McTiny:
McEliece for tiny network servers

Daniel J. Bernstein,

ulc.edu, rub.de

Joint work with:
Tanja Lange, tue.nl

My main question in this talk:
Shouldn’t NIST PQC simply
standardize Classic McEliece,
discard the other 25 proposals?

classic.mceliece.org

submission team (alphabetical):

® mMe;

e Tung Chou, osaka-u.ac. jp;

e [anja Lange, tue.nl;

e Ingo von Maurich;

e Rafael Misoczki, intel.com:

e Ruben Niederhagen,
fraunhofer.de;

e Edoardo Persichetti, fau. edu;

e Christiane Peters:

e Peter Schwabe, ru.nl;

e Nicolas Sendrier, inria.fr;

e Jakub Szefer, yale.edu;
e \Wen Wang, yale.edu.

= for tiny network servers

. Bernstein,

1, Tub.de

rk with:
inge, tue.nl

' question in this talk:

't NIST PQC simply
dize Classic McEliece,
the other 25 proposals?

classic.mceliece.org

submission team (alphabetical):

® me;

e Tung Chou, osaka-u.ac. jp;

e Tanja Lange, tue.nl;

e Ingo von Maurich;

e Rafael Misoczki, intel . com:

e Ruben Niederhagen,
fraunhofer.de:

e Edoardo Persichetti, fau. edu:

e Christiane Peters:

e Peter Schwabe, ru.nl;

e Nicolas Sendrier, inria.fr;

o Jakub Szefer, yale.edu;
e \Wen Wang, yale.edu.

History

Fundam
1962 Pr
+ many
1968 Be
1970-19
1978 M
1986 Ni
+ many

2017: C

NIST: *
to gener
other se
Classic |

network servers

1,

nl

in this talk:
PQC simply
sic McEliece,

- 25 proposals?

classic.mceliece.org

submission team (alphabetical):

® mMe;

e Tung Chou, osaka-u.ac. jp;

e [anja Lange, tue.nl;

e Ingo von Maurich;

e Rafael Misoczki, intel.com:

e Ruben Niederhagen,
fraunhofer.de;

e Edoardo Persichetti, fau. edu;

e Christiane Peters:

e Peter Schwabe, ru.nl;

e Nicolas Sendrier, inria.fr;

e Jakub Szefer, yale.edu;
e \Wen Wang, yale.edu.

History

Fundamental liter:
1962 Prange (atta
+ many more attc
1968 Berlekamp (
1970-1971 Goppa
1978 McEliece (cr

1986 Niederreiter
+ many more opt;

2017: Classic McE

NIST: “the submit
to generate param
other security cate
Classic McEliece,

rvers

ply
ce,
ysals?

classic.mceliece.org

submission team (alphabetical):

® me;

e Tung Chou, osaka-u.ac. jp;

e Tanja Lange, tue.nl;

e Ingo von Maurich;

e Rafael Misoczki, intel . com:

e Ruben Niederhagen,
fraunhofer.de:

e Edoardo Persichetti, fau. edu;

e Christiane Peters:

e Peter Schwabe, ru.nl;

e Nicolas Sendrier, inria.fr;

e Jakub Szefer, yale.edu;
e \Wen Wang, yale.edu.

History

Fundamental literature:
1962 Prange (attack)

+ many more attack papers
1968 Berlekamp (decoder).
1970-1971 Goppa (codes).
1978 McEliece (cryptosyster

1986 Niederreiter (dual)
+ many more optimizations

2017: Classic McEliece, roul

NIST: “the submitters may
to generate parameter sets f
other security categories.” =
Classic McEliece, round 2.

classic.mceliece.org

submission team (alphabetical):

® me;

e Tung Chou, osaka-u.ac. jp;

e [anja Lange, tue.nl;

e Ingo von Maurich;

e Rafael Misoczki, intel.com:

e Ruben Niederhagen,
fraunhofer.de;

e Edoardo Persichetti, fau. edu;

e Christiane Peters:

e Peter Schwabe, ru.nl;

e Nicolas Sendrier, inria.fr;

e Jakub Szefer, yale.edu;
e \Wen Wang, yale.edu.

History

Fundamental literature:

1962 Prange (attack)

-+ many more attack papers.
1968 Berlekamp (decoder).
1970-1971 Goppa (codes).
1978 McEliece (cryptosystem).

1986 Niederreiter (dual)
+ many more optimizations.

2017: Classic McEliece, round 1.

NIST: “the submitters may wish
to generate parameter sets for
other security categories.” =
Classic McEliece, round 2.

>.mceliece.org

on team (alphabetical):

Chou, osaka-u.ac. jp;
Lange, tue.nl;

on Maurich;

Misoczki, intel.com;
Niederhagen,
hofer.de:

o Persichetti, fau.edu;
ane Peters;

Schwabe, ru.nl:

s Sendrier, inria.fr;
Szefer, yale.edu;
Vang, yale.edu.

History

Fundamental literature:

1962 Prange (attack)

+ many more attack papers.
1968 Berlekamp (decoder).
1970-1971 Goppa (codes).
1978 McEliece (cryptosystem).

1986 Niederreiter (dual)
+ many more optimizations.

2017: Classic McEliece, round 1.

NIST: “the submitters may wish
to generate parameter sets for
other security categories.” =
Classic McEliece, round 2.

Encodin

1978 Mc
matrix /

Normall

“e.org

alphabetical):

ka-u.ac. jp;
e.nl;

h:
intel.com;
gen,

ettl, fau.edu;
S,

ru.nl;
~1nria.fr;
1le.edu;

e.edu.

History

Fundamental literature:

1962 Prange (attack)

-+ many more attack papers.
1968 Berlekamp (decoder).
1970-1971 Goppa (codes).
1978 McEliece (cryptosystem).

1986 Niederreiter (dual)
+ many more optimizations.

2017: Classic McEliece, round 1.

NIST: “the submitters may wish
to generate parameter sets for
other security categories.” =
Classic McEliece, round 2.

Encoding and dec

1978 McEliece pul
matrix A over F».

Normally s — As

al):

Jp;

om;

edu;

History

Fundamental literature:

1962 Prange (attack)

+ many more attack papers.
1968 Berlekamp (decoder).
1970-1971 Goppa (codes).
1978 McEliece (cryptosystem).

1986 Niederreiter (dual)
+ many more optimizations.

2017: Classic McEliece, round 1.

NIST: “the submitters may wish
to generate parameter sets for
other security categories.” =
Classic McEliece, round 2.

Encoding and decoding

1978 McEliece public key:

matrix A over F».
Normally s — As Is injective

History

Fundamental literature:

1962 Prange (attack)

-+ many more attack papers.
1968 Berlekamp (decoder).
1970-1971 Goppa (codes).
1978 McEliece (cryptosystem).

1986 Niederreiter (dual)
+ many more optimizations.

2017: Classic McEliece, round 1.

NIST: “the submitters may wish
to generate parameter sets for
other security categories.” =
Classic McEliece, round 2.

Encoding and decoding

1978 McEliece public key:
matrix A over F».
Normally s — As Is injective.

History Encoding and decoding
Fundamental literature: 1978 McEliece public key:
1962 Prange (attack) matrix A over F».

-+ many more attack papers. Normally s — As Is injective.

1968 Berlekamp (decoder).
1970-1971 Goppa (codes).
1978 McEliece (cryptosystem).
1986 Niederreiter (dual)

+ many more optimizations.

Ciphertext: vector C = As + e.
Uses secret “codeword” As,
weight-w “error vector' e.

2017: Classic McEliece, round 1.

NIST: “the submitters may wish
to generate parameter sets for
other security categories.” =
Classic McEliece, round 2.

History Encoding and decoding
Fundamental literature: 1978 McEliece public key:
1962 Prange (attack) matrix A over F».

-+ many more attack papers. Normally s — As Is injective.

1968 Berlekamp (decoder).
1970-1971 Goppa (codes).

1978 McEliece (cryptosystem).

1986 Niederreiter (dual)

+ many more Optimizaticns_ 1978 parameters fOr Security
goal: 1024 x 512 matrix, w = 50.

Ciphertext: vector C = As + e.
Uses secret “codeword” As,
weight-w “error vector' e.

264

2017: Classic McEliece, round 1.

NIST: “the submitters may wish
to generate parameter sets for
other security categories.” =
Classic McEliece, round 2.

History

Fundamental literature:

1962 Prange (attack)

-+ many more attack papers.
1968 Berlekamp (decoder).
1970-1971 Goppa (codes).
1978 McEliece (cryptosystem).

1986 Niederreiter (dual)
+ many more optimizations.

2017: Classic McEliece, round 1.

NIST: “the submitters may wish
to generate parameter sets for
other security categories.” =
Classic McEliece, round 2.

Encoding and decoding

1978 McEliece public key:
matrix A over F».
Normally s — As Is injective.

Ciphertext: vector C = As + e.
Uses secret “codeword” As,
weight-w “error vector' e.

1978 parameters for 2% security

goal: 1024 x 512 matrix, w = 50.

Public key Is secretly generated
with “binary Goppa code”
structure that allows efficient
decoding: C — As, e.

ental literature:

ange (attack)

more attack papers.
rlekamp (decoder).

71 Goppa (codes).
-Eliece (cryptosystem).
2derreiter (dual)

more optimizations.

lassic McEliece, round 1.

the submitters may wish
ate parameter sets for
curity categories.” =
VIcEliece, round 2.

Encoding and decoding

1978 McEliece public key:
matrix A over F».

Normally s — As Is injective.

Ciphertext: vector C = As + e.
Uses secret “codeword” As,
weight-w “error vector' e.

1978 parameters for 2% security

goal: 1024 x 512 matrix, w = 50.

Public key Is secretly generated
with “binary Goppa code”
structure that allows efficient
decoding: C +— As, e.

Binary (

Paramet
w € {2,
ne{wl

ture:

ck)

ick papers.

decoder).
(codes).

yptosystem).

(dual)

'mizations.
-liece, round 1.

'ters may wish
eter sets for
gories.” =
round 2.

Encoding and decoding

1978 McEliece public key:
matrix A over F».
Normally s — As Is injective.

Ciphertext: vector C = As + e.
Uses secret “codeword” As,
weight-w “error vector' e.

1978 parameters for 2% security

goal: 1024 x 512 matrix, w = 50.

Public key 1s secretly generated
with “binary Goppa code”
structure that allows efficient
decoding: C — As, e.

Binary Goppa cod

Parameters: g € {

we{2,3,...,|(q
nec{wlgg+1,..

nd 1.

wish

Encoding and decoding

1978 McEliece public key:
matrix A over F».
Normally s — As Is injective.

Ciphertext: vector C = As + e.
Uses secret “codeword” As,
weight-w “error vector' e.

264

1978 parameters for security

goal: 1024 x 512 matrix, w = 50.

Public key Is secretly generated
with “binary Goppa code”
structure that allows efficient
decoding: C +— As, e.

Binary Goppa codes

Parameters: g € {8, 16, 32,

wei2,3,....1(g—1)/lgg
nec{wlgg+1,...,9—1,c

Encoding and decoding Binary Goppa codes

1978 McEliece public key: Parameters: g € {8,16,32,...};
matrix A over F». w e {2,3,..., (g—1)/lgql};
Normally s — As is injective. ne{wlgg+1,..., qg—1,q}.

Ciphertext: vector C = As + e.
Uses secret “codeword” As,
weight-w “error vector' e.

1978 parameters for 2% security

goal: 1024 x 512 matrix, w = 50.

Public key 1s secretly generated
with “binary Goppa code”
structure that allows efficient
decoding: C — As, e.

Encoding and decoding

1978 McEliece public key:
matrix A over F».
Normally s — As Is injective.

Ciphertext: vector C = As + e.
Uses secret “codeword” As,
weight-w “error vector' e.

1978 parameters for 2% security

goal: 1024 x 512 matrix, w = 50.

Public key 1s secretly generated
with “binary Goppa code”
structure that allows efficient
decoding: C — As, e.

Binary Goppa codes

Parameters: g € {8,16,32,...};

wedi2,3,.... [(g—1)/lgql};
ne{wlgg+1,...,9—1,q}.

Secrets: distinct aq,...,ap € Fg;
monic irreducible degree-w

polynomial g € Fg[x].

Encoding and decoding

1978 McEliece public key:

matrix A over F».
Normally s — As Is injective.

Ciphertext: vector C = As + e.
Uses secret “codeword” As,

weight-w “error vector' e.

1978 parameters for 2% security

goal: 1024 x 512 matrix, w = 50.

Public key 1s secretly generated
with “binary Goppa code”
structure that allows efficient
decoding: C — As, e.

Binary Goppa codes

Parameters: g € {8,16,32,...};

wedi2,3,.... [(g—1)/lgql};
ne{wlgg+1,...,9—1,q}.

Secrets: distinct aq,...,ap € Fg;
monic irreducible degree-w

polynomial g € Fg[x].

Goppa code: kernel of

the map v — > . v;/(x — a;)
from FJ to Fy[x]|/g.

Normal dimension n — wlggq.

Encoding and decoding

1978 McEliece public key:

matrix A over F».
Normally s — As Is injective.

Ciphertext: vector C = As + e.
Uses secret “codeword” As,

weight-w “error vector' e.

1978 parameters for 2% security

goal: 1024 x 512 matrix, w = 50.

Public key 1s secretly generated
with “binary Goppa code”
structure that allows efficient
decoding: C — As, e.

Binary Goppa codes

Parameters: g € {8,16,32,...};

wedi2,3,.... [(g—1)/lgql};
ne{wlgg+1,...,9—1,q}.

Secrets: distinct aq,...,ap € Fg;
monic irreducible degree-w

polynomial g € Fg[x].

Goppa code: kernel of

the map v — > . v;/(x — a;)
from FJ to Fy[x]|/g.

Normal dimension n — wlggq.

McEliece uses random matrix A
whose image Is this code.

o and decoding

“Eliece public key:
\ over F».
y S — As Is Injective.

xt: vector C = As + e.
ret “codeword’ As,
v 'error vector ' e.

rameters for 2% security

24 x 512 matrix, w = 50.

ey Is secretly generated
nary Goppa code”

> that allows efficient
. C — As, e

Binary Goppa codes

Parameters: g € {8,16,32,...};

wei2,3,.... [(g—1)/lgql};
ne{wlgg+1,...,9—1,q}.

Secrets: distinct aq, ..., € Fg;
monic irreducible degree-w

polynomial g € Fg[x].

Goppa code: kernel of

the map v — > . v;/(x — a;)
from FJ to Fy[x]|/g.

Normal dimension n — wlggqg.

McEliece uses random matrix A
whose image Is this code.

One-way

Fundam
Given ra
cipherte:
can atta

oding

olic key:

IS Injective.

C = As + e.
vord”’ As.
actor’ e.

or 204 secu rity

matrix, w = 5b0.

tly generated
a code”
ws efficient

5. €.

Binary Goppa codes

Parameters: g € {8,16,32,...};

wedi2,3,.... [(g—1)/lgql};
ne{wlgg+1,...,9—1,q}.

Secrets: distinct aq,...,ap € Fg;
monic irreducible degree-w
polynomial g € Fg[x].

Goppa code: kernel of

the map v —) . v;/(x — a;)
from FJ to Fy[x]|/g.

Normal dimension n — wlggq.

McEliece uses random matrix A
whose image Is this code.

One-wayness (OW

Fundamental secu
Given random putk
ciphertext As + €
can attacker efficie

- e.

urity

= 50.

ted

Binary Goppa codes

Parameters: g € {8,16,32,...};

wei2,3,.... [(g—1)/lgql};
ne{wlgg+1,...,9—1,q}.

Secrets: distinct aq,...,op € Fg;
monic irreducible degree-w
polynomial g € Fg[x].

Goppa code: kernel of

the map v — > . v;/(x — a;)
from FJ to Fy[x]|/g.

Normal dimension n — wlggq.

McEliece uses random matrix A
whose image Is this code.

One-wayness (OW-Passive)

Fundamental security questi
Given random public key A
ciphertext As + e for randor
can attacker efficiently find

Binary Goppa codes

Parameters: g € {8,16,32,...};

wei2,3,.... [(g—1)/lgql};
ne{wlgg+1,...,9—1q}.

Secrets: distinct aq,...,ap € Fg;
monic irreducible degree-w

polynomial g € Fg[x].

Goppa code: kernel of

the map v —) . v;/(x — a;)
from FJ to Fy[x]|/g.

Normal dimension n — wlggq.

McEliece uses random matrix A
whose image Is this code.

One-wayness (OW-Passive)

Fundamental security question:
Given random public key A and
ciphertext As + e for random s, e,
can attacker efficiently find s, €7

Binary Goppa codes

Parameters: g € {8,16,32,...};

wei2,3,.... [(g—1)/lgql};
ne{wlgg+1,...,9—1q}.

Secrets: distinct aq,...,ap € Fg;
monic irreducible degree-w

polynomial g € Fg[x].

Goppa code: kernel of

the map v —) . v;/(x — a;)
from FJ to Fy[x]|/g.

Normal dimension n — wlggq.

McEliece uses random matrix A
whose image Is this code.

One-wayness (OW-Passive)

Fundamental security question:
Given random public key A and
ciphertext As + e for random s, e,
can attacker efficiently find s, €7

1962 Prange: simple attack idea
guiding sizes in 1978 McEliece.

Binary Goppa codes

Parameters: g € {8,16,32,...};

Secrets: distinct aq,...,ap € Fg;
monic irreducible degree-w

polynomial g € Fg[x].

Goppa code: kernel of

the map v —) . v;/(x — a;)
from FJ to Fy[x]|/g.

Normal dimension n — wlggq.

McEliece uses random matrix A
whose image Is this code.

One-wayness (OW-Passive)

Fundamental security question:
Given random public key A and
ciphertext As + e for random s, e,
can attacker efficiently find s, €7

1962 Prange: simple attack idea
guiding sizes in 1978 McEliece.

The McEliece system

(with later key-size optimizations)
uses (cp + o(1))A%(Ig X)?-bit keys
as A\ — oo to achieve 2* security

against Prange’s attack.
Here cg ~ 0.7418860694.

0ppa codes

ers: g € {8,16,32,...};

distinct a1, ..., a, € Fg;
reducible degree-w
ial g € Fglx].

ode: kernel of

v) i vi/(x — aj)

to Fq[x]/g.

dimension n — wlgq.

> uses random matrix A
nage Is this code.

One-wayness (OW-Passive)

Fundamental security question:
Given random public key A and

ciphertext As + e for random s, e,

can attacker efficiently find s, €7

1962 Prange: simple attack idea
guiding sizes in 1978 McEliece.

The McEliece system

(with later key-size optimizations)
uses (cp + o(1))A%(Ig X)?-bit keys
as A — oo to achieve 2* security
against Prange’s attack.

Here cg ~ 0.7418860694.

>2b5 sub
analyzin

1981 Cl:

Cre
1988 Le
1988 Le
1989 Kr
1989 St
1989 D
1990 Co
1990 val
1991 Du
1991 Co
1993 Ch

Klw--,anEFq;

degree-w
[x].

o| of

vi/(x — a;)
g.

n—wlgaq.
dom matrix A
s code.

One-wayness (OW-Passive)

Fundamental security question:
Given random public key A and

ciphertext As + e for random s, e,

can attacker efficiently find s, €7

1962 Prange: simple attack idea
guiding sizes in 1978 McEliece.

The McEliece system

(with later key-size optimizations)
uses (cp + o(1))A%(Ig X)?-bit keys
as A\ — oo to achieve 2* security
against Prange’s attack.

Here cg ~ 0.7418860694.

>25 subsequent p
analyzing one-way

1981 Clark—Cain,
crediting On

1988 Lee—Brickell.

1988 Leon.

1989 Krouk.

1989 Stern.

1989 Dumer.

1990 Coffey—Good

1990 van Tilburg.

1991 Dumer.

1991 Coffey—Gooc

1993 Chabanne—C

X A

One-wayness (OW-Passive)

Fundamental security question:
Given random public key A and

ciphertext As + e for random s, e,

can attacker efficiently find s, €7

1962 Prange: simple attack idea
guiding sizes in 1978 McEliece.

The McEliece system

(with later key-size optimizations)
uses (cp + o(1))A%(Ig X)?-bit keys
as A — oo to achieve 2* security
against Prange’s attack.

Here cg ~ 0.7418860694.

>25 subsequent publication:
analyzing one-wayness of sy:

1981 Clark—Cain,
crediting Omura.

1988 Lee—Brickell.

1988 Leon.

1989 Krouk.

1989 Stern.

1989 Dumer.

1990 Coffey—Goodman.

1990 van Tilburg.

1991 Dumer.

1991 Coffey—Goodman—Farr

1993 Chabanne—Courteau.

One-wayness (OW-Passive)

Fundamental security question:
Given random public key A and

ciphertext As + e for random s, e,

can attacker efficiently find s, €7

1962 Prange: simple attack idea
guiding sizes in 1978 McEliece.

The McEliece system

(with later key-size optimizations)
uses (cp + o(1))A%(Ig X)?-bit keys
as A\ — oo to achieve 2* security
against Prange’s attack.

Here cg ~ 0.7418860694.

>25 subsequent publications
analyzing one-wayness of system:

1981 Clark—Cain,
crediting Omura.

1988 Lee—Brickell.

1988 Leon.

1989 Krouk.

1989 Stern.

1989 Dumer.

1990 Coffey—Goodman.

1990 van Tilburg.

1991 Dumer.

1991 Coffey—Goodman—Farrell.

1993 Chabanne—Courteau.

ness (OW-Passive)

ental security question:
ndom public key A and

xt As + e for random s, e,

cker efficiently find s, €7

ange: simple attack idea
sizes In 1978 McEliece.

Fliece system

er key-size optimizations)
+ 0(1))X?(Ig X)?-bit keys
> to achieve 2 security
Prange’'s attack.

~ 0.74138860694.

>25 subsequent publications

analyzing one-wayness of system:

1981 Clark—Cain,
crediting Omura.

1988 Lee—Brickell.

1988 Leon.

1989 Krouk.

1989 Stern.

1989 Dumer.

1990 Coffey—Goodman.

1990 van Tilburg.

1991 Dumer.

1991 Coffey—Goodman—Farrell.

1993 Chabanne—Courteau.

1993 Ch
1994 vai
1994 Ca
1998 Ca
1998 Ca
2008 Be
2009 Be

val
2009 Fir
2011 Be
2011 M:
2012 Be
2013 Ha
2015 M:
2016 Ca

-Passive)

rity question:
lic key A and

for random s, e,

ntly find s, €7

ple attack idea
78 MckEliece.

em
e optimizations)
’(Ig X)?-bit keys
eve 2 security
ttack.

360694

>25 subsequent publications

analyzing one-wayness of system:

1981 Clark—Cain,
crediting Omura.

1988 Lee—Brickell.

1988 Leon.

1989 Krouk.

1989 Stern.

1989 Dumer.

1990 Coffey—Goodman.

1990 van Tilburg.

1991 Dumer.

1991 Coffey—Goodman—Farrell.

1993 Chabanne—Courteau.

1993 Chabaud.
1994 van Tilburg.
1994 Canteaut—Ct
1998 Canteaut—Ct
1998 Canteaut—Se
2008 Bernstein—Lz:
2009 Bernstein—Lz
van Tilborg.
2009 Finiasz—Senc
2011 Bernstein—Lz
2011 May—Meurer
2012 Becker—Joux
2013 Hamdaoui-S
2015 May—Ozerov
2016 Canto Torres

on:
and

n s, €,

s, e

Idea
ce.

|tions)
t keys
urity

>25 subsequent publications

analyzing one-wayness of system:

1981 Clark—Cain,
crediting Omura.

1988 Lee—Brickell.

1988 Leon.

1989 Krouk.

1989 Stern.

1989 Dumer.

1990 Coffey—Goodman.

1990 van Tilburg.

1991 Dumer.

1991 Coffey—Goodman—Farrell.

1993 Chabanne—Courteau.

1993 Chabaud.

1994 van Tilburg.

1994 Canteaut—Chabanne.

1998 Canteaut—Chabaud.

1998 Canteaut—Sendrier.

2008 Bernstein—Lange—Pete

2009 Bernstein—Lange—Pete
van Tilborg.

2009 Finiasz—Sendrier.

2011 Bernstein—Lange—Pete

2011 May—Meurer—Thomae.

2012 Becker—Joux—May—Me

2013 Hamdaoui—Sendrier.

2015 May—Ozerov.

2016 Canto Torres—Sendrier

>25 subsequent publications

analyzing one-wayness of system:

1981 Clark—Cain,
crediting Omura.

1988 Lee—Brickell.

1988 Leon.

1989 Krouk.

1989 Stern.

1989 Dumer.

1990 Coffey—Goodman.

1990 van Tilburg.

1991 Dumer.

1991 Coffey—Goodman—Farrell.

1993 Chabanne—Courteau.

1993 Chabaud.

1994 van Tilburg.

1994 Canteaut—Chabanne.

1998 Canteaut—Chabaud.

1998 Canteaut—Sendrier.

2008 Bernstein—Lange—Peters.

2009 Bernstein—Lange—Peters—
van Tilborg.

2009 Finiasz—Sendrier.

2011 Bernstein—Lange—Peters.

2011 May—Meurer—Thomae.

2012 Becker—Joux—May—Meurer.

2013 Hamdaoui—Sendrier.

2015 May—Ozerov.

2016 Canto Torres—Sendrier.

sequent publications

o one-wayness of system:

irk—Cain,

diting Omura.
e—Brickell.

on.

ouk.

rn.

mer.
ffey—Goodman.

1 Tilburg.

mer.
ffey—Goodman—Farrell.
abanne—Courteau.

1993 Chabaud.

1994 van Tilburg.

1994 Canteaut—Chabanne.

1998 Canteaut—Chabaud.

1998 Canteaut—Sendrier.

2008 Bernstein—Lange—Peters.

2009 Bernstein—Lange—Peters—
van Tilborg.

2009 Finiasz—Sendrier.

2011 Bernstein—Lange—Peters.

2011 May—Meurer—Thomae.

2012 Becker—Joux—May—Meurer.

2013 Hamdaoui—Sendrier.

2015 May—Ozerov.

2016 Canto Torres—Sendrier.

The Mc
uses (g
as A\ —
against .
Same ¢

ublications

ness of system:

1ura.

'man.

'man—Farrell.
ourteau.

1993 Chabaud.

1994 van Tilburg.

1994 Canteaut—Chabanne.

1998 Canteaut—Chabaud.

1998 Canteaut—Sendrier.

2008 Bernstein—Lange—Peters.

2009 Bernstein—Lange—Peters—
van Tilborg.

2009 Finiasz—Sendrier.

2011 Bernstein—Lange—Peters.

2011 May—Meurer—Thomae.

2012 Becker—Joux—May—Meurer.

2013 Hamdaoui—Sendrier.
2015 May—Ozerov.
2016 Canto Torres—Sendrier.

The McEliece syst
uses (cp 4+ o(1))\
as A — 0o to achi

against all attacks
Same ¢y ~ 0.7418

V)

stem:

ell.

1993 Chabaud.

1994 van Tilburg.

1994 Canteaut—Chabanne.

1998 Canteaut—Chabaud.

1998 Canteaut—Sendrier.

2008 Bernstein—Lange—Peters.

2009 Bernstein—Lange—Peters—
van Tilborg.

2009 Finiasz—Sendrier.

2011 Bernstein—Lange—Peters.

2011 May—Meurer—Thomae.

2012 Becker—Joux—May—Meurer.

2013 Hamdaoui—Sendrier.
2015 May—Ozerov.
2016 Canto Torres—Sendrier.

The McEliece system
uses (cp + o(1))X%(Ig X)?-bi
as A\ — 0o to achieve 2* sec

against all attacks known to
Same ¢ ~ 0.7418860694.

1993 Chabaud.

1994 van Tilburg.

1994 Canteaut—Chabanne.

1998 Canteaut—Chabaud.

1998 Canteaut—Sendrier.

2008 Bernstein—Lange—Peters.

2009 Bernstein—Lange—Peters—
van Tilborg.

2009 Finiasz—Sendrier.

2011 Bernstein—Lange—Peters.

2011 May—Meurer—Thomae.

2012 Becker—Joux—May—Meurer.

2013 Hamdaoui—Sendrier.

2015 May—Ozerov.

2016 Canto Torres—Sendrier.

The McEliece system

uses (cg + o(1))A?(Ig X)?-bit keys
as A\ — oo to achieve 22 security
against all attacks known today.

Same ¢g ~ 0.7418860694.

1993 Chabaud.

1994 van Tilburg.

1994 Canteaut—Chabanne.

1998 Canteaut—Chabaud.

1998 Canteaut—Sendrier.

2008 Bernstein—Lange—Peters.

2009 Bernstein—Lange—Peters—
van Tilborg.

2009 Finiasz—Sendrier.

2011 Bernstein—Lange—Peters.

2011 May—Meurer—Thomae.

2012 Becker—Joux—May—Meurer.

2013 Hamdaoui—Sendrier.

2015 May—Ozerov.

2016 Canto Torres—Sendrier.

The McEliece system

uses (cg + o(1))A?(Ig X)?-bit keys
as A\ — oo to achieve 22 security
against all attacks known today.

Same ¢g ~ 0.7418860694.

Replacing A with 2\

stops all known quantum attacks
(and is probably massive overkill),
as In symmetric crypto.

1993 Chabaud.

1994 van Tilburg.

1994 Canteaut—Chabanne.

1998 Canteaut—Chabaud.

1998 Canteaut—Sendrier.

2008 Bernstein—Lange—Peters.

2009 Bernstein—Lange—Peters—
van Tilborg.

2009 Finiasz—Sendrier.

2011 Bernstein—Lange—Peters.
2011 May—Meurer—Thomae.

2012 Becker—Joux—May—Meurer.

2013 Hamdaoui—Sendrier.
2015 May—Ozerov.
2016 Canto Torres—Sendrier.

The McEliece system

uses (cg + o(1))A?(Ig X)?-bit keys
as A\ — oo to achieve 22 security
against all attacks known today.

Same ¢g ~ 0.7418860694.

Replacing A with 2\

stops all known quantum attacks
(and is probably massive overkill),
as In symmetric crypto.

mceliece6960119 parameter set
(2008 Bernstein—Lange—Peters):
g = 8192, n = 6960, w = 119.

Also in submission: 8192128,
6688128, 460896, 348864.

abaud.

1 Tilburg.
nteaut—Chabanne.
nteaut—Chabaud.
nteaut—Sendrier.
rnstein—Lange—Peters.
rnstein—Lange—Peters—
1 Tilborg.
1iasz—Sendrier.
rnstein—Lange—Peters.
wy—Meurer—Thomae.

cker—Joux—May—Meurer.

mdaoui—Sendrier.
y—Ozerov.
nto Torres—Sendrier.

The McEliece system

uses (cg + o(1))A?(Ig X)?-bit keys
as A — oo to achieve 2* security
against all attacks known today.

Same ¢ ~ 0.7418860694.

Replacing A with 2\

stops all known quantum attacks
(and is probably massive overkill),
as In symmetric crypto.

mceliece6960119 parameter set
(2008 Bernstein—Lange—Peters):
g = 8192, n = 6960, w = 119.

Also in submission: 8192128,
6688128, 460896, 348864.

McEliec
huge anr

Some wi
while cle
e.g., Nie
e.g., ma
Classic |

1abanne.
1abaud.
ndrier.
inge—Peters.
inge—Peters—

rier.
inge—Peters.
— T homae.

—May—Meurer.

endrier.

—Sendrier.

The McEliece system
uses (cg + o(1))A?(Ig X\)?-bit keys
as A\ — oo to achieve 22 security

against all attacks known today.
Same ¢ ~ 0.7418860694.

Replacing A with 2\

stops all known quantum attacks
(and is probably massive overkill),
as In symmetric crypto.

mceliece6960119 parameter set
(2008 Bernstein—Lange—Peters):
g = 8192, n = 6960, w = 119.

Also in submission: 8192128,
6688128, 460896, 348864.

McEliece's system
huge amount of fc

Some work impro\
while clearly prese
e.g., Niederreiter's
e.g., many decodii
Classic McEliece L

S.
(S—

S.

urer.

The McEliece system
uses (cg + o(1))A?(Ig X)?-bit keys
as A — oo to achieve 22 security

against all attacks known today.
Same ¢y ~ 0.7418860694.

Replacing A with 2\

stops all known quantum attacks
(and is probably massive overkill),
as In symmetric crypto.

mceliece6960119 parameter set
(2008 Bernstein—Lange—Peters):
g = 8192, n = 6960, w = 119.

Also in submission: 8192128,
6688128, 460896, 348864.

McEliece's system prompted
huge amount of followup wc

Some work improves efficien
while clearly preserving secu
e.g., Niederreiter's dual PKE
e.g., many decoding speedu|
Classic McEliece uses all thi

The McEliece system McEliece's system prompted a
uses (cg + o(1))A?(Ig X)?-bit keys huge amount of followup work.
as A\ — oo to achieve 22 security

| Some work improves efficiency
against all attacks known today.

while clearly preserving security:
Same ¢y ~ 0.7418860694.

e.g., Niederreiter's dual PKE;

Replacing A with 2 e.g., many decoding speedups.
stops all known quantum attacks Classic McEliece uses all this.

(and is probably massive overkill),
as In symmetric crypto.

mceliece6960119 parameter set
(2008 Bernstein—Lange—Peters):
g = 8192, n = 6960, w = 119.

Also in submission: 8192128,
6688128, 460896, 348864.

The McEliece system

uses (cg + o(1))A?(Ig X)?-bit keys
as A\ — oo to achieve 22 security
against all attacks known today.

Same ¢g ~ 0.7418860694.

Replacing A with 2\

stops all known quantum attacks
(and is probably massive overkill),
as In symmetric crypto.

mceliece6960119 parameter set
(2008 Bernstein—Lange—Peters):
g = 8192, n = 6960, w = 119.

Also in submission: 8192128,
6688128, 460896, 348864.

10
McEliece's system prompted a

huge amount of followup work.

Some work improves efficiency
while clearly preserving security:
e.g., Niederreiter's dual PKE;
e.g., many decoding speedups.
Classic McEliece uses all this.

Classic McEliece does not use
variants whose security has not

been studied as thoroughly:

e.g., replacing binary Goppa codes
with other families of codes;

e.g., lattice-based cryptography.

Fliece system

+ o(1))A?(Ig X)?-bit keys
> to achieve 2* security
1l attacks known today.

~ 0.7418860694.

g A with 2\

known quantum attacks
orobably massive overkill),
nmetric crypto.

26960119 parameter set
ernstein—Lange—Peters):

2, n = 6960, w = 119.

submission: 8192128,
3, 460896, 348864.

McEliece's system prompted a
huge amount of followup work.

Some work improves efficiency
while clearly preserving security:
e.g., Niederreiter's dual PKE;
e.g., many decoding speedups.
Classic McEliece uses all this.

Classic McEliece does not use
variants whose security has not

been studied as thoroughly:

e.g., replacing binary Goppa codes
with other families of codes;

e.g., lattice-based cryptography.

10

Niederre

Generats
of lengtl
nxkm

McEliece
random

em

’(Ig X)?-bit keys

eve 2 security
known today.

860694

I\
i1antum attacks
1assive overkill),

ypto.

) parameter set
ange—Peters):
0, w = 1109.

1 3192128,
- 348864.

McEliece's system prompted a
huge amount of followup work.

Some work improves efficiency
while clearly preserving security:
e.g., Niederreiter's dual PKE;
e.g., many decoding speedups.
Classic McEliece uses all this.

Classic McEliece does not use
variants whose security has not

been studied as thoroughly:

e.g., replacing binary Goppa codes
with other families of codes;

e.g., lattice-based cryptography.

10

Niederreiter key c

Generator matrix 1
of length n and di
n X k matrix G wi

McEliece public ke
random k X k inve

tacks
rkill),

er set
1)
19.

McEliece's system prompted a
huge amount of followup work.

Some work improves efficiency
while clearly preserving security:
e.g., Niederreiter's dual PKE;
e.g., many decoding speedups.
Classic McEliece uses all this.

Classic McEliece does not use
variants whose security has not

been studied as thoroughly:

e.g., replacing binary Goppa codes
with other families of codes;

e.g., lattice-based cryptography.

10

Niederreiter key compressior

Generator matrix for code I
of length n and dimension k
nx kmatrix Gwith =G

McEliece public key: G time
random k X k invertible mas

10 11
McEliece's system prompted a Niederreiter key compression

huge amount of followup work. .
5 P Generator matrix for code I

Some work improves efficiency of length n and dimension k:
while clearly preserving security: n X k matrix G with I =G - Fé.
e.g., Niederreiter's dual PKE;

| McEliece public key: G times
e.g., many decoding speedups.

_ _ _ random k X k invertible matrix.
Classic McEliece uses all this.

Classic McEliece does not use
variants whose security has not

been studied as thoroughly:

e.g., replacing binary Goppa codes
with other families of codes;

e.g., lattice-based cryptography.

McEliece's system prompted a
huge amount of followup work.

Some work improves efficiency
while clearly preserving security:
e.g., Niederreiter's dual PKE;
e.g., many decoding speedups.
Classic McEliece uses all this.

Classic McEliece does not use
variants whose security has not

been studied as thoroughly:

e.g., replacing binary Goppa codes
with other families of codes;

e.g., lattice-based cryptography.

10

11
Niederreiter key compression

Generator matrix for code I

of length n and dimension k:
n X k matrix G with [= G-FIQ‘.

McEliece public key: G times
random k X k invertible matrix.

Niederreiter instead reduces G

to the unique generator matrix

in “systematic form”: bottom k
rows are k X k identity matrix I.
Public key T is top n — k rows.

McEliece's system prompted a
huge amount of followup work.

Some work improves efficiency
while clearly preserving security:
e.g., Niederreiter's dual PKE;
e.g., many decoding speedups.
Classic McEliece uses all this.

Classic McEliece does not use

variants whose security has not

been studied as thoroughly:

e.g., replacing binary Goppa codes
with other families of codes;

e.g., lattice-based cryptography.

10

11
Niederreiter key compression

Generator matrix for code I

of length n and dimension k:
n X k matrix G with [= G-FIQ‘.

McEliece public key: G times
random k X k invertible matrix.

Niederreiter instead reduces G

to the unique generator matrix
bottom k
rows are k X k identity matrix I.

in “systematic form":

Public key T is top n — k rows.

Pr ~29% that systematic form
exists. Security loss: <2 bits.

10
2's system prompted a

ount of followup work.

ork improves efficiency
arly preserving security:
derreiter's dual PKE;
ny decoding speedups.
VIcEliece uses all this.

VIcEliece does not use
whose security has not

died as thoroughly:

lacing binary Goppa codes
er families of codes;
ice-based cryptography.

Niederreiter key compression

Generator matrix for code I
of length n and dimension k:

n X k matrix G with r:G-Fé.

McEliece public key: G times
random k X k invertible matrix.

Niederreiter instead reduces G
to the unique generator matrix
in “systematic form”: bottom k

rows are k X k identity matrix I.

Public key T is top n — k rows.

Pr ~29% that systematic form
exists. Security loss: <2 bits.

11

Niederre

Use Niec

McEliece

prompted a
Illowup work.

res efficiency
rving security:
dual PKE;
1g speedups.
ses all this.

loes not use
urity has not

oroughly:
ary Goppa codes
> of codes;

cryptography.

10

Niederreiter key compression

Generator matrix for code I
of length n and dimension k:

n X k matrix G with r:G-FIQ‘.

McEliece public key: G times
random k X k invertible matrix.

Niederreiter instead reduces G
to the unique generator matrix
in “systematic form”: bottom k

rows are k X k identity matrix I.

Public key T is top n — k rows.

Pr ~29% that systematic form
exists. Security loss: <2 bits.

11

Niederreiter ciphet

Use Niederreiter k

McEliece cipherte

| 3
rk.

Cy
rity:

0S.

se
NOt

codes

10

Niederreiter key compression

Generator matrix for code I

of length n and dimension k:
n X k matrix G with [= G-Fé.

McEliece public key: G times
random k X k invertible matrix.

Niederreiter instead reduces G
to the unique generator matrix
in “systematic form”: bottom k

rows are k X k identity matrix I.

Public key T is top n — k rows.

Pr ~29% that systematic form
exists. Security loss: <2 bits.

11

Niederreiter ciphertext comg

Use Niederreiter key A = (]

McEliece ciphertext: As + ¢

11 12

Niederreiter key compression Niederreiter ciphertext compression
Generator matrix for code I Use Niederreiter key A — (%)

of length n and dimension k: K

nx kmatrix Gwith T = G - F/2<_ McEliece ciphertext: As + e € F7.

McEliece public key: G times
random k X k invertible matrix.

Niederreiter instead reduces G

to the unique generator matrix

in “systematic form”: bottom k
rows are k X k identity matrix I.
Public key T is top n — k rows.

Pr ~29% that systematic form
exists. Security loss: <2 bits.

Niederreiter key compression

Generator matrix for code I

of length n and dimension k:
n X k matrix G with [= G-FIQ‘.

McEliece public key: G times
random k X k invertible matrix.

Niederreiter instead reduces G

to the unique generator matrix

in “systematic form”: bottom k
rows are k X k identity matrix I.
Public key T is top n — k rows.

Pr ~29% that systematic form
exists. Security loss: <2 bits.

11

Niederreiter ciphertext compression
. . T
Use Niederreiter key A = (ﬂ)

McEliece ciphertext: As + e € F7.

Niederreiter ciphertext, shorter:
He € Fi X where H = (I,_|T).

12

Niederreiter key compression

Generator matrix for code I

of length n and dimension k:
n X k matrix G with [= G-FIQ‘.

McEliece public key: G times
random k X k invertible matrix.

Niederreiter instead reduces G

to the unique generator matrix
bottom k
rows are k X k identity matrix I.

in “systematic form":

Public key T is top n — k rows.

Pr ~29% that systematic form
exists. Security loss: <2 bits.

11

Niederreiter ciphertext compression

Use Niederreiter key A = (%)

McEliece ciphertext: As + e € F7.

Niederreiter ciphertext, shorter:
He € Fi X where H = (I,_|T).

Given H and Niederreiter's He,

can attacker efficiently find e?

12

Niederreiter key compression

Generator matrix for code I

of length n and dimension k:
n X k matrix G with [= G-FIQ‘.

McEliece public key: G times
random k X k invertible matrix.

Niederreiter instead reduces G
to the unique generator matrix

in “systematic form”: bottom k

rows are k X k identity matrix I.

Public key T is top n — k rows.

Pr ~29% that systematic form
exists. Security loss: <2 bits.

11

12
Niederreiter ciphertext compression

Use Niederreiter key A = (%)

McEliece ciphertext: As + e € F7.

Niederreiter ciphertext, shorter:
He € Fi X where H = (I,_|T).

Given H and Niederreiter's He,

can attacker efficiently find e?

If so, attacker can efficiently
find s, e given A and As + e:
compute H(As + e) = He;
find e; compute s from As.

Iter key compression

or matrix for code [

1 n and dimension k:
atrix G with I = G - Fé.

> public key: G times
k X k invertible matrix.

iter instead reduces G
nique generator matrix

matic form’ : bottom k

k X k identity matrix Iy.

ey T Is top n — k rows.

o that systematic form
ecurity loss: <2 bits.

11

Niederreiter ciphertext compression

Use Niederreiter key A = (%)

McEliece ciphertext: As + e € F5.

Niederreiter ciphertext, shorter:
He € Fi X where H = (I,_|T).

Given H and Niederreiter's He,

can attacker efficiently find e?

If so, attacker can efficiently
find s, e given A and As + e:
compute H(As + e) = He;
find e; compute s from As.

12

The imn

Case stu
the mos

2006 Sil
and CVI
studied -
both as

problem
pure anc
physics

mpression

or code [
mension k:

th =G - F§.

y: G times
rtible matrix.

d reduces G

rator matrix
M : bottom k

ntity matrix Iy.

D N — K rows.

tematic form
5s: <2 bits.

11

Niederreiter ciphertext compression

Use Niederreiter key A = (%)

McEliece ciphertext: As + e € F7.

Niederreiter ciphertext, shorter:
He € Fi X where H = (I,_|T).

Given H and Niederreiter's He,

can attacker efficiently find e?

If so, attacker can efficiently
find s, e given A and As + e:
compute H(As + e) = He;
find e; compute s from As.

12

The immaturity of

Case study: SVP,

the

most famous |

2006 Silverman:
and CVP, have be

studied for more t

bot
pro

N as Intrinsic n

hlems and for :

pure and applied r

physics and cryptc

11

Niederreiter ciphertext compression

Use Niederreiter key A = (%)

McEliece ciphertext: As + e € F5.

Niederreiter ciphertext, shorter:
He € Fi % where H = (I,_|T).

Given H and Niederreiter's He,

can attacker efficiently find e?

If so, attacker can efficiently
find s, e given A and As + e:
compute H(As + e) = He;
find e; compute s from As.

12

The immaturity of lattice at

Case study: SVP,
the most famous lattice prol

2006 Silverman: “Lattices, !
and CVP, have been intensn

studied for more than 100 vy

bot
pro

pure and applied mat

olems and for app

N as intrinsic mathematic

icatior

nemati

physics and cryptography.”

Niederreiter ciphertext compression

Use Niederreiter key A = (%)

McEliece ciphertext: As + e € F7.

Niederreiter ciphertext, shorter:
He € Fi X where H = (I,_|T).

Given H and Niederreiter's He,

can attacker efficiently find e?

If so, attacker can efficiently
find s, e given A and As + e:
compute H(As + e) = He;
find e; compute s from As.

12

The immaturity of lattice attacks

Case study: SVP,
the most famous lattice problem.

2006 Silverman: “Lattices, SVP
and CVP, have been intensively

studied for more than 100 years,

bot
pro

olems and for app

pure and applied mat

N as intrinsic mathematical

ications In

nematics,

physics and cryptography.”

13

Niederreiter ciphertext compression

Use Niederreiter key A = (%)

McEliece ciphertext: As + e € F7.

Niederreiter ciphertext, shorter:
He € Fi X where H = (I,_|T).

Given H and Niederreiter's He,

can attacker efficiently find e?

If so, attacker can efficiently
find s, e given A and As + e:
compute H(As + e) = He;
find e; compute s from As.

12

The immaturity of lattice attacks

Case study: SVP,
the most famous lattice problem.

2006 Silverman: “Lattices, SVP
and CVP, have been intensively

studied for more than 100 years,

bot
pro

pure and applied mat

olems and for app

N as intrinsic mathematical

ications In

nematics,

physics and cryptography.”

Best SVP algorithms known
by 2000: time 2O(Nlog N) fo
almost all dimension-N lattices.

13

Iter ciphertext compression

lerreiter key A = (I>
Ik

> ciphertext: As + e € FJ.

Iter ciphertext, shorter:
~K where H = (I,_«|T).

and Niederreiter's He,
cker efficiently find e?

acker can efficiently
given A and As + e:
 H(As + e) = He;
ompute s from As.

12

The immaturity of lattice attacks

Case study: SVP,
the most famous lattice problem.

2006 Silverman: “Lattices, SVP
and CVP, have been intensively
studied for more than 100 years,
both as intrinsic mathematical

problems and for applications in

pure and applied mathematics,
physics and cryptography.”

Best SVP algorithms known
by 2000: time 2O(Nlog N) £o
almost all dimension-/ lattices.

13

Best SV
today: -

Approx
believed
0.415: ~
0.415: ~

text compression

T
ov A= | —.
4= ()
<t A5+eEFg.

text, shorter:
H = (In—k‘T)-

erreiter's He,
ently find e?

efficiently
nd As + e:
c) = He;
from As.

12

The immaturity of lattice attacks

Case study: SVP,
the most famous lattice problem.

2006 Silverman: “Lattices, SVP
and CVP, have been intensively

studied for more than 100 years,

bot

pro

pure and applied mat

olems and for app

N as intrinsic mathematical

ications In

nematics,

physics and cryptography.”

Best SVP algorithms known
by 2000: time 2O0(Nlog N) fo
almost all dimension-N lattices.

13

Best SVP algorith

today: 2O(N)

Approx ¢ for some
believed to take ti
0.415: 2008 Nguy
0.415: 2010 Micci

)ression

12

The immaturity of lattice attacks

Case study: SVP,
the most famous lattice problem.

2006 Silverman: “Lattices, SVP
and CVP, have been intensively

studied for more than 100 years,

bot
pro

pure and applied mat

olems and for app

n as intrinsic mathematical

ications In

nematics,

physics and cryptography.”

Best SVP algorithms known
by 2000: time 2O(Nlog N) £o
almost all dimension-/ lattices.

13

Best SVP algorithms known
today: 2O(N)

Approx ¢ for some algorithn
believed to take time 2(ctol
0.415: 2008 Nguyen—Vidick
0.415: 2010 Micciancio—Vol

The immaturity of lattice attacks

Case study: SVP,
the most famous lattice problem.

2006 Silverman: “Lattices, SVP
and CVP, have been intensively

studied for more than 100 years,

bot
pro

pure and applied mat

olems and for app

N as intrinsic mathematical

ications In

nematics,

physics and cryptography.”

Best SVP algorithms known
by 2000: time 2O0(Nlog N) fo
almost all dimension-N lattices.

13

14
Best SVP algorithms known

today: 2O(N)

Approx ¢ for some algorithms
believed to take time 2(cto(1))N.

0.415: 2008 Nguyen—Vidick.
0.415: 2010 Micciancio—Voulgaris.

The immaturity of lattice attacks

Case study: SVP,
the most famous lattice problem.

2006 Silverman: “Lattices, SVP
and CVP, have been intensively

studied for more than 100 years,

bot
pro

pure and applied mat

olems and for app

N as intrinsic mathematical

ications In

nematics,

physics and cryptography.”

Best SVP algorithms known
by 2000: time 2O0(Nlog N) fo
almost all dimension-N lattices.

13

14
Best SVP algorithms known

today: 2O(N)

Approx ¢ for some algorithms
believed to take time 2(cto(1))N.

0.415: 2008 Nguyen—Vidick.
0.415: 2010 Micciancio—Voulgaris.
0.384: 2011 Wang—Liu—-Tian-Bi.

The immaturity of lattice attacks

Case study: SVP,

the most famous lattice problem.

2006 Silverman: “Lattices, SVP

and CVP, have been intensively

studied for more than 100 years,

bot
pro

pure and applied mat

olems and for app

N as intrinsic mathematical

ications In

nematics,

physics and cryptography.”

Best SVP algorithms known
by 2000: time 2O0(Nlog N) fo
almost all dimension-N lattices.

13

14

Best SVP algorithms known
today: 2O(N)

Approx ¢ for some algorithms
believed to take time 2(cto(1))N.

0.415
0.415
0.334
0.373

. 2008 Nguyen—Vidick.

. 2010 Micciancio—Voulgaris.
. 2011 Wang—Liu—Tian-Bi.

. 2013 Zhang—Pan—-Hu.

The immaturity of lattice attacks

Case study: SVP,
the most famous lattice problem.

2006 Silverman: “Lattices, SVP
and CVP, have been intensively
studied for more than 100 years,
both as intrinsic mathematical

problems and for applications in

pure and applied mathematics,
physics and cryptography.”

Best SVP algorithms known
by 2000: time 2O0(Nlog N) fo
almost all dimension-N lattices.

13

14
Best SVP algorithms known

today: 2O(N)

Approx ¢ for some algorithms
believed to take time 2(cto(1))N.

0.415: 2008 Nguyen—Vidick.
0.415: 2010 Micciancio—Voulgaris.
0.384: 2011 Wang—Liu—Tian—Bi.
0.378: 2013 Zhang—Pan—Hu.
0.337: 2014 Laarhoven.

The immaturity of lattice attacks

Case study: SVP,
the most famous lattice problem.

2006 Silverman: “Lattices, SVP
and CVP, have been intensively
studied for more than 100 years,
both as intrinsic mathematical

problems and for applications in

pure and applied mathematics,
physics and cryptography.”

Best SVP algorithms known
by 2000: time 2O0(Nlog N) fo
almost all dimension-N lattices.

13

14
Best SVP algorithms known

today: 2O(N)

Approx ¢ for some algorithms
believed to take time 2(cto(1))N.

0.415: 2008 Nguyen—Vidick.
0.415: 2010 Micciancio—Voulgaris.
0.384: 2011 Wang—Liu—Tian—Bi.
0.378: 2013 Zhang—Pan—Hu.
0.337: 2014 Laarhoven.

0.298: 2015 Laarhoven—de Weger.

0.292: 2015 Becker—Ducas—
Gama-Laarhoven.

The immaturity of lattice attacks

Case study: SVP,
the most famous lattice problem.

2006 Silverman: “Lattices, SVP
and CVP, have been intensively
studied for more than 100 years,
both as intrinsic mathematical

problems and for applications in

pure and applied mathematics,
physics and cryptography.”

Best SVP algorithms known
by 2000: time 2O0(Nlog N) fo
almost all dimension-N lattices.

13

14

Best SVP algorithms known
today: 2O(N)

Approx ¢ for some algorithms
believed to take time 2(cto(1))N.

0.415:
0.415:
0.384:
0.378:
0.337:
0.298:
0.292:

2008 Nguyen—Vidick.

2010 Micciancio—Voulgaris.
2011 Wang—Liu—Tian—Bi.
2013 Zhang—Pan—Hu.
2014 Laarhoven.

2015 Laarhoven—de Weger.
2015 Becker—Ducas—
Gama—Laarhoven.

Lattice crypto: more attack

avenues; even less understanding.

naturity of lattice attacks

dy: SVP,
t famous lattice problem.

verman: ‘‘Lattices, SVP
°, have been intensively
for more than 100 years,
Intrinsic mathematical

s and for applications in

I applied mathematics,
and cryptography.”

P algorithms known
-~ time 20(NlogN) o

Il dimension-N lattices.

13

14

Best SVP algorithms known
today: 2O(N)

Approx ¢ for some algorithms
believed to take time 2(cto(1))N.

0.415:
0.415:
0.384:
0.378:
0.337:
0.298:
0.292:

2008 Nguyen—Vidick.

2010 Micciancio—Voulgaris.
2011 Wang—Liu—Tian—Bi.
2013 Zhang—Pan—Hu.
2014 Laarhoven.

2015 Laarhoven—de Weger.
2015 Becker—Ducas—
Gama—Laarhoven.

Lattice crypto: more attack

avenues; even less understanding.

Agility,

“You thi
That's ¢

- |attice attacks

attice problem.

Lattices, SVP
en intensively
han 100 years,
1athematical

pplications In

nathematics,
graphy.”

ms known
Nlog N) ¢

on-/N lattices.

13

14

Best SVP algorithms known
today: 2O(N)

Approx ¢ for some algorithms
believed to take time 2(cto(1))N.

2008 Nguyen—Vidick.

2010 Micciancio—Voulgaris.
2011 Wang—Liu—Tian—Bi.
2013 Zhang—Pan—Hu.

0.415:
0.415:
0.384:
0.378:
0.337:
0.298:
0.292:

2014 Laar
2015 Laar

Noven.

noven—de Weger.

2015 Becker—Ducas—
Gama-Laarhoven.

Lattice crypto: more attack

avenues; even less understanding.

Agility, diversity, e

“You think there «
That's crazy! We

tacks

olem.

>VP
rely
ears,
“al

S 1IN

CES.

13

Best SVP algorithms known
today: 2O(N)

Approx ¢ for some algorithms
believed to take time 2(cto(1))N.

0.415:
0.415:
0.384:
0.378:
0.337:
0.298:
0.292:

2008 Nguyen—Vidick.

2010 Micciancio—Voulgaris.

2011 Wang—Liu—Tian—Bi.
2013 Zhang—Pan—Hu.
2014 Laarhoven.

2015 Laarhoven—de Weger.

2015 Becker—Ducas—
Gama—Laarhoven.

Lattice crypto: more attack

avenues; even less understanding.

14

Agility, diversity, etc.

“You think there can be onl
That's crazy! We need back

Best SVP algorithms known
today: 2O(N)

Approx ¢ for some algorithms
believed to take time 2(cto(1))N.

0.415:
0.415:
0.384:
0.378:
0.337:
0.298:
0.292:

2008 Nguyen—Vidick.

2010 Micciancio—Voulgaris.
2011 Wang—Liu—Tian—Bi.
2013 Zhang—Pan—Hu.
2014 Laarhoven.

2015 Laarhoven—de Weger.
2015 Becker—Ducas—
Gama-Laarhoven.

Lattice crypto: more attack

avenues; even less understanding.

14

Agility, diversity, etc.

“You think there can be only one?
That's crazy! We need backups!”

15

Best SVP algorithms known
today: 2O(N)

Approx ¢ for some algorithms
believed to take time 2(cto(1))N.

0.415:
0.415:
0.384:
0.378:
0.337:
0.298:
0.292:

2008 Nguyen—Vidick.

2010 Micciancio—Voulgaris.

2011 Wang—Liu—Tian—Bi.
2013 Zhang—Pan—Hu.
2014 Laarhoven.

2015 Laarhoven—de Weger.
2015 Becker—Ducas—
Gama—Laarhoven.

Lattice crypto: more attack

avenues; even less understanding.

14

15
Agility, diversity, etc.

“You think there can be only one?
That's crazy! We need backups!”

McEliece has lower risk than
lattice-based crypto. This doesn't

mean that McEliece has zero risk.

Best SVP algorithms known

today: 2O(N)

Approx ¢ for some algorithms
believed to take time 2(cto(1))N.

0.415: 2008
0.415: 2010
0.384: 2011 Wang—Liu—Tian—Bi.
0.378: 2013 Zhang—Pan—Hu.
0.337: 2014 Laarhoven.

0.298:
0.292:

Nguyen—Vidick.

2015 Becker—Ducas—
Gama-Laarhoven.

Lattice crypto: more attack
avenues; even less understanding.

Micciancio—Voulgaris.

2015 Laarhoven—de Weger.

14

15
Agility, diversity, etc.

“You think there can be only one?
That's crazy! We need backups!”

McEliece has lower risk than
lattice-based crypto. This doesn't

mean that McEliece has zero risk.

But there are also risks In
standardizing more options: e.g.,
vulnerabilities are missed because
cryptanalysts and implementors
are spreading attention too thin.

Best SVP algorithms known
today: 2O(N)

Approx ¢ for some algorithms
believed to take time 2(cto(1))N.

0.415: 2008
0.415: 2010
0.384: 2011 Wang—Liu—Tian—Bi.
0.378: 2013 Zhang—Pan—Hu.
0.337: 2014 Laarhoven.

0.298:
0.292:

Nguyen—Vidick.

2015 Becker—Ducas—
Gama-Laarhoven.

Lattice crypto: more attack
avenues; even less understanding.

Micciancio—Voulgaris.

2015 Laarhoven—de Weger.

14

15
Agility, diversity, etc.

“You think there can be only one?
That's crazy! We need backups!”

McEliece has lower risk than
lattice-based crypto. This doesn't

mean that McEliece has zero risk.

But there are also risks In
standardizing more options: e.g.,
vulnerabilities are missed because
cryptanalysts and implementors
are spreading attention too thin.
OCB2 was published in 2004;
standardized by ISO in 2009;
complete break published in 2018.

P algorithms known
O(N),

c for some algorithms
to take time 2(cto(1))N.

008 Nguyen—Vidick.

010 Micciancio—Voulgaris.

011 Wang—Liu—-Tian-Bi.
013 Zhang—Pan—Hu.
014 Laarhoven.

015 Laarhoven—de Weger.

015 Becker—Ducas—
sama—Laarhoven.

rypto: more attack
even less understanding.

14

15
Agility, diversity, etc.

“You think there can be only one?
That's crazy! We need backups!”

McEliece has lower risk than
lattice-based crypto. This doesn't

mean that McEliece has zero risk.

But there are also risks In
standardizing more options: e.g.,
vulnerabilities are missed because
cryptanalysts and implementors
are spreading attention too thin.
OCB2 was published in 2004;
standardized by ISO in 2009;
complete break published in 2018.

Integrity

“You we
That's c
post-que

ms known

 algorithms
me 2(c+e(L)N,

en—Vidick.

ancio—Voulgaris.

—Liu—Tian—Bi.
c—Pan—Hu.

IOVEN.

oven—de Weger.

sr—Ducas—
rhoven.

re attack
understanding.

14

15
Agility, diversity, etc.

“You think there can be only one?
That's crazy! We need backups!”

McEliece has lower risk than
lattice-based crypto. This doesn't

mean that McEliece has zero risk.

But there are also risks In
standardizing more options: e.g.,
vulnerabilities are missed because
cryptanalysts and implementors
are spreading attention too thin.
OCB2 was published in 2004;
standardized by ISO in 2009;
complete break published in 2018.

Integrity

“You want just en
That's crazy! Oby
post-quantum sigr

Ilgaris.
—Bi.

Neger.

\ding.

14

15
Agility, diversity, etc.

“You think there can be only one?
That's crazy! We need backups!”

McEliece has lower risk than
lattice-based crypto. This doesn't

mean that McEliece has zero risk.

But there are also risks In
standardizing more options: e.g.,
vulnerabilities are missed because
cryptanalysts and implementors
are spreading attention too thin.
OCB2 was published in 2004;
standardized by ISO in 2009;
complete break published in 2018.

Integrity

“You want just encryption?
That's crazy! Obviously we
post-quantum signatures to«

Agility, diversity, etc.

“You think there can be only one?
That's crazy! We need backups!”

McEliece has lower risk than
lattice-based crypto. This doesn't

mean that McEliece has zero risk.

But there are also risks In
standardizing more options: e.g.,
vulnerabilities are missed because
cryptanalysts and implementors
are spreading attention too thin.
OCB2 was published in 2004;
standardized by ISO in 2009;
complete break published in 2018.

15

Integrity

“You want just encryption?
That's crazy! Obviously we need
post-quantum signatures too!”

16

Agility, diversity, etc.

“You think there can be only one?
That's crazy! We need backups!”

McEliece has lower risk than
lattice-based crypto. This doesn't

mean that McEliece has zero risk.

But there are also risks In
standardizing more options: e.g.,
vulnerabilities are missed because
cryptanalysts and implementors
are spreading attention too thin.
OCB2 was published in 2004;
standardized by ISO in 2009;
complete break published in 2018.

15

16
Integrity

“You want just encryption?
That's crazy! Obviously we need
post-quantum signatures too!”

Example: Google's NewHope
experiment, modification of TLS.
e Server — client: E,

one-time NewHope public key.
e Client — server:

AES-GCM key encrypted to E.
e Server signs key exchange

under its long-term RSA key.

Agility, diversity, etc.

“You think there can be only one?
That's crazy! We need backups!”

McEliece has lower risk than
lattice-based crypto. This doesn't

mean that McEliece has zero risk.

But there are also risks In
standardizing more options: e.g.,
vulnerabilities are missed because
cryptanalysts and implementors
are spreading attention too thin.
OCB2 was published in 2004;
standardized by ISO in 2009;
complete break published in 2018.

15

16
Integrity

“You want just encryption?
That's crazy! Obviously we need
post-quantum signatures too!”

Example: Google's NewHope
experiment, modification of TLS.
e Server — client: E,

one-time NewHope public key.
e Client — server:

AES-GCM key encrypted to E.
e Server signs key exchange

under its long-term RSA key.

Must upgrade this protocol before
attacker has quantum computer.

liversity, etc.

nk there can be only one?
razy! We need backups!”

> has lower risk than
ased crypto. This doesn't
at McEliece has zero risk.

e are also risks In

IziIng more options: e.g.,
ilities are missed because
lysts and implementors
ding attention too thin.
as published in 2004;
ized by 1SO in 2009;

> break published in 2018.

15

Integrity

“You want just encryption?
That's crazy! Obviously we need
post-quantum signatures too!”

Example: Google's NewHope
experiment, modification of TLS.
e Server — client: E,

one-time NewHope public key.
o Client — server:

AES-GCM key encrypted to E.
e Server signs key exchange

under its long-term RSA key.

Must upgrade this protocol before
attacker has quantum computer.

16

More ge
Server si
server's
Client ve

tC.

an be only one?
need backups!”

r risk than
0. Ihis doesn't

ce has zero risk.

risks 1n

> options: e.g.,
missed because
implementors
ntion too thin.
ed in 2004;

O in 2009:
blished in 2018.

15

Integrity

“You want just encryption?
That's crazy! Obviously we need
post-quantum signatures too!”

Example: Google's NewHope
experiment, modification of TLS.
e Server — client: E,

one-time NewHope public key.
e Client — server:

AES-GCM key encrypted to E.
e Server signs key exchange

under its long-term RSA key.

Must upgrade this protocol before
attacker has quantum computer.

16

More general sign:
Server signs mess:
server's long-term
Client verifies sign

y one?
ups!”

oesn't
o risk.

e.g.,
cause
LOrs

thin.

20183.

15

Integrity

“You want just encryption?
That's crazy! Obviously we need
post-quantum signatures too!”

Example: Google's NewHope
experiment, modification of TLS.
e Server — client: E,

one-time NewHope public key.
e Client — server:

AES-GCM key encrypted to E.
e Server signs key exchange

under its long-term RSA key.

Must upgrade this protocol before
attacker has quantum computer.

16

More general signature situs
Server signs message m und
server's long-term signature
Client veritfies signature.

Integrity

“You want just encryption?
That's crazy! Obviously we need
post-quantum signatures too!”

Example: Google's NewHope
experiment, modification of TLS.
e Server — client: E,

one-time NewHope public key.
e Client — server:

AES-GCM key encrypted to E.
e Server signs key exchange

under its long-term RSA key.

Must upgrade this protocol before
attacker has quantum computer.

16

More general signature situation:
Server signs message m under
server's long-term signature key.
Client verifies signature.

17

Integrity

“You want just encryption?
That's crazy! Obviously we need
post-quantum signatures too!”

Example: Google's NewHope
experiment, modification of TLS.
e Server — client: E,

one-time NewHope public key.
e Client — server:

AES-GCM key encrypted to E.
e Server signs key exchange

under its long-term RSA key.

Must upgrade this protocol before
attacker has quantum computer.

16

17
More general signature situation:

Server signs message m under
server's long-term signature key.
Client verifies signature.

Can protect integrity of m
without a signature system:
e Client — server:
AES-GCM key k encrypted to
server's long-term encryption key.
e Server — client:
message m encrypted under k.

AES-GCM includes authentication
so client knows m i1s from server.

nt just encryption?
razy! Obviously we need
ntum signatures too!”

: Google’'s NewHope

nt, modification of TLS.
— client: E,

ne NewHope public key.
— Server:

,CM key encrypted to E.
signs key exchange

its long-term RSA key.

grade this protocol before

has quantum computer.

16

More general signature situation:
Server signs message m under
server's long-term signature key.
Client verifies signature.

Can protect integrity of m
without a signature system:
e Client — server:
AES-GCM key k encrypted to
server's long-term encryption key.
e Server — client:
message m encrypted under k.

AES-GCM includes authentication
so client knows m is from server.

17

Advanta

Client ki

cryption?
lously we need
1atures too!”

s NewHope
ication of TLS.

E,
pe public key.

ncrypted to E.

exchange
rm RSA key.

protocol before
(um computer.

16

More general signature situation:
Server signs message m under
server's long-term signature key.
Client verifies signature.

Can protect integrity of m
without a signature system:
e Client — server:
AES-GCM key k encrypted to
server's long-term encryption key.
e Server — client:
message m encrypted under k.

AES-GCM includes authentication
so client knows m i1s from server.

17

Advantages of thi:

Client knows m is

key.

to E.

ey.

before
uter.

16

More general signature situation:
Server signs message m under
server’'s long-term signature key.
Client verifies signature.

Can protect integrity of m
without a signature system:
e Client — server:
AES-GCM key k encrypted to
server's long-term encryption key.
e Server — client:
message m encrypted under k.

AES-GCM includes authentication
so client knows m is from server.

17

Advantages of this approack

Client knows m is fresh.

More general signature situation:
Server signs message m under
server's long-term signature key.
Client verifies signature.

Can protect integrity of m
without a signature system:
e Client — server:
AES-GCM key k encrypted to
server's long-term encryption key.
e Server — client:
message m encrypted under k.

AES-GCM includes authentication
so client knows m i1s from server.

17

Advantages of this approach:

Client knows m is fresh.

18

More general signature situation:
Server signs message m under
server's long-term signature key.
Client verifies signature.

Can protect integrity of m
without a signature system:
e Client — server:
AES-GCM key k encrypted to
server's long-term encryption key.
e Server — client:
message m encrypted under k.

AES-GCM includes authentication
so client knows m i1s from server.

17

Advantages of this approach:

Client knows m is fresh

— Already guaranteed for TLS,
since m has client randomness.

18

More general signature situation:
Server signs message m under
server's long-term signature key.
Client verifies signature.

Can protect integrity of m
without a signature system:
e Client — server:
AES-GCM key k encrypted to
server's long-term encryption key.
e Server — client:
message m encrypted under k.

AES-GCM includes authentication
so client knows m i1s from server.

17

Advantages of this approach:

Client knows m is fresh

— Already guaranteed for TLS,
since m has client randomness.

Authenticates and encrypts.
Don't need 2nd encryption layer.

18

More general signature situation:
Server signs message m under
server's long-term signature key.
Client verifies signature.

Can protect integrity of m
without a signature system:
e Client — server:
AES-GCM key k encrypted to
server's long-term encryption key.
e Server — client:
message m encrypted under k.

AES-GCM includes authentication
so client knows m i1s from server.

17

Advantages of this approach:

Client knows m is fresh

— Already guaranteed for TLS,
since m has client randomness.

Authenticates and encrypts.
Don't need 2nd encryption layer.
— But “forward secrecy’ needs
an ephemeral encryption layer.

18

17 18
More general signature situation: Advantages of this approach:

Server signs message m under . .
& & Client knows m is fresh

server's long-term signature key. __ Already guaranteec 1lfor TLS

Client verifies signature. . .
since m has client randomness.

Can protect integrity of m .
P Bty Authenticates and encrypts.

without a signature system: , .
& y Don't need 2nd encryption layer.

e Client — server:
AES-GCM key k encrypted to

server's long-term encryption key.
e Server — client: Advantage of signatures:

message m encrypted under k. Signer can be offline.

— But “forward secrecy’ needs
an ephemeral encryption layer.

AES-GCM includes authentication
so client knows m i1s from server.

More general signature situation:
Server signs message m under
server's long-term signature key.
Client verifies signature.

Can protect integrity of m
without a signature system:
e Client — server:
AES-GCM key k encrypted to
server's long-term encryption key.
e Server — client:
message m encrypted under k.

AES-GCM includes authentication
so client knows m i1s from server.

17

18
Advantages of this approach:

Client knows m is fresh

— Already guaranteed for TLS,
since m has client randomness.

Authenticates and encrypts.
Don't need 2nd encryption layer.
— But “forward secrecy’ needs
an ephemeral encryption layer.

Advantage of signatures:

Signer can be offline.

— Designing for a disconnected
future? Not relevant to TLS.

neral signature situation:
gns message m under
long-term signature key.
rifies signature.

tect integrity of m

a signature system:

— Server:

CM key k encrypted to

s long-term encryption key.
— client:

oce m encrypted under k.

M includes authentication
knows m iIs from server.

17

Advantages of this approach:

Client knows m is fresh

— Already guaranteed for TLS,
since m has client randomness.

Authenticates and encrypts.

Don't need 2nd encryption layer.

— But “forward secrecy’ needs
an ephemeral encryption layer.

Advantage of signatures:

Signer can be offline.

— Designing for a disconnected
future? Not relevant to TLS.

18

Time

Cycles o

params

343364
460396
668812¢
696011¢
319212¢

343364
460396
668812¢
696011¢
319212¢

ture situation:
ige m under
signature key.
ature.

ity of m

e system:

c encrypted to
m encryption key.

vpted under k.

s authentication
Is from server.

17

18
Advantages of this approach:

Client knows m is fresh

for TLS,
since m has client randomness.

— Already guaranteec

Authenticates and encrypts.
Don't need 2nd encryption layer.
— But “forward secrecy’ needs
an ephemeral encryption layer.

Advantage of signatures:

Signer can be offline.

— Designing for a disconnected
future? Not relevant to TLS.

Time

Cycles on Intel Ha

params oOp C)

348864
460896 enc 3
6688128 enc 15-
6960119
8192128 enc 183

elcC

ellC

348864
460396
6633128
6960119
3192128

dec
dec
dec
dec

dec

17 18

tion: Advantages of this approach: Time
ekr Client knows m is fresh. Cycles on Intel Haswell CPL
=Y — Already guaranteed for TLS,

| | params op cycles
since m has client randomness.

348864 enc 45833

Authenticates and encrypts. 460896 enc 826384
Don't need 2nd encryption layer. 6688128 enc 153372
00 mers encyption yer, | 350119 enc 10407
ion key. | 8192128 enc 183892
Advantage of signatures: 348864 dec 136840
er k. Signer can be offline, 460896 dec 273872
| — Designing for a disconnected 6688128 dec 320428
cation
future? Not relevant to TLS. 6960119 dec 302460
rver.

8192128 dec 324003

18
Advantages of this approach: Time

Client knows m is fresh Cycles on Intel Haswell CPU core:

— Already guaranteed for TLS,
params op cycles

since m has client randomness.

348864 enc 45833

Authenticates and encrypts. 460896 enc 82684
Don't need 2nd encryption layer. 6688128 enc 153372
— But “forward secrecy” needs 6960119 enc 154972
an ephemeral encryption layer. 8192128 enc 183892
Advantage of signatures: 348864 dec 136840
Signer can be offline. 460896 dec 273872
— Designing for a disconnected 6688128 dec 320428
future? Not relevant to TLS. 6960119 dec 302460

8192128 dec 324003

ges of this approach:

10ws m Is fresh

dy guaranteed for TLS,
has client randomness.

icates and encrypts.

2ed 2nd encryption layer.

‘forward secrecy’ needs
meral encryption layer.

ge of signatures:

an be offline.

ning for a disconnected
Not relevant to TLS.

18

Time

Cycles on Intel Haswell CPU core:

params

Oop

cycles

343364
460396
66383123
6960119
3192128

elcC

elnc

eIcC

enc

enc

45333
82634
153372
154972
183892

343364
460396
6633123
6960119
3192128

dec
dec
dec
dec

dec

136340
27338172
320423
302460
324008

19

“Wait,
most Im

to have

params

343364

34383641
460396

4603961
668812¢
668812¢
696011¢
696011¢
319212¢
319212¢

5 approach:

fresh.
teed for TLS,
randomness.

encrypts.

1Icryption layer.

ecrecy needs
yption layer.

atures:
ne.

“disconnected
nt to TLS.

18

Time

Cycles on Intel Haswell CPU core:

params op

cycles

348364 enc
460896 enc
6683128 enc
6960119 enc
3192128 enc

45338
82634
153372
154972
183892

348364 dec
460896 dec
6683128 dec
6960119 dec
3192128 dec

136340
27338172
320428
302460
324008

19

“Wait, you're leav

most iImportant cc

to have such slow

params

Oop

348864

3488641

460396

4603961
6633128
66331231
6960119
69601191
3192128
3192128f

keyger
keyger
keyger
keyger
keyger
keyger
keyger
keyger
keyger
keyger

LS,

2SS.

ayer.

eds
er.

“ted

18

19
Time

Cycles on Intel Haswell CPU core:

params op cycles

348864 enc 45388
460896 enc 820634
6688128 enc 153372
6960119 enc 154972
8192128 enc 183892

348864 dec 136840
460896 dec 273872
6688128 dec 320428
6960119 dec 302460
8192128 dec 324008

“Wait, you re leaving out th
most important cost! It's cr
to have such slow keygen!”

params op Cy

348864 keygen 14087C
348864f Lkeygen « 8223Z
460896 keygen 441517
460896f keygen 28236€
6688128 keygen 118046¢
6688128f keygen 62547C
6960119 keygen 110934C
6960119f keygen 56457(
8192128 keygen 933422
8192128f keygen 67336(

Time

Cycles on Intel Haswell CPU core:

params op cycles

348864 enc 45388
460896 enc 820634
6688128 enc 153372
6960119 enc 154972
8192128 enc 183892

348864 dec 136840
460896 dec 273872
6688128 dec 320428
6960119 dec 302460
8192128 dec 324008

19

“Walit, you're leaving out the
most important cost! It's crazy
to have such slow keygen!”

params op cycles

348864 keygen 140870324
348864f keygen 82232360
460896 keygen 441517292
460896f keygen 2382869316
6688128 keygen 1180463912
6688128f keygen 625470504
6960119 keygen 1109340668
6960119f keygen 564570384
8192128 Lkeygen 933422948
8192128f keygen 673360388

20

n Intel Haswell CPU core:

op

cycles

enc

enc
3 enc
) enc

3 enc

45333
82634
153372
154972
183892

dec
dec
3 dec
) dec
3 dec

136340
2733872
320423
302460
324008

19

“Wait, you 're leaving out the
most important cost! It's crazy
to have such slow keygen!”

params op cycles

348864 keygen 140870324
348864f keygen 82232360
460896 keygen 441517292
460896f keygen 2382869316
6688128 keygen 1180463912
6688128f keygen 625470504
6960119 keygen 1109340668
6960119f keygen 564570384
8192128 Lkeygen 933422948
8192128f keygen 673360388

20

1. What
that this
a proble

swell CPU core:

icles

333
634
372
1072
392

340
372
428
460
1003

19

“Walit, you're leaving out the
most important cost! It's crazy
to have such slow keygen!”

params op cycles

348864 keygen 140870324
348864f keygen 82232360
460896 keygen 441517292
460896f keygen 2382869316
6688128 keygen 1180463912
6688128f keygen 625470504
6960119 keygen 1109340668
6960119f keygen 564570384
8192128 keygen 933422948
8192128f keygen 673360388

20

1. What evidence
that this keygen ti
a problem for appl

| core:

19

“Wait, you 're leaving out the
most iImportant cost! It's crazy
to have such slow keygen!”

params op cycles

348864 keygen 140870324
348864f keygen 82232360
460896 keygen 441517292
460896f keygen 2382869316
6688128 keygen 1180463912
6688128f keygen 625470504
6960119 keygen 1109340668
6960119f keygen 564570384
8192128 Lkeygen 933422948
8192128f keygen 673360388

20

1. What evidence do we hay
that this keygen time is
a problem for applications?

“Walit, you're leaving out the
most important cost! It's crazy
to have such slow keygen!”

params op cycles

348864 keygen 140870324
348864f keygen 82232360
460896 keygen 441517292
460896f keygen 2382869316
6688128 keygen 1180463912
6688128f keygen 625470504
6960119 keygen 1109340668
6960119f keygen 564570384
8192128 keygen 933422948
8192128f keygen 673360388

20

1. What evidence do we have
that this keygen time is
a problem for applications?

21

“Walit, you're leaving out the
most important cost! It's crazy
to have such slow keygen!”

params op cycles

348864 keygen 140870324
348864f keygen 82232360
460896 keygen 441517292
460896f keygen 2382869316
6688128 keygen 1180463912
6688128f keygen 625470504
6960119 keygen 1109340668
6960119f keygen 564570384
8192128 keygen 933422948
8192128f keygen 673360388

20

21
1. What evidence do we have

that this keygen time is
a problem for applications?

2. Classic McEliece is designed
for IND-CCAZ2 security, so

a key can be generated once and
used a huge number of times.

“Walit, you're leaving out the
most important cost! It's crazy
to have such slow keygen!”

params op cycles

348864 keygen 140870324
348864f keygen 82232360
460896 keygen 441517292
460896f keygen 2382869316
6688128 keygen 1180463912
6688128f keygen 625470504
6960119 keygen 1109340668
6960119f keygen 564570384
8192128 keygen 933422948
8192128f keygen 673360388

20

21
1. What evidence do we have

that this keygen time is
a problem for applications?

2. Classic McEliece is designed
for IND-CCAZ2 security, so

a key can be generated once and
used a huge number of times.

3. McEliece's binary operations
are very well suited for hardware.
See 2018 Wang—Szefer—
Niederhagen. Isn't this what's
most important for the future?

ou're leaving out the
portant cost! It's crazy
such slow keygen!”

op cycles

keygen 140870324

keygen 32232360

keygen 441517292
- keygen 282369316
3 keygen 1180468912
3f keygen 625470504
) keygen 1109340668
)f keygen 564570384
3 keygen 933422948
3f keygen 673360388

20

1. What evidence do we have
that this keygen time is
a problem for applications?

2. Classic McEliece is designed
for IND-CCAZ2 security, so

a key can be generated once and
used a huge number of times.

3. McEliece's binary operations
are very well suited for hardware.
See 2018 Wang—Szefer—
Niederhagen. Isn't this what's
most important for the future?

21

Bytes cc

params

343364
4603896
668812¢
696011¢
319212¢

343364
460396
668812¢
696011¢
319212¢

“It's cra

ing out the : 1. What evidence do we have . Bytes communicat

st It's crazy that this keygen time iIs barams object

keygen!” a problem for applications? .

348864 cipherte

cycles 2. Classic McEliece is designed 460896 cipherte

, 140870324 for IND-CCAZ security, so 6688128 cipherte

1 82232360 a key can be generated once ana 6960119 cipherte:

1 441517292 used a huge number of times. 8192128 cipherte:

1 282869316 3. MckEliece's binary operations 348864 key '

1 1180468912 are very well suited for hardware. 460896 key

1 625470504 See 2018 Wang—Szefer— 6688128 key

1 1109340663 Niederhagen. Isn't this what's 6960119 key

1 5045703384 most important for the future? 8192128 key

1 933422948

. 678860388 “It's crazy to have

azy

cles

324
360
292
1316
012
504
6683
384
048
388

20

1. What evidence do we have
that this keygen time is
a problem for applications?

2. Classic McEliece is designed
for IND-CCAZ2 security, so

a key can be generated once and
used a huge number of times.

3. McEliece's binary operations
are very well suited for hardware.
See 2018 Wang—Szefer—
Niederhagen. Isn't this what's
most important for the future?

21

Bytes communicated

params

object

byte

343364
4603896
6688128
6960119
3192128

ciphertext

ciphertext

ciphertext

ciphertext

ciphertext

12
13
24
22
24

343364
460396
6688128
6960119
3192128

key
key
key
key
key

26112
52416
1044969
104731
135782

“It's crazy to have big keys!

1. What evidence do we have
that this keygen time iIs
a problem for applications?

2. Classic McEliece is designed
for IND-CCAZ2 security, so

a key can be generated once and
used a huge number of times.

3. McEliece's binary operations

are very well suited for hardware.

See 2018 Wang—Szefer—
Niederhagen. Isn't this what's
most important for the future?

21

Bytes communicated

params object bytes

348864 ciphertext 123
460896 ciphertext 183
6688128 ciphertext 240
6960119 ciphertext 226
8192128 ciphertext 240

348864 key 261120
460896 key 524160
6688128 key 1044992
6960119 key 1047319
8192128 key 1357824

“It's crazy to have big keys!”

22

- evidence do we have
, keygen time Is
m for applications?

ic McEliece Is designed
CCAZ2 security, so

n be generated once and
uge number of times.

lece’s binary operations
well suited for hardware.
3 Wang—Szefer—

1igen. Isn't this what's
portant for the future?

21

Bytes communicated

params object bytes

348864 ciphertext 123
460896 ciphertext 183
6688128 ciphertext 240
6960119 ciphertext 226
8192128 ciphertext 240

348864 key 261120
460896 key 524160
6688128 key 1044992
6960119 key 1047319
8192128 key 1357824

“It's crazy to have big keys!”

22

What ev
that the
a proble

do we have
me IS
Ications”?

e Is designed
urity, so

rated once and
er of times.

ry operations

d for hardware.

zefer—
- this what's
r the future?

21

Bytes communicated

params object bytes

348864 ciphertext 123
460896 ciphertext 183
6688128 ciphertext 240
6960119 ciphertext 226
8192128 ciphertext 240

348864 key 261120
460896 key 524160
6688128 key 1044992
6960119 key 1047319
8192128 key 1357824

“It's crazy to have big keys!”

22

What evidence do
that these key size
a problem for appl

/€

1ed

» and

ons
NVare.

('S
re’?

21

Bytes communicated

params

object

bytes

343364
4603896
6688128
6960119
3192128

cip
cip

Cl
Cl
Cl

0
0

nertext

nertext

nertext

nertext

bhertext

128
138
240
226
240

343364
460396
6688128
6960119
3192128

key

key

key

key

key

261120
524160
1044992
1047319
1357824

“It's crazy to have big keys!”

22

What evidence do we have
that these key sizes are
a problem for applications?

Bytes communicated

params object bytes

348864 ciphertext 123
460896 ciphertext 183
6688128 ciphertext 240
6960119 ciphertext 226
8192128 ciphertext 240

348864 key 261120
460896 key 524160
6688128 key 1044992
6960119 key 1047319
8192128 key 1357824

“It's crazy to have big keys!”

22

What evidence do we have
that these key sizes are
a problem for applications?

23

Bytes communicated

params object bytes
348864 ciphertext 123
460896 ciphertext 183
6688128 ciphertext 240
6960119 ciphertext 226
8192128 ciphertext 240
348864 key 261120
460896 key 524160
6688128 key 1044992
6960119 key 1047319
8192128 key 1357824

“It's crazy to have big keys!”

22

23
What evidence do we have

that these key sizes are
a problem for applications?

Compare to, e.g., web-page size.

httparchive.org statistics:
50% of web pages are >1.8MB.
25% of web pages are >3.5MB.
10% of web pages are >6.5MB.
The sizes keep growing.

Typically browser receives one web
page from multiple servers, but
reuses servers for more pages.

Is key size a big part of this?

)mmunicated

object bytes
ciphertext 123
ciphertext 183
3 ciphertext 240
) ciphertext 226
3 ciphertext 240
key 261120
key 524160
3 key 1044992
) key 1047319
3 key 1357824

zy to have big keys!”

22

What evidence do we have
that these key sizes are
a problem for applications?

Compare to, e.g., web-page size.

httparchive.org statistics:
50% of web pages are >1.8MB.
25% of web pages are >3.5MB.
10% of web pages are >6.5MB.
The sizes keep growing.

Typically browser receives one web
page from multiple servers, but
reuses servers for more pages.

Is key size a big part of this?

23

2015 Mc
postqual
Use star
technigt
etc.) to

commun

Each cif
the way

the servi
can ofte
much fa

Again IN

ed
bytes
Xt 128
Xt 188
Xt 240
Xt 226
Xt 240
201120
524160
1044992
1047319
1357324

' big keys!”

22

What evidence do we have
that these key sizes are
a problem for applications?

Compare to, e.g., web-page size.

httparchive.org statistics:
50% of web pages are >1.8MB.
25% of web pages are >3.5MB.
10% of web pages are >6.5MB.
The sizes keep growing.

Typically browser receives one web
page from multiple servers, but
reuses servers for more pages.

Is key size a big part of this?

23

2015 McGrew “Li
postquantum cryp
Use standard netw
techniques (multic
etc.) to reduce co:
communicating pt

Each ciphertext h:

the way between 1

the server, but pul
can often be retrie
much faster local

Again IND-CCA2

22

What evidence do we have
that these key sizes are
a problem for applications?

Compare to, e.g., web-page size.

httparchive.org statistics:
50% of web pages are >1.8MB.
25% of web pages are >3.5MB.
10% of web pages are >6.5MB.
The sizes keep growing.

Typically browser receives one web
page from multiple servers, but
reuses servers for more pages.

Is key size a big part of this?

23

2015 McGrew “Living with
postquantum cryptography”

Use standard networking

techniques (multicasts, cach

etc.) to reduce cost of

communicating public keys.

Each ciphertext has to trave

t
t

ne way between the client :

ne server, but public keys

can often be retrieved throu

much faster local network.

Again IND-CCA2 is critical.

What evidence do we have
that these key sizes are
a problem for applications?

Compare to, e.g., web-page size.

httparchive.org statistics:
50% of web pages are >1.8MB.
25% of web pages are >3.5MB.
10% of web pages are >6.5MB.
The sizes keep growing.

Typically browser receives one web
page from multiple servers, but
reuses servers for more pages.

Is key size a big part of this?

23

2015 McGrew “Living with
postquantum cryptography':

Use standard networking

techniques (multicasts, caching,

etc.) to reduce cost of

communicating public keys.

Each cip

t
t

ne way

nertext has to travel all

hetween the client and

ne server, but public keys

can often be retrieved through

much faster local network.

Again IND-CCA2 is critical.

24

1dence do we have
se key sizes are
m for applications?

> to, e.g., web-page size.

hive.org statistics:
wveb pages are >1.8MB.

wveb pages are >3.5MB.

wveb pages are >6.5MB.
s keep growing.

/ browser receives one web
m multiple servers, but
rvers for more pages.

ze a big part of this?

23

2015 McGrew “Living with
postquantum cryptography’ :
Use standard networking
techniques (multicasts, caching,
etc.) to reduce cost of
communicating public keys.

Each ciphertext has to travel all

the way between the client and

the server, but public keys
can often be retrieved through
much faster local network.

Again IND-CCA2 is critical.

24

Denial o

Standare
strategy
of conne
up all m
for keep

SYN flo

Server ic
some CO
connecti

we have
S are
Ications?

web-page size.

r statistics:
are >1.8MB.
are >3.5MB.
are >6.5MB.

wing.

receives one web
> servers, but
more pages.

art of this?

23

2015 McGrew “Living with
postquantum cryptography':
Use standard networking
techniques (multicasts, caching,
etc.) to reduce cost of
communicating public keys.

Each ciphertext has to travel all

the way between the client and

the server, but public keys
can often be retrieved through
much faster local network.

Again IND-CCA2 is critical.

24

Denial of service

Standard low-cost
strategy: make a |
of connections to
up all memory ave
for keeping track ¢

SYN flood, HT TP

Server is forced to
some connections,
connections from

1e web
but

23

2015 McGrew “Living with
postquantum cryptography’ :
Use standard networking
techniques (multicasts, caching,
etc.) to reduce cost of
communicating public keys.

Each ciphertext has to travel all

the way between the client and

the server, but public keys
can often be retrieved through
much faster local network.

Again IND-CCA2 is critical.

24

Denial of service

Standard low-cost attack

strategy: make a huge num|
of connections to a server, f
up all memory available on :
for keeping track of connect

SYN flood, HTTP flood, et

Server is forced to stop serv
some connections, including
connections from honest clie

2015 McGrew “Living with
postquantum cryptography':

Use standard networking

techniques (multicasts, caching,

etc.) to reduce cost of

communicating public keys.

Each ciphertext has to travel all

t
t

ne way between the client and

ne server, but public keys

can often be retrieved through

much faster local network.

Again IND-CCA2 is critical.

24

25
Denial of service

Standard low-cost attack
strategy: make a huge number
of connections to a server, filling
up all memory available on server
for keeping track of connections.

SYN flood, HTTP flood, etc.

Server is forced to stop serving
some connections, including
connections from honest clients.

2015 McGrew “Living with
postquantum cryptography':

Use standard networking

techniques (multicasts, caching,

etc.) to reduce cost of

communicating public keys.

Each ciphertext has to travel all

t
t

ne way between the client and

ne server, but public keys

can often be retrieved through

much faster local network.

Again IND-CCA2 is critical.

24

25
Denial of service

Standard low-cost attack
strategy: make a huge number
of connections to a server, filling
up all memory available on server
for keeping track of connections.

SYN flood, HTTP flood, etc.

Server is forced to stop serving
some connections, including
connections from honest clients.

But some Internet protocols
are not vulnerable to this attack.

“Grew “Living with
ntum cryptography’:
dard networking

es (multicasts, caching,
reduce cost of

icating public keys.

hertext has to travel all

between the client and
or, but public keys
n be retrieved through
ster local network.

|D-CCAZ2 is critical.

24

Denial of service

Standard low-cost attack
strategy: make a huge number
of connections to a server, filling
up all memory available on server
for keeping track of connections.

SYN flood, HTTP flood, etc.

Server is forced to stop serving
some connections, including
connections from honest clients.

But some Internet protocols
are not vulnerable to this attack.

25

A tiny r
handles
each Inc
without

/ing with
tography":
orking

asts, caching,
st of

blic keys.

s to travel all
he client and
olic keys

ved through
network.

IS critical.

24

Denial of service

Standard low-cost attack
strategy: make a huge number
of connections to a server, filling
up all memory available on server
for keeping track of connections.

SYN flood, HTTP flood, etc.

Server is forced to stop serving
some connections, including
connections from honest clients.

But some Internet protocols
are not vulnerable to this attack.

25

A tiny network s
handles and imme
each incoming net
without allocating

Ing,

| all
nd

24

Denial of service

Standard low-cost attack
strategy: make a huge number
of connections to a server, filling
up all memory available on server
for keeping track of connections.

SYN flood, HTTP flood, etc.

Server is forced to stop serving
some connections, including
connections from honest clients.

But some Internet protocols
are not vulnerable to this attack.

25

A tiny network server

handles and immediately for
each incoming network pack
without allocating any mem

Denial of service

Standard low-cost attack
strategy: make a huge number
of connections to a server, filling
up all memory available on server
for keeping track of connections.

SYN flood, HTTP flood, etc.

Server is forced to stop serving
some connections, including
connections from honest clients.

But some Internet protocols
are not vulnerable to this attack.

25

A tiny network server

handles and immediately forgets
each incoming network packet,
without allocating any memory.

26

Denial of service

Standard low-cost attack
strategy: make a huge number
of connections to a server, filling
up all memory available on server
for keeping track of connections.

SYN flood, HTTP flood, etc.

Server is forced to stop serving
some connections, including
connections from honest clients.

But some Internet protocols
are not vulnerable to this attack.

25

A tiny network server

handles and immediately forgets
each incoming network packet,
without allocating any memory.

Can use tiny network servers
to publish information.
Unauthenticated example from

last century: “anonymous NFS".

26

Denial of service

Standard low-cost attack
strategy: make a huge number
of connections to a server, filling
up all memory available on server
for keeping track of connections.

SYN flood, HTTP flood, etc.

Server is forced to stop serving
some connections, including
connections from honest clients.

But some Internet protocols
are not vulnerable to this attack.

25

A tiny network server

handles and immediately forgets
each incoming network packet,
without allocating any memory.

Can use tiny network servers

to publish information.
Unauthenticated example from
last century: “anonymous NFS".

1997 Aura—Nikander, 2005 Shieh—
Myers—Sirer modify any protocol
to use a tiny network server

if an “input continuation”

fits into a network packet.

26

f service

] low-cost attack

. make a huge number
ctions to a server, filling
emory available on server
ng track of connections.

od, HT TP flood, etc.

, forced to stop serving
nnections, including
ons from honest clients.

e Internet protocols
vulnerable to this attack.

25
A tiny network server

handles and immediately forgets
each incoming network packet,
without allocating any memory.

Can use tiny network servers

to publish information.
Unauthenticated example from
last century: “anonymous NFS".

1997 Aura—Nikander, 2005 Shieh—
Myers—Sirer modify any protocol
to use a tiny network server

if an “input continuation”

fits into a network packet.

26

“Here's
McEliec

attack

nuge number

a server, filling
ilable on server
f connections.

' flood, etc.

stop serving
including
honest clients.

protocols
to this attack.

25

A tiny network server

handles and immediately forgets
each incoming network packet,
without allocating any memory.

Can use tiny network servers

to publish information.
Unauthenticated example from
last century: “anonymous NFS".

1997 Aura—Nikander, 2005 Shieh—
Myers—Sirer modify any protocol
to use a tiny network server

if an “input continuation”

fits into a network packet.

26

“Here's a natural
McEliece can't po

oer
iling
Server

10NS.

]

\

ing

nts.

tack.

25
A tiny network server

handles and immediately forgets
each incoming network packet,
without allocating any memory.

Can use tiny network servers

to publish information.
Unauthenticated example from
last century: “anonymous NFS".

1997 Aura—Nikander, 2005 Shieh—
Myers—Sirer modify any protocol
to use a tiny network server

if an “input continuation”

fits into a network packet.

26

"Here's a natural scenario tl
McEliece can't possibly han

A tiny network server

handles and immediately forgets
each incoming network packet,
without allocating any memory.

Can use tiny network servers

to publish information.
Unauthenticated example from
last century: “anonymous NFS".

1997 Aura—Nikander, 2005 Shieh—
Myers—Sirer modify any protocol
to use a tiny network server

if an “input continuation”

fits into a network packet.

26

“Here's a natural scenario that
McEliece can't possibly handle:

27

A tiny network server

handles and immediately forgets
each incoming network packet,
without allocating any memory.

Can use tiny network servers

to publish information.
Unauthenticated example from
last century: “anonymous NFS".

1997 Aura—Nikander, 2005 Shieh—
Myers—Sirer modify any protocol
to use a tiny network server

if an “input continuation”

fits into a network packet.

26

"Here's a natural scenario that
McEliece can't possibly handle:
e [o stop memory floods,

| want a tiny network server.

27

A tiny network server

handles and immediately forgets
each incoming network packet,
without allocating any memory.

Can use tiny network servers

to publish information.
Unauthenticated example from
last century: “anonymous NFS".

1997 Aura—Nikander, 2005 Shieh—
Myers—Sirer modify any protocol
to use a tiny network server

if an “input continuation”

fits into a network packet.

26

"Here's a natural scenario that
McEliece can't possibly handle:
e [o stop memory floods,
| want a tiny network server.
e [or forward secrecy,
| want the server to encrypt a
session key to an ephemeral
public key sent by the client.

27

A tiny network server

handles and immediately forgets
each incoming network packet,
without allocating any memory.

Can use tiny network servers

to publish information.
Unauthenticated example from
last century: “anonymous NFS".

1997 Aura—Nikander, 2005 Shieh—
Myers—Sirer modify any protocol
to use a tiny network server

if an “input continuation”

fits into a network packet.

26

"Here's a natural scenario that
McEliece can't possibly handle:
e [o stop memory floods,

| want a tiny network server.
e [or forward secrecy,

| want the server to encrypt a

session key to an ephemeral

public key sent by the client.
e [his forces the public key

to fit into a network packet.

Is that 1500 bytes? Or 12807

Either way, your key Is too big.

27

A tiny network server

handles and immediately forgets
each incoming network packet,
without allocating any memory.

Can use tiny network servers
to publish information.
Unauthenticated example from

last century: “anonymous NFS".

1997 Aura—Nikander, 2005 Shieh—

Myers—Sirer modify any protocol
to use a tiny network server

if an “input continuation”

fits into a network packet.

26

"Here's a natural scenario that
McEliece can't possibly handle:
e [o stop memory floods,

| want a tiny network server.
e [or forward secrecy,

| want the server to encrypt a

session key to an ephemeral

public key sent by the client.
e [his forces the public key

to fit into a network packet.

Is that 1500 bytes? Or 12807

Either way, your key Is too big.

It's crazy if post-quantum
standards can't handle this!”

27

1etwork server

and immediately forgets
oming network packet,
allocating any memory.

tiny network servers

h information.

nticated example from
ury: “anonymous NFS".

ra—Nikander, 2005 Shieh—
irer modify any protocol
tiny network server

1put continuation”

a network packet.

26

27
“Here's a natural scenario that

McEliece can't possibly handle:
e [o stop memory floods,

| want a tiny network server.
e For forward secrecy,

| want the server to encrypt a

session key to an ephemeral

public key sent by the client.
e [his forces the public key

to fit into a network packet.

Is that 1500 bytes? Or 12807

Either way, your key Is too big.
It's crazy if post-quantum
standards can't handle this!”

Bernstel
handles

arver
diately forgets
work packet,

any memory.

ork servers
tion.

xample from
nymous NFS”.

ler, 2005 Shieh—
y any protocol
ork server
nuation”
packet.

26

"Here's a natural scenario that
McEliece can't possibly handle:
e [o stop memory floods,

| want a tiny network server.
e [or forward secrecy,

| want the server to encrypt a

session key to an ephemeral

public key sent by the client.
e [his forces the public key

to fit into a network packet.

Is that 1500 bytes? Or 12807

Either way, your key Is too big.

It's crazy if post-quantum
standards can't handle this!”

21

Bernstein—Lange °
handles this scena

gets
et,
ory.

Om
FS™.

Shieh—
-0col

26

"Here's a natural scenario that
McEliece can't possibly handle:
e [o stop memory floods,

| want a tiny network server.
e For forward secrecy,

| want the server to encrypt a

session key to an ephemeral

public key sent by the client.
e [his forces the public key

to fit into a network packet.

Is that 1500 bytes? Or 12807

Either way, your key Is too big.

It's crazy if post-quantum
standards can't handle this!”

27

Bernstein—Lange "McTiny"
handles this scenario.

"Here's a natural scenario that
McEliece can't possibly handle:
e [o stop memory floods,

| want a tiny network server.
e [or forward secrecy,

| want the server to encrypt a

session key to an ephemeral

public key sent by the client.
e [his forces the public key

to fit into a network packet.

Is that 1500 bytes? Or 12807

Either way, your key Is too big.
It's crazy if post-quantum
standards can't handle this!”

21

Bernstein—-Lange “McTiny"
handles this scenario.

23

"Here's a natural scenario that
McEliece can't possibly handle:
e [o stop memory floods,

| want a tiny network server.
e [or forward secrecy,

| want the server to encrypt a

session key to an ephemeral

public key sent by the client.
e [his forces the public key

to fit into a network packet.

Is that 1500 bytes? Or 12807

Either way, your key Is too big.
It's crazy if post-quantum
standards can't handle this!”

21

28
Bernstein—Lange "McTiny"

handles this scenario.

1. The easy part: Client
encrypts session key to server's
long-term McEliece public key.
This establishes an encrypted
authenticated session.

"Here's a natural scenario that
McEliece can't possibly handle:
e [o stop memory floods,
| want a tiny network server.
e [or forward secrecy,
| want the server to encrypt a
session key to an ephemeral
public key sent by the client.
e [his forces the public key
to fit into a network packet.
Is that 1500 bytes? Or 12807

Either way, your key Is too big.

It's crazy if post-quantum
standards can't handle this!”

21

Bernstein—-Lange “McTiny"
handles this scenario.

1. The easy part: Client
encrypts session key to server's
long-term McEliece public key.
This establishes an encrypted
authenticated session.

Attacker who records this session
and later steals server’s secret key
can then decrypt everything.
Remaining problem:

within this session, encrypt to an

ephemeral key for forward secrecy.

23

a natural scenario that
> can't possibly handle:
p memory floods,

a tiny network server.
rward secrecy,

the server to encrypt a
1 key to an ephemeral
key sent by the client.
orces the public key
nto a network packet.

1500 bytes? Or 12807

way, your key Is too big.

y If post-quantum
s can't handle this!”

27

28
Bernstein—Lange "McTiny"

handles this scenario.

1. The easy part: Client
encrypts session key to server's
long-term McEliece public key.
This establishes an encrypted
authenticated session.

Attacker who records this session
and later steals server's secret key
can then decrypt everything.
Remaining problem:

within this session, encrypt to an
ephemeral key for forward secrecy.

2. Clien
public ke

K11
K2 1

Kr,l
Each blc
to fit int

scenario that
ssibly handle:
' tloods,
twork server.
ecy,

r to encrypt a
1 ephemeral
oy the client.
bublic key
vork packet.

es? Or 12807

key Is too big.

uantum
ndle this!”

21

28
Bernstein—Lange "McTiny"

handles this scenario.

1. The easy part: Client
encrypts session key to server's
long-term McEliece public key.
This establishes an encrypted
authenticated session.

Attacker who records this session
and later steals server’s secret key
can then decrypt everything.
Remaining problem:

within this session, encrypt to an
ephemeral key for forward secrecy.

2. Client decompc
public key K into

Kii1 Kio2 K
Ko1 Koo K
Kr1 Kro K

Each block is sma
to fit into a netwo

1at
dle:

27

28
Bernstein—Lange "McTiny"

handles this scenario.

1. The easy part: Client
encrypts session key to server's
long-term McEliece public key.
This establishes an encrypted
authenticated session.

Attacker who records this session
and later steals server's secret key
can then decrypt everything.
Remaining problem:

within this session, encrypt to an
ephemeral key for forward secrecy.

2. Client decomposes ephen
public key K Into blocks: K

Ki1 Kio Ki3
Ko1 Koo Koz

Kr,l Kr,2 Kr,3
Each block is small enough
to fit into a network packet.

23

Bernstein—Lange “McTiny" 2. Client decomposes ephemeral
handles this scenario. public key K Into blocks: K =
1. The easy part: Client K11 Ki2 Kiz ... Kig
encrypts session key to server's Ka1 Koz Koz o Koy
long-term MckEliece public key. f f f " f
This establishes an encrypted Kri Kr2 Krz ... Ky
authenticated session. Each block is small enough

. . to fit into a network packet.
Attacker who records this session P

and later steals server’s secret key
can then decrypt everything.
Remaining problem:

within this session, encrypt to an
ephemeral key for forward secrecy.

Bernstein—Lange “McTiny"
handles this scenario.

1. The easy part: Client
encrypts session key to server's
long-term McEliece public key.
This establishes an encrypted
authenticated session.

Attacker who records this session
and later steals server’s secret key
can then decrypt everything.
Remaining problem:

within this session, encrypt to an

ephemeral key for forward secrecy.

23

2. Client decomposes ephemeral
public key K Into blocks: K =

Kii1 Ki2 Ki3 K1g
K1 Koo Ko3 Ko ¢
Kr,l Kr,2 Kr,3 Kr,Z

Each block is small enough
to fit into a network packet.

3. Client sends K; ; to server.
Server sends back Kj ;e
encrypted to a server cookie key.

Server cookie key is not per-client.
Key is erased after a few minutes.

29

n—Lange “McTiny"
this scenario.

asy part: Client
session key to server's
m McEliece public key.
ablishes an encrypted
cated session.

~who records this session
r steals server’'s secret key
| decrypt everything.

ng problem:

11S session, encrypt to an
al key for forward secrecy.

28

2. Client decomposes ephemeral
public key K Into blocks: K =

Kii Kio Ki3 K¢
Ko1 Koo Kz3 Ko ¢
Kr,l Kr,2 Kr,3 Kr,Z

Each block is small enough
to fit into a network packet.

3. Client sends Kj ; to server.
Server sends back Kj ;e
encrypted to a server cookie key.

Server cookie key is not per-client.
Key is erased after a few minutes.

29

4. Clien
containi
Server s

‘McTiny"
rio.

Client

2y to server's
e public key.
1 encrypted
on.

rds this session

rver's secret key
verything.

n:

, encrypt to an

forward secrecy.

23

2. Client decomposes ephemeral
public key K Into blocks: K =

Kii1 Kiz2 Ki3z ... Kiyg
Ko1 Koo Koz ... Koy
Kr,l Kr,2 Kr,3 L Kr,Z

Each block is small enough
to fit into a network packet.

3. Client sends K; ; to server.
Server sends back Kj ;e
encrypted to a server cookie key.

Server cookie key is not per-client.
Key is erased after a few minutes.

29

4. Client sends on
containing several
Server sends back

or's

ey.

SSion
et key

[O an
2Crecy.

28

2. Client decomposes ephemeral
public key K Into blocks: K =

Kii1 Kiz2 K13z ... Kiyg
Ko1 Koo Koz ... Koy
Kr,l Kr,2 Kr,3 . Kr,Z

Each block is small enough
to fit into a network packet.

3. Client sends Kj ; to server.
Server sends back Kj ;e
encrypted to a server cookie key.

Server cookie key is not per-client.
Key is erased after a few minutes.

29

4. Client sends one packet
containing several K; je;.
Server sends back combinat

2. Client decomposes ephemeral
public key K Into blocks: K =

Kii1 Kiz2 Ki3z ... Kiyg
Ko1 Koo Koz ... Koy
Kr,l Kr,2 Kr,3 L Kr,Z

Each block is small enough
to fit into a network packet.

3. Client sends K; ; to server.
Server sends back Kj ;e
encrypted to a server cookie key.

Server cookie key is not per-client.
Key is erased after a few minutes.

29

4. Client sends one packet
containing several K; je;.
Server sends back combination.

30

2. Client decomposes ephemeral
public key K Into blocks: K =

Ki1 Ki2 Ki3 K1g
Ko1 Koo Ko3 Ko ¢
Kr,l Kr,2 Kr,3 Kr,Z

Each block is small enough
to fit into a network packet.

3. Client sends K; ; to server.
Server sends back Kj ;e
encrypted to a server cookie key.

Server cookie key is not per-client.
Key is erased after a few minutes.

29

4. Client sends one packet
containing several K; je;.
Server sends back combination.

5. Repeat to combine everything.

30

2. Client decomposes ephemeral
public key K Into blocks: K =

Kii1 Kiz2 Ki3z ... Kiyg
Ko1 Koo Koz ... Koy
Kr,l Kr,2 Kr,3 L Kr,Z

Each block is small enough
to fit into a network packet.

3. Client sends K; ; to server.
Server sends back Kj ;e
encrypted to a server cookie key.

Server cookie key is not per-client.
Key is erased after a few minutes.

29

4. Client sends one packet
containing several K; je;.
Server sends back combination.

5. Repeat to combine everything.

6. Server sends final Ke
directly to client,
encrypted by session key
but not by cookie key.

(. Client decrypts.

30

2. Client decomposes ephemeral
public key K Into blocks: K =

Ki1 Ki2 Ki3 K1g
Ko1 Koo Ko3 Ko ¢
Kr,l Kr,2 Kr,3 Kr,Z

Each block is small enough
to fit into a network packet.

3. Client sends K; ; to server.
Server sends back Kj ;e
encrypted to a server cookie key.

Server cookie key is not per-client.

Key Is erased after a few minutes.

29

4. Client sends one packet
containing several K; je;.
Server sends back combination.

5. Repeat to combine everything.

6. Server sends final Ke
directly to client,
encrypted by session key
but not by cookie key.

(. Client decrypts.

Forward secrecy: Once cookie key
and secret key for K are erased,
client and server cannot decrypt.

30

