
1

Quantum algorithms

Daniel J. Bernstein

“Quantum algorithm”

means an algorithm that

a quantum computer can run.

i.e. a sequence of instructions,

where each instruction is

in a quantum computer’s

supported instruction set.

How do we know which

instructions a quantum

computer will support?

2

Quantum computer type 1 (QC1):

contains many “qubits”;

can efficiently perform

“NOT gate”, “Hadamard gate”,

“controlled NOT gate”, “T gate”.

1

Quantum algorithms

Daniel J. Bernstein

“Quantum algorithm”

means an algorithm that

a quantum computer can run.

i.e. a sequence of instructions,

where each instruction is

in a quantum computer’s

supported instruction set.

How do we know which

instructions a quantum

computer will support?

2

Quantum computer type 1 (QC1):

contains many “qubits”;

can efficiently perform

“NOT gate”, “Hadamard gate”,

“controlled NOT gate”, “T gate”.

Making these instructions work

is the main goal of quantum-

computer engineering.

1

Quantum algorithms

Daniel J. Bernstein

“Quantum algorithm”

means an algorithm that

a quantum computer can run.

i.e. a sequence of instructions,

where each instruction is

in a quantum computer’s

supported instruction set.

How do we know which

instructions a quantum

computer will support?

2

Quantum computer type 1 (QC1):

contains many “qubits”;

can efficiently perform

“NOT gate”, “Hadamard gate”,

“controlled NOT gate”, “T gate”.

Making these instructions work

is the main goal of quantum-

computer engineering.

Combine these instructions

to compute “Toffoli gate”;

: : : “Simon’s algorithm”;

: : : “Shor’s algorithm”; etc.

1

Quantum algorithms

Daniel J. Bernstein

“Quantum algorithm”

means an algorithm that

a quantum computer can run.

i.e. a sequence of instructions,

where each instruction is

in a quantum computer’s

supported instruction set.

How do we know which

instructions a quantum

computer will support?

2

Quantum computer type 1 (QC1):

contains many “qubits”;

can efficiently perform

“NOT gate”, “Hadamard gate”,

“controlled NOT gate”, “T gate”.

Making these instructions work

is the main goal of quantum-

computer engineering.

Combine these instructions

to compute “Toffoli gate”;

: : : “Simon’s algorithm”;

: : : “Shor’s algorithm”; etc.

General belief: Traditional CPU

isn’t QC1; e.g. can’t factor quickly.

1

Quantum algorithms

Daniel J. Bernstein

“Quantum algorithm”

means an algorithm that

a quantum computer can run.

i.e. a sequence of instructions,

where each instruction is

in a quantum computer’s

supported instruction set.

How do we know which

instructions a quantum

computer will support?

2

Quantum computer type 1 (QC1):

contains many “qubits”;

can efficiently perform

“NOT gate”, “Hadamard gate”,

“controlled NOT gate”, “T gate”.

Making these instructions work

is the main goal of quantum-

computer engineering.

Combine these instructions

to compute “Toffoli gate”;

: : : “Simon’s algorithm”;

: : : “Shor’s algorithm”; etc.

General belief: Traditional CPU

isn’t QC1; e.g. can’t factor quickly.

3

Quantum computer type 2 (QC2):

stores a simulated universe;

efficiently simulates the

laws of quantum physics

with as much accuracy as desired.

This is the original concept of

quantum computers introduced

by 1982 Feynman “Simulating

physics with computers”.

1

Quantum algorithms

Daniel J. Bernstein

“Quantum algorithm”

means an algorithm that

a quantum computer can run.

i.e. a sequence of instructions,

where each instruction is

in a quantum computer’s

supported instruction set.

How do we know which

instructions a quantum

computer will support?

2

Quantum computer type 1 (QC1):

contains many “qubits”;

can efficiently perform

“NOT gate”, “Hadamard gate”,

“controlled NOT gate”, “T gate”.

Making these instructions work

is the main goal of quantum-

computer engineering.

Combine these instructions

to compute “Toffoli gate”;

: : : “Simon’s algorithm”;

: : : “Shor’s algorithm”; etc.

General belief: Traditional CPU

isn’t QC1; e.g. can’t factor quickly.

3

Quantum computer type 2 (QC2):

stores a simulated universe;

efficiently simulates the

laws of quantum physics

with as much accuracy as desired.

This is the original concept of

quantum computers introduced

by 1982 Feynman “Simulating

physics with computers”.

1

Quantum algorithms

Daniel J. Bernstein

“Quantum algorithm”

means an algorithm that

a quantum computer can run.

i.e. a sequence of instructions,

where each instruction is

in a quantum computer’s

supported instruction set.

How do we know which

instructions a quantum

computer will support?

2

Quantum computer type 1 (QC1):

contains many “qubits”;

can efficiently perform

“NOT gate”, “Hadamard gate”,

“controlled NOT gate”, “T gate”.

Making these instructions work

is the main goal of quantum-

computer engineering.

Combine these instructions

to compute “Toffoli gate”;

: : : “Simon’s algorithm”;

: : : “Shor’s algorithm”; etc.

General belief: Traditional CPU

isn’t QC1; e.g. can’t factor quickly.

3

Quantum computer type 2 (QC2):

stores a simulated universe;

efficiently simulates the

laws of quantum physics

with as much accuracy as desired.

This is the original concept of

quantum computers introduced

by 1982 Feynman “Simulating

physics with computers”.

2

Quantum computer type 1 (QC1):

contains many “qubits”;

can efficiently perform

“NOT gate”, “Hadamard gate”,

“controlled NOT gate”, “T gate”.

Making these instructions work

is the main goal of quantum-

computer engineering.

Combine these instructions

to compute “Toffoli gate”;

: : : “Simon’s algorithm”;

: : : “Shor’s algorithm”; etc.

General belief: Traditional CPU

isn’t QC1; e.g. can’t factor quickly.

3

Quantum computer type 2 (QC2):

stores a simulated universe;

efficiently simulates the

laws of quantum physics

with as much accuracy as desired.

This is the original concept of

quantum computers introduced

by 1982 Feynman “Simulating

physics with computers”.

2

Quantum computer type 1 (QC1):

contains many “qubits”;

can efficiently perform

“NOT gate”, “Hadamard gate”,

“controlled NOT gate”, “T gate”.

Making these instructions work

is the main goal of quantum-

computer engineering.

Combine these instructions

to compute “Toffoli gate”;

: : : “Simon’s algorithm”;

: : : “Shor’s algorithm”; etc.

General belief: Traditional CPU

isn’t QC1; e.g. can’t factor quickly.

3

Quantum computer type 2 (QC2):

stores a simulated universe;

efficiently simulates the

laws of quantum physics

with as much accuracy as desired.

This is the original concept of

quantum computers introduced

by 1982 Feynman “Simulating

physics with computers”.

General belief: any QC1 is a QC2.

Partial proof: see, e.g.,

2011 Jordan–Lee–Preskill

“Quantum algorithms for

quantum field theories”.

2

Quantum computer type 1 (QC1):

contains many “qubits”;

can efficiently perform

“NOT gate”, “Hadamard gate”,

“controlled NOT gate”, “T gate”.

Making these instructions work

is the main goal of quantum-

computer engineering.

Combine these instructions

to compute “Toffoli gate”;

: : : “Simon’s algorithm”;

: : : “Shor’s algorithm”; etc.

General belief: Traditional CPU

isn’t QC1; e.g. can’t factor quickly.

3

Quantum computer type 2 (QC2):

stores a simulated universe;

efficiently simulates the

laws of quantum physics

with as much accuracy as desired.

This is the original concept of

quantum computers introduced

by 1982 Feynman “Simulating

physics with computers”.

General belief: any QC1 is a QC2.

Partial proof: see, e.g.,

2011 Jordan–Lee–Preskill

“Quantum algorithms for

quantum field theories”.

4

Quantum computer type 3 (QC3):

efficiently computes anything

that any possible physical

computer can compute efficiently.

2

Quantum computer type 1 (QC1):

contains many “qubits”;

can efficiently perform

“NOT gate”, “Hadamard gate”,

“controlled NOT gate”, “T gate”.

Making these instructions work

is the main goal of quantum-

computer engineering.

Combine these instructions

to compute “Toffoli gate”;

: : : “Simon’s algorithm”;

: : : “Shor’s algorithm”; etc.

General belief: Traditional CPU

isn’t QC1; e.g. can’t factor quickly.

3

Quantum computer type 2 (QC2):

stores a simulated universe;

efficiently simulates the

laws of quantum physics

with as much accuracy as desired.

This is the original concept of

quantum computers introduced

by 1982 Feynman “Simulating

physics with computers”.

General belief: any QC1 is a QC2.

Partial proof: see, e.g.,

2011 Jordan–Lee–Preskill

“Quantum algorithms for

quantum field theories”.

4

Quantum computer type 3 (QC3):

efficiently computes anything

that any possible physical

computer can compute efficiently.

2

Quantum computer type 1 (QC1):

contains many “qubits”;

can efficiently perform

“NOT gate”, “Hadamard gate”,

“controlled NOT gate”, “T gate”.

Making these instructions work

is the main goal of quantum-

computer engineering.

Combine these instructions

to compute “Toffoli gate”;

: : : “Simon’s algorithm”;

: : : “Shor’s algorithm”; etc.

General belief: Traditional CPU

isn’t QC1; e.g. can’t factor quickly.

3

Quantum computer type 2 (QC2):

stores a simulated universe;

efficiently simulates the

laws of quantum physics

with as much accuracy as desired.

This is the original concept of

quantum computers introduced

by 1982 Feynman “Simulating

physics with computers”.

General belief: any QC1 is a QC2.

Partial proof: see, e.g.,

2011 Jordan–Lee–Preskill

“Quantum algorithms for

quantum field theories”.

4

Quantum computer type 3 (QC3):

efficiently computes anything

that any possible physical

computer can compute efficiently.

3

Quantum computer type 2 (QC2):

stores a simulated universe;

efficiently simulates the

laws of quantum physics

with as much accuracy as desired.

This is the original concept of

quantum computers introduced

by 1982 Feynman “Simulating

physics with computers”.

General belief: any QC1 is a QC2.

Partial proof: see, e.g.,

2011 Jordan–Lee–Preskill

“Quantum algorithms for

quantum field theories”.

4

Quantum computer type 3 (QC3):

efficiently computes anything

that any possible physical

computer can compute efficiently.

3

Quantum computer type 2 (QC2):

stores a simulated universe;

efficiently simulates the

laws of quantum physics

with as much accuracy as desired.

This is the original concept of

quantum computers introduced

by 1982 Feynman “Simulating

physics with computers”.

General belief: any QC1 is a QC2.

Partial proof: see, e.g.,

2011 Jordan–Lee–Preskill

“Quantum algorithms for

quantum field theories”.

4

Quantum computer type 3 (QC3):

efficiently computes anything

that any possible physical

computer can compute efficiently.

General belief: any QC2 is a QC3.

Argument for belief:

any physical computer must

follow the laws of quantum

physics, so a QC2 can efficiently

simulate any physical computer.

3

Quantum computer type 2 (QC2):

stores a simulated universe;

efficiently simulates the

laws of quantum physics

with as much accuracy as desired.

This is the original concept of

quantum computers introduced

by 1982 Feynman “Simulating

physics with computers”.

General belief: any QC1 is a QC2.

Partial proof: see, e.g.,

2011 Jordan–Lee–Preskill

“Quantum algorithms for

quantum field theories”.

4

Quantum computer type 3 (QC3):

efficiently computes anything

that any possible physical

computer can compute efficiently.

General belief: any QC2 is a QC3.

Argument for belief:

any physical computer must

follow the laws of quantum

physics, so a QC2 can efficiently

simulate any physical computer.

General belief: any QC3 is a QC1.

Argument for belief:

look, we’re building a QC1.

3

Quantum computer type 2 (QC2):

stores a simulated universe;

efficiently simulates the

laws of quantum physics

with as much accuracy as desired.

This is the original concept of

quantum computers introduced

by 1982 Feynman “Simulating

physics with computers”.

General belief: any QC1 is a QC2.

Partial proof: see, e.g.,

2011 Jordan–Lee–Preskill

“Quantum algorithms for

quantum field theories”.

4

Quantum computer type 3 (QC3):

efficiently computes anything

that any possible physical

computer can compute efficiently.

General belief: any QC2 is a QC3.

Argument for belief:

any physical computer must

follow the laws of quantum

physics, so a QC2 can efficiently

simulate any physical computer.

General belief: any QC3 is a QC1.

Argument for belief:

look, we’re building a QC1.

5

A note on D-Wave

Apparent scientific consensus:

Current “quantum computers”

from D-Wave are useless—

can be more cost-effectively

simulated by traditional CPUs.

3

Quantum computer type 2 (QC2):

stores a simulated universe;

efficiently simulates the

laws of quantum physics

with as much accuracy as desired.

This is the original concept of

quantum computers introduced

by 1982 Feynman “Simulating

physics with computers”.

General belief: any QC1 is a QC2.

Partial proof: see, e.g.,

2011 Jordan–Lee–Preskill

“Quantum algorithms for

quantum field theories”.

4

Quantum computer type 3 (QC3):

efficiently computes anything

that any possible physical

computer can compute efficiently.

General belief: any QC2 is a QC3.

Argument for belief:

any physical computer must

follow the laws of quantum

physics, so a QC2 can efficiently

simulate any physical computer.

General belief: any QC3 is a QC1.

Argument for belief:

look, we’re building a QC1.

5

A note on D-Wave

Apparent scientific consensus:

Current “quantum computers”

from D-Wave are useless—

can be more cost-effectively

simulated by traditional CPUs.

3

Quantum computer type 2 (QC2):

stores a simulated universe;

efficiently simulates the

laws of quantum physics

with as much accuracy as desired.

This is the original concept of

quantum computers introduced

by 1982 Feynman “Simulating

physics with computers”.

General belief: any QC1 is a QC2.

Partial proof: see, e.g.,

2011 Jordan–Lee–Preskill

“Quantum algorithms for

quantum field theories”.

4

Quantum computer type 3 (QC3):

efficiently computes anything

that any possible physical

computer can compute efficiently.

General belief: any QC2 is a QC3.

Argument for belief:

any physical computer must

follow the laws of quantum

physics, so a QC2 can efficiently

simulate any physical computer.

General belief: any QC3 is a QC1.

Argument for belief:

look, we’re building a QC1.

5

A note on D-Wave

Apparent scientific consensus:

Current “quantum computers”

from D-Wave are useless—

can be more cost-effectively

simulated by traditional CPUs.

4

Quantum computer type 3 (QC3):

efficiently computes anything

that any possible physical

computer can compute efficiently.

General belief: any QC2 is a QC3.

Argument for belief:

any physical computer must

follow the laws of quantum

physics, so a QC2 can efficiently

simulate any physical computer.

General belief: any QC3 is a QC1.

Argument for belief:

look, we’re building a QC1.

5

A note on D-Wave

Apparent scientific consensus:

Current “quantum computers”

from D-Wave are useless—

can be more cost-effectively

simulated by traditional CPUs.

4

Quantum computer type 3 (QC3):

efficiently computes anything

that any possible physical

computer can compute efficiently.

General belief: any QC2 is a QC3.

Argument for belief:

any physical computer must

follow the laws of quantum

physics, so a QC2 can efficiently

simulate any physical computer.

General belief: any QC3 is a QC1.

Argument for belief:

look, we’re building a QC1.

5

A note on D-Wave

Apparent scientific consensus:

Current “quantum computers”

from D-Wave are useless—

can be more cost-effectively

simulated by traditional CPUs.

But D-Wave is

• collecting venture capital;

4

Quantum computer type 3 (QC3):

efficiently computes anything

that any possible physical

computer can compute efficiently.

General belief: any QC2 is a QC3.

Argument for belief:

any physical computer must

follow the laws of quantum

physics, so a QC2 can efficiently

simulate any physical computer.

General belief: any QC3 is a QC1.

Argument for belief:

look, we’re building a QC1.

5

A note on D-Wave

Apparent scientific consensus:

Current “quantum computers”

from D-Wave are useless—

can be more cost-effectively

simulated by traditional CPUs.

But D-Wave is

• collecting venture capital;

• selling some machines;

4

Quantum computer type 3 (QC3):

efficiently computes anything

that any possible physical

computer can compute efficiently.

General belief: any QC2 is a QC3.

Argument for belief:

any physical computer must

follow the laws of quantum

physics, so a QC2 can efficiently

simulate any physical computer.

General belief: any QC3 is a QC1.

Argument for belief:

look, we’re building a QC1.

5

A note on D-Wave

Apparent scientific consensus:

Current “quantum computers”

from D-Wave are useless—

can be more cost-effectively

simulated by traditional CPUs.

But D-Wave is

• collecting venture capital;

• selling some machines;

• collecting possibly useful

engineering expertise;

4

Quantum computer type 3 (QC3):

efficiently computes anything

that any possible physical

computer can compute efficiently.

General belief: any QC2 is a QC3.

Argument for belief:

any physical computer must

follow the laws of quantum

physics, so a QC2 can efficiently

simulate any physical computer.

General belief: any QC3 is a QC1.

Argument for belief:

look, we’re building a QC1.

5

A note on D-Wave

Apparent scientific consensus:

Current “quantum computers”

from D-Wave are useless—

can be more cost-effectively

simulated by traditional CPUs.

But D-Wave is

• collecting venture capital;

• selling some machines;

• collecting possibly useful

engineering expertise;

• not being punished

for deceiving people.

4

Quantum computer type 3 (QC3):

efficiently computes anything

that any possible physical

computer can compute efficiently.

General belief: any QC2 is a QC3.

Argument for belief:

any physical computer must

follow the laws of quantum

physics, so a QC2 can efficiently

simulate any physical computer.

General belief: any QC3 is a QC1.

Argument for belief:

look, we’re building a QC1.

5

A note on D-Wave

Apparent scientific consensus:

Current “quantum computers”

from D-Wave are useless—

can be more cost-effectively

simulated by traditional CPUs.

But D-Wave is

• collecting venture capital;

• selling some machines;

• collecting possibly useful

engineering expertise;

• not being punished

for deceiving people.

Is D-Wave a bad investment?

4

Quantum computer type 3 (QC3):

efficiently computes anything

that any possible physical

computer can compute efficiently.

General belief: any QC2 is a QC3.

Argument for belief:

any physical computer must

follow the laws of quantum

physics, so a QC2 can efficiently

simulate any physical computer.

General belief: any QC3 is a QC1.

Argument for belief:

look, we’re building a QC1.

5

A note on D-Wave

Apparent scientific consensus:

Current “quantum computers”

from D-Wave are useless—

can be more cost-effectively

simulated by traditional CPUs.

But D-Wave is

• collecting venture capital;

• selling some machines;

• collecting possibly useful

engineering expertise;

• not being punished

for deceiving people.

Is D-Wave a bad investment?

6

The state of a computer

Data (“state”) stored in 3 bits:

a list of 3 elements of {0; 1}.
e.g.: (0; 0; 0).

4

Quantum computer type 3 (QC3):

efficiently computes anything

that any possible physical

computer can compute efficiently.

General belief: any QC2 is a QC3.

Argument for belief:

any physical computer must

follow the laws of quantum

physics, so a QC2 can efficiently

simulate any physical computer.

General belief: any QC3 is a QC1.

Argument for belief:

look, we’re building a QC1.

5

A note on D-Wave

Apparent scientific consensus:

Current “quantum computers”

from D-Wave are useless—

can be more cost-effectively

simulated by traditional CPUs.

But D-Wave is

• collecting venture capital;

• selling some machines;

• collecting possibly useful

engineering expertise;

• not being punished

for deceiving people.

Is D-Wave a bad investment?

6

The state of a computer

Data (“state”) stored in 3 bits:

a list of 3 elements of {0; 1}.
e.g.: (0; 0; 0).

4

Quantum computer type 3 (QC3):

efficiently computes anything

that any possible physical

computer can compute efficiently.

General belief: any QC2 is a QC3.

Argument for belief:

any physical computer must

follow the laws of quantum

physics, so a QC2 can efficiently

simulate any physical computer.

General belief: any QC3 is a QC1.

Argument for belief:

look, we’re building a QC1.

5

A note on D-Wave

Apparent scientific consensus:

Current “quantum computers”

from D-Wave are useless—

can be more cost-effectively

simulated by traditional CPUs.

But D-Wave is

• collecting venture capital;

• selling some machines;

• collecting possibly useful

engineering expertise;

• not being punished

for deceiving people.

Is D-Wave a bad investment?

6

The state of a computer

Data (“state”) stored in 3 bits:

a list of 3 elements of {0; 1}.
e.g.: (0; 0; 0).

5

A note on D-Wave

Apparent scientific consensus:

Current “quantum computers”

from D-Wave are useless—

can be more cost-effectively

simulated by traditional CPUs.

But D-Wave is

• collecting venture capital;

• selling some machines;

• collecting possibly useful

engineering expertise;

• not being punished

for deceiving people.

Is D-Wave a bad investment?

6

The state of a computer

Data (“state”) stored in 3 bits:

a list of 3 elements of {0; 1}.
e.g.: (0; 0; 0).

5

A note on D-Wave

Apparent scientific consensus:

Current “quantum computers”

from D-Wave are useless—

can be more cost-effectively

simulated by traditional CPUs.

But D-Wave is

• collecting venture capital;

• selling some machines;

• collecting possibly useful

engineering expertise;

• not being punished

for deceiving people.

Is D-Wave a bad investment?

6

The state of a computer

Data (“state”) stored in 3 bits:

a list of 3 elements of {0; 1}.
e.g.: (0; 0; 0).

e.g.: (1; 1; 1).

5

A note on D-Wave

Apparent scientific consensus:

Current “quantum computers”

from D-Wave are useless—

can be more cost-effectively

simulated by traditional CPUs.

But D-Wave is

• collecting venture capital;

• selling some machines;

• collecting possibly useful

engineering expertise;

• not being punished

for deceiving people.

Is D-Wave a bad investment?

6

The state of a computer

Data (“state”) stored in 3 bits:

a list of 3 elements of {0; 1}.
e.g.: (0; 0; 0).

e.g.: (1; 1; 1).

e.g.: (0; 1; 1).

5

A note on D-Wave

Apparent scientific consensus:

Current “quantum computers”

from D-Wave are useless—

can be more cost-effectively

simulated by traditional CPUs.

But D-Wave is

• collecting venture capital;

• selling some machines;

• collecting possibly useful

engineering expertise;

• not being punished

for deceiving people.

Is D-Wave a bad investment?

6

The state of a computer

Data (“state”) stored in 3 bits:

a list of 3 elements of {0; 1}.
e.g.: (0; 0; 0).

e.g.: (1; 1; 1).

e.g.: (0; 1; 1).

Data stored in 64 bits:

a list of 64 elements of {0; 1}.

5

A note on D-Wave

Apparent scientific consensus:

Current “quantum computers”

from D-Wave are useless—

can be more cost-effectively

simulated by traditional CPUs.

But D-Wave is

• collecting venture capital;

• selling some machines;

• collecting possibly useful

engineering expertise;

• not being punished

for deceiving people.

Is D-Wave a bad investment?

6

The state of a computer

Data (“state”) stored in 3 bits:

a list of 3 elements of {0; 1}.
e.g.: (0; 0; 0).

e.g.: (1; 1; 1).

e.g.: (0; 1; 1).

Data stored in 64 bits:

a list of 64 elements of {0; 1}.
e.g.: (1; 1; 1; 1; 1; 0; 0; 0; 1;

0; 0; 0; 0; 0; 0; 1; 1; 0; 0; 0;

0; 1; 0; 0; 1; 0; 0; 0; 0; 0; 1;

1; 0; 1; 0; 0; 0; 1; 0; 0; 0; 1;

0; 0; 1; 1; 1; 0; 0; 1; 0; 0; 0;

1; 1; 0; 1; 1; 0; 0; 1; 0; 0; 1):

5

A note on D-Wave

Apparent scientific consensus:

Current “quantum computers”

from D-Wave are useless—

can be more cost-effectively

simulated by traditional CPUs.

But D-Wave is

• collecting venture capital;

• selling some machines;

• collecting possibly useful

engineering expertise;

• not being punished

for deceiving people.

Is D-Wave a bad investment?

6

The state of a computer

Data (“state”) stored in 3 bits:

a list of 3 elements of {0; 1}.
e.g.: (0; 0; 0).

e.g.: (1; 1; 1).

e.g.: (0; 1; 1).

Data stored in 64 bits:

a list of 64 elements of {0; 1}.
e.g.: (1; 1; 1; 1; 1; 0; 0; 0; 1;

0; 0; 0; 0; 0; 0; 1; 1; 0; 0; 0;

0; 1; 0; 0; 1; 0; 0; 0; 0; 0; 1;

1; 0; 1; 0; 0; 0; 1; 0; 0; 0; 1;

0; 0; 1; 1; 1; 0; 0; 1; 0; 0; 0;

1; 1; 0; 1; 1; 0; 0; 1; 0; 0; 1):

7

The state of a quantum computer

Data stored in 3 qubits:

a list of 8 numbers, not all zero.

e.g.: (3; 1; 4; 1; 5; 9; 2; 6).

5

A note on D-Wave

Apparent scientific consensus:

Current “quantum computers”

from D-Wave are useless—

can be more cost-effectively

simulated by traditional CPUs.

But D-Wave is

• collecting venture capital;

• selling some machines;

• collecting possibly useful

engineering expertise;

• not being punished

for deceiving people.

Is D-Wave a bad investment?

6

The state of a computer

Data (“state”) stored in 3 bits:

a list of 3 elements of {0; 1}.
e.g.: (0; 0; 0).

e.g.: (1; 1; 1).

e.g.: (0; 1; 1).

Data stored in 64 bits:

a list of 64 elements of {0; 1}.
e.g.: (1; 1; 1; 1; 1; 0; 0; 0; 1;

0; 0; 0; 0; 0; 0; 1; 1; 0; 0; 0;

0; 1; 0; 0; 1; 0; 0; 0; 0; 0; 1;

1; 0; 1; 0; 0; 0; 1; 0; 0; 0; 1;

0; 0; 1; 1; 1; 0; 0; 1; 0; 0; 0;

1; 1; 0; 1; 1; 0; 0; 1; 0; 0; 1):

7

The state of a quantum computer

Data stored in 3 qubits:

a list of 8 numbers, not all zero.

e.g.: (3; 1; 4; 1; 5; 9; 2; 6).

5

A note on D-Wave

Apparent scientific consensus:

Current “quantum computers”

from D-Wave are useless—

can be more cost-effectively

simulated by traditional CPUs.

But D-Wave is

• collecting venture capital;

• selling some machines;

• collecting possibly useful

engineering expertise;

• not being punished

for deceiving people.

Is D-Wave a bad investment?

6

The state of a computer

Data (“state”) stored in 3 bits:

a list of 3 elements of {0; 1}.
e.g.: (0; 0; 0).

e.g.: (1; 1; 1).

e.g.: (0; 1; 1).

Data stored in 64 bits:

a list of 64 elements of {0; 1}.
e.g.: (1; 1; 1; 1; 1; 0; 0; 0; 1;

0; 0; 0; 0; 0; 0; 1; 1; 0; 0; 0;

0; 1; 0; 0; 1; 0; 0; 0; 0; 0; 1;

1; 0; 1; 0; 0; 0; 1; 0; 0; 0; 1;

0; 0; 1; 1; 1; 0; 0; 1; 0; 0; 0;

1; 1; 0; 1; 1; 0; 0; 1; 0; 0; 1):

7

The state of a quantum computer

Data stored in 3 qubits:

a list of 8 numbers, not all zero.

e.g.: (3; 1; 4; 1; 5; 9; 2; 6).

6

The state of a computer

Data (“state”) stored in 3 bits:

a list of 3 elements of {0; 1}.
e.g.: (0; 0; 0).

e.g.: (1; 1; 1).

e.g.: (0; 1; 1).

Data stored in 64 bits:

a list of 64 elements of {0; 1}.
e.g.: (1; 1; 1; 1; 1; 0; 0; 0; 1;

0; 0; 0; 0; 0; 0; 1; 1; 0; 0; 0;

0; 1; 0; 0; 1; 0; 0; 0; 0; 0; 1;

1; 0; 1; 0; 0; 0; 1; 0; 0; 0; 1;

0; 0; 1; 1; 1; 0; 0; 1; 0; 0; 0;

1; 1; 0; 1; 1; 0; 0; 1; 0; 0; 1):

7

The state of a quantum computer

Data stored in 3 qubits:

a list of 8 numbers, not all zero.

e.g.: (3; 1; 4; 1; 5; 9; 2; 6).

6

The state of a computer

Data (“state”) stored in 3 bits:

a list of 3 elements of {0; 1}.
e.g.: (0; 0; 0).

e.g.: (1; 1; 1).

e.g.: (0; 1; 1).

Data stored in 64 bits:

a list of 64 elements of {0; 1}.
e.g.: (1; 1; 1; 1; 1; 0; 0; 0; 1;

0; 0; 0; 0; 0; 0; 1; 1; 0; 0; 0;

0; 1; 0; 0; 1; 0; 0; 0; 0; 0; 1;

1; 0; 1; 0; 0; 0; 1; 0; 0; 0; 1;

0; 0; 1; 1; 1; 0; 0; 1; 0; 0; 0;

1; 1; 0; 1; 1; 0; 0; 1; 0; 0; 1):

7

The state of a quantum computer

Data stored in 3 qubits:

a list of 8 numbers, not all zero.

e.g.: (3; 1; 4; 1; 5; 9; 2; 6).

e.g.: (−2; 7;−1; 8; 1;−8;−2; 8).

6

The state of a computer

Data (“state”) stored in 3 bits:

a list of 3 elements of {0; 1}.
e.g.: (0; 0; 0).

e.g.: (1; 1; 1).

e.g.: (0; 1; 1).

Data stored in 64 bits:

a list of 64 elements of {0; 1}.
e.g.: (1; 1; 1; 1; 1; 0; 0; 0; 1;

0; 0; 0; 0; 0; 0; 1; 1; 0; 0; 0;

0; 1; 0; 0; 1; 0; 0; 0; 0; 0; 1;

1; 0; 1; 0; 0; 0; 1; 0; 0; 0; 1;

0; 0; 1; 1; 1; 0; 0; 1; 0; 0; 0;

1; 1; 0; 1; 1; 0; 0; 1; 0; 0; 1):

7

The state of a quantum computer

Data stored in 3 qubits:

a list of 8 numbers, not all zero.

e.g.: (3; 1; 4; 1; 5; 9; 2; 6).

e.g.: (−2; 7;−1; 8; 1;−8;−2; 8).

e.g.: (0; 0; 0; 0; 0; 1; 0; 0).

6

The state of a computer

Data (“state”) stored in 3 bits:

a list of 3 elements of {0; 1}.
e.g.: (0; 0; 0).

e.g.: (1; 1; 1).

e.g.: (0; 1; 1).

Data stored in 64 bits:

a list of 64 elements of {0; 1}.
e.g.: (1; 1; 1; 1; 1; 0; 0; 0; 1;

0; 0; 0; 0; 0; 0; 1; 1; 0; 0; 0;

0; 1; 0; 0; 1; 0; 0; 0; 0; 0; 1;

1; 0; 1; 0; 0; 0; 1; 0; 0; 0; 1;

0; 0; 1; 1; 1; 0; 0; 1; 0; 0; 0;

1; 1; 0; 1; 1; 0; 0; 1; 0; 0; 1):

7

The state of a quantum computer

Data stored in 3 qubits:

a list of 8 numbers, not all zero.

e.g.: (3; 1; 4; 1; 5; 9; 2; 6).

e.g.: (−2; 7;−1; 8; 1;−8;−2; 8).

e.g.: (0; 0; 0; 0; 0; 1; 0; 0).

Data stored in 4 qubits: a list of

16 numbers, not all zero. e.g.:

(3; 1; 4; 1; 5; 9; 2; 6; 5; 3; 5; 8; 9; 7; 9; 3).

6

The state of a computer

Data (“state”) stored in 3 bits:

a list of 3 elements of {0; 1}.
e.g.: (0; 0; 0).

e.g.: (1; 1; 1).

e.g.: (0; 1; 1).

Data stored in 64 bits:

a list of 64 elements of {0; 1}.
e.g.: (1; 1; 1; 1; 1; 0; 0; 0; 1;

0; 0; 0; 0; 0; 0; 1; 1; 0; 0; 0;

0; 1; 0; 0; 1; 0; 0; 0; 0; 0; 1;

1; 0; 1; 0; 0; 0; 1; 0; 0; 0; 1;

0; 0; 1; 1; 1; 0; 0; 1; 0; 0; 0;

1; 1; 0; 1; 1; 0; 0; 1; 0; 0; 1):

7

The state of a quantum computer

Data stored in 3 qubits:

a list of 8 numbers, not all zero.

e.g.: (3; 1; 4; 1; 5; 9; 2; 6).

e.g.: (−2; 7;−1; 8; 1;−8;−2; 8).

e.g.: (0; 0; 0; 0; 0; 1; 0; 0).

Data stored in 4 qubits: a list of

16 numbers, not all zero. e.g.:

(3; 1; 4; 1; 5; 9; 2; 6; 5; 3; 5; 8; 9; 7; 9; 3).

Data stored in 64 qubits:

a list of 264 numbers, not all zero.

6

The state of a computer

Data (“state”) stored in 3 bits:

a list of 3 elements of {0; 1}.
e.g.: (0; 0; 0).

e.g.: (1; 1; 1).

e.g.: (0; 1; 1).

Data stored in 64 bits:

a list of 64 elements of {0; 1}.
e.g.: (1; 1; 1; 1; 1; 0; 0; 0; 1;

0; 0; 0; 0; 0; 0; 1; 1; 0; 0; 0;

0; 1; 0; 0; 1; 0; 0; 0; 0; 0; 1;

1; 0; 1; 0; 0; 0; 1; 0; 0; 0; 1;

0; 0; 1; 1; 1; 0; 0; 1; 0; 0; 0;

1; 1; 0; 1; 1; 0; 0; 1; 0; 0; 1):

7

The state of a quantum computer

Data stored in 3 qubits:

a list of 8 numbers, not all zero.

e.g.: (3; 1; 4; 1; 5; 9; 2; 6).

e.g.: (−2; 7;−1; 8; 1;−8;−2; 8).

e.g.: (0; 0; 0; 0; 0; 1; 0; 0).

Data stored in 4 qubits: a list of

16 numbers, not all zero. e.g.:

(3; 1; 4; 1; 5; 9; 2; 6; 5; 3; 5; 8; 9; 7; 9; 3).

Data stored in 64 qubits:

a list of 264 numbers, not all zero.

Data stored in 1000 qubits: a list

of 21000 numbers, not all zero.

6

The state of a computer

Data (“state”) stored in 3 bits:

a list of 3 elements of {0; 1}.
e.g.: (0; 0; 0).

e.g.: (1; 1; 1).

e.g.: (0; 1; 1).

Data stored in 64 bits:

a list of 64 elements of {0; 1}.
e.g.: (1; 1; 1; 1; 1; 0; 0; 0; 1;

0; 0; 0; 0; 0; 0; 1; 1; 0; 0; 0;

0; 1; 0; 0; 1; 0; 0; 0; 0; 0; 1;

1; 0; 1; 0; 0; 0; 1; 0; 0; 0; 1;

0; 0; 1; 1; 1; 0; 0; 1; 0; 0; 0;

1; 1; 0; 1; 1; 0; 0; 1; 0; 0; 1):

7

The state of a quantum computer

Data stored in 3 qubits:

a list of 8 numbers, not all zero.

e.g.: (3; 1; 4; 1; 5; 9; 2; 6).

e.g.: (−2; 7;−1; 8; 1;−8;−2; 8).

e.g.: (0; 0; 0; 0; 0; 1; 0; 0).

Data stored in 4 qubits: a list of

16 numbers, not all zero. e.g.:

(3; 1; 4; 1; 5; 9; 2; 6; 5; 3; 5; 8; 9; 7; 9; 3).

Data stored in 64 qubits:

a list of 264 numbers, not all zero.

Data stored in 1000 qubits: a list

of 21000 numbers, not all zero.

8

Measuring a quantum computer

Can simply look at a bit.

Cannot simply look at the list

of numbers stored in n qubits.

6

The state of a computer

Data (“state”) stored in 3 bits:

a list of 3 elements of {0; 1}.
e.g.: (0; 0; 0).

e.g.: (1; 1; 1).

e.g.: (0; 1; 1).

Data stored in 64 bits:

a list of 64 elements of {0; 1}.
e.g.: (1; 1; 1; 1; 1; 0; 0; 0; 1;

0; 0; 0; 0; 0; 0; 1; 1; 0; 0; 0;

0; 1; 0; 0; 1; 0; 0; 0; 0; 0; 1;

1; 0; 1; 0; 0; 0; 1; 0; 0; 0; 1;

0; 0; 1; 1; 1; 0; 0; 1; 0; 0; 0;

1; 1; 0; 1; 1; 0; 0; 1; 0; 0; 1):

7

The state of a quantum computer

Data stored in 3 qubits:

a list of 8 numbers, not all zero.

e.g.: (3; 1; 4; 1; 5; 9; 2; 6).

e.g.: (−2; 7;−1; 8; 1;−8;−2; 8).

e.g.: (0; 0; 0; 0; 0; 1; 0; 0).

Data stored in 4 qubits: a list of

16 numbers, not all zero. e.g.:

(3; 1; 4; 1; 5; 9; 2; 6; 5; 3; 5; 8; 9; 7; 9; 3).

Data stored in 64 qubits:

a list of 264 numbers, not all zero.

Data stored in 1000 qubits: a list

of 21000 numbers, not all zero.

8

Measuring a quantum computer

Can simply look at a bit.

Cannot simply look at the list

of numbers stored in n qubits.

6

The state of a computer

Data (“state”) stored in 3 bits:

a list of 3 elements of {0; 1}.
e.g.: (0; 0; 0).

e.g.: (1; 1; 1).

e.g.: (0; 1; 1).

Data stored in 64 bits:

a list of 64 elements of {0; 1}.
e.g.: (1; 1; 1; 1; 1; 0; 0; 0; 1;

0; 0; 0; 0; 0; 0; 1; 1; 0; 0; 0;

0; 1; 0; 0; 1; 0; 0; 0; 0; 0; 1;

1; 0; 1; 0; 0; 0; 1; 0; 0; 0; 1;

0; 0; 1; 1; 1; 0; 0; 1; 0; 0; 0;

1; 1; 0; 1; 1; 0; 0; 1; 0; 0; 1):

7

The state of a quantum computer

Data stored in 3 qubits:

a list of 8 numbers, not all zero.

e.g.: (3; 1; 4; 1; 5; 9; 2; 6).

e.g.: (−2; 7;−1; 8; 1;−8;−2; 8).

e.g.: (0; 0; 0; 0; 0; 1; 0; 0).

Data stored in 4 qubits: a list of

16 numbers, not all zero. e.g.:

(3; 1; 4; 1; 5; 9; 2; 6; 5; 3; 5; 8; 9; 7; 9; 3).

Data stored in 64 qubits:

a list of 264 numbers, not all zero.

Data stored in 1000 qubits: a list

of 21000 numbers, not all zero.

8

Measuring a quantum computer

Can simply look at a bit.

Cannot simply look at the list

of numbers stored in n qubits.

7

The state of a quantum computer

Data stored in 3 qubits:

a list of 8 numbers, not all zero.

e.g.: (3; 1; 4; 1; 5; 9; 2; 6).

e.g.: (−2; 7;−1; 8; 1;−8;−2; 8).

e.g.: (0; 0; 0; 0; 0; 1; 0; 0).

Data stored in 4 qubits: a list of

16 numbers, not all zero. e.g.:

(3; 1; 4; 1; 5; 9; 2; 6; 5; 3; 5; 8; 9; 7; 9; 3).

Data stored in 64 qubits:

a list of 264 numbers, not all zero.

Data stored in 1000 qubits: a list

of 21000 numbers, not all zero.

8

Measuring a quantum computer

Can simply look at a bit.

Cannot simply look at the list

of numbers stored in n qubits.

7

The state of a quantum computer

Data stored in 3 qubits:

a list of 8 numbers, not all zero.

e.g.: (3; 1; 4; 1; 5; 9; 2; 6).

e.g.: (−2; 7;−1; 8; 1;−8;−2; 8).

e.g.: (0; 0; 0; 0; 0; 1; 0; 0).

Data stored in 4 qubits: a list of

16 numbers, not all zero. e.g.:

(3; 1; 4; 1; 5; 9; 2; 6; 5; 3; 5; 8; 9; 7; 9; 3).

Data stored in 64 qubits:

a list of 264 numbers, not all zero.

Data stored in 1000 qubits: a list

of 21000 numbers, not all zero.

8

Measuring a quantum computer

Can simply look at a bit.

Cannot simply look at the list

of numbers stored in n qubits.

Measuring n qubits

• produces n bits and

• destroys the state.

7

The state of a quantum computer

Data stored in 3 qubits:

a list of 8 numbers, not all zero.

e.g.: (3; 1; 4; 1; 5; 9; 2; 6).

e.g.: (−2; 7;−1; 8; 1;−8;−2; 8).

e.g.: (0; 0; 0; 0; 0; 1; 0; 0).

Data stored in 4 qubits: a list of

16 numbers, not all zero. e.g.:

(3; 1; 4; 1; 5; 9; 2; 6; 5; 3; 5; 8; 9; 7; 9; 3).

Data stored in 64 qubits:

a list of 264 numbers, not all zero.

Data stored in 1000 qubits: a list

of 21000 numbers, not all zero.

8

Measuring a quantum computer

Can simply look at a bit.

Cannot simply look at the list

of numbers stored in n qubits.

Measuring n qubits

• produces n bits and

• destroys the state.

If n qubits have state

(a0; a1; : : : ; a2n−1) then

measurement produces q

with probability |aq|2=
P
r |ar |2.

7

The state of a quantum computer

Data stored in 3 qubits:

a list of 8 numbers, not all zero.

e.g.: (3; 1; 4; 1; 5; 9; 2; 6).

e.g.: (−2; 7;−1; 8; 1;−8;−2; 8).

e.g.: (0; 0; 0; 0; 0; 1; 0; 0).

Data stored in 4 qubits: a list of

16 numbers, not all zero. e.g.:

(3; 1; 4; 1; 5; 9; 2; 6; 5; 3; 5; 8; 9; 7; 9; 3).

Data stored in 64 qubits:

a list of 264 numbers, not all zero.

Data stored in 1000 qubits: a list

of 21000 numbers, not all zero.

8

Measuring a quantum computer

Can simply look at a bit.

Cannot simply look at the list

of numbers stored in n qubits.

Measuring n qubits

• produces n bits and

• destroys the state.

If n qubits have state

(a0; a1; : : : ; a2n−1) then

measurement produces q

with probability |aq|2=
P
r |ar |2.

State is then all zeros

except 1 at position q.

7

The state of a quantum computer

Data stored in 3 qubits:

a list of 8 numbers, not all zero.

e.g.: (3; 1; 4; 1; 5; 9; 2; 6).

e.g.: (−2; 7;−1; 8; 1;−8;−2; 8).

e.g.: (0; 0; 0; 0; 0; 1; 0; 0).

Data stored in 4 qubits: a list of

16 numbers, not all zero. e.g.:

(3; 1; 4; 1; 5; 9; 2; 6; 5; 3; 5; 8; 9; 7; 9; 3).

Data stored in 64 qubits:

a list of 264 numbers, not all zero.

Data stored in 1000 qubits: a list

of 21000 numbers, not all zero.

8

Measuring a quantum computer

Can simply look at a bit.

Cannot simply look at the list

of numbers stored in n qubits.

Measuring n qubits

• produces n bits and

• destroys the state.

If n qubits have state

(a0; a1; : : : ; a2n−1) then

measurement produces q

with probability |aq|2=
P
r |ar |2.

State is then all zeros

except 1 at position q.

9

e.g.: Say 3 qubits have state

(1; 1; 1; 1; 1; 1; 1; 1).

7

The state of a quantum computer

Data stored in 3 qubits:

a list of 8 numbers, not all zero.

e.g.: (3; 1; 4; 1; 5; 9; 2; 6).

e.g.: (−2; 7;−1; 8; 1;−8;−2; 8).

e.g.: (0; 0; 0; 0; 0; 1; 0; 0).

Data stored in 4 qubits: a list of

16 numbers, not all zero. e.g.:

(3; 1; 4; 1; 5; 9; 2; 6; 5; 3; 5; 8; 9; 7; 9; 3).

Data stored in 64 qubits:

a list of 264 numbers, not all zero.

Data stored in 1000 qubits: a list

of 21000 numbers, not all zero.

8

Measuring a quantum computer

Can simply look at a bit.

Cannot simply look at the list

of numbers stored in n qubits.

Measuring n qubits

• produces n bits and

• destroys the state.

If n qubits have state

(a0; a1; : : : ; a2n−1) then

measurement produces q

with probability |aq|2=
P
r |ar |2.

State is then all zeros

except 1 at position q.

9

e.g.: Say 3 qubits have state

(1; 1; 1; 1; 1; 1; 1; 1).

7

The state of a quantum computer

Data stored in 3 qubits:

a list of 8 numbers, not all zero.

e.g.: (3; 1; 4; 1; 5; 9; 2; 6).

e.g.: (−2; 7;−1; 8; 1;−8;−2; 8).

e.g.: (0; 0; 0; 0; 0; 1; 0; 0).

Data stored in 4 qubits: a list of

16 numbers, not all zero. e.g.:

(3; 1; 4; 1; 5; 9; 2; 6; 5; 3; 5; 8; 9; 7; 9; 3).

Data stored in 64 qubits:

a list of 264 numbers, not all zero.

Data stored in 1000 qubits: a list

of 21000 numbers, not all zero.

8

Measuring a quantum computer

Can simply look at a bit.

Cannot simply look at the list

of numbers stored in n qubits.

Measuring n qubits

• produces n bits and

• destroys the state.

If n qubits have state

(a0; a1; : : : ; a2n−1) then

measurement produces q

with probability |aq|2=
P
r |ar |2.

State is then all zeros

except 1 at position q.

9

e.g.: Say 3 qubits have state

(1; 1; 1; 1; 1; 1; 1; 1).

8

Measuring a quantum computer

Can simply look at a bit.

Cannot simply look at the list

of numbers stored in n qubits.

Measuring n qubits

• produces n bits and

• destroys the state.

If n qubits have state

(a0; a1; : : : ; a2n−1) then

measurement produces q

with probability |aq|2=
P
r |ar |2.

State is then all zeros

except 1 at position q.

9

e.g.: Say 3 qubits have state

(1; 1; 1; 1; 1; 1; 1; 1).

8

Measuring a quantum computer

Can simply look at a bit.

Cannot simply look at the list

of numbers stored in n qubits.

Measuring n qubits

• produces n bits and

• destroys the state.

If n qubits have state

(a0; a1; : : : ; a2n−1) then

measurement produces q

with probability |aq|2=
P
r |ar |2.

State is then all zeros

except 1 at position q.

9

e.g.: Say 3 qubits have state

(1; 1; 1; 1; 1; 1; 1; 1).

Measurement produces

000 = 0 with probability 1=8;

001 = 1 with probability 1=8;

010 = 2 with probability 1=8;

011 = 3 with probability 1=8;

100 = 4 with probability 1=8;

101 = 5 with probability 1=8;

110 = 6 with probability 1=8;

111 = 7 with probability 1=8.

8

Measuring a quantum computer

Can simply look at a bit.

Cannot simply look at the list

of numbers stored in n qubits.

Measuring n qubits

• produces n bits and

• destroys the state.

If n qubits have state

(a0; a1; : : : ; a2n−1) then

measurement produces q

with probability |aq|2=
P
r |ar |2.

State is then all zeros

except 1 at position q.

9

e.g.: Say 3 qubits have state

(1; 1; 1; 1; 1; 1; 1; 1).

Measurement produces

000 = 0 with probability 1=8;

001 = 1 with probability 1=8;

010 = 2 with probability 1=8;

011 = 3 with probability 1=8;

100 = 4 with probability 1=8;

101 = 5 with probability 1=8;

110 = 6 with probability 1=8;

111 = 7 with probability 1=8.

“Quantum RNG.”

8

Measuring a quantum computer

Can simply look at a bit.

Cannot simply look at the list

of numbers stored in n qubits.

Measuring n qubits

• produces n bits and

• destroys the state.

If n qubits have state

(a0; a1; : : : ; a2n−1) then

measurement produces q

with probability |aq|2=
P
r |ar |2.

State is then all zeros

except 1 at position q.

9

e.g.: Say 3 qubits have state

(1; 1; 1; 1; 1; 1; 1; 1).

Measurement produces

000 = 0 with probability 1=8;

001 = 1 with probability 1=8;

010 = 2 with probability 1=8;

011 = 3 with probability 1=8;

100 = 4 with probability 1=8;

101 = 5 with probability 1=8;

110 = 6 with probability 1=8;

111 = 7 with probability 1=8.

“Quantum RNG.”

Warning: Quantum RNGs sold

today are measurably biased.

8

Measuring a quantum computer

Can simply look at a bit.

Cannot simply look at the list

of numbers stored in n qubits.

Measuring n qubits

• produces n bits and

• destroys the state.

If n qubits have state

(a0; a1; : : : ; a2n−1) then

measurement produces q

with probability |aq|2=
P
r |ar |2.

State is then all zeros

except 1 at position q.

9

e.g.: Say 3 qubits have state

(1; 1; 1; 1; 1; 1; 1; 1).

Measurement produces

000 = 0 with probability 1=8;

001 = 1 with probability 1=8;

010 = 2 with probability 1=8;

011 = 3 with probability 1=8;

100 = 4 with probability 1=8;

101 = 5 with probability 1=8;

110 = 6 with probability 1=8;

111 = 7 with probability 1=8.

“Quantum RNG.”

Warning: Quantum RNGs sold

today are measurably biased.

10

e.g.: Say 3 qubits have state

(3; 1; 4; 1; 5; 9; 2; 6).

8

Measuring a quantum computer

Can simply look at a bit.

Cannot simply look at the list

of numbers stored in n qubits.

Measuring n qubits

• produces n bits and

• destroys the state.

If n qubits have state

(a0; a1; : : : ; a2n−1) then

measurement produces q

with probability |aq|2=
P
r |ar |2.

State is then all zeros

except 1 at position q.

9

e.g.: Say 3 qubits have state

(1; 1; 1; 1; 1; 1; 1; 1).

Measurement produces

000 = 0 with probability 1=8;

001 = 1 with probability 1=8;

010 = 2 with probability 1=8;

011 = 3 with probability 1=8;

100 = 4 with probability 1=8;

101 = 5 with probability 1=8;

110 = 6 with probability 1=8;

111 = 7 with probability 1=8.

“Quantum RNG.”

Warning: Quantum RNGs sold

today are measurably biased.

10

e.g.: Say 3 qubits have state

(3; 1; 4; 1; 5; 9; 2; 6).

8

Measuring a quantum computer

Can simply look at a bit.

Cannot simply look at the list

of numbers stored in n qubits.

Measuring n qubits

• produces n bits and

• destroys the state.

If n qubits have state

(a0; a1; : : : ; a2n−1) then

measurement produces q

with probability |aq|2=
P
r |ar |2.

State is then all zeros

except 1 at position q.

9

e.g.: Say 3 qubits have state

(1; 1; 1; 1; 1; 1; 1; 1).

Measurement produces

000 = 0 with probability 1=8;

001 = 1 with probability 1=8;

010 = 2 with probability 1=8;

011 = 3 with probability 1=8;

100 = 4 with probability 1=8;

101 = 5 with probability 1=8;

110 = 6 with probability 1=8;

111 = 7 with probability 1=8.

“Quantum RNG.”

Warning: Quantum RNGs sold

today are measurably biased.

10

e.g.: Say 3 qubits have state

(3; 1; 4; 1; 5; 9; 2; 6).

9

e.g.: Say 3 qubits have state

(1; 1; 1; 1; 1; 1; 1; 1).

Measurement produces

000 = 0 with probability 1=8;

001 = 1 with probability 1=8;

010 = 2 with probability 1=8;

011 = 3 with probability 1=8;

100 = 4 with probability 1=8;

101 = 5 with probability 1=8;

110 = 6 with probability 1=8;

111 = 7 with probability 1=8.

“Quantum RNG.”

Warning: Quantum RNGs sold

today are measurably biased.

10

e.g.: Say 3 qubits have state

(3; 1; 4; 1; 5; 9; 2; 6).

9

e.g.: Say 3 qubits have state

(1; 1; 1; 1; 1; 1; 1; 1).

Measurement produces

000 = 0 with probability 1=8;

001 = 1 with probability 1=8;

010 = 2 with probability 1=8;

011 = 3 with probability 1=8;

100 = 4 with probability 1=8;

101 = 5 with probability 1=8;

110 = 6 with probability 1=8;

111 = 7 with probability 1=8.

“Quantum RNG.”

Warning: Quantum RNGs sold

today are measurably biased.

10

e.g.: Say 3 qubits have state

(3; 1; 4; 1; 5; 9; 2; 6).

Measurement produces

000 = 0 with probability 9=173;

001 = 1 with probability 1=173;

010 = 2 with probability 16=173;

011 = 3 with probability 1=173;

100 = 4 with probability 25=173;

101 = 5 with probability 81=173;

110 = 6 with probability 4=173;

111 = 7 with probability 36=173.

9

e.g.: Say 3 qubits have state

(1; 1; 1; 1; 1; 1; 1; 1).

Measurement produces

000 = 0 with probability 1=8;

001 = 1 with probability 1=8;

010 = 2 with probability 1=8;

011 = 3 with probability 1=8;

100 = 4 with probability 1=8;

101 = 5 with probability 1=8;

110 = 6 with probability 1=8;

111 = 7 with probability 1=8.

“Quantum RNG.”

Warning: Quantum RNGs sold

today are measurably biased.

10

e.g.: Say 3 qubits have state

(3; 1; 4; 1; 5; 9; 2; 6).

Measurement produces

000 = 0 with probability 9=173;

001 = 1 with probability 1=173;

010 = 2 with probability 16=173;

011 = 3 with probability 1=173;

100 = 4 with probability 25=173;

101 = 5 with probability 81=173;

110 = 6 with probability 4=173;

111 = 7 with probability 36=173.

5 is most likely outcome.

9

e.g.: Say 3 qubits have state

(1; 1; 1; 1; 1; 1; 1; 1).

Measurement produces

000 = 0 with probability 1=8;

001 = 1 with probability 1=8;

010 = 2 with probability 1=8;

011 = 3 with probability 1=8;

100 = 4 with probability 1=8;

101 = 5 with probability 1=8;

110 = 6 with probability 1=8;

111 = 7 with probability 1=8.

“Quantum RNG.”

Warning: Quantum RNGs sold

today are measurably biased.

10

e.g.: Say 3 qubits have state

(3; 1; 4; 1; 5; 9; 2; 6).

Measurement produces

000 = 0 with probability 9=173;

001 = 1 with probability 1=173;

010 = 2 with probability 16=173;

011 = 3 with probability 1=173;

100 = 4 with probability 25=173;

101 = 5 with probability 81=173;

110 = 6 with probability 4=173;

111 = 7 with probability 36=173.

5 is most likely outcome.

11

e.g.: Say 3 qubits have state

(0; 0; 0; 0; 0; 1; 0; 0).

9

e.g.: Say 3 qubits have state

(1; 1; 1; 1; 1; 1; 1; 1).

Measurement produces

000 = 0 with probability 1=8;

001 = 1 with probability 1=8;

010 = 2 with probability 1=8;

011 = 3 with probability 1=8;

100 = 4 with probability 1=8;

101 = 5 with probability 1=8;

110 = 6 with probability 1=8;

111 = 7 with probability 1=8.

“Quantum RNG.”

Warning: Quantum RNGs sold

today are measurably biased.

10

e.g.: Say 3 qubits have state

(3; 1; 4; 1; 5; 9; 2; 6).

Measurement produces

000 = 0 with probability 9=173;

001 = 1 with probability 1=173;

010 = 2 with probability 16=173;

011 = 3 with probability 1=173;

100 = 4 with probability 25=173;

101 = 5 with probability 81=173;

110 = 6 with probability 4=173;

111 = 7 with probability 36=173.

5 is most likely outcome.

11

e.g.: Say 3 qubits have state

(0; 0; 0; 0; 0; 1; 0; 0).

9

e.g.: Say 3 qubits have state

(1; 1; 1; 1; 1; 1; 1; 1).

Measurement produces

000 = 0 with probability 1=8;

001 = 1 with probability 1=8;

010 = 2 with probability 1=8;

011 = 3 with probability 1=8;

100 = 4 with probability 1=8;

101 = 5 with probability 1=8;

110 = 6 with probability 1=8;

111 = 7 with probability 1=8.

“Quantum RNG.”

Warning: Quantum RNGs sold

today are measurably biased.

10

e.g.: Say 3 qubits have state

(3; 1; 4; 1; 5; 9; 2; 6).

Measurement produces

000 = 0 with probability 9=173;

001 = 1 with probability 1=173;

010 = 2 with probability 16=173;

011 = 3 with probability 1=173;

100 = 4 with probability 25=173;

101 = 5 with probability 81=173;

110 = 6 with probability 4=173;

111 = 7 with probability 36=173.

5 is most likely outcome.

11

e.g.: Say 3 qubits have state

(0; 0; 0; 0; 0; 1; 0; 0).

10

e.g.: Say 3 qubits have state

(3; 1; 4; 1; 5; 9; 2; 6).

Measurement produces

000 = 0 with probability 9=173;

001 = 1 with probability 1=173;

010 = 2 with probability 16=173;

011 = 3 with probability 1=173;

100 = 4 with probability 25=173;

101 = 5 with probability 81=173;

110 = 6 with probability 4=173;

111 = 7 with probability 36=173.

5 is most likely outcome.

11

e.g.: Say 3 qubits have state

(0; 0; 0; 0; 0; 1; 0; 0).

10

e.g.: Say 3 qubits have state

(3; 1; 4; 1; 5; 9; 2; 6).

Measurement produces

000 = 0 with probability 9=173;

001 = 1 with probability 1=173;

010 = 2 with probability 16=173;

011 = 3 with probability 1=173;

100 = 4 with probability 25=173;

101 = 5 with probability 81=173;

110 = 6 with probability 4=173;

111 = 7 with probability 36=173.

5 is most likely outcome.

11

e.g.: Say 3 qubits have state

(0; 0; 0; 0; 0; 1; 0; 0).

Measurement produces

000 = 0 with probability 0;

001 = 1 with probability 0;

010 = 2 with probability 0;

011 = 3 with probability 0;

100 = 4 with probability 0;

101 = 5 with probability 1;

110 = 6 with probability 0;

111 = 7 with probability 0.

10

e.g.: Say 3 qubits have state

(3; 1; 4; 1; 5; 9; 2; 6).

Measurement produces

000 = 0 with probability 9=173;

001 = 1 with probability 1=173;

010 = 2 with probability 16=173;

011 = 3 with probability 1=173;

100 = 4 with probability 25=173;

101 = 5 with probability 81=173;

110 = 6 with probability 4=173;

111 = 7 with probability 36=173.

5 is most likely outcome.

11

e.g.: Say 3 qubits have state

(0; 0; 0; 0; 0; 1; 0; 0).

Measurement produces

000 = 0 with probability 0;

001 = 1 with probability 0;

010 = 2 with probability 0;

011 = 3 with probability 0;

100 = 4 with probability 0;

101 = 5 with probability 1;

110 = 6 with probability 0;

111 = 7 with probability 0.

5 is guaranteed outcome.

10

e.g.: Say 3 qubits have state

(3; 1; 4; 1; 5; 9; 2; 6).

Measurement produces

000 = 0 with probability 9=173;

001 = 1 with probability 1=173;

010 = 2 with probability 16=173;

011 = 3 with probability 1=173;

100 = 4 with probability 25=173;

101 = 5 with probability 81=173;

110 = 6 with probability 4=173;

111 = 7 with probability 36=173.

5 is most likely outcome.

11

e.g.: Say 3 qubits have state

(0; 0; 0; 0; 0; 1; 0; 0).

Measurement produces

000 = 0 with probability 0;

001 = 1 with probability 0;

010 = 2 with probability 0;

011 = 3 with probability 0;

100 = 4 with probability 0;

101 = 5 with probability 1;

110 = 6 with probability 0;

111 = 7 with probability 0.

5 is guaranteed outcome.

12

NOT gates

NOT0 gate on 3 qubits:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(1; 3; 1; 4; 9; 5; 6; 2).

10

e.g.: Say 3 qubits have state

(3; 1; 4; 1; 5; 9; 2; 6).

Measurement produces

000 = 0 with probability 9=173;

001 = 1 with probability 1=173;

010 = 2 with probability 16=173;

011 = 3 with probability 1=173;

100 = 4 with probability 25=173;

101 = 5 with probability 81=173;

110 = 6 with probability 4=173;

111 = 7 with probability 36=173.

5 is most likely outcome.

11

e.g.: Say 3 qubits have state

(0; 0; 0; 0; 0; 1; 0; 0).

Measurement produces

000 = 0 with probability 0;

001 = 1 with probability 0;

010 = 2 with probability 0;

011 = 3 with probability 0;

100 = 4 with probability 0;

101 = 5 with probability 1;

110 = 6 with probability 0;

111 = 7 with probability 0.

5 is guaranteed outcome.

12

NOT gates

NOT0 gate on 3 qubits:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(1; 3; 1; 4; 9; 5; 6; 2).

10

e.g.: Say 3 qubits have state

(3; 1; 4; 1; 5; 9; 2; 6).

Measurement produces

000 = 0 with probability 9=173;

001 = 1 with probability 1=173;

010 = 2 with probability 16=173;

011 = 3 with probability 1=173;

100 = 4 with probability 25=173;

101 = 5 with probability 81=173;

110 = 6 with probability 4=173;

111 = 7 with probability 36=173.

5 is most likely outcome.

11

e.g.: Say 3 qubits have state

(0; 0; 0; 0; 0; 1; 0; 0).

Measurement produces

000 = 0 with probability 0;

001 = 1 with probability 0;

010 = 2 with probability 0;

011 = 3 with probability 0;

100 = 4 with probability 0;

101 = 5 with probability 1;

110 = 6 with probability 0;

111 = 7 with probability 0.

5 is guaranteed outcome.

12

NOT gates

NOT0 gate on 3 qubits:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(1; 3; 1; 4; 9; 5; 6; 2).

11

e.g.: Say 3 qubits have state

(0; 0; 0; 0; 0; 1; 0; 0).

Measurement produces

000 = 0 with probability 0;

001 = 1 with probability 0;

010 = 2 with probability 0;

011 = 3 with probability 0;

100 = 4 with probability 0;

101 = 5 with probability 1;

110 = 6 with probability 0;

111 = 7 with probability 0.

5 is guaranteed outcome.

12

NOT gates

NOT0 gate on 3 qubits:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(1; 3; 1; 4; 9; 5; 6; 2).

11

e.g.: Say 3 qubits have state

(0; 0; 0; 0; 0; 1; 0; 0).

Measurement produces

000 = 0 with probability 0;

001 = 1 with probability 0;

010 = 2 with probability 0;

011 = 3 with probability 0;

100 = 4 with probability 0;

101 = 5 with probability 1;

110 = 6 with probability 0;

111 = 7 with probability 0.

5 is guaranteed outcome.

12

NOT gates

NOT0 gate on 3 qubits:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(1; 3; 1; 4; 9; 5; 6; 2).

NOT0 gate on 4 qubits:

(3;1;4;1;5;9;2;6;5;3;5;8;9;7;9;3) 7→
(1;3;1;4;9;5;6;2;3;5;8;5;7;9;3;9).

11

e.g.: Say 3 qubits have state

(0; 0; 0; 0; 0; 1; 0; 0).

Measurement produces

000 = 0 with probability 0;

001 = 1 with probability 0;

010 = 2 with probability 0;

011 = 3 with probability 0;

100 = 4 with probability 0;

101 = 5 with probability 1;

110 = 6 with probability 0;

111 = 7 with probability 0.

5 is guaranteed outcome.

12

NOT gates

NOT0 gate on 3 qubits:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(1; 3; 1; 4; 9; 5; 6; 2).

NOT0 gate on 4 qubits:

(3;1;4;1;5;9;2;6;5;3;5;8;9;7;9;3) 7→
(1;3;1;4;9;5;6;2;3;5;8;5;7;9;3;9).

NOT1 gate on 3 qubits:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(4; 1; 3; 1; 2; 6; 5; 9).

11

e.g.: Say 3 qubits have state

(0; 0; 0; 0; 0; 1; 0; 0).

Measurement produces

000 = 0 with probability 0;

001 = 1 with probability 0;

010 = 2 with probability 0;

011 = 3 with probability 0;

100 = 4 with probability 0;

101 = 5 with probability 1;

110 = 6 with probability 0;

111 = 7 with probability 0.

5 is guaranteed outcome.

12

NOT gates

NOT0 gate on 3 qubits:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(1; 3; 1; 4; 9; 5; 6; 2).

NOT0 gate on 4 qubits:

(3;1;4;1;5;9;2;6;5;3;5;8;9;7;9;3) 7→
(1;3;1;4;9;5;6;2;3;5;8;5;7;9;3;9).

NOT1 gate on 3 qubits:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(4; 1; 3; 1; 2; 6; 5; 9).

NOT2 gate on 3 qubits:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(5; 9; 2; 6; 3; 1; 4; 1).

11

e.g.: Say 3 qubits have state

(0; 0; 0; 0; 0; 1; 0; 0).

Measurement produces

000 = 0 with probability 0;

001 = 1 with probability 0;

010 = 2 with probability 0;

011 = 3 with probability 0;

100 = 4 with probability 0;

101 = 5 with probability 1;

110 = 6 with probability 0;

111 = 7 with probability 0.

5 is guaranteed outcome.

12

NOT gates

NOT0 gate on 3 qubits:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(1; 3; 1; 4; 9; 5; 6; 2).

NOT0 gate on 4 qubits:

(3;1;4;1;5;9;2;6;5;3;5;8;9;7;9;3) 7→
(1;3;1;4;9;5;6;2;3;5;8;5;7;9;3;9).

NOT1 gate on 3 qubits:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(4; 1; 3; 1; 2; 6; 5; 9).

NOT2 gate on 3 qubits:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(5; 9; 2; 6; 3; 1; 4; 1).

13

state measurement

(1; 0; 0; 0; 0; 0; 0; 0) 000 ll
rr

(0; 1; 0; 0; 0; 0; 0; 0) 001

(0; 0; 1; 0; 0; 0; 0; 0) 010 ll
rr

(0; 0; 0; 1; 0; 0; 0; 0) 011

(0; 0; 0; 0; 1; 0; 0; 0) 100 ll
rr

(0; 0; 0; 0; 0; 1; 0; 0) 101

(0; 0; 0; 0; 0; 0; 1; 0) 110 ll
rr

(0; 0; 0; 0; 0; 0; 0; 1) 111

Operation on quantum state:

NOT0, swapping pairs.

Operation after measurement:

flipping bit 0 of result.

Flip: output is not input.

11

e.g.: Say 3 qubits have state

(0; 0; 0; 0; 0; 1; 0; 0).

Measurement produces

000 = 0 with probability 0;

001 = 1 with probability 0;

010 = 2 with probability 0;

011 = 3 with probability 0;

100 = 4 with probability 0;

101 = 5 with probability 1;

110 = 6 with probability 0;

111 = 7 with probability 0.

5 is guaranteed outcome.

12

NOT gates

NOT0 gate on 3 qubits:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(1; 3; 1; 4; 9; 5; 6; 2).

NOT0 gate on 4 qubits:

(3;1;4;1;5;9;2;6;5;3;5;8;9;7;9;3) 7→
(1;3;1;4;9;5;6;2;3;5;8;5;7;9;3;9).

NOT1 gate on 3 qubits:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(4; 1; 3; 1; 2; 6; 5; 9).

NOT2 gate on 3 qubits:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(5; 9; 2; 6; 3; 1; 4; 1).

13

state measurement

(1; 0; 0; 0; 0; 0; 0; 0) 000 ll
rr

(0; 1; 0; 0; 0; 0; 0; 0) 001

(0; 0; 1; 0; 0; 0; 0; 0) 010 ll
rr

(0; 0; 0; 1; 0; 0; 0; 0) 011

(0; 0; 0; 0; 1; 0; 0; 0) 100 ll
rr

(0; 0; 0; 0; 0; 1; 0; 0) 101

(0; 0; 0; 0; 0; 0; 1; 0) 110 ll
rr

(0; 0; 0; 0; 0; 0; 0; 1) 111

Operation on quantum state:

NOT0, swapping pairs.

Operation after measurement:

flipping bit 0 of result.

Flip: output is not input.

11

e.g.: Say 3 qubits have state

(0; 0; 0; 0; 0; 1; 0; 0).

Measurement produces

000 = 0 with probability 0;

001 = 1 with probability 0;

010 = 2 with probability 0;

011 = 3 with probability 0;

100 = 4 with probability 0;

101 = 5 with probability 1;

110 = 6 with probability 0;

111 = 7 with probability 0.

5 is guaranteed outcome.

12

NOT gates

NOT0 gate on 3 qubits:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(1; 3; 1; 4; 9; 5; 6; 2).

NOT0 gate on 4 qubits:

(3;1;4;1;5;9;2;6;5;3;5;8;9;7;9;3) 7→
(1;3;1;4;9;5;6;2;3;5;8;5;7;9;3;9).

NOT1 gate on 3 qubits:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(4; 1; 3; 1; 2; 6; 5; 9).

NOT2 gate on 3 qubits:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(5; 9; 2; 6; 3; 1; 4; 1).

13

state measurement

(1; 0; 0; 0; 0; 0; 0; 0) 000 ll
rr

(0; 1; 0; 0; 0; 0; 0; 0) 001

(0; 0; 1; 0; 0; 0; 0; 0) 010 ll
rr

(0; 0; 0; 1; 0; 0; 0; 0) 011

(0; 0; 0; 0; 1; 0; 0; 0) 100 ll
rr

(0; 0; 0; 0; 0; 1; 0; 0) 101

(0; 0; 0; 0; 0; 0; 1; 0) 110 ll
rr

(0; 0; 0; 0; 0; 0; 0; 1) 111

Operation on quantum state:

NOT0, swapping pairs.

Operation after measurement:

flipping bit 0 of result.

Flip: output is not input.

12

NOT gates

NOT0 gate on 3 qubits:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(1; 3; 1; 4; 9; 5; 6; 2).

NOT0 gate on 4 qubits:

(3;1;4;1;5;9;2;6;5;3;5;8;9;7;9;3) 7→
(1;3;1;4;9;5;6;2;3;5;8;5;7;9;3;9).

NOT1 gate on 3 qubits:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(4; 1; 3; 1; 2; 6; 5; 9).

NOT2 gate on 3 qubits:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(5; 9; 2; 6; 3; 1; 4; 1).

13

state measurement

(1; 0; 0; 0; 0; 0; 0; 0) 000 ll
rr

(0; 1; 0; 0; 0; 0; 0; 0) 001

(0; 0; 1; 0; 0; 0; 0; 0) 010 ll
rr

(0; 0; 0; 1; 0; 0; 0; 0) 011

(0; 0; 0; 0; 1; 0; 0; 0) 100 ll
rr

(0; 0; 0; 0; 0; 1; 0; 0) 101

(0; 0; 0; 0; 0; 0; 1; 0) 110 ll
rr

(0; 0; 0; 0; 0; 0; 0; 1) 111

Operation on quantum state:

NOT0, swapping pairs.

Operation after measurement:

flipping bit 0 of result.

Flip: output is not input.

12

NOT gates

NOT0 gate on 3 qubits:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(1; 3; 1; 4; 9; 5; 6; 2).

NOT0 gate on 4 qubits:

(3;1;4;1;5;9;2;6;5;3;5;8;9;7;9;3) 7→
(1;3;1;4;9;5;6;2;3;5;8;5;7;9;3;9).

NOT1 gate on 3 qubits:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(4; 1; 3; 1; 2; 6; 5; 9).

NOT2 gate on 3 qubits:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(5; 9; 2; 6; 3; 1; 4; 1).

13

state measurement

(1; 0; 0; 0; 0; 0; 0; 0) 000 ll
rr

(0; 1; 0; 0; 0; 0; 0; 0) 001

(0; 0; 1; 0; 0; 0; 0; 0) 010 ll
rr

(0; 0; 0; 1; 0; 0; 0; 0) 011

(0; 0; 0; 0; 1; 0; 0; 0) 100 ll
rr

(0; 0; 0; 0; 0; 1; 0; 0) 101

(0; 0; 0; 0; 0; 0; 1; 0) 110 ll
rr

(0; 0; 0; 0; 0; 0; 0; 1) 111

Operation on quantum state:

NOT0, swapping pairs.

Operation after measurement:

flipping bit 0 of result.

Flip: output is not input.

14

Controlled-NOT (CNOT) gates

e.g. C1NOT0:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 1; 4; 5; 9; 6; 2).

12

NOT gates

NOT0 gate on 3 qubits:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(1; 3; 1; 4; 9; 5; 6; 2).

NOT0 gate on 4 qubits:

(3;1;4;1;5;9;2;6;5;3;5;8;9;7;9;3) 7→
(1;3;1;4;9;5;6;2;3;5;8;5;7;9;3;9).

NOT1 gate on 3 qubits:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(4; 1; 3; 1; 2; 6; 5; 9).

NOT2 gate on 3 qubits:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(5; 9; 2; 6; 3; 1; 4; 1).

13

state measurement

(1; 0; 0; 0; 0; 0; 0; 0) 000 ll
rr

(0; 1; 0; 0; 0; 0; 0; 0) 001

(0; 0; 1; 0; 0; 0; 0; 0) 010 ll
rr

(0; 0; 0; 1; 0; 0; 0; 0) 011

(0; 0; 0; 0; 1; 0; 0; 0) 100 ll
rr

(0; 0; 0; 0; 0; 1; 0; 0) 101

(0; 0; 0; 0; 0; 0; 1; 0) 110 ll
rr

(0; 0; 0; 0; 0; 0; 0; 1) 111

Operation on quantum state:

NOT0, swapping pairs.

Operation after measurement:

flipping bit 0 of result.

Flip: output is not input.

14

Controlled-NOT (CNOT) gates

e.g. C1NOT0:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 1; 4; 5; 9; 6; 2).

12

NOT gates

NOT0 gate on 3 qubits:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(1; 3; 1; 4; 9; 5; 6; 2).

NOT0 gate on 4 qubits:

(3;1;4;1;5;9;2;6;5;3;5;8;9;7;9;3) 7→
(1;3;1;4;9;5;6;2;3;5;8;5;7;9;3;9).

NOT1 gate on 3 qubits:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(4; 1; 3; 1; 2; 6; 5; 9).

NOT2 gate on 3 qubits:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(5; 9; 2; 6; 3; 1; 4; 1).

13

state measurement

(1; 0; 0; 0; 0; 0; 0; 0) 000 ll
rr

(0; 1; 0; 0; 0; 0; 0; 0) 001

(0; 0; 1; 0; 0; 0; 0; 0) 010 ll
rr

(0; 0; 0; 1; 0; 0; 0; 0) 011

(0; 0; 0; 0; 1; 0; 0; 0) 100 ll
rr

(0; 0; 0; 0; 0; 1; 0; 0) 101

(0; 0; 0; 0; 0; 0; 1; 0) 110 ll
rr

(0; 0; 0; 0; 0; 0; 0; 1) 111

Operation on quantum state:

NOT0, swapping pairs.

Operation after measurement:

flipping bit 0 of result.

Flip: output is not input.

14

Controlled-NOT (CNOT) gates

e.g. C1NOT0:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 1; 4; 5; 9; 6; 2).

13

state measurement

(1; 0; 0; 0; 0; 0; 0; 0) 000 ll
rr

(0; 1; 0; 0; 0; 0; 0; 0) 001

(0; 0; 1; 0; 0; 0; 0; 0) 010 ll
rr

(0; 0; 0; 1; 0; 0; 0; 0) 011

(0; 0; 0; 0; 1; 0; 0; 0) 100 ll
rr

(0; 0; 0; 0; 0; 1; 0; 0) 101

(0; 0; 0; 0; 0; 0; 1; 0) 110 ll
rr

(0; 0; 0; 0; 0; 0; 0; 1) 111

Operation on quantum state:

NOT0, swapping pairs.

Operation after measurement:

flipping bit 0 of result.

Flip: output is not input.

14

Controlled-NOT (CNOT) gates

e.g. C1NOT0:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 1; 4; 5; 9; 6; 2).

13

state measurement

(1; 0; 0; 0; 0; 0; 0; 0) 000 ll
rr

(0; 1; 0; 0; 0; 0; 0; 0) 001

(0; 0; 1; 0; 0; 0; 0; 0) 010 ll
rr

(0; 0; 0; 1; 0; 0; 0; 0) 011

(0; 0; 0; 0; 1; 0; 0; 0) 100 ll
rr

(0; 0; 0; 0; 0; 1; 0; 0) 101

(0; 0; 0; 0; 0; 0; 1; 0) 110 ll
rr

(0; 0; 0; 0; 0; 0; 0; 1) 111

Operation on quantum state:

NOT0, swapping pairs.

Operation after measurement:

flipping bit 0 of result.

Flip: output is not input.

14

Controlled-NOT (CNOT) gates

e.g. C1NOT0:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 1; 4; 5; 9; 6; 2).

Operation after measurement:

flipping bit 0 if bit 1 is set; i.e.,

(q2; q1; q0) 7→ (q2; q1; q0 ⊕ q1).

13

state measurement

(1; 0; 0; 0; 0; 0; 0; 0) 000 ll
rr

(0; 1; 0; 0; 0; 0; 0; 0) 001

(0; 0; 1; 0; 0; 0; 0; 0) 010 ll
rr

(0; 0; 0; 1; 0; 0; 0; 0) 011

(0; 0; 0; 0; 1; 0; 0; 0) 100 ll
rr

(0; 0; 0; 0; 0; 1; 0; 0) 101

(0; 0; 0; 0; 0; 0; 1; 0) 110 ll
rr

(0; 0; 0; 0; 0; 0; 0; 1) 111

Operation on quantum state:

NOT0, swapping pairs.

Operation after measurement:

flipping bit 0 of result.

Flip: output is not input.

14

Controlled-NOT (CNOT) gates

e.g. C1NOT0:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 1; 4; 5; 9; 6; 2).

Operation after measurement:

flipping bit 0 if bit 1 is set; i.e.,

(q2; q1; q0) 7→ (q2; q1; q0 ⊕ q1).

e.g. C2NOT0:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 4; 1; 9; 5; 6; 2).

13

state measurement

(1; 0; 0; 0; 0; 0; 0; 0) 000 ll
rr

(0; 1; 0; 0; 0; 0; 0; 0) 001

(0; 0; 1; 0; 0; 0; 0; 0) 010 ll
rr

(0; 0; 0; 1; 0; 0; 0; 0) 011

(0; 0; 0; 0; 1; 0; 0; 0) 100 ll
rr

(0; 0; 0; 0; 0; 1; 0; 0) 101

(0; 0; 0; 0; 0; 0; 1; 0) 110 ll
rr

(0; 0; 0; 0; 0; 0; 0; 1) 111

Operation on quantum state:

NOT0, swapping pairs.

Operation after measurement:

flipping bit 0 of result.

Flip: output is not input.

14

Controlled-NOT (CNOT) gates

e.g. C1NOT0:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 1; 4; 5; 9; 6; 2).

Operation after measurement:

flipping bit 0 if bit 1 is set; i.e.,

(q2; q1; q0) 7→ (q2; q1; q0 ⊕ q1).

e.g. C2NOT0:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 4; 1; 9; 5; 6; 2).

e.g. C0NOT2:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 9; 4; 6; 5; 1; 2; 1).

13

state measurement

(1; 0; 0; 0; 0; 0; 0; 0) 000 ll
rr

(0; 1; 0; 0; 0; 0; 0; 0) 001

(0; 0; 1; 0; 0; 0; 0; 0) 010 ll
rr

(0; 0; 0; 1; 0; 0; 0; 0) 011

(0; 0; 0; 0; 1; 0; 0; 0) 100 ll
rr

(0; 0; 0; 0; 0; 1; 0; 0) 101

(0; 0; 0; 0; 0; 0; 1; 0) 110 ll
rr

(0; 0; 0; 0; 0; 0; 0; 1) 111

Operation on quantum state:

NOT0, swapping pairs.

Operation after measurement:

flipping bit 0 of result.

Flip: output is not input.

14

Controlled-NOT (CNOT) gates

e.g. C1NOT0:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 1; 4; 5; 9; 6; 2).

Operation after measurement:

flipping bit 0 if bit 1 is set; i.e.,

(q2; q1; q0) 7→ (q2; q1; q0 ⊕ q1).

e.g. C2NOT0:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 4; 1; 9; 5; 6; 2).

e.g. C0NOT2:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 9; 4; 6; 5; 1; 2; 1).

15

Toffoli gates

Also known as CCNOT gates:

controlled-controlled-NOT gates.

e.g. C2C1NOT0:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 4; 1; 5; 9; 6; 2).

13

state measurement

(1; 0; 0; 0; 0; 0; 0; 0) 000 ll
rr

(0; 1; 0; 0; 0; 0; 0; 0) 001

(0; 0; 1; 0; 0; 0; 0; 0) 010 ll
rr

(0; 0; 0; 1; 0; 0; 0; 0) 011

(0; 0; 0; 0; 1; 0; 0; 0) 100 ll
rr

(0; 0; 0; 0; 0; 1; 0; 0) 101

(0; 0; 0; 0; 0; 0; 1; 0) 110 ll
rr

(0; 0; 0; 0; 0; 0; 0; 1) 111

Operation on quantum state:

NOT0, swapping pairs.

Operation after measurement:

flipping bit 0 of result.

Flip: output is not input.

14

Controlled-NOT (CNOT) gates

e.g. C1NOT0:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 1; 4; 5; 9; 6; 2).

Operation after measurement:

flipping bit 0 if bit 1 is set; i.e.,

(q2; q1; q0) 7→ (q2; q1; q0 ⊕ q1).

e.g. C2NOT0:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 4; 1; 9; 5; 6; 2).

e.g. C0NOT2:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 9; 4; 6; 5; 1; 2; 1).

15

Toffoli gates

Also known as CCNOT gates:

controlled-controlled-NOT gates.

e.g. C2C1NOT0:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 4; 1; 5; 9; 6; 2).

13

state measurement

(1; 0; 0; 0; 0; 0; 0; 0) 000 ll
rr

(0; 1; 0; 0; 0; 0; 0; 0) 001

(0; 0; 1; 0; 0; 0; 0; 0) 010 ll
rr

(0; 0; 0; 1; 0; 0; 0; 0) 011

(0; 0; 0; 0; 1; 0; 0; 0) 100 ll
rr

(0; 0; 0; 0; 0; 1; 0; 0) 101

(0; 0; 0; 0; 0; 0; 1; 0) 110 ll
rr

(0; 0; 0; 0; 0; 0; 0; 1) 111

Operation on quantum state:

NOT0, swapping pairs.

Operation after measurement:

flipping bit 0 of result.

Flip: output is not input.

14

Controlled-NOT (CNOT) gates

e.g. C1NOT0:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 1; 4; 5; 9; 6; 2).

Operation after measurement:

flipping bit 0 if bit 1 is set; i.e.,

(q2; q1; q0) 7→ (q2; q1; q0 ⊕ q1).

e.g. C2NOT0:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 4; 1; 9; 5; 6; 2).

e.g. C0NOT2:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 9; 4; 6; 5; 1; 2; 1).

15

Toffoli gates

Also known as CCNOT gates:

controlled-controlled-NOT gates.

e.g. C2C1NOT0:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 4; 1; 5; 9; 6; 2).

14

Controlled-NOT (CNOT) gates

e.g. C1NOT0:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 1; 4; 5; 9; 6; 2).

Operation after measurement:

flipping bit 0 if bit 1 is set; i.e.,

(q2; q1; q0) 7→ (q2; q1; q0 ⊕ q1).

e.g. C2NOT0:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 4; 1; 9; 5; 6; 2).

e.g. C0NOT2:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 9; 4; 6; 5; 1; 2; 1).

15

Toffoli gates

Also known as CCNOT gates:

controlled-controlled-NOT gates.

e.g. C2C1NOT0:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 4; 1; 5; 9; 6; 2).

14

Controlled-NOT (CNOT) gates

e.g. C1NOT0:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 1; 4; 5; 9; 6; 2).

Operation after measurement:

flipping bit 0 if bit 1 is set; i.e.,

(q2; q1; q0) 7→ (q2; q1; q0 ⊕ q1).

e.g. C2NOT0:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 4; 1; 9; 5; 6; 2).

e.g. C0NOT2:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 9; 4; 6; 5; 1; 2; 1).

15

Toffoli gates

Also known as CCNOT gates:

controlled-controlled-NOT gates.

e.g. C2C1NOT0:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 4; 1; 5; 9; 6; 2).

Operation after measurement:

(q2; q1; q0) 7→ (q2; q1; q0 ⊕ q1q2).

14

Controlled-NOT (CNOT) gates

e.g. C1NOT0:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 1; 4; 5; 9; 6; 2).

Operation after measurement:

flipping bit 0 if bit 1 is set; i.e.,

(q2; q1; q0) 7→ (q2; q1; q0 ⊕ q1).

e.g. C2NOT0:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 4; 1; 9; 5; 6; 2).

e.g. C0NOT2:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 9; 4; 6; 5; 1; 2; 1).

15

Toffoli gates

Also known as CCNOT gates:

controlled-controlled-NOT gates.

e.g. C2C1NOT0:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 4; 1; 5; 9; 6; 2).

Operation after measurement:

(q2; q1; q0) 7→ (q2; q1; q0 ⊕ q1q2).

e.g. C0C1NOT2:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 4; 6; 5; 9; 2; 1).

14

Controlled-NOT (CNOT) gates

e.g. C1NOT0:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 1; 4; 5; 9; 6; 2).

Operation after measurement:

flipping bit 0 if bit 1 is set; i.e.,

(q2; q1; q0) 7→ (q2; q1; q0 ⊕ q1).

e.g. C2NOT0:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 4; 1; 9; 5; 6; 2).

e.g. C0NOT2:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 9; 4; 6; 5; 1; 2; 1).

15

Toffoli gates

Also known as CCNOT gates:

controlled-controlled-NOT gates.

e.g. C2C1NOT0:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 4; 1; 5; 9; 6; 2).

Operation after measurement:

(q2; q1; q0) 7→ (q2; q1; q0 ⊕ q1q2).

e.g. C0C1NOT2:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 4; 6; 5; 9; 2; 1).

16

More shuffling

Combine NOT, CNOT, Toffoli

to build other permutations.

14

Controlled-NOT (CNOT) gates

e.g. C1NOT0:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 1; 4; 5; 9; 6; 2).

Operation after measurement:

flipping bit 0 if bit 1 is set; i.e.,

(q2; q1; q0) 7→ (q2; q1; q0 ⊕ q1).

e.g. C2NOT0:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 4; 1; 9; 5; 6; 2).

e.g. C0NOT2:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 9; 4; 6; 5; 1; 2; 1).

15

Toffoli gates

Also known as CCNOT gates:

controlled-controlled-NOT gates.

e.g. C2C1NOT0:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 4; 1; 5; 9; 6; 2).

Operation after measurement:

(q2; q1; q0) 7→ (q2; q1; q0 ⊕ q1q2).

e.g. C0C1NOT2:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 4; 6; 5; 9; 2; 1).

16

More shuffling

Combine NOT, CNOT, Toffoli

to build other permutations.

14

Controlled-NOT (CNOT) gates

e.g. C1NOT0:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 1; 4; 5; 9; 6; 2).

Operation after measurement:

flipping bit 0 if bit 1 is set; i.e.,

(q2; q1; q0) 7→ (q2; q1; q0 ⊕ q1).

e.g. C2NOT0:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 4; 1; 9; 5; 6; 2).

e.g. C0NOT2:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 9; 4; 6; 5; 1; 2; 1).

15

Toffoli gates

Also known as CCNOT gates:

controlled-controlled-NOT gates.

e.g. C2C1NOT0:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 4; 1; 5; 9; 6; 2).

Operation after measurement:

(q2; q1; q0) 7→ (q2; q1; q0 ⊕ q1q2).

e.g. C0C1NOT2:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 4; 6; 5; 9; 2; 1).

16

More shuffling

Combine NOT, CNOT, Toffoli

to build other permutations.

15

Toffoli gates

Also known as CCNOT gates:

controlled-controlled-NOT gates.

e.g. C2C1NOT0:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 4; 1; 5; 9; 6; 2).

Operation after measurement:

(q2; q1; q0) 7→ (q2; q1; q0 ⊕ q1q2).

e.g. C0C1NOT2:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 4; 6; 5; 9; 2; 1).

16

More shuffling

Combine NOT, CNOT, Toffoli

to build other permutations.

15

Toffoli gates

Also known as CCNOT gates:

controlled-controlled-NOT gates.

e.g. C2C1NOT0:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 4; 1; 5; 9; 6; 2).

Operation after measurement:

(q2; q1; q0) 7→ (q2; q1; q0 ⊕ q1q2).

e.g. C0C1NOT2:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 4; 6; 5; 9; 2; 1).

16

More shuffling

Combine NOT, CNOT, Toffoli

to build other permutations.

e.g. series of gates to

rotate 8 positions by distance 1:

3 1 4 1

LLLLLLLLL5 9 2 6

sssssssss

C0C1NOT2
3 1

999994 6

�����
5 9

999992 1

�����
C0NOT1

3

,,,, 6

����
4

,,,, 1

����
5

,,,, 1

����
2

,,,, 9

����
NOT0

6 3 1 4 1 5 9 2

15

Toffoli gates

Also known as CCNOT gates:

controlled-controlled-NOT gates.

e.g. C2C1NOT0:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 4; 1; 5; 9; 6; 2).

Operation after measurement:

(q2; q1; q0) 7→ (q2; q1; q0 ⊕ q1q2).

e.g. C0C1NOT2:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 4; 6; 5; 9; 2; 1).

16

More shuffling

Combine NOT, CNOT, Toffoli

to build other permutations.

e.g. series of gates to

rotate 8 positions by distance 1:

3 1 4 1

LLLLLLLLL5 9 2 6

sssssssss

C0C1NOT2
3 1

999994 6

�����
5 9

999992 1

�����
C0NOT1

3

,,,, 6

����
4

,,,, 1

����
5

,,,, 1

����
2

,,,, 9

����
NOT0

6 3 1 4 1 5 9 2

17

Hadamard gates

Hadamard0:

(a; b) 7→ (a + b; a− b).

3

4444 1

4

4444 1

5

4444 9

2

4444 6

4 2 5 3 14 −4 8 −4

15

Toffoli gates

Also known as CCNOT gates:

controlled-controlled-NOT gates.

e.g. C2C1NOT0:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 4; 1; 5; 9; 6; 2).

Operation after measurement:

(q2; q1; q0) 7→ (q2; q1; q0 ⊕ q1q2).

e.g. C0C1NOT2:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 4; 6; 5; 9; 2; 1).

16

More shuffling

Combine NOT, CNOT, Toffoli

to build other permutations.

e.g. series of gates to

rotate 8 positions by distance 1:

3 1 4 1

LLLLLLLLL5 9 2 6

sssssssss

C0C1NOT2
3 1

999994 6

�����
5 9

999992 1

�����
C0NOT1

3

,,,, 6

����
4

,,,, 1

����
5

,,,, 1

����
2

,,,, 9

����
NOT0

6 3 1 4 1 5 9 2

17

Hadamard gates

Hadamard0:

(a; b) 7→ (a + b; a− b).

3

4444 1

4

4444 1

5

4444 9

2

4444 6

4 2 5 3 14 −4 8 −4

15

Toffoli gates

Also known as CCNOT gates:

controlled-controlled-NOT gates.

e.g. C2C1NOT0:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 4; 1; 5; 9; 6; 2).

Operation after measurement:

(q2; q1; q0) 7→ (q2; q1; q0 ⊕ q1q2).

e.g. C0C1NOT2:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 4; 6; 5; 9; 2; 1).

16

More shuffling

Combine NOT, CNOT, Toffoli

to build other permutations.

e.g. series of gates to

rotate 8 positions by distance 1:

3 1 4 1

LLLLLLLLL5 9 2 6

sssssssss

C0C1NOT2
3 1

999994 6

�����
5 9

999992 1

�����
C0NOT1

3

,,,, 6

����
4

,,,, 1

����
5

,,,, 1

����
2

,,,, 9

����
NOT0

6 3 1 4 1 5 9 2

17

Hadamard gates

Hadamard0:

(a; b) 7→ (a + b; a− b).

3

4444 1

4

4444 1

5

4444 9

2

4444 6

4 2 5 3 14 −4 8 −4

16

More shuffling

Combine NOT, CNOT, Toffoli

to build other permutations.

e.g. series of gates to

rotate 8 positions by distance 1:

3 1 4 1

LLLLLLLLL5 9 2 6

sssssssss

C0C1NOT2
3 1

999994 6

�����
5 9

999992 1

�����
C0NOT1

3

,,,, 6

����
4

,,,, 1

����
5

,,,, 1

����
2

,,,, 9

����
NOT0

6 3 1 4 1 5 9 2

17

Hadamard gates

Hadamard0:

(a; b) 7→ (a + b; a− b).

3

4444 1

4

4444 1

5

4444 9

2

4444 6

4 2 5 3 14 −4 8 −4

16

More shuffling

Combine NOT, CNOT, Toffoli

to build other permutations.

e.g. series of gates to

rotate 8 positions by distance 1:

3 1 4 1

LLLLLLLLL5 9 2 6

sssssssss

C0C1NOT2
3 1

999994 6

�����
5 9

999992 1

�����
C0NOT1

3

,,,, 6

����
4

,,,, 1

����
5

,,,, 1

����
2

,,,, 9

����
NOT0

6 3 1 4 1 5 9 2

17

Hadamard gates

Hadamard0:

(a; b) 7→ (a + b; a− b).

3

4444 1

4

4444 1

5

4444 9

2

4444 6

4 2 5 3 14 −4 8 −4

Hadamard1:

(a; b; c; d) 7→
(a + c; b + d; a− c; b − d).

3

FFFFFFF 1

FFFFFFF 4

xxxxxxx 1

xxxxxxx 5

FFFFFFF 9

FFFFFFF 2

xxxxxxx 6

xxxxxxx

7 2 −1 0 7 15 3 3

16

More shuffling

Combine NOT, CNOT, Toffoli

to build other permutations.

e.g. series of gates to

rotate 8 positions by distance 1:

3 1 4 1

LLLLLLLLL5 9 2 6

sssssssss

C0C1NOT2
3 1

999994 6

�����
5 9

999992 1

�����
C0NOT1

3

,,,, 6

����
4

,,,, 1

����
5

,,,, 1

����
2

,,,, 9

����
NOT0

6 3 1 4 1 5 9 2

17

Hadamard gates

Hadamard0:

(a; b) 7→ (a + b; a− b).

3

4444 1

4

4444 1

5

4444 9

2

4444 6

4 2 5 3 14 −4 8 −4

Hadamard1:

(a; b; c; d) 7→
(a + c; b + d; a− c; b − d).

3

FFFFFFF 1

FFFFFFF 4

xxxxxxx 1

xxxxxxx 5

FFFFFFF 9

FFFFFFF 2

xxxxxxx 6

xxxxxxx

7 2 −1 0 7 15 3 3

18

Some uses of Hadamard gates

Hadamard0, NOT0, Hadamard0:

3

4444 1

4

4444 1

5

4444 9

2

4444 6

4

4444 2

5

4444 3

14

4444 −4

8

4444 −4

2

4444 4

3

4444 5

−4

4444 14

−4

4444 8

6 −2 8 −2 10 −18 4 −12

16

More shuffling

Combine NOT, CNOT, Toffoli

to build other permutations.

e.g. series of gates to

rotate 8 positions by distance 1:

3 1 4 1

LLLLLLLLL5 9 2 6

sssssssss

C0C1NOT2
3 1

999994 6

�����
5 9

999992 1

�����
C0NOT1

3

,,,, 6

����
4

,,,, 1

����
5

,,,, 1

����
2

,,,, 9

����
NOT0

6 3 1 4 1 5 9 2

17

Hadamard gates

Hadamard0:

(a; b) 7→ (a + b; a− b).

3

4444 1

4

4444 1

5

4444 9

2

4444 6

4 2 5 3 14 −4 8 −4

Hadamard1:

(a; b; c; d) 7→
(a + c; b + d; a− c; b − d).

3

FFFFFFF 1

FFFFFFF 4

xxxxxxx 1

xxxxxxx 5

FFFFFFF 9

FFFFFFF 2

xxxxxxx 6

xxxxxxx

7 2 −1 0 7 15 3 3

18

Some uses of Hadamard gates

Hadamard0, NOT0, Hadamard0:

3

4444 1

4

4444 1

5

4444 9

2

4444 6

4

4444 2

5

4444 3

14

4444 −4

8

4444 −4

2

4444 4

3

4444 5

−4

4444 14

−4

4444 8

6 −2 8 −2 10 −18 4 −12

16

More shuffling

Combine NOT, CNOT, Toffoli

to build other permutations.

e.g. series of gates to

rotate 8 positions by distance 1:

3 1 4 1

LLLLLLLLL5 9 2 6

sssssssss

C0C1NOT2
3 1

999994 6

�����
5 9

999992 1

�����
C0NOT1

3

,,,, 6

����
4

,,,, 1

����
5

,,,, 1

����
2

,,,, 9

����
NOT0

6 3 1 4 1 5 9 2

17

Hadamard gates

Hadamard0:

(a; b) 7→ (a + b; a− b).

3

4444 1

4

4444 1

5

4444 9

2

4444 6

4 2 5 3 14 −4 8 −4

Hadamard1:

(a; b; c; d) 7→
(a + c; b + d; a− c; b − d).

3

FFFFFFF 1

FFFFFFF 4

xxxxxxx 1

xxxxxxx 5

FFFFFFF 9

FFFFFFF 2

xxxxxxx 6

xxxxxxx

7 2 −1 0 7 15 3 3

18

Some uses of Hadamard gates

Hadamard0, NOT0, Hadamard0:

3

4444 1

4

4444 1

5

4444 9

2

4444 6

4

4444 2

5

4444 3

14

4444 −4

8

4444 −4

2

4444 4

3

4444 5

−4

4444 14

−4

4444 8

6 −2 8 −2 10 −18 4 −12

17

Hadamard gates

Hadamard0:

(a; b) 7→ (a + b; a− b).

3

4444 1

4

4444 1

5

4444 9

2

4444 6

4 2 5 3 14 −4 8 −4

Hadamard1:

(a; b; c; d) 7→
(a + c; b + d; a− c; b − d).

3

FFFFFFF 1

FFFFFFF 4

xxxxxxx 1

xxxxxxx 5

FFFFFFF 9

FFFFFFF 2

xxxxxxx 6

xxxxxxx

7 2 −1 0 7 15 3 3

18

Some uses of Hadamard gates

Hadamard0, NOT0, Hadamard0:

3

4444 1

4

4444 1

5

4444 9

2

4444 6

4

4444 2

5

4444 3

14

4444 −4

8

4444 −4

2

4444 4

3

4444 5

−4

4444 14

−4

4444 8

6 −2 8 −2 10 −18 4 −12

17

Hadamard gates

Hadamard0:

(a; b) 7→ (a + b; a− b).

3

4444 1

4

4444 1

5

4444 9

2

4444 6

4 2 5 3 14 −4 8 −4

Hadamard1:

(a; b; c; d) 7→
(a + c; b + d; a− c; b − d).

3

FFFFFFF 1

FFFFFFF 4

xxxxxxx 1

xxxxxxx 5

FFFFFFF 9

FFFFFFF 2

xxxxxxx 6

xxxxxxx

7 2 −1 0 7 15 3 3

18

Some uses of Hadamard gates

Hadamard0, NOT0, Hadamard0:

3

4444 1

4

4444 1

5

4444 9

2

4444 6

4

4444 2

5

4444 3

14

4444 −4

8

4444 −4

2

4444 4

3

4444 5

−4

4444 14

−4

4444 8

6 −2 8 −2 10 −18 4 −12

“Multiply each amplitude by 2.”

This is not physically observable.

17

Hadamard gates

Hadamard0:

(a; b) 7→ (a + b; a− b).

3

4444 1

4

4444 1

5

4444 9

2

4444 6

4 2 5 3 14 −4 8 −4

Hadamard1:

(a; b; c; d) 7→
(a + c; b + d; a− c; b − d).

3

FFFFFFF 1

FFFFFFF 4

xxxxxxx 1

xxxxxxx 5

FFFFFFF 9

FFFFFFF 2

xxxxxxx 6

xxxxxxx

7 2 −1 0 7 15 3 3

18

Some uses of Hadamard gates

Hadamard0, NOT0, Hadamard0:

3

4444 1

4

4444 1

5

4444 9

2

4444 6

4

4444 2

5

4444 3

14

4444 −4

8

4444 −4

2

4444 4

3

4444 5

−4

4444 14

−4

4444 8

6 −2 8 −2 10 −18 4 −12

“Multiply each amplitude by 2.”

This is not physically observable.

“Negate amplitude if q0 is set.”

No effect on measuring now.

17

Hadamard gates

Hadamard0:

(a; b) 7→ (a + b; a− b).

3

4444 1

4

4444 1

5

4444 9

2

4444 6

4 2 5 3 14 −4 8 −4

Hadamard1:

(a; b; c; d) 7→
(a + c; b + d; a− c; b − d).

3

FFFFFFF 1

FFFFFFF 4

xxxxxxx 1

xxxxxxx 5

FFFFFFF 9

FFFFFFF 2

xxxxxxx 6

xxxxxxx

7 2 −1 0 7 15 3 3

18

Some uses of Hadamard gates

Hadamard0, NOT0, Hadamard0:

3

4444 1

4

4444 1

5

4444 9

2

4444 6

4

4444 2

5

4444 3

14

4444 −4

8

4444 −4

2

4444 4

3

4444 5

−4

4444 14

−4

4444 8

6 −2 8 −2 10 −18 4 −12

“Multiply each amplitude by 2.”

This is not physically observable.

“Negate amplitude if q0 is set.”

No effect on measuring now.

19

Fancier example:

“Negate amplitude if q0q1 is set.”

Assumes q2 = 0: “ancilla” qubit.

3 1 4 1

LLLLLLLLL0 0 0 0

sssssssss

C0C1NOT2
3

LLLLLLLLL1

LLLLLLLLL4

LLLLLLLLL0

LLLLLLLL0

sssssssss 0

sssssssss 0

sssssssss 1

sssssssss

Hadamard2
3

LLLLLLLLL1

LLLLLLLLL4

LLLLLLLLL1

LLLLLLLLL3

sssssssss 1

sssssssss 4

sssssssss −1

sssssss
NOT2

3

LLLLLLLLL1

LLLLLLLLL4

LLLLLLLLL−1

LLLLLLL3

sssssssss 1

sssssssss 4

sssssssss 1

sssssssss

Hadamard2
6 2 8 0

LLLLLLLLL0 0 0 −2

sssssss
C0C1NOT2

6 2 8 −2 0 0 0 0

17

Hadamard gates

Hadamard0:

(a; b) 7→ (a + b; a− b).

3

4444 1

4

4444 1

5

4444 9

2

4444 6

4 2 5 3 14 −4 8 −4

Hadamard1:

(a; b; c; d) 7→
(a + c; b + d; a− c; b − d).

3

FFFFFFF 1

FFFFFFF 4

xxxxxxx 1

xxxxxxx 5

FFFFFFF 9

FFFFFFF 2

xxxxxxx 6

xxxxxxx

7 2 −1 0 7 15 3 3

18

Some uses of Hadamard gates

Hadamard0, NOT0, Hadamard0:

3

4444 1

4

4444 1

5

4444 9

2

4444 6

4

4444 2

5

4444 3

14

4444 −4

8

4444 −4

2

4444 4

3

4444 5

−4

4444 14

−4

4444 8

6 −2 8 −2 10 −18 4 −12

“Multiply each amplitude by 2.”

This is not physically observable.

“Negate amplitude if q0 is set.”

No effect on measuring now.

19

Fancier example:

“Negate amplitude if q0q1 is set.”

Assumes q2 = 0: “ancilla” qubit.

3 1 4 1

LLLLLLLLL0 0 0 0

sssssssss

C0C1NOT2
3

LLLLLLLLL1

LLLLLLLLL4

LLLLLLLLL0

LLLLLLLL0

sssssssss 0

sssssssss 0

sssssssss 1

sssssssss

Hadamard2
3

LLLLLLLLL1

LLLLLLLLL4

LLLLLLLLL1

LLLLLLLLL3

sssssssss 1

sssssssss 4

sssssssss −1

sssssss
NOT2

3

LLLLLLLLL1

LLLLLLLLL4

LLLLLLLLL−1

LLLLLLL3

sssssssss 1

sssssssss 4

sssssssss 1

sssssssss

Hadamard2
6 2 8 0

LLLLLLLLL0 0 0 −2

sssssss
C0C1NOT2

6 2 8 −2 0 0 0 0

17

Hadamard gates

Hadamard0:

(a; b) 7→ (a + b; a− b).

3

4444 1

4

4444 1

5

4444 9

2

4444 6

4 2 5 3 14 −4 8 −4

Hadamard1:

(a; b; c; d) 7→
(a + c; b + d; a− c; b − d).

3

FFFFFFF 1

FFFFFFF 4

xxxxxxx 1

xxxxxxx 5

FFFFFFF 9

FFFFFFF 2

xxxxxxx 6

xxxxxxx

7 2 −1 0 7 15 3 3

18

Some uses of Hadamard gates

Hadamard0, NOT0, Hadamard0:

3

4444 1

4

4444 1

5

4444 9

2

4444 6

4

4444 2

5

4444 3

14

4444 −4

8

4444 −4

2

4444 4

3

4444 5

−4

4444 14

−4

4444 8

6 −2 8 −2 10 −18 4 −12

“Multiply each amplitude by 2.”

This is not physically observable.

“Negate amplitude if q0 is set.”

No effect on measuring now.

19

Fancier example:

“Negate amplitude if q0q1 is set.”

Assumes q2 = 0: “ancilla” qubit.

3 1 4 1

LLLLLLLLL0 0 0 0

sssssssss

C0C1NOT2
3

LLLLLLLLL1

LLLLLLLLL4

LLLLLLLLL0

LLLLLLLL0

sssssssss 0

sssssssss 0

sssssssss 1

sssssssss

Hadamard2
3

LLLLLLLLL1

LLLLLLLLL4

LLLLLLLLL1

LLLLLLLLL3

sssssssss 1

sssssssss 4

sssssssss −1

sssssss
NOT2

3

LLLLLLLLL1

LLLLLLLLL4

LLLLLLLLL−1

LLLLLLL3

sssssssss 1

sssssssss 4

sssssssss 1

sssssssss

Hadamard2
6 2 8 0

LLLLLLLLL0 0 0 −2

sssssss
C0C1NOT2

6 2 8 −2 0 0 0 0

18

Some uses of Hadamard gates

Hadamard0, NOT0, Hadamard0:

3

4444 1

4

4444 1

5

4444 9

2

4444 6

4

4444 2

5

4444 3

14

4444 −4

8

4444 −4

2

4444 4

3

4444 5

−4

4444 14

−4

4444 8

6 −2 8 −2 10 −18 4 −12

“Multiply each amplitude by 2.”

This is not physically observable.

“Negate amplitude if q0 is set.”

No effect on measuring now.

19

Fancier example:

“Negate amplitude if q0q1 is set.”

Assumes q2 = 0: “ancilla” qubit.

3 1 4 1

LLLLLLLLL0 0 0 0

sssssssss

C0C1NOT2
3

LLLLLLLLL1

LLLLLLLLL4

LLLLLLLLL0

LLLLLLLL0

sssssssss 0

sssssssss 0

sssssssss 1

sssssssss

Hadamard2
3

LLLLLLLLL1

LLLLLLLLL4

LLLLLLLLL1

LLLLLLLLL3

sssssssss 1

sssssssss 4

sssssssss −1

sssssss
NOT2

3

LLLLLLLLL1

LLLLLLLLL4

LLLLLLLLL−1

LLLLLLL3

sssssssss 1

sssssssss 4

sssssssss 1

sssssssss

Hadamard2
6 2 8 0

LLLLLLLLL0 0 0 −2

sssssss
C0C1NOT2

6 2 8 −2 0 0 0 0

18

Some uses of Hadamard gates

Hadamard0, NOT0, Hadamard0:

3

4444 1

4

4444 1

5

4444 9

2

4444 6

4

4444 2

5

4444 3

14

4444 −4

8

4444 −4

2

4444 4

3

4444 5

−4

4444 14

−4

4444 8

6 −2 8 −2 10 −18 4 −12

“Multiply each amplitude by 2.”

This is not physically observable.

“Negate amplitude if q0 is set.”

No effect on measuring now.

19

Fancier example:

“Negate amplitude if q0q1 is set.”

Assumes q2 = 0: “ancilla” qubit.

3 1 4 1

LLLLLLLLL0 0 0 0

sssssssss

C0C1NOT2
3

LLLLLLLLL1

LLLLLLLLL4

LLLLLLLLL0

LLLLLLLL0

sssssssss 0

sssssssss 0

sssssssss 1

sssssssss

Hadamard2
3

LLLLLLLLL1

LLLLLLLLL4

LLLLLLLLL1

LLLLLLLLL3

sssssssss 1

sssssssss 4

sssssssss −1

sssssss
NOT2

3

LLLLLLLLL1

LLLLLLLLL4

LLLLLLLLL−1

LLLLLLL3

sssssssss 1

sssssssss 4

sssssssss 1

sssssssss

Hadamard2
6 2 8 0

LLLLLLLLL0 0 0 −2

sssssss
C0C1NOT2

6 2 8 −2 0 0 0 0

20

Affects measurements: “Negate

amplitude around its average.”

(3; 1; 4; 1) 7→ (1:5; 3:5; 0:5; 3:5).

18

Some uses of Hadamard gates

Hadamard0, NOT0, Hadamard0:

3

4444 1

4

4444 1

5

4444 9

2

4444 6

4

4444 2

5

4444 3

14

4444 −4

8

4444 −4

2

4444 4

3

4444 5

−4

4444 14

−4

4444 8

6 −2 8 −2 10 −18 4 −12

“Multiply each amplitude by 2.”

This is not physically observable.

“Negate amplitude if q0 is set.”

No effect on measuring now.

19

Fancier example:

“Negate amplitude if q0q1 is set.”

Assumes q2 = 0: “ancilla” qubit.

3 1 4 1

LLLLLLLLL0 0 0 0

sssssssss

C0C1NOT2
3

LLLLLLLLL1

LLLLLLLLL4

LLLLLLLLL0

LLLLLLLL0

sssssssss 0

sssssssss 0

sssssssss 1

sssssssss

Hadamard2
3

LLLLLLLLL1

LLLLLLLLL4

LLLLLLLLL1

LLLLLLLLL3

sssssssss 1

sssssssss 4

sssssssss −1

sssssss
NOT2

3

LLLLLLLLL1

LLLLLLLLL4

LLLLLLLLL−1

LLLLLLL3

sssssssss 1

sssssssss 4

sssssssss 1

sssssssss

Hadamard2
6 2 8 0

LLLLLLLLL0 0 0 −2

sssssss
C0C1NOT2

6 2 8 −2 0 0 0 0

20

Affects measurements: “Negate

amplitude around its average.”

(3; 1; 4; 1) 7→ (1:5; 3:5; 0:5; 3:5).

18

Some uses of Hadamard gates

Hadamard0, NOT0, Hadamard0:

3

4444 1

4

4444 1

5

4444 9

2

4444 6

4

4444 2

5

4444 3

14

4444 −4

8

4444 −4

2

4444 4

3

4444 5

−4

4444 14

−4

4444 8

6 −2 8 −2 10 −18 4 −12

“Multiply each amplitude by 2.”

This is not physically observable.

“Negate amplitude if q0 is set.”

No effect on measuring now.

19

Fancier example:

“Negate amplitude if q0q1 is set.”

Assumes q2 = 0: “ancilla” qubit.

3 1 4 1

LLLLLLLLL0 0 0 0

sssssssss

C0C1NOT2
3

LLLLLLLLL1

LLLLLLLLL4

LLLLLLLLL0

LLLLLLLL0

sssssssss 0

sssssssss 0

sssssssss 1

sssssssss

Hadamard2
3

LLLLLLLLL1

LLLLLLLLL4

LLLLLLLLL1

LLLLLLLLL3

sssssssss 1

sssssssss 4

sssssssss −1

sssssss
NOT2

3

LLLLLLLLL1

LLLLLLLLL4

LLLLLLLLL−1

LLLLLLL3

sssssssss 1

sssssssss 4

sssssssss 1

sssssssss

Hadamard2
6 2 8 0

LLLLLLLLL0 0 0 −2

sssssss
C0C1NOT2

6 2 8 −2 0 0 0 0

20

Affects measurements: “Negate

amplitude around its average.”

(3; 1; 4; 1) 7→ (1:5; 3:5; 0:5; 3:5).

19

Fancier example:

“Negate amplitude if q0q1 is set.”

Assumes q2 = 0: “ancilla” qubit.

3 1 4 1

LLLLLLLLL0 0 0 0

sssssssss

C0C1NOT2
3

LLLLLLLLL1

LLLLLLLLL4

LLLLLLLLL0

LLLLLLLL0

sssssssss 0

sssssssss 0

sssssssss 1

sssssssss

Hadamard2
3

LLLLLLLLL1

LLLLLLLLL4

LLLLLLLLL1

LLLLLLLLL3

sssssssss 1

sssssssss 4

sssssssss −1

sssssss
NOT2

3

LLLLLLLLL1

LLLLLLLLL4

LLLLLLLLL−1

LLLLLLL3

sssssssss 1

sssssssss 4

sssssssss 1

sssssssss

Hadamard2
6 2 8 0

LLLLLLLLL0 0 0 −2

sssssss
C0C1NOT2

6 2 8 −2 0 0 0 0

20

Affects measurements: “Negate

amplitude around its average.”

(3; 1; 4; 1) 7→ (1:5; 3:5; 0:5; 3:5).

19

Fancier example:

“Negate amplitude if q0q1 is set.”

Assumes q2 = 0: “ancilla” qubit.

3 1 4 1

LLLLLLLLL0 0 0 0

sssssssss

C0C1NOT2
3

LLLLLLLLL1

LLLLLLLLL4

LLLLLLLLL0

LLLLLLLL0

sssssssss 0

sssssssss 0

sssssssss 1

sssssssss

Hadamard2
3

LLLLLLLLL1

LLLLLLLLL4

LLLLLLLLL1

LLLLLLLLL3

sssssssss 1

sssssssss 4

sssssssss −1

sssssss
NOT2

3

LLLLLLLLL1

LLLLLLLLL4

LLLLLLLLL−1

LLLLLLL3

sssssssss 1

sssssssss 4

sssssssss 1

sssssssss

Hadamard2
6 2 8 0

LLLLLLLLL0 0 0 −2

sssssss
C0C1NOT2

6 2 8 −2 0 0 0 0

20

Affects measurements: “Negate

amplitude around its average.”

(3; 1; 4; 1) 7→ (1:5; 3:5; 0:5; 3:5).

3

2222 1

����
4

2222 1

����
0

2222 0

����
0

2222 0

����
H0

4

DDDDDD 2

DDDDDD 5

zzzzzzz
3

zzzzzzz
0

DDDDDDD 0

DDDDDDD 0

zzzzzzz
0

zzzzzzz
H1

9 5 −1 −1 0 0 0 0

: : :

−9

2222 5

����
−1

2222 −1

����
0

2222 0

����
0

2222 0

����
H0
−4

DDDDD−14

DDDDD−2

zzzzz
0

zzzzzz
0

DDDDDDD 0

DDDDDDD 0

zzzzzzz
0

zzzzzzz
H1
−6−14−2−14 0 0 0 0

19

Fancier example:

“Negate amplitude if q0q1 is set.”

Assumes q2 = 0: “ancilla” qubit.

3 1 4 1

LLLLLLLLL0 0 0 0

sssssssss

C0C1NOT2
3

LLLLLLLLL1

LLLLLLLLL4

LLLLLLLLL0

LLLLLLLL0

sssssssss 0

sssssssss 0

sssssssss 1

sssssssss

Hadamard2
3

LLLLLLLLL1

LLLLLLLLL4

LLLLLLLLL1

LLLLLLLLL3

sssssssss 1

sssssssss 4

sssssssss −1

sssssss
NOT2

3

LLLLLLLLL1

LLLLLLLLL4

LLLLLLLLL−1

LLLLLLL3

sssssssss 1

sssssssss 4

sssssssss 1

sssssssss

Hadamard2
6 2 8 0

LLLLLLLLL0 0 0 −2

sssssss
C0C1NOT2

6 2 8 −2 0 0 0 0

20

Affects measurements: “Negate

amplitude around its average.”

(3; 1; 4; 1) 7→ (1:5; 3:5; 0:5; 3:5).

3

2222 1

����
4

2222 1

����
0

2222 0

����
0

2222 0

����
H0

4

DDDDDD 2

DDDDDD 5

zzzzzzz
3

zzzzzzz
0

DDDDDDD 0

DDDDDDD 0

zzzzzzz
0

zzzzzzz
H1

9 5 −1 −1 0 0 0 0

: : :

−9

2222 5

����
−1

2222 −1

����
0

2222 0

����
0

2222 0

����
H0
−4

DDDDD−14

DDDDD−2

zzzzz
0

zzzzzz
0

DDDDDDD 0

DDDDDDD 0

zzzzzzz
0

zzzzzzz
H1
−6−14−2−14 0 0 0 0

21

Simon’s algorithm

Assumptions:

• Given any u ∈ {0; 1}n,

can efficiently compute f (u).

• Nonzero s ∈ {0; 1}n.

• f (u) = f (u ⊕ s) for all u.

• f has no other collisions.

Goal: Figure out s.

19

Fancier example:

“Negate amplitude if q0q1 is set.”

Assumes q2 = 0: “ancilla” qubit.

3 1 4 1

LLLLLLLLL0 0 0 0

sssssssss

C0C1NOT2
3

LLLLLLLLL1

LLLLLLLLL4

LLLLLLLLL0

LLLLLLLL0

sssssssss 0

sssssssss 0

sssssssss 1

sssssssss

Hadamard2
3

LLLLLLLLL1

LLLLLLLLL4

LLLLLLLLL1

LLLLLLLLL3

sssssssss 1

sssssssss 4

sssssssss −1

sssssss
NOT2

3

LLLLLLLLL1

LLLLLLLLL4

LLLLLLLLL−1

LLLLLLL3

sssssssss 1

sssssssss 4

sssssssss 1

sssssssss

Hadamard2
6 2 8 0

LLLLLLLLL0 0 0 −2

sssssss
C0C1NOT2

6 2 8 −2 0 0 0 0

20

Affects measurements: “Negate

amplitude around its average.”

(3; 1; 4; 1) 7→ (1:5; 3:5; 0:5; 3:5).

3

2222 1

����
4

2222 1

����
0

2222 0

����
0

2222 0

����
H0

4

DDDDDD 2

DDDDDD 5

zzzzzzz
3

zzzzzzz
0

DDDDDDD 0

DDDDDDD 0

zzzzzzz
0

zzzzzzz
H1

9 5 −1 −1 0 0 0 0

: : :

−9

2222 5

����
−1

2222 −1

����
0

2222 0

����
0

2222 0

����
H0
−4

DDDDD−14

DDDDD−2

zzzzz
0

zzzzzz
0

DDDDDDD 0

DDDDDDD 0

zzzzzzz
0

zzzzzzz
H1
−6−14−2−14 0 0 0 0

21

Simon’s algorithm

Assumptions:

• Given any u ∈ {0; 1}n,

can efficiently compute f (u).

• Nonzero s ∈ {0; 1}n.

• f (u) = f (u ⊕ s) for all u.

• f has no other collisions.

Goal: Figure out s.

19

Fancier example:

“Negate amplitude if q0q1 is set.”

Assumes q2 = 0: “ancilla” qubit.

3 1 4 1

LLLLLLLLL0 0 0 0

sssssssss

C0C1NOT2
3

LLLLLLLLL1

LLLLLLLLL4

LLLLLLLLL0

LLLLLLLL0

sssssssss 0

sssssssss 0

sssssssss 1

sssssssss

Hadamard2
3

LLLLLLLLL1

LLLLLLLLL4

LLLLLLLLL1

LLLLLLLLL3

sssssssss 1

sssssssss 4

sssssssss −1

sssssss
NOT2

3

LLLLLLLLL1

LLLLLLLLL4

LLLLLLLLL−1

LLLLLLL3

sssssssss 1

sssssssss 4

sssssssss 1

sssssssss

Hadamard2
6 2 8 0

LLLLLLLLL0 0 0 −2

sssssss
C0C1NOT2

6 2 8 −2 0 0 0 0

20

Affects measurements: “Negate

amplitude around its average.”

(3; 1; 4; 1) 7→ (1:5; 3:5; 0:5; 3:5).

3

2222 1

����
4

2222 1

����
0

2222 0

����
0

2222 0

����
H0

4

DDDDDD 2

DDDDDD 5

zzzzzzz
3

zzzzzzz
0

DDDDDDD 0

DDDDDDD 0

zzzzzzz
0

zzzzzzz
H1

9 5 −1 −1 0 0 0 0

: : :

−9

2222 5

����
−1

2222 −1

����
0

2222 0

����
0

2222 0

����
H0
−4

DDDDD−14

DDDDD−2

zzzzz
0

zzzzzz
0

DDDDDDD 0

DDDDDDD 0

zzzzzzz
0

zzzzzzz
H1
−6−14−2−14 0 0 0 0

21

Simon’s algorithm

Assumptions:

• Given any u ∈ {0; 1}n,

can efficiently compute f (u).

• Nonzero s ∈ {0; 1}n.

• f (u) = f (u ⊕ s) for all u.

• f has no other collisions.

Goal: Figure out s.

20

Affects measurements: “Negate

amplitude around its average.”

(3; 1; 4; 1) 7→ (1:5; 3:5; 0:5; 3:5).

3

2222 1

����
4

2222 1

����
0

2222 0

����
0

2222 0

����
H0

4

DDDDDD 2

DDDDDD 5

zzzzzzz
3

zzzzzzz
0

DDDDDDD 0

DDDDDDD 0

zzzzzzz
0

zzzzzzz
H1

9 5 −1 −1 0 0 0 0

: : :

−9

2222 5

����
−1

2222 −1

����
0

2222 0

����
0

2222 0

����
H0
−4

DDDDD−14

DDDDD−2

zzzzz
0

zzzzzz
0

DDDDDDD 0

DDDDDDD 0

zzzzzzz
0

zzzzzzz
H1
−6−14−2−14 0 0 0 0

21

Simon’s algorithm

Assumptions:

• Given any u ∈ {0; 1}n,

can efficiently compute f (u).

• Nonzero s ∈ {0; 1}n.

• f (u) = f (u ⊕ s) for all u.

• f has no other collisions.

Goal: Figure out s.

20

Affects measurements: “Negate

amplitude around its average.”

(3; 1; 4; 1) 7→ (1:5; 3:5; 0:5; 3:5).

3

2222 1

����
4

2222 1

����
0

2222 0

����
0

2222 0

����
H0

4

DDDDDD 2

DDDDDD 5

zzzzzzz
3

zzzzzzz
0

DDDDDDD 0

DDDDDDD 0

zzzzzzz
0

zzzzzzz
H1

9 5 −1 −1 0 0 0 0

: : :

−9

2222 5

����
−1

2222 −1

����
0

2222 0

����
0

2222 0

����
H0
−4

DDDDD−14

DDDDD−2

zzzzz
0

zzzzzz
0

DDDDDDD 0

DDDDDDD 0

zzzzzzz
0

zzzzzzz
H1
−6−14−2−14 0 0 0 0

21

Simon’s algorithm

Assumptions:

• Given any u ∈ {0; 1}n,

can efficiently compute f (u).

• Nonzero s ∈ {0; 1}n.

• f (u) = f (u ⊕ s) for all u.

• f has no other collisions.

Goal: Figure out s.

Traditional algorithm to find s:

compute f for many inputs,

hope to find collision.

20

Affects measurements: “Negate

amplitude around its average.”

(3; 1; 4; 1) 7→ (1:5; 3:5; 0:5; 3:5).

3

2222 1

����
4

2222 1

����
0

2222 0

����
0

2222 0

����
H0

4

DDDDDD 2

DDDDDD 5

zzzzzzz
3

zzzzzzz
0

DDDDDDD 0

DDDDDDD 0

zzzzzzz
0

zzzzzzz
H1

9 5 −1 −1 0 0 0 0

: : :

−9

2222 5

����
−1

2222 −1

����
0

2222 0

����
0

2222 0

����
H0
−4

DDDDD−14

DDDDD−2

zzzzz
0

zzzzzz
0

DDDDDDD 0

DDDDDDD 0

zzzzzzz
0

zzzzzzz
H1
−6−14−2−14 0 0 0 0

21

Simon’s algorithm

Assumptions:

• Given any u ∈ {0; 1}n,

can efficiently compute f (u).

• Nonzero s ∈ {0; 1}n.

• f (u) = f (u ⊕ s) for all u.

• f has no other collisions.

Goal: Figure out s.

Traditional algorithm to find s:

compute f for many inputs,

hope to find collision.

Simon’s algorithm finds s with

≈n quantum computations of f .

20

Affects measurements: “Negate

amplitude around its average.”

(3; 1; 4; 1) 7→ (1:5; 3:5; 0:5; 3:5).

3

2222 1

����
4

2222 1

����
0

2222 0

����
0

2222 0

����
H0

4

DDDDDD 2

DDDDDD 5

zzzzzzz
3

zzzzzzz
0

DDDDDDD 0

DDDDDDD 0

zzzzzzz
0

zzzzzzz
H1

9 5 −1 −1 0 0 0 0

: : :

−9

2222 5

����
−1

2222 −1

����
0

2222 0

����
0

2222 0

����
H0
−4

DDDDD−14

DDDDD−2

zzzzz
0

zzzzzz
0

DDDDDDD 0

DDDDDDD 0

zzzzzzz
0

zzzzzzz
H1
−6−14−2−14 0 0 0 0

21

Simon’s algorithm

Assumptions:

• Given any u ∈ {0; 1}n,

can efficiently compute f (u).

• Nonzero s ∈ {0; 1}n.

• f (u) = f (u ⊕ s) for all u.

• f has no other collisions.

Goal: Figure out s.

Traditional algorithm to find s:

compute f for many inputs,

hope to find collision.

Simon’s algorithm finds s with

≈n quantum computations of f .

22

Example of Simon’s algorithm

Step 1. Set up pure zero state:

1; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0:

20

Affects measurements: “Negate

amplitude around its average.”

(3; 1; 4; 1) 7→ (1:5; 3:5; 0:5; 3:5).

3

2222 1

����
4

2222 1

����
0

2222 0

����
0

2222 0

����
H0

4

DDDDDD 2

DDDDDD 5

zzzzzzz
3

zzzzzzz
0

DDDDDDD 0

DDDDDDD 0

zzzzzzz
0

zzzzzzz
H1

9 5 −1 −1 0 0 0 0

: : :

−9

2222 5

����
−1

2222 −1

����
0

2222 0

����
0

2222 0

����
H0
−4

DDDDD−14

DDDDD−2

zzzzz
0

zzzzzz
0

DDDDDDD 0

DDDDDDD 0

zzzzzzz
0

zzzzzzz
H1
−6−14−2−14 0 0 0 0

21

Simon’s algorithm

Assumptions:

• Given any u ∈ {0; 1}n,

can efficiently compute f (u).

• Nonzero s ∈ {0; 1}n.

• f (u) = f (u ⊕ s) for all u.

• f has no other collisions.

Goal: Figure out s.

Traditional algorithm to find s:

compute f for many inputs,

hope to find collision.

Simon’s algorithm finds s with

≈n quantum computations of f .

22

Example of Simon’s algorithm

Step 1. Set up pure zero state:

1; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0:

20

Affects measurements: “Negate

amplitude around its average.”

(3; 1; 4; 1) 7→ (1:5; 3:5; 0:5; 3:5).

3

2222 1

����
4

2222 1

����
0

2222 0

����
0

2222 0

����
H0

4

DDDDDD 2

DDDDDD 5

zzzzzzz
3

zzzzzzz
0

DDDDDDD 0

DDDDDDD 0

zzzzzzz
0

zzzzzzz
H1

9 5 −1 −1 0 0 0 0

: : :

−9

2222 5

����
−1

2222 −1

����
0

2222 0

����
0

2222 0

����
H0
−4

DDDDD−14

DDDDD−2

zzzzz
0

zzzzzz
0

DDDDDDD 0

DDDDDDD 0

zzzzzzz
0

zzzzzzz
H1
−6−14−2−14 0 0 0 0

21

Simon’s algorithm

Assumptions:

• Given any u ∈ {0; 1}n,

can efficiently compute f (u).

• Nonzero s ∈ {0; 1}n.

• f (u) = f (u ⊕ s) for all u.

• f has no other collisions.

Goal: Figure out s.

Traditional algorithm to find s:

compute f for many inputs,

hope to find collision.

Simon’s algorithm finds s with

≈n quantum computations of f .

22

Example of Simon’s algorithm

Step 1. Set up pure zero state:

1; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0:

21

Simon’s algorithm

Assumptions:

• Given any u ∈ {0; 1}n,

can efficiently compute f (u).

• Nonzero s ∈ {0; 1}n.

• f (u) = f (u ⊕ s) for all u.

• f has no other collisions.

Goal: Figure out s.

Traditional algorithm to find s:

compute f for many inputs,

hope to find collision.

Simon’s algorithm finds s with

≈n quantum computations of f .

22

Example of Simon’s algorithm

Step 1. Set up pure zero state:

1; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0:

21

Simon’s algorithm

Assumptions:

• Given any u ∈ {0; 1}n,

can efficiently compute f (u).

• Nonzero s ∈ {0; 1}n.

• f (u) = f (u ⊕ s) for all u.

• f has no other collisions.

Goal: Figure out s.

Traditional algorithm to find s:

compute f for many inputs,

hope to find collision.

Simon’s algorithm finds s with

≈n quantum computations of f .

22

Example of Simon’s algorithm

Step 2. Hadamard0:

1; 1; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0:

21

Simon’s algorithm

Assumptions:

• Given any u ∈ {0; 1}n,

can efficiently compute f (u).

• Nonzero s ∈ {0; 1}n.

• f (u) = f (u ⊕ s) for all u.

• f has no other collisions.

Goal: Figure out s.

Traditional algorithm to find s:

compute f for many inputs,

hope to find collision.

Simon’s algorithm finds s with

≈n quantum computations of f .

22

Example of Simon’s algorithm

Step 3. Hadamard1:

1; 1; 1; 1; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0:

21

Simon’s algorithm

Assumptions:

• Given any u ∈ {0; 1}n,

can efficiently compute f (u).

• Nonzero s ∈ {0; 1}n.

• f (u) = f (u ⊕ s) for all u.

• f has no other collisions.

Goal: Figure out s.

Traditional algorithm to find s:

compute f for many inputs,

hope to find collision.

Simon’s algorithm finds s with

≈n quantum computations of f .

22

Example of Simon’s algorithm

Step 4. Hadamard2:

1; 1; 1; 1; 1; 1; 1; 1;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0:

Each column is a parallel universe.

21

Simon’s algorithm

Assumptions:

• Given any u ∈ {0; 1}n,

can efficiently compute f (u).

• Nonzero s ∈ {0; 1}n.

• f (u) = f (u ⊕ s) for all u.

• f has no other collisions.

Goal: Figure out s.

Traditional algorithm to find s:

compute f for many inputs,

hope to find collision.

Simon’s algorithm finds s with

≈n quantum computations of f .

22

Example of Simon’s algorithm

Step 5. C0NOT3:

1; 0; 1; 0; 1; 0; 1; 0;

0; 1; 0; 1; 0; 1; 0; 1;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0:

Each column is a parallel universe

performing its own computations.

21

Simon’s algorithm

Assumptions:

• Given any u ∈ {0; 1}n,

can efficiently compute f (u).

• Nonzero s ∈ {0; 1}n.

• f (u) = f (u ⊕ s) for all u.

• f has no other collisions.

Goal: Figure out s.

Traditional algorithm to find s:

compute f for many inputs,

hope to find collision.

Simon’s algorithm finds s with

≈n quantum computations of f .

22

Example of Simon’s algorithm

Step 5b. More shuffling:

1; 0; 0; 0; 1; 0; 0; 0;

0; 1; 0; 0; 0; 1; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 1; 0; 0; 0; 1; 0;

0; 0; 0; 1; 0; 0; 0; 1;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0:

Each column is a parallel universe

performing its own computations.

21

Simon’s algorithm

Assumptions:

• Given any u ∈ {0; 1}n,

can efficiently compute f (u).

• Nonzero s ∈ {0; 1}n.

• f (u) = f (u ⊕ s) for all u.

• f has no other collisions.

Goal: Figure out s.

Traditional algorithm to find s:

compute f for many inputs,

hope to find collision.

Simon’s algorithm finds s with

≈n quantum computations of f .

22

Example of Simon’s algorithm

Step 5c. More shuffling:

1; 0; 0; 0; 0; 0; 0; 0;

0; 1; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 1; 0; 0; 0;

0; 0; 0; 0; 0; 1; 0; 0;

0; 0; 1; 0; 0; 0; 0; 0;

0; 0; 0; 1; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 1; 0;

0; 0; 0; 0; 0; 0; 0; 1:

Each column is a parallel universe

performing its own computations.

21

Simon’s algorithm

Assumptions:

• Given any u ∈ {0; 1}n,

can efficiently compute f (u).

• Nonzero s ∈ {0; 1}n.

• f (u) = f (u ⊕ s) for all u.

• f has no other collisions.

Goal: Figure out s.

Traditional algorithm to find s:

compute f for many inputs,

hope to find collision.

Simon’s algorithm finds s with

≈n quantum computations of f .

22

Example of Simon’s algorithm

Step 5d. More shuffling:

1; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 1; 0; 0;

0; 0; 0; 0; 1; 0; 0; 0;

0; 1; 0; 0; 0; 0; 0; 0;

0; 0; 1; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 1;

0; 0; 0; 0; 0; 0; 1; 0;

0; 0; 0; 1; 0; 0; 0; 0:

Each column is a parallel universe

performing its own computations.

21

Simon’s algorithm

Assumptions:

• Given any u ∈ {0; 1}n,

can efficiently compute f (u).

• Nonzero s ∈ {0; 1}n.

• f (u) = f (u ⊕ s) for all u.

• f has no other collisions.

Goal: Figure out s.

Traditional algorithm to find s:

compute f for many inputs,

hope to find collision.

Simon’s algorithm finds s with

≈n quantum computations of f .

22

Example of Simon’s algorithm

Step 5e. More shuffling:

1; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 1; 0; 0;

0; 0; 0; 0; 1; 0; 0; 0;

0; 1; 0; 0; 0; 0; 0; 0;

0; 0; 1; 0; 0; 0; 0; 1;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 1; 0; 0; 1; 0;

0; 0; 0; 0; 0; 0; 0; 0:

Each column is a parallel universe

performing its own computations.

21

Simon’s algorithm

Assumptions:

• Given any u ∈ {0; 1}n,

can efficiently compute f (u).

• Nonzero s ∈ {0; 1}n.

• f (u) = f (u ⊕ s) for all u.

• f has no other collisions.

Goal: Figure out s.

Traditional algorithm to find s:

compute f for many inputs,

hope to find collision.

Simon’s algorithm finds s with

≈n quantum computations of f .

22

Example of Simon’s algorithm

Step 5f. More shuffling:

0; 0; 0; 0; 0; 1; 0; 0;

1; 0; 0; 0; 0; 0; 0; 0;

0; 1; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 1; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 1; 0; 0; 0; 0; 1;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 1; 0; 0; 1; 0:

Each column is a parallel universe

performing its own computations.

21

Simon’s algorithm

Assumptions:

• Given any u ∈ {0; 1}n,

can efficiently compute f (u).

• Nonzero s ∈ {0; 1}n.

• f (u) = f (u ⊕ s) for all u.

• f has no other collisions.

Goal: Figure out s.

Traditional algorithm to find s:

compute f for many inputs,

hope to find collision.

Simon’s algorithm finds s with

≈n quantum computations of f .

22

Example of Simon’s algorithm

Step 5g. More shuffling:

0; 1; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 1; 0; 0; 0;

0; 0; 0; 0; 0; 1; 0; 0;

1; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 1; 0; 0; 1; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 1; 0; 0; 0; 0; 1:

Each column is a parallel universe

performing its own computations.

21

Simon’s algorithm

Assumptions:

• Given any u ∈ {0; 1}n,

can efficiently compute f (u).

• Nonzero s ∈ {0; 1}n.

• f (u) = f (u ⊕ s) for all u.

• f has no other collisions.

Goal: Figure out s.

Traditional algorithm to find s:

compute f for many inputs,

hope to find collision.

Simon’s algorithm finds s with

≈n quantum computations of f .

22

Example of Simon’s algorithm

Step 5h. More shuffling:

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 1; 0; 0; 1; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 1; 0; 0; 0; 0; 1;

0; 1; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 1; 0; 0; 0;

0; 0; 0; 0; 0; 1; 0; 0;

1; 0; 0; 0; 0; 0; 0; 0:

Each column is a parallel universe

performing its own computations.

21

Simon’s algorithm

Assumptions:

• Given any u ∈ {0; 1}n,

can efficiently compute f (u).

• Nonzero s ∈ {0; 1}n.

• f (u) = f (u ⊕ s) for all u.

• f has no other collisions.

Goal: Figure out s.

Traditional algorithm to find s:

compute f for many inputs,

hope to find collision.

Simon’s algorithm finds s with

≈n quantum computations of f .

22

Example of Simon’s algorithm

Step 5i. More shuffling:

0; 0; 0; 0; 0; 0; 1; 0;

0; 0; 0; 1; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 1;

0; 0; 1; 0; 0; 0; 0; 0;

0; 1; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 1; 0; 0; 0;

0; 0; 0; 0; 0; 1; 0; 0;

1; 0; 0; 0; 0; 0; 0; 0:

Each column is a parallel universe

performing its own computations.

21

Simon’s algorithm

Assumptions:

• Given any u ∈ {0; 1}n,

can efficiently compute f (u).

• Nonzero s ∈ {0; 1}n.

• f (u) = f (u ⊕ s) for all u.

• f has no other collisions.

Goal: Figure out s.

Traditional algorithm to find s:

compute f for many inputs,

hope to find collision.

Simon’s algorithm finds s with

≈n quantum computations of f .

22

Example of Simon’s algorithm

Step 5j. Final shuffling:

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 1; 0; 0; 1; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 1; 0; 0; 0; 0; 1;

0; 1; 0; 0; 1; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

1; 0; 0; 0; 0; 1; 0; 0:

Each column is a parallel universe

performing its own computations.

21

Simon’s algorithm

Assumptions:

• Given any u ∈ {0; 1}n,

can efficiently compute f (u).

• Nonzero s ∈ {0; 1}n.

• f (u) = f (u ⊕ s) for all u.

• f has no other collisions.

Goal: Figure out s.

Traditional algorithm to find s:

compute f for many inputs,

hope to find collision.

Simon’s algorithm finds s with

≈n quantum computations of f .

22

Example of Simon’s algorithm

Step 5j. Final shuffling:

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 1; 0; 0; 1; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 1; 0; 0; 0; 0; 1;

0; 1; 0; 0; 1; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

1; 0; 0; 0; 0; 1; 0; 0:

Each column is a parallel universe

performing its own computations.

Surprise: u and u ⊕ 101 match.

21

Simon’s algorithm

Assumptions:

• Given any u ∈ {0; 1}n,

can efficiently compute f (u).

• Nonzero s ∈ {0; 1}n.

• f (u) = f (u ⊕ s) for all u.

• f has no other collisions.

Goal: Figure out s.

Traditional algorithm to find s:

compute f for many inputs,

hope to find collision.

Simon’s algorithm finds s with

≈n quantum computations of f .

22

Example of Simon’s algorithm

Step 6. Hadamard0:

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 1; 1; 0; 0; 1; 1;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 1; 1; 0; 0; 1; 1;

1; 1; 0; 0; 1; 1; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

1; 1; 0; 0; 1; 1; 0; 0:

Notation: 1 means −1.

21

Simon’s algorithm

Assumptions:

• Given any u ∈ {0; 1}n,

can efficiently compute f (u).

• Nonzero s ∈ {0; 1}n.

• f (u) = f (u ⊕ s) for all u.

• f has no other collisions.

Goal: Figure out s.

Traditional algorithm to find s:

compute f for many inputs,

hope to find collision.

Simon’s algorithm finds s with

≈n quantum computations of f .

22

Example of Simon’s algorithm

Step 7. Hadamard1:

0; 0; 0; 0; 0; 0; 0; 0;

1; 1; 1; 1; 1; 1; 1; 1;

0; 0; 0; 0; 0; 0; 0; 0;

1; 1; 1; 1; 1; 1; 1; 1;

1; 1; 1; 1; 1; 1; 1; 1;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

1; 1; 1; 1; 1; 1; 1; 1:

21

Simon’s algorithm

Assumptions:

• Given any u ∈ {0; 1}n,

can efficiently compute f (u).

• Nonzero s ∈ {0; 1}n.

• f (u) = f (u ⊕ s) for all u.

• f has no other collisions.

Goal: Figure out s.

Traditional algorithm to find s:

compute f for many inputs,

hope to find collision.

Simon’s algorithm finds s with

≈n quantum computations of f .

22

Example of Simon’s algorithm

Step 8. Hadamard2:

0; 0; 0; 0; 0; 0; 0; 0;

2; 0; 2; 0; 0; 2; 0; 2;

0; 0; 0; 0; 0; 0; 0; 0;

2; 0; 2; 0; 0; 2; 0; 2;

2; 0; 2; 0; 0; 2; 0; 2;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

2; 0; 2; 0; 0; 2; 0; 2:

21

Simon’s algorithm

Assumptions:

• Given any u ∈ {0; 1}n,

can efficiently compute f (u).

• Nonzero s ∈ {0; 1}n.

• f (u) = f (u ⊕ s) for all u.

• f has no other collisions.

Goal: Figure out s.

Traditional algorithm to find s:

compute f for many inputs,

hope to find collision.

Simon’s algorithm finds s with

≈n quantum computations of f .

22

Example of Simon’s algorithm

Step 8. Hadamard2:

0; 0; 0; 0; 0; 0; 0; 0;

2; 0; 2; 0; 0; 2; 0; 2;

0; 0; 0; 0; 0; 0; 0; 0;

2; 0; 2; 0; 0; 2; 0; 2;

2; 0; 2; 0; 0; 2; 0; 2;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

2; 0; 2; 0; 0; 2; 0; 2:

Step 9: Measure. Obtain some

information about the surprise: a

random vector orthogonal to 101.

21

Simon’s algorithm

Assumptions:

• Given any u ∈ {0; 1}n,

can efficiently compute f (u).

• Nonzero s ∈ {0; 1}n.

• f (u) = f (u ⊕ s) for all u.

• f has no other collisions.

Goal: Figure out s.

Traditional algorithm to find s:

compute f for many inputs,

hope to find collision.

Simon’s algorithm finds s with

≈n quantum computations of f .

22

Example of Simon’s algorithm

Step 8. Hadamard2:

0; 0; 0; 0; 0; 0; 0; 0;

2; 0; 2; 0; 0; 2; 0; 2;

0; 0; 0; 0; 0; 0; 0; 0;

2; 0; 2; 0; 0; 2; 0; 2;

2; 0; 2; 0; 0; 2; 0; 2;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

2; 0; 2; 0; 0; 2; 0; 2:

Step 9: Measure. Obtain some

information about the surprise: a

random vector orthogonal to 101.

23

Repeat to figure out 101.

21

Simon’s algorithm

Assumptions:

• Given any u ∈ {0; 1}n,

can efficiently compute f (u).

• Nonzero s ∈ {0; 1}n.

• f (u) = f (u ⊕ s) for all u.

• f has no other collisions.

Goal: Figure out s.

Traditional algorithm to find s:

compute f for many inputs,

hope to find collision.

Simon’s algorithm finds s with

≈n quantum computations of f .

22

Example of Simon’s algorithm

Step 8. Hadamard2:

0; 0; 0; 0; 0; 0; 0; 0;

2; 0; 2; 0; 0; 2; 0; 2;

0; 0; 0; 0; 0; 0; 0; 0;

2; 0; 2; 0; 0; 2; 0; 2;

2; 0; 2; 0; 0; 2; 0; 2;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

2; 0; 2; 0; 0; 2; 0; 2:

Step 9: Measure. Obtain some

information about the surprise: a

random vector orthogonal to 101.

23

Repeat to figure out 101.

21

Simon’s algorithm

Assumptions:

• Given any u ∈ {0; 1}n,

can efficiently compute f (u).

• Nonzero s ∈ {0; 1}n.

• f (u) = f (u ⊕ s) for all u.

• f has no other collisions.

Goal: Figure out s.

Traditional algorithm to find s:

compute f for many inputs,

hope to find collision.

Simon’s algorithm finds s with

≈n quantum computations of f .

22

Example of Simon’s algorithm

Step 8. Hadamard2:

0; 0; 0; 0; 0; 0; 0; 0;

2; 0; 2; 0; 0; 2; 0; 2;

0; 0; 0; 0; 0; 0; 0; 0;

2; 0; 2; 0; 0; 2; 0; 2;

2; 0; 2; 0; 0; 2; 0; 2;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

2; 0; 2; 0; 0; 2; 0; 2:

Step 9: Measure. Obtain some

information about the surprise: a

random vector orthogonal to 101.

23

Repeat to figure out 101.

22

Example of Simon’s algorithm

Step 8. Hadamard2:

0; 0; 0; 0; 0; 0; 0; 0;

2; 0; 2; 0; 0; 2; 0; 2;

0; 0; 0; 0; 0; 0; 0; 0;

2; 0; 2; 0; 0; 2; 0; 2;

2; 0; 2; 0; 0; 2; 0; 2;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

2; 0; 2; 0; 0; 2; 0; 2:

Step 9: Measure. Obtain some

information about the surprise: a

random vector orthogonal to 101.

23

Repeat to figure out 101.

22

Example of Simon’s algorithm

Step 8. Hadamard2:

0; 0; 0; 0; 0; 0; 0; 0;

2; 0; 2; 0; 0; 2; 0; 2;

0; 0; 0; 0; 0; 0; 0; 0;

2; 0; 2; 0; 0; 2; 0; 2;

2; 0; 2; 0; 0; 2; 0; 2;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

2; 0; 2; 0; 0; 2; 0; 2:

Step 9: Measure. Obtain some

information about the surprise: a

random vector orthogonal to 101.

23

Repeat to figure out 101.

Generalize Step 5 to any function

u 7→ f (u) with f (u) = f (u ⊕ s).

“Usually” algorithm figures out s.

22

Example of Simon’s algorithm

Step 8. Hadamard2:

0; 0; 0; 0; 0; 0; 0; 0;

2; 0; 2; 0; 0; 2; 0; 2;

0; 0; 0; 0; 0; 0; 0; 0;

2; 0; 2; 0; 0; 2; 0; 2;

2; 0; 2; 0; 0; 2; 0; 2;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

2; 0; 2; 0; 0; 2; 0; 2:

Step 9: Measure. Obtain some

information about the surprise: a

random vector orthogonal to 101.

23

Repeat to figure out 101.

Generalize Step 5 to any function

u 7→ f (u) with f (u) = f (u ⊕ s).

“Usually” algorithm figures out s.

Shor’s algorithm replaces ⊕
with more general + operation.

Many spectacular applications.

22

Example of Simon’s algorithm

Step 8. Hadamard2:

0; 0; 0; 0; 0; 0; 0; 0;

2; 0; 2; 0; 0; 2; 0; 2;

0; 0; 0; 0; 0; 0; 0; 0;

2; 0; 2; 0; 0; 2; 0; 2;

2; 0; 2; 0; 0; 2; 0; 2;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

2; 0; 2; 0; 0; 2; 0; 2:

Step 9: Measure. Obtain some

information about the surprise: a

random vector orthogonal to 101.

23

Repeat to figure out 101.

Generalize Step 5 to any function

u 7→ f (u) with f (u) = f (u ⊕ s).

“Usually” algorithm figures out s.

Shor’s algorithm replaces ⊕
with more general + operation.

Many spectacular applications.

e.g. Shor finds “random” s with

2u mod N = 2u+s mod N.

Easy to factor N using this.

22

Example of Simon’s algorithm

Step 8. Hadamard2:

0; 0; 0; 0; 0; 0; 0; 0;

2; 0; 2; 0; 0; 2; 0; 2;

0; 0; 0; 0; 0; 0; 0; 0;

2; 0; 2; 0; 0; 2; 0; 2;

2; 0; 2; 0; 0; 2; 0; 2;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

2; 0; 2; 0; 0; 2; 0; 2:

Step 9: Measure. Obtain some

information about the surprise: a

random vector orthogonal to 101.

23

Repeat to figure out 101.

Generalize Step 5 to any function

u 7→ f (u) with f (u) = f (u ⊕ s).

“Usually” algorithm figures out s.

Shor’s algorithm replaces ⊕
with more general + operation.

Many spectacular applications.

e.g. Shor finds “random” s with

2u mod N = 2u+s mod N.

Easy to factor N using this.

e.g. Shor finds “random” s; t with

4u9v mod p = 4u+s9v+t mod p.

Easy to compute discrete logs.

22

Example of Simon’s algorithm

Step 8. Hadamard2:

0; 0; 0; 0; 0; 0; 0; 0;

2; 0; 2; 0; 0; 2; 0; 2;

0; 0; 0; 0; 0; 0; 0; 0;

2; 0; 2; 0; 0; 2; 0; 2;

2; 0; 2; 0; 0; 2; 0; 2;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

2; 0; 2; 0; 0; 2; 0; 2:

Step 9: Measure. Obtain some

information about the surprise: a

random vector orthogonal to 101.

23

Repeat to figure out 101.

Generalize Step 5 to any function

u 7→ f (u) with f (u) = f (u ⊕ s).

“Usually” algorithm figures out s.

Shor’s algorithm replaces ⊕
with more general + operation.

Many spectacular applications.

e.g. Shor finds “random” s with

2u mod N = 2u+s mod N.

Easy to factor N using this.

e.g. Shor finds “random” s; t with

4u9v mod p = 4u+s9v+t mod p.

Easy to compute discrete logs.

24

Grover’s algorithm

Assume: unique s ∈ {0; 1}n

has f (s) = 0.

Traditional algorithm to find s:

compute f for many inputs,

hope to find output 0.

Success probability is very low

until #inputs approaches 2n.

22

Example of Simon’s algorithm

Step 8. Hadamard2:

0; 0; 0; 0; 0; 0; 0; 0;

2; 0; 2; 0; 0; 2; 0; 2;

0; 0; 0; 0; 0; 0; 0; 0;

2; 0; 2; 0; 0; 2; 0; 2;

2; 0; 2; 0; 0; 2; 0; 2;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

2; 0; 2; 0; 0; 2; 0; 2:

Step 9: Measure. Obtain some

information about the surprise: a

random vector orthogonal to 101.

23

Repeat to figure out 101.

Generalize Step 5 to any function

u 7→ f (u) with f (u) = f (u ⊕ s).

“Usually” algorithm figures out s.

Shor’s algorithm replaces ⊕
with more general + operation.

Many spectacular applications.

e.g. Shor finds “random” s with

2u mod N = 2u+s mod N.

Easy to factor N using this.

e.g. Shor finds “random” s; t with

4u9v mod p = 4u+s9v+t mod p.

Easy to compute discrete logs.

24

Grover’s algorithm

Assume: unique s ∈ {0; 1}n

has f (s) = 0.

Traditional algorithm to find s:

compute f for many inputs,

hope to find output 0.

Success probability is very low

until #inputs approaches 2n.

22

Example of Simon’s algorithm

Step 8. Hadamard2:

0; 0; 0; 0; 0; 0; 0; 0;

2; 0; 2; 0; 0; 2; 0; 2;

0; 0; 0; 0; 0; 0; 0; 0;

2; 0; 2; 0; 0; 2; 0; 2;

2; 0; 2; 0; 0; 2; 0; 2;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

2; 0; 2; 0; 0; 2; 0; 2:

Step 9: Measure. Obtain some

information about the surprise: a

random vector orthogonal to 101.

23

Repeat to figure out 101.

Generalize Step 5 to any function

u 7→ f (u) with f (u) = f (u ⊕ s).

“Usually” algorithm figures out s.

Shor’s algorithm replaces ⊕
with more general + operation.

Many spectacular applications.

e.g. Shor finds “random” s with

2u mod N = 2u+s mod N.

Easy to factor N using this.

e.g. Shor finds “random” s; t with

4u9v mod p = 4u+s9v+t mod p.

Easy to compute discrete logs.

24

Grover’s algorithm

Assume: unique s ∈ {0; 1}n

has f (s) = 0.

Traditional algorithm to find s:

compute f for many inputs,

hope to find output 0.

Success probability is very low

until #inputs approaches 2n.

23

Repeat to figure out 101.

Generalize Step 5 to any function

u 7→ f (u) with f (u) = f (u ⊕ s).

“Usually” algorithm figures out s.

Shor’s algorithm replaces ⊕
with more general + operation.

Many spectacular applications.

e.g. Shor finds “random” s with

2u mod N = 2u+s mod N.

Easy to factor N using this.

e.g. Shor finds “random” s; t with

4u9v mod p = 4u+s9v+t mod p.

Easy to compute discrete logs.

24

Grover’s algorithm

Assume: unique s ∈ {0; 1}n

has f (s) = 0.

Traditional algorithm to find s:

compute f for many inputs,

hope to find output 0.

Success probability is very low

until #inputs approaches 2n.

23

Repeat to figure out 101.

Generalize Step 5 to any function

u 7→ f (u) with f (u) = f (u ⊕ s).

“Usually” algorithm figures out s.

Shor’s algorithm replaces ⊕
with more general + operation.

Many spectacular applications.

e.g. Shor finds “random” s with

2u mod N = 2u+s mod N.

Easy to factor N using this.

e.g. Shor finds “random” s; t with

4u9v mod p = 4u+s9v+t mod p.

Easy to compute discrete logs.

24

Grover’s algorithm

Assume: unique s ∈ {0; 1}n

has f (s) = 0.

Traditional algorithm to find s:

compute f for many inputs,

hope to find output 0.

Success probability is very low

until #inputs approaches 2n.

Grover’s algorithm takes only 2n=2

reversible computations of f .

Typically: reversibility overhead

is small enough that this

easily beats traditional algorithm.

23

Repeat to figure out 101.

Generalize Step 5 to any function

u 7→ f (u) with f (u) = f (u ⊕ s).

“Usually” algorithm figures out s.

Shor’s algorithm replaces ⊕
with more general + operation.

Many spectacular applications.

e.g. Shor finds “random” s with

2u mod N = 2u+s mod N.

Easy to factor N using this.

e.g. Shor finds “random” s; t with

4u9v mod p = 4u+s9v+t mod p.

Easy to compute discrete logs.

24

Grover’s algorithm

Assume: unique s ∈ {0; 1}n

has f (s) = 0.

Traditional algorithm to find s:

compute f for many inputs,

hope to find output 0.

Success probability is very low

until #inputs approaches 2n.

Grover’s algorithm takes only 2n=2

reversible computations of f .

Typically: reversibility overhead

is small enough that this

easily beats traditional algorithm.

25

Start from uniform superposition

over all n-bit strings u.

23

Repeat to figure out 101.

Generalize Step 5 to any function

u 7→ f (u) with f (u) = f (u ⊕ s).

“Usually” algorithm figures out s.

Shor’s algorithm replaces ⊕
with more general + operation.

Many spectacular applications.

e.g. Shor finds “random” s with

2u mod N = 2u+s mod N.

Easy to factor N using this.

e.g. Shor finds “random” s; t with

4u9v mod p = 4u+s9v+t mod p.

Easy to compute discrete logs.

24

Grover’s algorithm

Assume: unique s ∈ {0; 1}n

has f (s) = 0.

Traditional algorithm to find s:

compute f for many inputs,

hope to find output 0.

Success probability is very low

until #inputs approaches 2n.

Grover’s algorithm takes only 2n=2

reversible computations of f .

Typically: reversibility overhead

is small enough that this

easily beats traditional algorithm.

25

Start from uniform superposition

over all n-bit strings u.

23

Repeat to figure out 101.

Generalize Step 5 to any function

u 7→ f (u) with f (u) = f (u ⊕ s).

“Usually” algorithm figures out s.

Shor’s algorithm replaces ⊕
with more general + operation.

Many spectacular applications.

e.g. Shor finds “random” s with

2u mod N = 2u+s mod N.

Easy to factor N using this.

e.g. Shor finds “random” s; t with

4u9v mod p = 4u+s9v+t mod p.

Easy to compute discrete logs.

24

Grover’s algorithm

Assume: unique s ∈ {0; 1}n

has f (s) = 0.

Traditional algorithm to find s:

compute f for many inputs,

hope to find output 0.

Success probability is very low

until #inputs approaches 2n.

Grover’s algorithm takes only 2n=2

reversible computations of f .

Typically: reversibility overhead

is small enough that this

easily beats traditional algorithm.

25

Start from uniform superposition

over all n-bit strings u.

24

Grover’s algorithm

Assume: unique s ∈ {0; 1}n

has f (s) = 0.

Traditional algorithm to find s:

compute f for many inputs,

hope to find output 0.

Success probability is very low

until #inputs approaches 2n.

Grover’s algorithm takes only 2n=2

reversible computations of f .

Typically: reversibility overhead

is small enough that this

easily beats traditional algorithm.

25

Start from uniform superposition

over all n-bit strings u.

24

Grover’s algorithm

Assume: unique s ∈ {0; 1}n

has f (s) = 0.

Traditional algorithm to find s:

compute f for many inputs,

hope to find output 0.

Success probability is very low

until #inputs approaches 2n.

Grover’s algorithm takes only 2n=2

reversible computations of f .

Typically: reversibility overhead

is small enough that this

easily beats traditional algorithm.

25

Start from uniform superposition

over all n-bit strings u.

Step 1: Set a← b where

bu = −au if f (u) = 0,

bu = au otherwise.

This is fast.

24

Grover’s algorithm

Assume: unique s ∈ {0; 1}n

has f (s) = 0.

Traditional algorithm to find s:

compute f for many inputs,

hope to find output 0.

Success probability is very low

until #inputs approaches 2n.

Grover’s algorithm takes only 2n=2

reversible computations of f .

Typically: reversibility overhead

is small enough that this

easily beats traditional algorithm.

25

Start from uniform superposition

over all n-bit strings u.

Step 1: Set a← b where

bu = −au if f (u) = 0,

bu = au otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

24

Grover’s algorithm

Assume: unique s ∈ {0; 1}n

has f (s) = 0.

Traditional algorithm to find s:

compute f for many inputs,

hope to find output 0.

Success probability is very low

until #inputs approaches 2n.

Grover’s algorithm takes only 2n=2

reversible computations of f .

Typically: reversibility overhead

is small enough that this

easily beats traditional algorithm.

25

Start from uniform superposition

over all n-bit strings u.

Step 1: Set a← b where

bu = −au if f (u) = 0,

bu = au otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

24

Grover’s algorithm

Assume: unique s ∈ {0; 1}n

has f (s) = 0.

Traditional algorithm to find s:

compute f for many inputs,

hope to find output 0.

Success probability is very low

until #inputs approaches 2n.

Grover’s algorithm takes only 2n=2

reversible computations of f .

Typically: reversibility overhead

is small enough that this

easily beats traditional algorithm.

25

Start from uniform superposition

over all n-bit strings u.

Step 1: Set a← b where

bu = −au if f (u) = 0,

bu = au otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

24

Grover’s algorithm

Assume: unique s ∈ {0; 1}n

has f (s) = 0.

Traditional algorithm to find s:

compute f for many inputs,

hope to find output 0.

Success probability is very low

until #inputs approaches 2n.

Grover’s algorithm takes only 2n=2

reversible computations of f .

Typically: reversibility overhead

is small enough that this

easily beats traditional algorithm.

25

Start from uniform superposition

over all n-bit strings u.

Step 1: Set a← b where

bu = −au if f (u) = 0,

bu = au otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

26

Normalized graph of u 7→ au
for an example with n = 12

after 0 steps:

−1.0

−0.5

0.0

0.5

1.0

24

Grover’s algorithm

Assume: unique s ∈ {0; 1}n

has f (s) = 0.

Traditional algorithm to find s:

compute f for many inputs,

hope to find output 0.

Success probability is very low

until #inputs approaches 2n.

Grover’s algorithm takes only 2n=2

reversible computations of f .

Typically: reversibility overhead

is small enough that this

easily beats traditional algorithm.

25

Start from uniform superposition

over all n-bit strings u.

Step 1: Set a← b where

bu = −au if f (u) = 0,

bu = au otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

26

Normalized graph of u 7→ au
for an example with n = 12

after 0 steps:

−1.0

−0.5

0.0

0.5

1.0

24

Grover’s algorithm

Assume: unique s ∈ {0; 1}n

has f (s) = 0.

Traditional algorithm to find s:

compute f for many inputs,

hope to find output 0.

Success probability is very low

until #inputs approaches 2n.

Grover’s algorithm takes only 2n=2

reversible computations of f .

Typically: reversibility overhead

is small enough that this

easily beats traditional algorithm.

25

Start from uniform superposition

over all n-bit strings u.

Step 1: Set a← b where

bu = −au if f (u) = 0,

bu = au otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

26

Normalized graph of u 7→ au
for an example with n = 12

after 0 steps:

−1.0

−0.5

0.0

0.5

1.0

25

Start from uniform superposition

over all n-bit strings u.

Step 1: Set a← b where

bu = −au if f (u) = 0,

bu = au otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

26

Normalized graph of u 7→ au
for an example with n = 12

after 0 steps:

−1.0

−0.5

0.0

0.5

1.0

25

Start from uniform superposition

over all n-bit strings u.

Step 1: Set a← b where

bu = −au if f (u) = 0,

bu = au otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

26

Normalized graph of u 7→ au
for an example with n = 12

after Step 1:

−1.0

−0.5

0.0

0.5

1.0

25

Start from uniform superposition

over all n-bit strings u.

Step 1: Set a← b where

bu = −au if f (u) = 0,

bu = au otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

26

Normalized graph of u 7→ au
for an example with n = 12

after Step 1 + Step 2:

−1.0

−0.5

0.0

0.5

1.0

25

Start from uniform superposition

over all n-bit strings u.

Step 1: Set a← b where

bu = −au if f (u) = 0,

bu = au otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

26

Normalized graph of u 7→ au
for an example with n = 12

after Step 1 + Step 2 + Step 1:

−1.0

−0.5

0.0

0.5

1.0

25

Start from uniform superposition

over all n-bit strings u.

Step 1: Set a← b where

bu = −au if f (u) = 0,

bu = au otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

26

Normalized graph of u 7→ au
for an example with n = 12

after 2× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

25

Start from uniform superposition

over all n-bit strings u.

Step 1: Set a← b where

bu = −au if f (u) = 0,

bu = au otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

26

Normalized graph of u 7→ au
for an example with n = 12

after 3× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

25

Start from uniform superposition

over all n-bit strings u.

Step 1: Set a← b where

bu = −au if f (u) = 0,

bu = au otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

26

Normalized graph of u 7→ au
for an example with n = 12

after 4× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

25

Start from uniform superposition

over all n-bit strings u.

Step 1: Set a← b where

bu = −au if f (u) = 0,

bu = au otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

26

Normalized graph of u 7→ au
for an example with n = 12

after 5× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

25

Start from uniform superposition

over all n-bit strings u.

Step 1: Set a← b where

bu = −au if f (u) = 0,

bu = au otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

26

Normalized graph of u 7→ au
for an example with n = 12

after 6× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

25

Start from uniform superposition

over all n-bit strings u.

Step 1: Set a← b where

bu = −au if f (u) = 0,

bu = au otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

26

Normalized graph of u 7→ au
for an example with n = 12

after 7× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

25

Start from uniform superposition

over all n-bit strings u.

Step 1: Set a← b where

bu = −au if f (u) = 0,

bu = au otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

26

Normalized graph of u 7→ au
for an example with n = 12

after 8× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

25

Start from uniform superposition

over all n-bit strings u.

Step 1: Set a← b where

bu = −au if f (u) = 0,

bu = au otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

26

Normalized graph of u 7→ au
for an example with n = 12

after 9× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

25

Start from uniform superposition

over all n-bit strings u.

Step 1: Set a← b where

bu = −au if f (u) = 0,

bu = au otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

26

Normalized graph of u 7→ au
for an example with n = 12

after 10× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

25

Start from uniform superposition

over all n-bit strings u.

Step 1: Set a← b where

bu = −au if f (u) = 0,

bu = au otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

26

Normalized graph of u 7→ au
for an example with n = 12

after 11× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

25

Start from uniform superposition

over all n-bit strings u.

Step 1: Set a← b where

bu = −au if f (u) = 0,

bu = au otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

26

Normalized graph of u 7→ au
for an example with n = 12

after 12× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

25

Start from uniform superposition

over all n-bit strings u.

Step 1: Set a← b where

bu = −au if f (u) = 0,

bu = au otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

26

Normalized graph of u 7→ au
for an example with n = 12

after 13× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

25

Start from uniform superposition

over all n-bit strings u.

Step 1: Set a← b where

bu = −au if f (u) = 0,

bu = au otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

26

Normalized graph of u 7→ au
for an example with n = 12

after 14× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

25

Start from uniform superposition

over all n-bit strings u.

Step 1: Set a← b where

bu = −au if f (u) = 0,

bu = au otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

26

Normalized graph of u 7→ au
for an example with n = 12

after 15× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

25

Start from uniform superposition

over all n-bit strings u.

Step 1: Set a← b where

bu = −au if f (u) = 0,

bu = au otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

26

Normalized graph of u 7→ au
for an example with n = 12

after 16× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

25

Start from uniform superposition

over all n-bit strings u.

Step 1: Set a← b where

bu = −au if f (u) = 0,

bu = au otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

26

Normalized graph of u 7→ au
for an example with n = 12

after 17× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

25

Start from uniform superposition

over all n-bit strings u.

Step 1: Set a← b where

bu = −au if f (u) = 0,

bu = au otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

26

Normalized graph of u 7→ au
for an example with n = 12

after 18× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

25

Start from uniform superposition

over all n-bit strings u.

Step 1: Set a← b where

bu = −au if f (u) = 0,

bu = au otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

26

Normalized graph of u 7→ au
for an example with n = 12

after 19× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

25

Start from uniform superposition

over all n-bit strings u.

Step 1: Set a← b where

bu = −au if f (u) = 0,

bu = au otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

26

Normalized graph of u 7→ au
for an example with n = 12

after 20× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

25

Start from uniform superposition

over all n-bit strings u.

Step 1: Set a← b where

bu = −au if f (u) = 0,

bu = au otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

26

Normalized graph of u 7→ au
for an example with n = 12

after 25× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

25

Start from uniform superposition

over all n-bit strings u.

Step 1: Set a← b where

bu = −au if f (u) = 0,

bu = au otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

26

Normalized graph of u 7→ au
for an example with n = 12

after 30× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

25

Start from uniform superposition

over all n-bit strings u.

Step 1: Set a← b where

bu = −au if f (u) = 0,

bu = au otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

26

Normalized graph of u 7→ au
for an example with n = 12

after 35× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Good moment to stop, measure.

25

Start from uniform superposition

over all n-bit strings u.

Step 1: Set a← b where

bu = −au if f (u) = 0,

bu = au otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

26

Normalized graph of u 7→ au
for an example with n = 12

after 40× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

25

Start from uniform superposition

over all n-bit strings u.

Step 1: Set a← b where

bu = −au if f (u) = 0,

bu = au otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

26

Normalized graph of u 7→ au
for an example with n = 12

after 45× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

25

Start from uniform superposition

over all n-bit strings u.

Step 1: Set a← b where

bu = −au if f (u) = 0,

bu = au otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

26

Normalized graph of u 7→ au
for an example with n = 12

after 50× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Traditional stopping point.

25

Start from uniform superposition

over all n-bit strings u.

Step 1: Set a← b where

bu = −au if f (u) = 0,

bu = au otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

26

Normalized graph of u 7→ au
for an example with n = 12

after 60× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

25

Start from uniform superposition

over all n-bit strings u.

Step 1: Set a← b where

bu = −au if f (u) = 0,

bu = au otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

26

Normalized graph of u 7→ au
for an example with n = 12

after 70× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

25

Start from uniform superposition

over all n-bit strings u.

Step 1: Set a← b where

bu = −au if f (u) = 0,

bu = au otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

26

Normalized graph of u 7→ au
for an example with n = 12

after 80× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

25

Start from uniform superposition

over all n-bit strings u.

Step 1: Set a← b where

bu = −au if f (u) = 0,

bu = au otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

26

Normalized graph of u 7→ au
for an example with n = 12

after 90× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

25

Start from uniform superposition

over all n-bit strings u.

Step 1: Set a← b where

bu = −au if f (u) = 0,

bu = au otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

26

Normalized graph of u 7→ au
for an example with n = 12

after 100× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Very bad stopping point.

25

Start from uniform superposition

over all n-bit strings u.

Step 1: Set a← b where

bu = −au if f (u) = 0,

bu = au otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

26

Normalized graph of u 7→ au
for an example with n = 12

after 100× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Very bad stopping point.

27

u 7→ au is completely described

by a vector of two numbers

(with fixed multiplicities):

(1) au for roots u;

(2) au for non-roots u.

25

Start from uniform superposition

over all n-bit strings u.

Step 1: Set a← b where

bu = −au if f (u) = 0,

bu = au otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

26

Normalized graph of u 7→ au
for an example with n = 12

after 100× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Very bad stopping point.

27

u 7→ au is completely described

by a vector of two numbers

(with fixed multiplicities):

(1) au for roots u;

(2) au for non-roots u.

25

Start from uniform superposition

over all n-bit strings u.

Step 1: Set a← b where

bu = −au if f (u) = 0,

bu = au otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

26

Normalized graph of u 7→ au
for an example with n = 12

after 100× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Very bad stopping point.

27

u 7→ au is completely described

by a vector of two numbers

(with fixed multiplicities):

(1) au for roots u;

(2) au for non-roots u.

26

Normalized graph of u 7→ au
for an example with n = 12

after 100× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Very bad stopping point.

27

u 7→ au is completely described

by a vector of two numbers

(with fixed multiplicities):

(1) au for roots u;

(2) au for non-roots u.

26

Normalized graph of u 7→ au
for an example with n = 12

after 100× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Very bad stopping point.

27

u 7→ au is completely described

by a vector of two numbers

(with fixed multiplicities):

(1) au for roots u;

(2) au for non-roots u.

Step 1 + Step 2

act linearly on this vector.

26

Normalized graph of u 7→ au
for an example with n = 12

after 100× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Very bad stopping point.

27

u 7→ au is completely described

by a vector of two numbers

(with fixed multiplicities):

(1) au for roots u;

(2) au for non-roots u.

Step 1 + Step 2

act linearly on this vector.

Easily compute eigenvalues

and powers of this linear map

to understand evolution

of state of Grover’s algorithm.

⇒ Probability is ≈1

after ≈(ı=4)20:5n iterations.

26

Normalized graph of u 7→ au
for an example with n = 12

after 100× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Very bad stopping point.

27

u 7→ au is completely described

by a vector of two numbers

(with fixed multiplicities):

(1) au for roots u;

(2) au for non-roots u.

Step 1 + Step 2

act linearly on this vector.

Easily compute eigenvalues

and powers of this linear map

to understand evolution

of state of Grover’s algorithm.

⇒ Probability is ≈1

after ≈(ı=4)20:5n iterations.

28

Many more applications

Shor generalizations:

e.g., poly-time attack breaking

“cyclotomic” case of Gentry

STOC 2009 “Fully homomorphic

encryption using ideal lattices”.

Grover generalizations:

e.g., fastest subset-sum attacks

use “quantum walks”.

Not just Shor and Grover:

e.g., subexponential-time

CRS/CSIDH isogeny attack

uses “Kuperberg’s algorithm”.

26

Normalized graph of u 7→ au
for an example with n = 12

after 100× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Very bad stopping point.

27

u 7→ au is completely described

by a vector of two numbers

(with fixed multiplicities):

(1) au for roots u;

(2) au for non-roots u.

Step 1 + Step 2

act linearly on this vector.

Easily compute eigenvalues

and powers of this linear map

to understand evolution

of state of Grover’s algorithm.

⇒ Probability is ≈1

after ≈(ı=4)20:5n iterations.

28

Many more applications

Shor generalizations:

e.g., poly-time attack breaking

“cyclotomic” case of Gentry

STOC 2009 “Fully homomorphic

encryption using ideal lattices”.

Grover generalizations:

e.g., fastest subset-sum attacks

use “quantum walks”.

Not just Shor and Grover:

e.g., subexponential-time

CRS/CSIDH isogeny attack

uses “Kuperberg’s algorithm”.

26

Normalized graph of u 7→ au
for an example with n = 12

after 100× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Very bad stopping point.

27

u 7→ au is completely described

by a vector of two numbers

(with fixed multiplicities):

(1) au for roots u;

(2) au for non-roots u.

Step 1 + Step 2

act linearly on this vector.

Easily compute eigenvalues

and powers of this linear map

to understand evolution

of state of Grover’s algorithm.

⇒ Probability is ≈1

after ≈(ı=4)20:5n iterations.

28

Many more applications

Shor generalizations:

e.g., poly-time attack breaking

“cyclotomic” case of Gentry

STOC 2009 “Fully homomorphic

encryption using ideal lattices”.

Grover generalizations:

e.g., fastest subset-sum attacks

use “quantum walks”.

Not just Shor and Grover:

e.g., subexponential-time

CRS/CSIDH isogeny attack

uses “Kuperberg’s algorithm”.

27

u 7→ au is completely described

by a vector of two numbers

(with fixed multiplicities):

(1) au for roots u;

(2) au for non-roots u.

Step 1 + Step 2

act linearly on this vector.

Easily compute eigenvalues

and powers of this linear map

to understand evolution

of state of Grover’s algorithm.

⇒ Probability is ≈1

after ≈(ı=4)20:5n iterations.

28

Many more applications

Shor generalizations:

e.g., poly-time attack breaking

“cyclotomic” case of Gentry

STOC 2009 “Fully homomorphic

encryption using ideal lattices”.

Grover generalizations:

e.g., fastest subset-sum attacks

use “quantum walks”.

Not just Shor and Grover:

e.g., subexponential-time

CRS/CSIDH isogeny attack

uses “Kuperberg’s algorithm”.

