



D

73;
73;

/173;

|7 3:

/173;
/173;

[ 73;

/173.
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e.g.: Say 3 qubits have state
(0,0,0,0,0,1,0,0).

Measurement produces
000 = 0 with probability O;
001 = 1 with probability O;

010 = 2 with probability O;

011 = 3 with probability O;
100 = 4 with probability O;

101 = 5 with probability 1;

110 = 6 with probability O;
111 = 7 with probability 0.

b Is guaranteed outcome.

11

NOT gates

NOTy gate on 3 qubits:
(3,1,4,1,5,9,2,6) —
(1,3,1,4,9,5,6,2).



e.g.: Say 3 qubits have state
(0,0,0,0,0,1,0,0).

Measurement produces
000 = 0 with probability O;
001 = 1 with probability O;

010 = 2 with probability O;

011 = 3 with probability O;
100 = 4 with probability O;

101 = 5 with probability 1;

110 = 6 with probability O;
111 = 7 with probability 0.

5 Is guaranteed outcome.

11

NOT gates

NOTy gate on 3 qubits:
(3,1,4,1,5,9,2,6) —
(1,3,1,4,9,5,6,2).

12



e.g.: Say 3 qubits have state
(0,0,0,0,0,1,0,0).

Measurement produces
000 = 0 with probability O;
001 = 1 with probability O;

010 = 2 with probability O;

011 = 3 with probability O;
100 = 4 with probability O;

101 = 5 with probability 1;

110 = 6 with probability O;
111 = 7 with probability 0.

5 Is guaranteed outcome.

11

NOT gates

NOTy gate on 3 qubits:
(3,1,4,1,5,9,2,6) —
(1,3,1,4,9,5,6,2).

NOTy gate on 4 qubits:
(3,1,4,1,5,9,2,6,5,3,5,8,9,7,9,3) —
(1,3,1,4,9,5,6,2,3,5,8,5,7,9,3,9).

12



e.g.: Say 3 qubits have state
(0,0,0,0,0,1,0,0).

Measurement produces
000 = 0 with probability O;
001 = 1 with probability O;

010 = 2 with probability O;

011 = 3 with probability O;
100 = 4 with probability O;

101 = 5 with probability 1;

110 = 6 with probability O;
111 = 7 with probability 0.

5 Is guaranteed outcome.

11

NOT gates

NOTy gate on 3 qubits:
(3,1,4,1,5,9,2,6) —
(1,3,1,4,9,5,6,2).

NOTy gate on 4 qubits:
(3,1,4,1,5,9,2,6,5,3,5,8,9,7,9,3) —
(1,3,1,4,9,5,6,2,3,5,8,5,7,9,3,9).

NOT; gate on 3 qubits:
(3,1,4,1,5,9,2,6) —
(4,1,3,1,2,6,5,9).

12



e.g.: Say 3 qubits have state
(0,0,0,0,0,1,0,0).

Measurement produces
000 = 0 with probability O;
001 = 1 with probability O;

010 = 2 with probability O;

011 = 3 with probability O;
100 = 4 with probability O;

101 = 5 with probability 1;

110 = 6 with probability O;
111 = 7 with probability 0.

5 Is guaranteed outcome.

11

NOT gates

NOTy gate on 3 qubits:
(3,1,4,1,5,9,2,6) —
(1,3,1,4,9,5,6,2).

NOTy gate on 4 qubits:
(3,1,4,1,5,9,2,6,5,3,5,8,9,7,9,3) —
(1,3,1,4,9,5,6,2,3,5,8,5,7,9,3,9).

NOT; gate on 3 qubits:
(3,1,4,1,5,9,2,6) —
(4,1,3,1,2,6,5,9).

NOT, gate on 3 qubits:
(3,1,4,1,5,9,2,6) —
(5,9,2,6,3,1,4,1).

12



v 3 qubits have state
),0,1,0,0).

ment produces
with probability O;
with probability O;

with probability O;

with probability O;
with probability 0O;

with probability 1;

with probability O;
with probability O.

-anteed outcome.

11 12
NOT gates

NOTy gate on 3 qubits:
(3,1,4,1,5,9,2,6) —
(1,3,1,4,9,5,6,2).

NOTy gate on 4 qubits:
(3,1,4,1,5,9,2,6,5,3,5,8,9,7,9,3) —
(1,3,1,4,9,5,6,2,3,5,8,5,7,9,3,9).

NOT; gate on 3 qubits:
(3,1,4,1,5,9,2,6) —
(4,1,3,1,2,6,5,9).

NOT, gate on 3 qubits:
(3,1,4,1,5,9,2,6) —
(5,9,2,6,3,1,4,1).

Operatic
NOTy, s
Operatic

flipping
Flip: ou



have state
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luces

abl
abl
abl
abl
abl

abl

abl

ity O;
ity O;
ity O;
ity O;
ity O;
ity 1;
ity O;
ability 0.

tcome.
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NOT gates

NOTy gate on 3 qubits:
(3,1,4,1,5,9,2,6) —
(1,3,1,4,9,5,6,2).

NOTy gate on 4 qubits:
(3,1,4,1,5,9,2,6,5,3,5,8,9,7,9,3) —
(1,3,1,4,9,5,6,2,3,5,8,5,7,9,3,9).

NOT; gate on 3 qubits:
(3,1,4,1,5,9,2,6) —
(4,1,3,1,2,6,5,9).

NOT, gate on 3 qubits:
(3,1,4,1,5,9,2,6) —
(5,9,2,6,3,1,4,1).

Sstate
(1,0,0,0,0,0,0, (
(0,1,0,0,0,0,0, (
(0,0,1,0,0,0,0, (
(0,0,0,1,0,0,0, (
(0,0,0,0,1,0,0, (
(0,0,0,0,0,1,0,
(0,0,0,0,0,0,1, (
(0,0,0,0,0,0,0,

Operation on quail
NOTp, swapping |
Operation after m

flipping bit 0 of re
Flip: output iIs nof
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12
NOT gates

state Measure

NOT, gate on 3 qubits: (1,0,0,0,0,0,0,0) 000
(3.1,4,1,5,9,2, 6) (0,1,0,0,0,0,0,0) 001
(1,3,1,4,9,5,6,2). (0,0,1,0,0,0,0,0) 010
NOTgy gate on 4 qubits: (0,0,0,1,0,0,0,0) 011
(314.1592653580793)— 0001000 100
(1,3,1,4,9,5.6.2,3,5,8,5,7,9,3,9) (0.0,0,0,0,1,0,0) 101
(0,0,0,0,0,0,1,0) 110

NOT; gate on 3 qubits: (0,0,0,0,0,0,0, 1) 111

(3,1,4,1,5,9,2,6) —

(4,1,3,1,2,6,5,9). Operation on quantum state

NOTp, swapping pairs.
NOT> gate on 3 qubits: Operation after measuremer
(3,1,4,1,5,9,2,6) — flipping bit O of result.
(5,9,2,6,3,1,4,1). Flip: output Is not input.




NOT gates

NOTy gate on 3 qubits:
(3,1,4,1,5,9,2,6) —
(1,3,1,4,9,5,6,2).

NOTy gate on 4 qubits:
(3,1,4,1,5,9,2,6,5,3,5,8,9,7,9,3) —
(1,3,1,4,9,5,6,2,3,5,8,5,7,9,3,9).

NOT; gate on 3 qubits:
(3,1,4,1,5,9,2,6) —
(4,1,3,1,2,6,5,9).

NOT, gate on 3 qubits:
(3,1,4,1,5,9,2,6) —
(5,9,2,6,3,1,4,1).

12

state measurement
(1,0,0,0,0,0,0,0) 000 >
(0,1,0,0,0,0,0,0) 001
(0,0,1,0,0,0,0,0) 010 >
(0,0,0,1,0,0,0,0) 011
(0,0,0,0,1,0,0,0) 100 >
(0,0,0,0,0,1,0,0) 101
(0,0,0,0,0,0,1,0) 110 >
(0,0,0,0,0,0,0,1) 111

Operation on quantum state:
NOTp, swapping pairs.
Operation after measurement:

flipping bit 0 of result.
Flip: output is not input.

13



tes

ate on 3 qubits:
,5,9,2,6) —
1,9,5,6,2).

ate on 4 qubits:
5,9,2,6,5,3,5,8,9,7,9,3) —
9,5,6,2,3,5,8,5,7,9,3,9).

ate on 3 qubits:
,5,9,2,6) —
[,2,6,5,9).

ate on 3 qubits:
,5,9,2,6) —
,3,1,4,1).

12

state measurement
(1,0,0,0,0,0,0,0) 000 >
(0,1,0,0,0,0,0,0) 001
(0,0,1,0,0,0,0,0) 010 >
(0,0,0,1,0,0,0,0) 011
(0,0,0,0,1,0,0,0) 100 >
(0,0,0,0,0,1,0,0) 101
(0,0,0,0,0,0,1,0) 110 >
(0,0,0,0,0,0,0,1) 111

Operation on quantum state:
NOTp, swapping pairs.
Operation after measurement:

flipping bit 0 of result.
Flip: output is not input.

13

Controll

e.g. C1N
(3,1,4,:
(3,1,1,¢



ubits:
) —
).
ubits:

3,5,8,9,7,9,3)
5,8,5,7,9,3,9).

ubits:

12

state measurement
(1,0,0,0,0,0,0,0) 000 >
(0,1,0,0,0,0,0,0) 001
(0,0,1,0,0,0,0,0) 010 >
(0,0,0,1,0,0,0,0) 011
(0,0,0,0,1,0,0,0) 100 >
(0,0,0,0,0,1,0,0) 101
(0,0,0,0,0,0,1,0) 110 >
(0,0,0,0,0,0,0,1) 111

Operation on quantum state:
NOTg, swapping pairs.
Operation after measurement:

flipping bit 0 of result.
Flip: output is not input.

13

Controlled-NOT (

€.g. ClNOToi
(3,1,4,1,5,9,2,6
(3,1,1,4,5,9,6,2



12

state measurement
(1,0,0,0,0,0,0,0) 000 >
(0,1,0,0,0,0,0,0) 001
(0,0,1,0,0,0,0,0) 010 >
(0,0,0,1,0,0,0,0) 011
(0,0,0,0,1,0,0,0) 100 >
(0,0,0,0,0,1,0,0) 101
(0,0,0,0,0,0,1,0) 110 >
(0,0,0,0,0,0,0,1) 111

Operation on quantum state:
NOTp, swapping pairs.
Operation after measurement:

flipping bit 0 of result.
Flip: output Is not input.

13

Controlled-NOT (CNOQOT) gz

€.g. ClNOT():
(3,1,4,1,5,9,2,6) —
(3,1,1,4,5,9,6,2).



state measurement
(1,0,0,0,0,0,0,0) 000 >
(0,1,0,0,0,0,0,0) 001
(0,0,1,0,0,0,0,0) 010 >
(0,0,0,1,0,0,0,0) 011
(0,0,0,0,1,0,0,0) 100 >
(0,0,0,0,0,1,0,0) 101
(0,0,0,0,0,0,1,0) 110 >
(0,0,0,0,0,0,0,1) 111

Operation on quantum state:
NOTg, swapping pairs.
Operation after measurement:

flipping bit 0 of result.
Flip: output is not input.

13

Controlled-NOT (CNOQOT) gates

€.g. ClNOToi
(3,1,4,1,5,9,2,6) —
(3,1,1,4,5,9,6,2).

14



state measurement
(1,0,0,0,0,0,0,0) 000 >
(0,1,0,0,0,0,0,0) 001
(0,0,1,0,0,0,0,0) 010 >
(0,0,0,1,0,0,0,0) 011
(0,0,0,0,1,0,0,0) 100 >
(0,0,0,0,0,1,0,0) 101
(0,0,0,0,0,0,1,0) 110 >
(0,0,0,0,0,0,0,1) 111

Operation on quantum state:
NOTg, swapping pairs.
Operation after measurement:

flipping bit 0 of result.
Flip: output is not input.

13

14

Controlled-NOT (CNOQOT) gates

€.g. ClNOToi
(3,1,4,1,5,9,2,6) —
(3,1,1,4,5,9,6,2).

Operation after measurement:
flipping bit 0 /f bit 1 is set; i.e.,




state measurement
(1,0,0,0,0,0,0,0) 000 >
(0,1,0,0,0,0,0,0) 001
(0,0,1,0,0,0,0,0) 010 >
(0,0,0,1,0,0,0,0) 011
(0,0,0,0,1,0,0,0) 100 >
(0,0,0,0,0,1,0,0) 101
(0,0,0,0,0,0,1,0) 110 >
(0,0,0,0,0,0,0,1) 111

Operation on quantum state:
NOTg, swapping pairs.
Operation after measurement:

flipping bit 0 of result.
Flip: output is not input.

13
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Controlled-NOT (CNOQOT) gates

€.g. ClNOToi
(3,1,4,1,5,9,2,6) —
(3,1,1,4,5,9,6,2).

Operation after measurement:
flipping bit 0 /f bit 1 is set; i.e.,
€.g. CQNOTo:

(3,1,4,1,5,9,2,6) —
(3,1,4,1,9,5,6,2).




state measurement
(1,0,0,0,0,0,0,0) 000 >
(0,1,0,0,0,0,0,0) 001
(0,0,1,0,0,0,0,0) 010 >
(0,0,0,1,0,0,0,0) 011
(0,0,0,0,1,0,0,0) 100 >
(0,0,0,0,0,1,0,0) 101
(0,0,0,0,0,0,1,0) 110 >
(0,0,0,0,0,0,0,1) 111

Operation on quantum state:
NOTg, swapping pairs.
Operation after measurement:

flipping bit 0 of result.
Flip: output is not input.

13

Controlled-NOT (CNOQOT) gates

€.g. ClNOToi
(3,1,4,1,5,9,2,6) —
(3,1,1,4,5,9,6,2).

Operation after measurement:
flipping bit 0 /f bit 1 is set; i.e.,
€.g. CQNOTo:

(3,1,4,1,5,9,2,6) —
(3,1,4,1,9,5,6,2).

€.g. CQNOT2:
(3,1,4,1,5,9,2,6) —
(3.9.4,6,5,1,2,1).

14



state measurement
0,0,0,0,0 000
0,0,0,0, O; 001 >
0,0,0,0,0 010

1 0,0,0,0; 011 >
0,1,0,0,0 100

0 O,l,0,0; 101>
0,0,0,1,0)

)n on quantum state:
wapping pairs.

n after measurement:
bit 0 of result.

tput Is not Iinput.

13

Controlled-NOT (CNQOT) gates

€.g. ClNOT():
(3,1,4,1,5,9,2,6) —
(3,1,1,4,5,9,6,2).

Operation after measurement:

(92,91, 90) — (g2,91. 90 D q1).

€.g. CQNOT():
(3,1,4,1,5,9,2,6) —
(3,1,4,1,9,5,6,2).

€.g. C()NOTQZ
(3,1,4,1,5,9,2,6) —
(3.9.4,6,5,1,2,1).

flipping bit 0 /f bit 1 is set; i.e.,

14

Toffoli g

Also knc
controlle

e.g. Cr(C
(3,1,4,:
(3,1,4,:
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sult.

. Input.
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Controlled-NOT (CNOQOT) gates

€.g. ClNOToi
(3,1,4,1,5,9,2,6) —
(3,1,1,4,5,9,6,2).

Operation after measurement:

flipping bit 0 /f bit 1 is set; i.e.,

(g2, 91.90) — (92,91, 90 D q1).

€.g. CQNOTo:
(3,1,4,1,5,9,2,6) —
(3,1,4,1,9,5,6,2).

€.g. CQNOT2:
(3,1,4,1,5,9,2,6) —
(3,9,4,6,5,1,2,1).

14

Toffoli gates

Also known as CC
controlled-controll

e.g. CHoC{NOTy:
(3.1,4.1,5,9,2,6
(3,1,4,1,5,9,6,2
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Controlled-NOT (CNOQOT) gates

€.g. ClNOT():
(3.1,4,1,5,9,2,6) —
(3,1,1,4,5,9,6,2).

Operation after measurement:

flipping bit 0 /f bit 1 is set; i.e.,

(92,91, 90) — (g2, 91. 90 D q1).

€.g. CQNOT():
(3.1,4,1,5,9,2,6) —
(3,1,4,1,9,5,6,2).

€.g. C()NOTQZ
(3,1,4,1,5,9,2,6) —
(3,9,4,6,5,1,2,1).

14

Toffoli gates

Also known as CCNOT gate
controlled-controlled-NOT g

e.g. CHoC{NOTy:
(3,1,4,1,5,9,2,6) —
(3,1,4,1,5,9,6,2).



Controlled-NOT (CNOQOT) gates

€.g. ClNOToi
(3,1,4,1,5,9,2,6) —
(3.1,1,4,5,9,6,2).

Operation after measurement:
flipping bit 0 /f bit 1 is set; i.e.,
€.g. CQNOTo:

(3,1,4,1,5,9,2,6) —
(3,1,4,1,9,5,6,2).

€.g. CQNOT2:
(3,1,4,1,5,9,2,6) —
(3,9,4,6,5,1,2,1).

14

Toffoli gates

Also known as CCNOT gates:
controlled-controlled-NOT gates.

e.g. CHC{NOTy:
(3,1,4,1,5,9,2,6) —
(3,1,4,1,5,9,6,2).

15



Controlled-NOT (CNOQOT) gates

€.g. ClNOToi
(3,1,4,1,5,9,2,6) —
(3.1,1,4,5,9,6,2).

Operation after measurement:

flipping bit 0 /f bit 1 is set; i.e.,

(g2, 91.90) — (92,91, 90 D q1).

€.g. CQNOTo:
(3,1,4,1,5,9,2,6) —
(3,1,4,1,9,5,6,2).

€.g. CQNOT2:
(3,1,4,1,5,9,2,6) —
(3,9,4,6,5,1,2,1).

14

15
Toffoli gates

Also known as CCNOT gates:
controlled-controlled-NOT gates.

e.g. CHoC{NOTy:
(3,1,4,1,5,9,2,6) —
(3,1,4,1,5,9,6,2).

Operation after measurement:
(92, 91, 90) — (g2, 91, 90 @ q192).



14 15

Controlled-NOT (CNOQOT) gates Toffoli gates
e.g. C4NOTy: Also known as CCNOT gates:
(3,1,4,1,5,9,2,6) — controlled-controlled-NOT gates.

(3,1,1,4,5,9,6,2)- e.g. C2C1NOTOZ

Operation after measurement: (3,1,4,1,5,9,2,6) —
flipping bit 0 if bit 1 is set; i.e., (3,1,4,1,5,9,6,2).

(g2, 91.90) — (92,91, 90 D q1).

Operation after measurement:

e.g. CONOTy: (92,91, 90) — (92,91, 90 D q192).
(3.1,4,1,5,9,2,6) - e.g. CoCiNOT»:

(3,1,4.1,9,5,6,2) (3,1,4,1,5,9,2,6) —
e.g. CoNOT: (3,1,4,6,5,9,2,1).
(3,1,4,1,5,9,2,6) —
(3,9,4,6,5,1,2,1).




ed-NOT (CNOT) gates

IO Ty:
,5,9,2,6) —
1,5,9,6,2).

n after measurement:

bit O /f bit 1 is set: i.e.,

70) — (g2, 91,90 @ q1)-

IO Tp:
,5,9,2,6) —
[,9,5,6,2).

IOT»:
,5,9,2,6) —
,5,1,2,1).

14

15
Toffoli gates

Also known as CCNOT gates:
controlled-controlled-NOT gates.

e.g. CHoC{NOTy:
(3,1,4,1,5,9,2,6) —
(3,1,4,1,5,9,6,2).

Operation after measurement:
(92, 91, 90) — (92, 91, 90 @ q192).

e.g. COC1NOT2:
(3,1,4,1,5,9,2,6) —
(3, 1,4,6,5,9, 2, 1).

More sh

Combine
to build



CNOT) gates

) —
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easurement:

t 1 1s set; I.e..

g1, 90 D q1)-

14

Toffoli gates

Also known as CCNOT gates:
controlled-controlled-NOT gates.

e.g. CHoC{NOTy:
(3,1,4,1,5,9,2,6) —
(3,1,4,1,5,9,6,2).

Operation after measurement:

(92,91, 90) — (92,91, 90 ® q192).

€.g. COC1NOT2:
(3,1,4,1,5,9,2,6) —
(3, 1,4,6,5,9,2, 1).

15

More shuffling

Combine NOT, CI
to build other pert



1tes

1t:

l.e.,

71).

14

Toffoli gates

Also known as CCNOT gates:
controlled-controlled-NOT gates.

e.g. CHoC{NOTy:
(3,1,4,1,5,9,2,6) —
(3,1,4,1,5,9,6,2).

Operation after measurement:

(92,91, 90) — (92,91, 90 ® q192).

e.g. COC1NOT2:
(3,1,4,1,5,9,2,6) —
(3, 1,4,0,5,9, 2, 1).

15

More shuftfling

Combine NOT, CNOT, Toff
to build other permutations.



Toffoli gates

Also known as CCNOT gates:
controlled-controlled-NOT gates.

e.g. CHoC{NOTy:
(3,1,4,1,5,9,2,6) —
(3,1,4,1,5,9,6,2).

Operation after measurement:
(92, 91, 90) — (92, 91, 90 @ q192).

€.g. COC1NOT2:
(3,1,4,1,5,9,2,6) —
(3, 1,4,0,5,9, 2, 1).

15

More shuffling

Combine NOT, CNOT, Toffoli
to build other permutations.

16
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Toffoli gates More shuffling

Also known as CCNOT gates: Combine NOT, CNOT, Toffol

controlled-controlled-NOT gates. to build other permutations.

e.g. CHC{NOTyp: e.g. series of gates to

(3,1,4,1,5,9,2,6) — rotate 8 positions by distance 1:

(3.1,4,1,5,9,6,2). 3141509026

Operation after measurement: CoC1NOT>

(92, g1, 0) — (g2, q1, G0 © G192). 31406592l

('3g'121159;'6) 36415120
,,,,,,, —

(3,1,4,6,5,9,2,1) NOTo >< >< >< ><
"""" | 6 31415092




ates

wn as CCNOT gates:
d-controlled-NOT gates.

1NOTy:
,5,9,2,6) —
[,5,9,6,2).

n after measurement:
70) — (g2, 91, 90 D g192).

1NOT»>:
,5,9,2,6) —
,5,9,2,1).

15

More shuftfling

Combine NOT, CNOT, Toffoli
to build other permutations.

e.g. series of gates to
rotate 8 positions by distance 1:

314159 26

CoCiNOT>
31465921

convot, X X

36415129

NO Ty >< >< >< ><

6 3141592

16

Hadama

Hadama

(a, b) —

3 1
X |
4 2



NOT gates:
ed-NOT gates.

) —

).

easurement:
.41, G0 D q1G2).

) —

).

15

More shuffling

Combine NOT, CNOT, Toffoli
to build other permutations.

e.g. series of gates to
rotate 8 positions by distance 1:

314159 26

CoCi{NOT>
31465921

convot, X X

364151209

NO Ty >< >< >< ><

6 3141592

16

Hadamard gates

Hadamardp:

(a,b) — (a+ b, a

3 1 4 1
XX
4 2 5 3



ates.

1t
7192)-

15

More shuftfling

Combine NOT, CNOT, Toffoli
to build other permutations.

e.g. series of gates to
rotate 8 positions by distance 1:

314159 26

CoCi{NOT>
31465921

convot, X X

36415129

NO Ty >< >< >< ><

6 3141592

16

Hadamard gates

Hadamardp:

(a, b) — (a+ b,a— b).

3 1 4 1
XX
4 2 5 3

ﬂ

5 0
X

14 —4 ¢




More shuffling

Combine NOT, CNOT, Toffoli
to build other permutations.

e.g. series of gates to
rotate 8 positions by distance 1:

314159 26

CoCi{NOT>
31465921

conoT, X X

364151209

NO Ty >< >< >< ><

6 3141592

16

Hadamard gates

Hadamardp:

(a, b) — (a+ b,a— b).

3 1 4 1
XX
4 2 5 3

2

X TX

14 —4 8

6

—4

17



More shuffling

Combine NOT, CNOT, Toffoli
to build other permutations.

e.g. series of gates to
rotate 8 positions by distance 1:

314159 26

CoCi{NOT>
31465921

X X

364151209

X XX X

6 3141592

CoNOT

NOT,

16

17
Hadamard gates

Hadamardp:

(a, b) — (a+ b,a— b).

31 4 1 5 90 2 6
X IXT X IX
4 2 5 3 14 —4 8 -4
Hadamards:
(a, b, c,d)—

(a+c,b+d,a—c,b—d).

R

1

KK

—10l



uffling

> NOT, CNOT, Toffol
other permutations.

s of gates to
positions by distance 1:

314159 26

P

R

6 3141592

1

16

Hadamard gates

Hadamardg:

(a, b) — (a+ b,a—b).

31 4 1 5 9 2 6
X IXT XX
4 2 5 3 14 —4 8 —4
Hadamardj:

(a, b, c,d)—

(a+c,b+d,a—c,b—d).
RSK T RK

2 —1 15 3

17

Some us

Hadama

3 1
N

X

4
\

>

2
7



NOT, Toffoll
mutations.

1O
by distance 1:

16

Hadamard gates

Hadamardp:

(a, b) — (a+ b,a— b).

31 4 1 5 9 2 6
X IX] X TX
4 2 5 3 14 —4 8 —4
Hadamard;:
(a, b, c,d)—

(a+c,b+d,a—c,b—d).

3 1 4 T T 9 26‘5

17

Some uses of Had

Hadamardg, NOT

4 N
2><4 3><5 :
AL X
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Some uses of Hadamard gates
Hadamardg, NOTg, Hadamardp:

XX

5
\

X

—2 10 —18 4 —12

17

Hadamard gates
Hadamardp:

(a, b) — (a+ b,a— b).

Hadamards:

(a, b, c,d)—

(a+c,b+d,a—c,b—d).



Hadamard gates

Hadamardp:

(a, b) — (a+ b,a— b).

3 1 4 1 5 9 2
X IX X IX
4 2 5 3 14 —4 8
Hadamards:

(a, b, c,d)—

(a+c,b+d,a—c,b—d).

3 1 4 T T 9 2

6
\

—4

|
3

17

Some uses of Hadamard gates

Hadamardg, NOTg, Hadamardp:

3 1 4 1 ,
X IXT X IX
4 2 5 3 4 8 —4

14>< ><

T 4 14 —4 8

XXX

—2 10 —18 4 —12

X1 1X]

>
>

>
>

2 4
| X |
6 -2

“"Multiply each amplitude by 2."
This i1s not physically observable.

18



Hadamard gates

Hadamardp:

(a, b) — (a+ b,a— b).

3 1 4 1 5 9 2 6
XL IXE X TX
4 2 5 3 14 —4 8 —4

Hadamards:

(a, b, c,d)—

(a+c,b+d,a—c,b—d).

3 1 4 T T 9 2 6‘3

17

Some uses of Hadamard gates

Hadamardg, NOTg, Hadamardp:

3 1 4 1 ,
X IXE IXTIX
4 2 5 3 —4 8 —4

14>< ><

T—414—48

XXX

—2 10 —18 4 —12

X1 1X]

>
>

>
>

2 4
| X |
6 -2

“"Multiply each amplitude by 2."
This i1s not physically observable.

“Negate amplitude if gg is set.”
No effect on measuring now.

18



rd gates

rdp:

(a+ b,a—b).

X X

14 —4
rdy:

5 0 2 6
XX
8

4

d) —
y+d,a—c,b—d).

K1 K]

17

Some uses of Hadamard gates

Hadamardg, NOTg, Hadamardp:

3 1 4 1 5 9 2 6
X IXT X IX
4 2 5 3 14 —4 8 —4
X X X X
2 4 3 5 —4 14 —4 8
X | \X\ X] X
6 -2 8 —2 10 —18 4 —12

“Multiply each amplitude by 2."
This i1s not physically observable.

“"Negate amplitude if gg is set.”
No effect on measuring now.

Fancier
"Negate
Assumes

CoC1N(

Hadam:

NOT

Hadam:

CoCq N
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Some uses of Hadamard gates

Hadamardg, NOTgy, Hadamardp:

3 1 4 1 ,
X IXE IXTIX
4 2 5 3 —4 8 —4

14>< ><

T 4 14 —4 8

XXX

—2 10 —18 4 —12

Xl 1]

>
>

>
>

2 4
X |
6 —2

“"Multiply each amplitude by 2."
This i1s not physically observable.

“Negate amplitude if gg is set.”
No effect on measuring now.

18

Fancier example:
“"Negate amplitud
Assumes g» = O:

31
CoCiNOT>

Hadamard»

LW—Ww

NG\ U (N

NOT»,

Hadamard»

S ——W

CoCi{NOT>

(@)
N



N

LW ———O

17

18
Some uses of Hadamard gates

Hadamardg, NOTgy, Hadamardp:

3 1 4 1 5 9 2 6
X IXT X IX
4 2 5 3 14 —4 8 —4

X X X X

> 4 3 5 —4 14 —4 8

XL IXT X IX

6 —2 8 —2 10 —18 4 —12
“Multiply each amplitude by 2."

This I1s not physically observable.

"Negate amplitude if gg is set.”
No effect on measuring now.

Fancier example:

“Negate amplitude if gggy I

Assumes g» = O:

CoCi{NOT>

Hadamard»

NOT»,

Hadamard»

CoCi{NOT>

3141

|
3

3 14—

1

4

“ancilla” ¢

0
N
00

1 4713

3

 PREE

62380

6 2 3—-2

0
\
//
0
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Some uses of Hadamard gates Fancier example:

Hadamardg, NOTg, Hadamardy: Negate amplitude if ggqy Is set.

Assumes go» = 0: “ancilla” qubit.

3 1 4 1 5 9 2 6

X IX X IX 31410000
4 2 5 3 14 -4 8 —4 CoCiNOT> ><
>< >< >< >< 314070001
2 4 3 5 —4 14 —4 8 Hadamard» ‘ ‘
X1 IXT IXT IX 3AUL3 L4
6 —2 8 -2 10 —18 4 —-12 NOT»

3'1°4—-131 41

“Multiply each amplitude by 2." Hodarmard ‘ ‘
This I1s not physically observable. ° ; 6280000 -2
“Negate amplitude if qg is set.” CoCiNOT>

No effect on measuring now. 6 28-20000




es of Hadamard gates

rdo, NOTo, HadamardO:

4 1 5 9 2 6
X IXT X
5 3 14 —4 8§ —4

X X X

3 5 —4 14 —4 8

XL IXT X

8 —2 10 —18 4 —12
y each amplitude by 2.”

ot physically observable.

amplitude if qg is set.”
t on measuring now.

18

Fancier example:
"Negate amplitude if ggqg; Is set.”
Assumes g» = O:

“ancilla” qubit.

31410000

CoCi{NOT>

31400001

Hadamard> ‘

31413 1 4-1

NOT»,

3 14—

Hadamard> ‘

623000 0-2

CoCi{NOT>

31 4°1

6 2 3-20000

19

Affects |
amplituc
(3,1,4,



18 19

amard gates Fancier example: Affects measurems
. Hadamardy: Negate amplitude if q-0q1 IS se.t. amplitude around
Assumes go = 0: “ancilla” qubit. (3,1,4,1) — (1.5,

2

5 9 6
X | X 31410000

14 -4 8 —4 CoCiNOT>

X X 31400>0<01

-4 14 —4 8 Hadamard» ‘W‘

X X 3717417314 —1

10 —-18 4 —12 NOT,
31 4-13 141
litude by 2."
PITHEE DY Hadamard» ‘ ‘
lly observable. 62807000 —2
2 if gg Is set.” CoC{NOT»

uring now. 6 2 8—-20 0 00
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Fancier example:

"Negate amplitude if ggqg; Is set.”

Assumes go» = 0: “ancilla” qubit.

CoCi{NOT>

Hadamard»

NOT»,

Hadamard»

CoCi{NOT>

31410000

31400001

PR

3141 31 4-1
T14—314T

623000 0-2

6 2 3-20000

19

Affects measurements: “Nej

amplitude around its averag
(3,1,4,1) — (1.5,3.5,0.5,3



Fancier example:

"Negate amplitude if ggqgy is set.”

Assumes go» = 0: “ancilla” qubit.

CoCiNOT>

Hadamard»

NOT»,

Hadamard»

CoCi{NOT>

31410000

31400001

PR

314131 4-1
T14—314T

623000 0-2

6 2 320000

19

Affects measurements: “Negate

amplitude around its average.”
(3,1,4,1) — (1.5,3.5,0.5,3.5).

20



Fancier example:
"Negate amplitude if ggqgy is set.”
Assumes go» = 0: “ancilla” qubit.

31410000

CoCiNOT>

31400001

Hadamard» ‘

314131 4-1

NOT»,

31 4-131 41

Hadamard» ‘

623000 0-2

CoCi{NOT>

6 2 320000

Affects measurements: “Negate

amplitude around its average.”
(3,1,4,1) — (1.5,3.5,0.5,3.5).

-9 5 -1 -1

Ho ‘><‘

—4-14-2 0

il ‘>K>K‘

—6—14-2-14

X

O——mO ——O —O —O —0O

20



example:
amplitude if ggqgy is set.”

> go = 0: “ancilla” qubit.

31410000

)TH
31400001

. R
3’14131 4-1

31 4-13 141

| SRERED
6280 00 0-2

)TH
6 23—-20000

19

Affects measurements: “Negate

amplitude around its average.”

(3,1,4,1) — (1.5,3.5,0.5,3.5).
31 4 1 0 0 O

i IXL X IXT X
4 2 5 3 0 0 0

| RO XK
NS
95 -1-10 0 0

Ho \X\ XXX
14-2 0 0 0 0

W | KK KK
6-14-2-14 0" 00

20

Simon's

Assumpt

e Given
can ef

e Nonze

o f(u) =
e f has

Goal: Fi



2 if gogy Is set.”
“ancilla’ qubit.

4 1 0000

4 00 001

413 1 4-1
4—-13 1 41

8000 0-2

8—-20 000

19

Affects measurements: “Negate

amplitude around its average.”
(3,1,4,1) — (1.5,3.5,0.5,3.5).

31 4 1 0 0 O
W X IX1 X [X
4 2 5 3 0 0 O
W DRKT RK
RENRER
-9 5 —-1-10 0 O
W X IXT X [X
—4-14-2 0 0 0 O
W ORK | RK
—6—-14-2—-14 0 0 O

O——mO ——O —O —O —0O

20

Simon’s algorithm

Assumptions:

e Given any u € {
can efficiently cc

e Nonzero s € {0,

o f(u)="f(uds)

e f has no other ¢

Goal: Figure out ¢



19

Affects measurements: “Negate

amplitude around its average.”

(3,1,4,1) — (1.5,3.5,0.5,3.5).
31 4 1 0 0 O

i IXL X IXT X
4 2 5 3 0 0 0

| O XK
NEEREE
95 -1-10 0 0

Ho \X\ XXX
14-2 0 0 0 0

W | KK KK
6-14-2-14 0" 00

20

Simon’s algorithm

Assumptions:

e Given any u € {0,1}",
can efficiently compute f(

e Nonzero s € {0,1}".

o f(u)="f(uds) for all u.

e f has no other collisions.

Goal: Figure out s.



Affects measurements: “Negate

amplitude around its average.”

(3,1,4,1) — (1.5,3.5,0.5,3.5).
3 1 4 1 0 0 O

i IXL X IXT X
4 2 5 3 0 0 O

| O | K
NN
95 -1-10 0 0

Ho \X\ XXX
14-2 0 0 0 0

W | KK KK
6-14-2-14 0" 00

O——mO ——O —O —O —0O

20

Simon’s algorithm

Assumptions:
e Given any u € {0,1}",

can efficiently compute f(u).

e Nonzero s € {0,1}".
e f(u)=Ff(ues) for all u.
e  has no other collisions.

Goal: Figure out s.

21



Affects measurements: “Negate

amplitude around its average.”

(3,1,4,1) — (1.5,3.5,0.5,3.5).
3 1 4 1 0 0 O

i IXL X IXT X
4 2 5 3 0 0 O

o | KK
NN
95 -1-10 0 0

Ho \X\ \X\ XX
(‘) 0 O

il ‘>K>K‘

6-14-2-14 0 0 O

O——mO ——O —O —O —0O

20

Simon’s algorithm

Assumptions:
e Given any u € {0,1}",

can efficiently compute f(u).

e Nonzero s € {0,1}".
e f(u)=Ff(ues) for all u.
e  has no other collisions.

Goal: Figure out s.

Traditional algorithm to find s:

compute f for many inputs,
hope to find collision.

21



Affects measurements: “Negate

amplitude around its average.”
(3,1,4,1) — (1.5,3.5,0.5,3.5).

31 4 1 0 0 0 O
W X I X)X
4 2 5 3 0 0 0 O
W KK RK
RENREES
-9 5 -1 -10 0 0 O
W X IXT X)X
4—-14—-2 0 (‘) 0 0(‘)

il ‘>K>K‘

6-14-2-140 0 0 O

20

Simon’s algorithm

Assumptions:
e Given any u € {0,1}",
can efficiently compute f(u).
e Nonzero s € {0,1}".
e f(u)="Ff(uds) for all u.
e f has no other collisions.

Goal: Figure out s.

Traditional algorithm to find s:
compute f for many inputs,
hope to find collision.

Simon’s algorithm finds s with
~n quantum computations of f.

21



neasurements: “Negate
le around its average.”
[) — (1.5,3.5,0.5,3.5).

1 4 1 0 0 0 O
<X IX IX
KK T KK

[T ]

5 —‘1 —‘1 0 0 0 O
<X IXT IX
—14 -2 0 (‘) 0 O (‘)

KK

—14-2-140 0 0 O

20

21
Simon’s algorithm

Assumptions:
e Given any u € {0,1}",
can efficiently compute f(u).
e Nonzero s € {0,1}".
e f(u)y="Ff(uds) for all u.
e f has no other collisions.

Goal: Figure out s.

Traditional algorithm to find s:
compute f for many inputs,

hope to find collision.

Simon’s algorithm finds s with
~n quantum computations of f.

Example

Step 1.

0,

e e

e e



20 21

ants: “Negate Simon'’s algorithm Example of Simon

'ts average. Assumptions: Step 1. Set up pu

3.5,0.5,3.5) e Given any u € {0,1}" 1,0,0,0, 0,0, (
can efficiently compute f(u). 0,0 0 000, (

L0000 g Nonzero s € {0, 1}, 0, 0,0, 0, 0, 0, (

‘ ‘><‘ ‘><‘ o f(u)=Ff(uds) for all u. 0,0,0 00,0, (

3 0.0 00 e f has no other collisions. 0,0, 0,0 0,0, (

‘ ‘>’<>’<‘ - 0, 0,0, 0,0, 0, (

1 07070 "0 @ Goal: Figure out s. 0.0.00 0 0

‘ ‘ ‘ ‘ ‘ Traditional algorithm to find s: 0.0 0 0 0 0 (

-1 0 0 0 O compute f for many inputs,

‘ ‘><‘ ‘><‘ hope to find collision.

0 0 0 0 O _ | _ . .

‘ ‘ >K>4< ‘ Simon's algorithm fmds. s with

14070750 0 ~n quantum computations of f.




20 21

compute f for many inputs,

hope to find collision.

Simon’s algorithm finds s with
~n quantum computations of f.

rate Simon'’s algorithm Example of Simon's algorith
eé Assumptions: Step 1. Set up pure zero st:
5); e Given any u € {0, 1}", 1, 0,0, 0,0, 0, 0, O,
can efficiently compute f(u). 0,0000,0,0,HQ0,
0 e Nonzero s € {0, 1}". 0, 0, 0, 0, 0, 0, 0, 0,
‘>< o f(u)="f(uds) forall u. 0,0,0,0,0,0, 0, 0,
;>T< e f has no other collisions. 0, 0,0,0,0,0, 0,0,
0 Goal: Figure out s. U 0,0,0,0,0,0,°0,
0,0, 0, 0,0 0,0, 0,
‘ Traditional algorithm to find s: 0.0.0 0 0 0 0 O.
0
X
0

O——OO —O — O — O —0O




Simon’s algorithm

Assumptions:
e Given any u € {0,1}",
can efficiently compute f(u).
e Nonzero s € {0,1}".
e f(u)="Ff(uds) for all u.
e f has no other collisions.

Goal: Figure out s.

Traditional algorithm to find s:
compute f for many inputs,
hope to find collision.

Simon’s algorithm finds s with
~n quantum computations of f.

21

22
Example of Simon’s algorithm

Step 1. Set up pure zero state:
0, 0, O, 0,

I e
I e
I
I e

O O O O O O O
ocoooo9oo
coooooQo



Simon’s algorithm

Assumptions:
e Given any u € {0,1}",
can efficiently compute f(u).
e Nonzero s € {0,1}".
e f(u)="Ff(uds) for all u.
e f has no other collisions.

Goal: Figure out s.

Traditional algorithm to find s:
compute f for many inputs,
hope to find collision.

Simon’s algorithm finds s with
~n quantum computations of f.

21

22
Example of Simon’s algorithm

Step 2. Hadamardp:
1, 0, 0O, 0,

I e
I e
I
e R e

O O 0O O o0 o o
O OO O O O O
e e e
e e



Simon’s algorithm

Assumptions:
e Given any u € {0,1}",
can efficiently compute f(u).
e Nonzero s € {0,1}".
e f(u)="Ff(uds) for all u.
e f has no other collisions.

Goal: Figure out s.

Traditional algorithm to find s:
compute f for many inputs,
hope to find collision.

Simon’s algorithm finds s with
~n quantum computations of f.

21

22
Example of Simon’s algorithm

Step 3. Hadamards:
1, 1, 0,

I e
I
e R e

O OO OO o o
R e
O O OO0 O o o
£ 9L L 22
O O O O O O O



21

Simon'’s algorithm Example of Simon’s algorithm
Assumptions: Step 4. Hadamards:
e Given any u € {0,1}", 1,1, 1.1, 1,1, 1,1
can efficiently compute f(u). 0,0000,0,0,0Q0,
e Nonzero s € {0, 1}". 0,0, 0, 0, 0,0, 0,0,
o f(u)="f(uds) forall u. 0,0 0,00, 0, 0, 0,
e f has no other collisions. 0, 0,0, 0,0, 0,0, O,
Goal: Figure out s. U, 0,0,0, 00,0, 0,
0,0 0,00, 0, 0, 0,
Traditional algorithm to find s: 0.0 0 0 0 0 0 O

compute f for many inputs,

. . Each column is a parallel universe.
hope to find collision.

Simon’s algorithm finds s with
~n quantum computations of f.




Simon’s algorithm

Assumptions:
e Given any u € {0,1}",
can efficiently compute f(u).
e Nonzero s € {0,1}".
e f(u)="Ff(uds) for all u.
e f has no other collisions.

Goal: Figure out s.

Traditional algorithm to find s:
compute f for many inputs,
hope to find collision.

Simon’s algorithm finds s with
~n quantum computations of f.

21

22
Example of Simon’s algorithm

Step 5. CgNOT3:

O OO O OO O -
O OO OO O Rr O
O O OO O O O
I e
e
O OO OO O Rr O
O O OO O O O
O O OO O O+ O

Each column is a parallel universe
performing its own computations.



Simon’s algorithm

Assumptions:
e Given any u € {0,1}",
can efficiently compute f(u).
e Nonzero s € {0,1}".
e f(u)="Ff(uds) for all u.
e f has no other collisions.

Goal: Figure out s.

Traditional algorithm to find s:
compute f for many inputs,
hope to find collision.

Simon’s algorithm finds s with
~n quantum computations of f.

21

Example of Simon’s algorithm

Step 5b. More shuffling:

O OO OO O O K
O O OO O O Kr O

O OO+ OO O O
O O H OO O O O
O OO H O O O O
O O H OO O O O

Each column is a parallel universe
performing its own computations.

22



Simon’s algorithm

Assumptions:
e Given any u € {0,1}",
can efficiently compute f(u).
e Nonzero s € {0,1}".
e f(u)="Ff(uds) for all u.
e f has no other collisions.

Goal: Figure out s.

Traditional algorithm to find s:
compute f for many inputs,
hope to find collision.

Simon’s algorithm finds s with
~n quantum computations of f.

21

Example of Simon’s algorithm

Step 5c. More shuffling:

O O OO0 O r OO
O O OO r O O O

O OO R OO O O
O O OO O O O
O H OO OO O O
H O O O O O O O

Each column is a parallel universe
performing its own computations.

22



Simon’s algorithm

Assumptions:
e Given any u € {0,1}",
can efficiently compute f(u).
e Nonzero s € {0,1}".
e f(u)="Ff(uds) for all u.
e f has no other collisions.

Goal: Figure out s.

Traditional algorithm to find s:
compute f for many inputs,
hope to find collision.

Simon’s algorithm finds s with
~n quantum computations of f.
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Step 5f. More shuffling:
0,0 000, 1,D0, 0,

Each column is a parallel universe
performing its own computations.
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e f(u)="Ff(uds) for all u.
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Goal: Figure out s.
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~n quantum computations of f.
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Example of Simon’s algorithm

Step 5i. More shuffling:
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Each column is a parallel universe
performing its own computations.

22



Simon’s algorithm

Assumptions:
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can efficiently compute f(u).
e Nonzero s € {0,1}".
e f(u)="Ff(uds) for all u.
e f has no other collisions.

Goal: Figure out s.

Traditional algorithm to find s:
compute f for many inputs,
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~n quantum computations of f.
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Example of Simon’s algorithm

Step 5j. Final shuffling:
0,00, 00,0, 0,0,

Each column is a parallel universe
performing its own computations.

22



Simon’s algorithm

Assumptions:
e Given any u € {0,1}",
can efficiently compute f(u).
e Nonzero s € {0,1}".
e f(u)="Ff(uds) for all u.
e f has no other collisions.

Goal: Figure out s.

Traditional algorithm to find s:
compute f for many inputs,
hope to find collision.

Simon’s algorithm finds s with
~n quantum computations of f.

21

Example of Simon’s algorithm

Step 5j. Final shuffling:
0,00, 00,0, 0,0,

Each column is a parallel universe
performing its own computations.
Surprise: u and u @ 101 match.
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Simon'’s algorithm Example of Simon’s algorithm
Assumptions: Step 6. Hadamardp:
e Given any u € {0,1}", 0,0,0,0,0, 0,0, 0,
can efficiently compute f(u). 0,0 1,1, 0,0, 1, 1,
e Nonzero s € {0,1}". 0,0 000,00, 0,
o f(u)="Ff(uds) for all u. 0,0, 1,10 0 1, 1,
e f has no other collisions. 1.1.0,0 1 1, 0 0
Goal: Figure out s. U, 0,0,0,0,0,0, 0,
0,0, 0,0,0,0,0, 0,
Traditional algorithm to find s: 1.1.0 0 1.1 0 0.

compute f for many inputs,

. . Notation: 1 means —1.
hope to find collision.

Simon’s algorithm finds s with
~n quantum computations of f.
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Assumptions:
e Given any u € {0,1}",
can efficiently compute f(u).
e Nonzero s € {0,1}".
e f(u)="Ff(uds) for all u.
e f has no other collisions.

Goal: Figure out s.

Traditional algorithm to find s:
compute f for many inputs,
hope to find collision.

Simon’s algorithm finds s with
~n quantum computations of f.
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Step 7. Hadamards:
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Simon’s algorithm

Assumptions:
e Given any u € {0,1}",
can efficiently compute f(u).
e Nonzero s € {0,1}".
e f(u)="Ff(uds) for all u.
e f has no other collisions.

Goal: Figure out s.

Traditional algorithm to find s:
compute f for many inputs,
hope to find collision.

Simon’s algorithm finds s with
~n quantum computations of f.

21

22
Example of Simon’s algorithm

Step 8. Hadamardo:

0, 0, 0,0,0,0, 0, O,
2, 0,20 0,2 0, 2
0, 0,0,0,0,0, 0, O,
2, 0,20 0,2 0,2,
2, 0,20 0,2 0,2,
0, 0,0, 0,0, 0,0, 0,
0, 0,0, 0,0,0,0, 0,
2, 0,2, 0,0, 2, 0, 2.
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Simon'’s algorithm Example of Simon’s algorithm
Assumptions: Step 8. Hadamards:
e Given any u € {0,1}", 0, 0,00 0,0, 0,0,
can efficiently compute f(u). 2, 0,2, 0,02, 0,2
e Nonzero s € {0, 1}". 0,0, 0, 0, 0,0, 0,0,
o f(u)="f(uds) forall u. 2.0, 2 0, 0, 2 0, 2,
e f has no other collisions. 2.0,2, 0,0, 2, 0,2
Goal: Figure out s. U 0,0,0,0,0,0,°0,
0,0, 0,000, 0,0,
Traditional algorithm to find s: 2 0.2 0.0 2 0 2

compute f for many inputs,

hope to find collision. Step 9: Measure. Obtain some

information about the surprise: a

Simon’s algorithm finds s with random vector orthogonal to 101.
~n quantum computations of f.
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Example of Simon’s algorithm
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Step 9: Measure. Obtain some
information about the surprise: a
random vector orthogonal to 101.
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Example of Simon’s algorithm

Step 8. Hadamardy:
0,
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Step 9: Measure. Obtain some
information about the surprise: a
random vector orthogonal to 101.
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Repeat to figure out 101.
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Repeat to figure out 101.

Generalize Step 5 to any function
u— f(u) with f(u) = f(u e s).
“Usually” algorithm figures out s.
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random vector orthogonal to 101.
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Repeat to figure out 101.

Generalize Step 5 to any function
u— f(u) with f(u) = f(u e s).
“Usually” algorithm figures out s.

Shor’s algorithm replaces @
with more general + operation.

Many spectacular applications.

e.g. Shor finds “random” s with
2Y mod N = 2Y"5 mod N.
Easy to factor N using this.

e.g. Shor finds “random” s, t with
4Y9Y mod p = 49759Vt mod p.
Easy to compute discrete logs.
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' of Simon’s algorithm

Hadamards:

0, 0, 0, 0, 0,
0, 0, 2, 0, 2,
0, 0, 0, 0, 0,
0, 0, 2, 0, 2,
0, 0, 2,0, 2,
0, 0, 0, 0, 0,
0, 0, 0, 0, 0,
0, 0, 2, 0, 2.

Measure. Obtain some
ion about the surprise: a
vector orthogonal to 101.
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Repeat to figure out 101.

Generalize Step 5 to any function
u— f(u) with f(u) = f(u e s).
“Usually” algorithm figures out s.

Shor’s algorithm replaces @

with more general -

- operation.

Many spectacular a

oplications.

e.g. Shor finds “random” s with
2Y mod N = 2975 mod N.

Easy to factor N us

ing this.

e.g. Shor finds “random” s, t with

4Y9Y mod p = 44T*s

9Vt mod p.

Easy to compute discrete logs.
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Generalize Step 5 to any function
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“Usually” algorithm
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Shor’s algorithm replaces @

with more general 4+ operation.

Many spectacular a

oplications.

e.g. Shor finds “random” s with
2Y mod N = 2975 mod N.

Easy to factor N us

ing this.
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4Y9Y mod p = 44T*s

9Vt mod p.
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Success probability is very Ic
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with more general + operation.

Many spectacular a
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e.g. Shor finds “random” s with
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Easy to factor N us

e.g. Shor finds “random” s, t with
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Grover's algorithm

Assume: unique s € {0, 1}"
has f(s) = 0.

Traditional algorithm to find s:
compute f for many inputs,
hope to find output O.

Success probability is very low
until #inputs approaches 2",



23 24

Repeat to figure out 101. Grover's algorithm
Generalize Step 5 to any function Assume: unique s € {0,1}"
u— f(u) with f(u) = f(u e s). has f(s) = 0.

Usually” algorithm figures out s. Traditional algorithm to find s:

Shor’s algorithm replaces @ compute f for many inputs,
with more general 4+ operation. hope to find output O.
Many spectacular applications. Success probability is very low

L )
e.g. Shor finds “random” s with until #inputs approaches 2°.

2Y mod N = 2475 mod N. Grover's algorithm takes only 2n/2
Easy to factor N using this. reversible computations of f.

e.g. Shor finds “random” s, ¢ with Typically: reversibility overhead

4Y9Y mod p = 4Y759V*t mod p.
Easy to compute discrete logs.

Is small enough that this

easily beats traditional algorithm.




o figure out 101.

ze Step 5 to any function
) with f(u) = f(u & s).
" algorithm figures out s.

lgorithm replaces &

re general -

- operation.

ectacular a

oplications.

r finds “random’ s with
N = 2Y75 mod N.

factor N us

ing this.

r finds “random’ s, t with
d p = 4YT59V"Tt mod p.
compute discrete logs.

23

24
Grover's algorithm

Assume: unique s € {0, 1}"
has f(s) = 0.

Traditional algorithm to find s:
compute f for many inputs,
hope to find output O.

Success probability is very low
until #inputs approaches 2",

Grover's algorithm takes only on/2
reversible computations of f.
Typically: reversibility overhead

Is small enough that this

easily beats traditional algorithm.
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Assume: unique s € {0, 1}"
has f(s) = 0.

Traditional algorithm to find s:

compute f
hope to finc
Success pro
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Grover's algorithm Start from uniform superposition

Assume: unique s € {0, 117 over all n-bit strings u.

has f(s) = 0.

Traditional algorithm to find s:
compute f for many inputs,
hope to find output O.

Success probability is very low
until #inputs approaches 2",

Grover's algorithm takes only on/2
reversible computations of f.

Typically: reversibility overhead
Is small enough that this

easily beats traditional algorithm.
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Start from uniform superposition
over all n-bit strings wu.

Step 1: Set a < b where
by, = —ay if f(u) =0,

b, = a, otherwise.

This is fast.
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over all n-bit strings wu.

Step 1: Set a < b where
by, = —ay if f(u) =0,

b, = a, otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.
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Negate a around its average.
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Repeat Step 1 + Step 2
about 0.58 - 2927 times.
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b, = a, otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
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Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.

With high probability this finds s.
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b, = —ay if f(u) =0,

b, = a, otherwise.
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Negate a around its average.
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Repeat Step 1 + Step 2
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b, = a, otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

25

Normalized graph of u+— ay

for an example with n = 12
after Step 1 + Step 2:
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Start from uniform superposition
over all n-bit strings wu.

Step 1: Set a < b where
by, = —ay if f(u) =0,

b, = a, otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

25

Normalized graph of u+— ay

for an example with n = 12
after Step 1 + Step 2 + Step 1:
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Start from uniform superposition
over all n-bit strings wu.

Step 1: Set a < b where
by, = —ay if f(u) =0,

b, = a, otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

25

Normalized graph of u+— ay

for an example with n = 12
after 2 x (Step 1 + Step 2):
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Start from uniform superposition
over all n-bit strings wu.

Step 1: Set a < b where
by, = —ay if f(u) =0,

b, = a, otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

25

Normalized graph of u+— ay

for an example with n = 12
after 3 x (Step 1 + Step 2):
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Start from uniform superposition
over all n-bit strings wu.

Step 1: Set a < b where
by, = —ay if f(u) =0,

b, = a, otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

25

Normalized graph of u+— ay

for an example with n = 12
after 4 x (Step 1 + Step 2):
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Start from uniform superposition
over all n-bit strings wu.

Step 1: Set a < b where
by, = —ay if f(u) =0,

b, = a, otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

25

Normalized graph of u+— ay

for an example with n = 12
after 5 x (Step 1 + Step 2):
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Start from uniform superposition
over all n-bit strings wu.

Step 1: Set a < b where
by, = —ay if f(u) =0,

b, = a, otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

25

Normalized graph of u+— ay

for an example with n = 12
after 6 x (Step 1 + Step 2):
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Start from uniform superposition
over all n-bit strings wu.

Step 1: Set a < b where
by, = —ay if f(u) =0,

b, = a, otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

25

Normalized graph of u+— ay

for an example with n = 12
after 7 x (Step 1 + Step 2):
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Start from uniform superposition
over all n-bit strings wu.

Step 1: Set a < b where
by, = —ay if f(u) =0,

b, = a, otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

25

Normalized graph of u+— ay

for an example with n = 12
after 8 x (Step 1 + Step 2):
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Start from uniform superposition
over all n-bit strings wu.

Step 1: Set a < b where
by, = —ay if f(u) =0,

b, = a, otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

25

Normalized graph of u+— ay

for an example with n = 12
after 9 x (Step 1 + Step 2):
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Start from uniform superposition
over all n-bit strings wu.

Step 1: Set a < b where
by, = —ay if f(u) =0,

b, = a, otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

25

Normalized graph of u+— ay

for an example with n = 12
after 10 x (Step 1 + Step 2):
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Start from uniform superposition
over all n-bit strings wu.

Step 1: Set a < b where
by, = —ay if f(u) =0,

b, = a, otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

25

Normalized graph of u+— ay

for an example with n = 12
after 11 x (Step 1 + Step 2):
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Start from uniform superposition
over all n-bit strings wu.

Step 1: Set a < b where
by, = —ay if f(u) =0,

b, = a, otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

25

Normalized graph of u+— ay

for an example with n = 12
after 12 x (Step 1 + Step 2):
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Start from uniform superposition
over all n-bit strings wu.

Step 1: Set a < b where
by, = —ay if f(u) =0,

b, = a, otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

25

Normalized graph of u+— ay

for an example with n = 12
after 13 x (Step 1 + Step 2):
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Start from uniform superposition
over all n-bit strings wu.

Step 1: Set a < b where
by, = —ay if f(u) =0,

b, = a, otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

25

Normalized graph of u+— ay

for an example with n = 12
after 14 x (Step 1 + Step 2):
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Start from uniform superposition
over all n-bit strings wu.

Step 1: Set a < b where
by, = —ay if f(u) =0,

b, = a, otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

25

Normalized graph of u+— ay

for an example with n = 12
after 15 x (Step 1 + Step 2):
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Start from uniform superposition
over all n-bit strings wu.

Step 1: Set a < b where
by, = —ay if f(u) =0,

b, = a, otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

25

Normalized graph of u+— ay

for an example with n = 12
after 16 x (Step 1 + Step 2):
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Start from uniform superposition
over all n-bit strings wu.

Step 1: Set a < b where
by, = —ay if f(u) =0,

b, = a, otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

25

Normalized graph of u+— ay

for an example with n = 12
after 17 x (Step 1 + Step 2):
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Start from uniform superposition
over all n-bit strings wu.

Step 1: Set a < b where
by, = —ay if f(u) =0,

b, = a, otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

25

Normalized graph of u+— ay

for an example with n = 12
after 18 x (Step 1 + Step 2):
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Start from uniform superposition
over all n-bit strings wu.

Step 1: Set a < b where
by, = —ay if f(u) =0,

b, = a, otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

25

Normalized graph of u+— ay

for an example with n = 12
after 19 x (Step 1 + Step 2):
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Start from uniform superposition
over all n-bit strings wu.

Step 1: Set a < b where
by, = —ay if f(u) =0,

b, = a, otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

25

Normalized graph of u+— ay

for an example with n = 12
after 20 x (Step 1 + Step 2):
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Start from uniform superposition
over all n-bit strings wu.

Step 1: Set a < b where
by, = —ay if f(u) =0,

b, = a, otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

25

Normalized graph of u+— ay

for an example with n = 12
after 25 x (Step 1 + Step 2):
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Start from uniform superposition
over all n-bit strings wu.

Step 1: Set a < b where
by, = —ay if f(u) =0,

b, = a, otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.
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Normalized graph of u+— ay

for an example with n = 12
after 30 x (Step 1 + Step 2):
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Start from uniform superposition
over all n-bit strings wu.

Step 1: Set a < b where
by, = —ay if f(u) =0,

b, = a, otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

25

26
Normalized graph of u+— ay

for an example with n = 12
after 35 x (Step 1 + Step 2):
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Start from uniform superposition
over all n-bit strings wu.

Step 1: Set a < b where
by, = —ay if f(u) =0,

b, = a, otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

25

Normalized graph of u+— ay

for an example with n = 12
after 40 x (Step 1 + Step 2):
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Start from uniform superposition
over all n-bit strings wu.

Step 1: Set a < b where
by, = —ay if f(u) =0,

b, = a, otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

25

26
Normalized graph of u+— ay

for an example with n = 12
after 45 x (Step 1 + Step 2):
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Start from uniform superposition
over all n-bit strings wu.

Step 1: Set a < b where
by, = —ay if f(u) =0,

b, = a, otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

25

Normalized graph of u+— ay
for an example with n = 12

after 50 x (Step 1 + Step 2):
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-1.0

Traditional stopping point.
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Start from uniform superposition
over all n-bit strings wu.

Step 1: Set a < b where
by, = —ay if f(u) =0,

b, = a, otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

25

Normalized graph of u+— ay

for an example with n = 12
after 60 x (Step 1 + Step 2):

1.0

0.5

0.0

-0.5

-1.0




Start from uniform superposition
over all n-bit strings wu.

Step 1: Set a < b where
by, = —ay if f(u) =0,

b, = a, otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.
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Normalized graph of u+— ay

for an example with n = 12
after 70 x (Step 1 + Step 2):
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Start from uniform superposition
over all n-bit strings wu.

Step 1: Set a < b where
by, = —ay if f(u) =0,

b, = a, otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.
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Normalized graph of u+— ay

for an example with n = 12
after 80 x (Step 1 + Step 2):
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Start from uniform superposition
over all n-bit strings wu.

Step 1: Set a < b where
by, = —ay if f(u) =0,

b, = a, otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.
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Normalized graph of u+— ay

for an example with n = 12
after 90 x (Step 1 + Step 2):
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Start from uniform superposition
over all n-bit strings wu.

Step 1: Set a < b where
by, = —ay if f(u) =0,

b, = a, otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

25

Normalized graph of u+— ay
for an example with n = 12

after 100 x (Step 1 + Step 2):

1.0

0.5+

-0.5+

-1.0
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Very bad stopping point.

26



m uniform superposition
n-bit strings u.

Set a < b where
y if f(u) =0,
otherwise.

ast.

“Grover diffusion” .
3 around Its average.
Iso fast.

>tep 1 + Step 2
58 - 2097 times.

' the n qubits.

rh probability this finds s.

25

26
Normalized graph of u+— ay

for an example with n = 12
after 100 x (Step 1 + Step 2):

1.0

0.5+ -

0.0 b o |

—0.5+ -

-1.0

Very bad stopping point.

u— a,
by a vec
(with fix
(1) ay f
(2) ay, f¢



1 superposition
gs U.

) where
- O,

iffusion’ .

LS average.

Step 2
times.

Its.
lity this finds s.

25

26
Normalized graph of u+— ay

for an example with n = 12
after 100 x (Step 1 + Step 2):

1.0

0.0 b o |

-0.5+ -

-1.0

Very bad stopping point.

u+— a, 1s complet
by a vector of two
(with fixed multip
(1) a, for roots u;
(2) ay for non-roo



1tion

1ds s.

25

26
Normalized graph of u+— ay

for an example with n = 12
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Normalized graph of u+— ay
for an example with n = 12

after 100 x (Step 1 + Step 2):

1.0

0.0 b o

-0.5+

-1.0

Very bad stopping point.

26

u +— a, 1s completely described
by a vector of two numbers
(with fixed multiplicities):

(1) a, for roots u;

(2) a, for non-roots u.
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Normalized graph of u+— ay
for an example with n = 12

after 100 x (Step 1 + Step 2):

1.0

0.0 b o

-0.5+

-1.0

26

Very bad stopping point.

u +— a, 1s completely described
by a vector of two numbers
(with fixed multiplicities):

(1) a, for roots u;

(2) a, for non-roots u.

Step 1 + Step 2
act linearly on this vector.

27



Normalized graph of u+— ay
for an example with n = 12

after 100 x (Step 1 + Step 2):

1.0

0.0 b o

-0.5+

-1.0

Very bad stopping point.
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27
u +— a, 1s completely described

by a vector of two numbers
(with fixed multiplicities):
(1) a, for roots u;

(2) a, for non-roots u.

Step 1 + Step 2
act linearly on this vector.

Easily compute eigenvalues
and powers of this linear map
to understand evolution

of state of Grover's algorithm.
= Probability i1s =1

after ~(7/4)2%°>" iterations.



zed graph of u+— ay
cample with n = 12
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1 stopping point.
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u +— a, 1s completely described
by a vector of two numbers
(with fixed multiplicities):

(1) a, for roots u;

(2) ay for non-roots u.

Step 1 + Step 2
act linearly on this vector.

Easily compute eigenvalues
and powers of this linear map

to understand evolution

of state of Grover's algorithm.
= Probability i1s =1

after ~(7/4)2%°" iterations.
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u +— a, 1s completely described
by a vector of two numbers
(with fixed multiplicities):

(1) a, for roots u;

(2) a, for non-roots u.

Step 1 + Step 2
act linearly on this vector.

Easily compute eigenvalues
and powers of this linear map
to understand evolution

of state of Grover's algorithm.
= Probability i1s =1

after ~(7/4)2%°" iterations.
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u +— a, 1s completely described
by a vector of two numbers
(with fixed multiplicities):

(1) a, for roots u;

(2) ay for non-roots u.

Step 1 + Step 2
act linearly on this vector.

Easily compute eigenvalues
and powers of this linear map

to understand evolution

of state of Grover's algorithm.
= Probability i1s =1

after ~(7/4)2%°" iterations.
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Many more applications

Shor generalizations:
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u +— a, 1s completely described
by a vector of two numbers
(with fixed multiplicities):

(1) a, for roots u;

(2) a, for non-roots u.

Step 1 + Step 2
act linearly on this vector.

Easily compute eigenvalues
and powers of this linear map
to understand evolution

of state of Grover's algorithm.
= Probability i1s =1

after ~(7/4)2%°" iterations.

21

28
Many more applications

Shor generalizations:
e.g., poly-time attack breaking
“cyclotomic” case of Gentry

STOC 2009 “Fully homomorphic
encryption using ideal lattices” .

Grover generalizations:
e.g., fastest subset-sum attacks
use “quantum walks" .

Not just Shor and Grover:
e.g., subexponential-time

CRS/CSIDH isogeny attack
uses "Kuperberg's algorithm™.



