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that these key sizes are
a problem for applications?

Compare to, e.g., web-page size.

httparchive.org statistics:
50% of web pages are >1.8MB.
25% of web pages are >3.5MB.
10% of web pages are >6.5MB.
The sizes keep growing.

Typically browser receives one web
page from multiple servers, but
reuses servers for more pages.

Is key size a big part of this?



)mmunicated

object bytes
ciphertext 123
ciphertext 183
3 ciphertext 240
) ciphertext 226
3 ciphertext 240
key 261120
key 524160
3 key 1044992
) key 1047319
3 key 1357824

zy to have big keys!”

22

What evidence do we have
that these key sizes are
a problem for applications?

Compare to, e.g., web-page size.

httparchive.org statistics:
50% of web pages are >1.8MB.
25% of web pages are >3.5MB.
10% of web pages are >6.5MB.
The sizes keep growing.

Typically browser receives one web
page from multiple servers, but
reuses servers for more pages.

Is key size a big part of this?

23

2015 Mc
postqual
Use star
technigt
etc.) to

commun

Each cif
the way

the servi
can ofte
much fa

Again IN



ed
bytes
Xt 128
Xt 188
Xt 240
Xt 226
Xt 240
201120
524160
1044992
1047319
1357324

' big keys!”

22

What evidence do we have
that these key sizes are
a problem for applications?

Compare to, e.g., web-page size.

httparchive.org statistics:
50% of web pages are >1.8MB.
25% of web pages are >3.5MB.
10% of web pages are >6.5MB.
The sizes keep growing.

Typically browser receives one web
page from multiple servers, but
reuses servers for more pages.

Is key size a big part of this?

23

2015 McGrew “Li
postquantum cryp
Use standard netw
techniques (multic
etc.) to reduce co:
communicating pt

Each ciphertext h:

the way between 1

the server, but pul
can often be retrie
much faster local

Again IND-CCA2



22

What evidence do we have
that these key sizes are
a problem for applications?

Compare to, e.g., web-page size.

httparchive.org statistics:
50% of web pages are >1.8MB.
25% of web pages are >3.5MB.
10% of web pages are >6.5MB.
The sizes keep growing.

Typically browser receives one web
page from multiple servers, but
reuses servers for more pages.

Is key size a big part of this?

23

2015 McGrew “Living with
postquantum cryptography”

Use standard networking

techniques (multicasts, cach

etc.) to reduce cost of

communicating public keys.

Each ciphertext has to trave

t
t

ne way between the client :

ne server, but public keys

can often be retrieved throu

much faster local network.

Again IND-CCA2 is critical.



What evidence do we have
that these key sizes are
a problem for applications?

Compare to, e.g., web-page size.

httparchive.org statistics:
50% of web pages are >1.8MB.
25% of web pages are >3.5MB.
10% of web pages are >6.5MB.
The sizes keep growing.

Typically browser receives one web
page from multiple servers, but
reuses servers for more pages.

Is key size a big part of this?

23

2015 McGrew “Living with
postquantum cryptography':

Use standard networking

techniques (multicasts, caching,

etc.) to reduce cost of

communicating public keys.

Each cip

t
t

ne way

nertext has to travel all

hetween the client and

ne server, but public keys

can often be retrieved through

much faster local network.

Again IND-CCA2 is critical.

24



1dence do we have
se key sizes are
m for applications?

> to, e.g., web-page size.

hive.org statistics:
wveb pages are >1.8MB.

wveb pages are >3.5MB.

wveb pages are >6.5MB.
s keep growing.

/ browser receives one web
m multiple servers, but
rvers for more pages.

ze a big part of this?

23

2015 McGrew “Living with
postquantum cryptography’ :
Use standard networking
techniques (multicasts, caching,
etc.) to reduce cost of
communicating public keys.

Each ciphertext has to travel all

the way between the client and

the server, but public keys
can often be retrieved through
much faster local network.

Again IND-CCA2 is critical.

24

Denial o

Standare
strategy
of conne
up all m
for keep

SYN flo

Server ic
some CO
connecti



we have
S are
Ications?

web-page size.

r statistics:
are >1.8MB.
are >3.5MB.
are >6.5MB.

wing.

receives one web
> servers, but
more pages.

art of this?

23

2015 McGrew “Living with
postquantum cryptography':
Use standard networking
techniques (multicasts, caching,
etc.) to reduce cost of
communicating public keys.

Each ciphertext has to travel all

the way between the client and

the server, but public keys
can often be retrieved through
much faster local network.

Again IND-CCA2 is critical.

24

Denial of service

Standard low-cost
strategy: make a |
of connections to
up all memory ave
for keeping track ¢

SYN flood, HT TP

Server is forced to
some connections,
connections from



1e web
but

23

2015 McGrew “Living with
postquantum cryptography’ :
Use standard networking
techniques (multicasts, caching,
etc.) to reduce cost of
communicating public keys.

Each ciphertext has to travel all

the way between the client and

the server, but public keys
can often be retrieved through
much faster local network.

Again IND-CCA2 is critical.

24

Denial of service

Standard low-cost attack

strategy: make a huge num|
of connections to a server, f
up all memory available on :
for keeping track of connect

SYN flood, HTTP flood, et

Server is forced to stop serv
some connections, including
connections from honest clie



2015 McGrew “Living with
postquantum cryptography':

Use standard networking

techniques (multicasts, caching,

etc.) to reduce cost of

communicating public keys.

Each ciphertext has to travel all

t
t

ne way between the client and

ne server, but public keys

can often be retrieved through

much faster local network.

Again IND-CCA2 is critical.

24

25
Denial of service

Standard low-cost attack
strategy: make a huge number
of connections to a server, filling
up all memory available on server
for keeping track of connections.

SYN flood, HTTP flood, etc.

Server is forced to stop serving
some connections, including
connections from honest clients.



2015 McGrew “Living with
postquantum cryptography':

Use standard networking

techniques (multicasts, caching,

etc.) to reduce cost of

communicating public keys.

Each ciphertext has to travel all

t
t

ne way between the client and

ne server, but public keys

can often be retrieved through

much faster local network.

Again IND-CCA2 is critical.

24

25
Denial of service

Standard low-cost attack
strategy: make a huge number
of connections to a server, filling
up all memory available on server
for keeping track of connections.

SYN flood, HTTP flood, etc.

Server is forced to stop serving
some connections, including
connections from honest clients.

But some Internet protocols
are not vulnerable to this attack.



“Grew “Living with
ntum cryptography’:
dard networking

es (multicasts, caching,
reduce cost of

icating public keys.

hertext has to travel all

between the client and
or, but public keys
n be retrieved through
ster local network.

|D-CCAZ2 is critical.

24

Denial of service

Standard low-cost attack
strategy: make a huge number
of connections to a server, filling
up all memory available on server
for keeping track of connections.

SYN flood, HTTP flood, etc.

Server is forced to stop serving
some connections, including
connections from honest clients.

But some Internet protocols
are not vulnerable to this attack.

25

A tiny r
handles
each Inc
without



/ing with
tography":
orking

asts, caching,
st of

blic keys.

s to travel all
he client and
olic keys

ved through
network.

IS critical.

24

Denial of service

Standard low-cost attack
strategy: make a huge number
of connections to a server, filling
up all memory available on server
for keeping track of connections.

SYN flood, HTTP flood, etc.

Server is forced to stop serving
some connections, including
connections from honest clients.

But some Internet protocols
are not vulnerable to this attack.

25

A tiny network s
handles and imme
each incoming net
without allocating



Ing,

| all
nd

24

Denial of service

Standard low-cost attack
strategy: make a huge number
of connections to a server, filling
up all memory available on server
for keeping track of connections.

SYN flood, HTTP flood, etc.

Server is forced to stop serving
some connections, including
connections from honest clients.

But some Internet protocols
are not vulnerable to this attack.

25

A tiny network server

handles and immediately for
each incoming network pack
without allocating any mem



Denial of service

Standard low-cost attack
strategy: make a huge number
of connections to a server, filling
up all memory available on server
for keeping track of connections.

SYN flood, HTTP flood, etc.

Server is forced to stop serving
some connections, including
connections from honest clients.

But some Internet protocols
are not vulnerable to this attack.

25

A tiny network server

handles and immediately forgets
each incoming network packet,
without allocating any memory.

26



Denial of service

Standard low-cost attack
strategy: make a huge number
of connections to a server, filling
up all memory available on server
for keeping track of connections.

SYN flood, HTTP flood, etc.

Server is forced to stop serving
some connections, including
connections from honest clients.

But some Internet protocols
are not vulnerable to this attack.

25

A tiny network server

handles and immediately forgets
each incoming network packet,
without allocating any memory.

Can use tiny network servers
to publish information.
Unauthenticated example from

last century: “anonymous NFS".

26



Denial of service

Standard low-cost attack
strategy: make a huge number
of connections to a server, filling
up all memory available on server
for keeping track of connections.

SYN flood, HTTP flood, etc.

Server is forced to stop serving
some connections, including
connections from honest clients.

But some Internet protocols
are not vulnerable to this attack.

25

A tiny network server

handles and immediately forgets
each incoming network packet,
without allocating any memory.

Can use tiny network servers

to publish information.
Unauthenticated example from
last century: “anonymous NFS".

1997 Aura—Nikander, 2005 Shieh—
Myers—Sirer modify any protocol
to use a tiny network server

if an “input continuation”

fits into a network packet.

26



f service

] low-cost attack

. make a huge number
ctions to a server, filling
emory available on server
ng track of connections.

od, HT TP flood, etc.

, forced to stop serving
nnections, including
ons from honest clients.

e Internet protocols
vulnerable to this attack.

25
A tiny network server

handles and immediately forgets
each incoming network packet,
without allocating any memory.

Can use tiny network servers

to publish information.
Unauthenticated example from
last century: “anonymous NFS".

1997 Aura—Nikander, 2005 Shieh—
Myers—Sirer modify any protocol
to use a tiny network server

if an “input continuation”

fits into a network packet.

26

“Here's
McEliec



attack

nuge number

a server, filling
ilable on server
f connections.

' flood, etc.

stop serving
including
honest clients.

protocols
to this attack.

25

A tiny network server

handles and immediately forgets
each incoming network packet,
without allocating any memory.

Can use tiny network servers

to publish information.
Unauthenticated example from
last century: “anonymous NFS".

1997 Aura—Nikander, 2005 Shieh—
Myers—Sirer modify any protocol
to use a tiny network server

if an “input continuation”

fits into a network packet.

26

“Here's a natural
McEliece can't po



oer
iling
Server

10NS.

]

\

ing

nts.

tack.

25
A tiny network server

handles and immediately forgets
each incoming network packet,
without allocating any memory.

Can use tiny network servers

to publish information.
Unauthenticated example from
last century: “anonymous NFS".

1997 Aura—Nikander, 2005 Shieh—
Myers—Sirer modify any protocol
to use a tiny network server

if an “input continuation”

fits into a network packet.

26

"Here's a natural scenario tl
McEliece can't possibly han



A tiny network server

handles and immediately forgets
each incoming network packet,
without allocating any memory.

Can use tiny network servers

to publish information.
Unauthenticated example from
last century: “anonymous NFS".

1997 Aura—Nikander, 2005 Shieh—
Myers—Sirer modify any protocol
to use a tiny network server

if an “input continuation”

fits into a network packet.

26

“Here's a natural scenario that
McEliece can't possibly handle:

27



A tiny network server

handles and immediately forgets
each incoming network packet,
without allocating any memory.

Can use tiny network servers

to publish information.
Unauthenticated example from
last century: “anonymous NFS".

1997 Aura—Nikander, 2005 Shieh—
Myers—Sirer modify any protocol
to use a tiny network server

if an “input continuation”

fits into a network packet.

26

"Here's a natural scenario that
McEliece can't possibly handle:
e [o stop memory floods,

| want a tiny network server.

27



A tiny network server

handles and immediately forgets
each incoming network packet,
without allocating any memory.

Can use tiny network servers

to publish information.
Unauthenticated example from
last century: “anonymous NFS".

1997 Aura—Nikander, 2005 Shieh—
Myers—Sirer modify any protocol
to use a tiny network server

if an “input continuation”

fits into a network packet.

26

"Here's a natural scenario that
McEliece can't possibly handle:
e [o stop memory floods,
| want a tiny network server.
e [or forward secrecy,
| want the server to encrypt a
session key to an ephemeral
public key sent by the client.

27



A tiny network server

handles and immediately forgets
each incoming network packet,
without allocating any memory.

Can use tiny network servers

to publish information.
Unauthenticated example from
last century: “anonymous NFS".

1997 Aura—Nikander, 2005 Shieh—
Myers—Sirer modify any protocol
to use a tiny network server

if an “input continuation”

fits into a network packet.

26

"Here's a natural scenario that
McEliece can't possibly handle:
e [o stop memory floods,

| want a tiny network server.
e [or forward secrecy,

| want the server to encrypt a

session key to an ephemeral

public key sent by the client.
e [ his forces the public key

to fit into a network packet.

Is that 1500 bytes? Or 12807

Either way, your key Is too big.

27



A tiny network server

handles and immediately forgets
each incoming network packet,
without allocating any memory.

Can use tiny network servers
to publish information.
Unauthenticated example from

last century: “anonymous NFS".

1997 Aura—Nikander, 2005 Shieh—

Myers—Sirer modify any protocol
to use a tiny network server

if an “input continuation”

fits into a network packet.

26

"Here's a natural scenario that
McEliece can't possibly handle:
e [o stop memory floods,

| want a tiny network server.
e [or forward secrecy,

| want the server to encrypt a

session key to an ephemeral

public key sent by the client.
e [ his forces the public key

to fit into a network packet.

Is that 1500 bytes? Or 12807

Either way, your key Is too big.

It's crazy if post-quantum
standards can't handle this!”

27



1etwork server

and immediately forgets
oming network packet,
allocating any memory.

tiny network servers

h information.

nticated example from
ury: “anonymous NFS".

ra—Nikander, 2005 Shieh—
irer modify any protocol
tiny network server

1put continuation”

a network packet.

26

27
“Here's a natural scenario that

McEliece can't possibly handle:
e [o stop memory floods,

| want a tiny network server.
e For forward secrecy,

| want the server to encrypt a

session key to an ephemeral

public key sent by the client.
e [ his forces the public key

to fit into a network packet.

Is that 1500 bytes? Or 12807

Either way, your key Is too big.
It's crazy if post-quantum
standards can't handle this!”

Bernstel
handles



arver
diately forgets
work packet,

any memory.

ork servers
tion.

xample from
nymous NFS”.

ler, 2005 Shieh—
y any protocol
ork server
nuation”
packet.

26

"Here's a natural scenario that
McEliece can't possibly handle:
e [o stop memory floods,

| want a tiny network server.
e [or forward secrecy,

| want the server to encrypt a

session key to an ephemeral

public key sent by the client.
e [ his forces the public key

to fit into a network packet.

Is that 1500 bytes? Or 12807

Either way, your key Is too big.

It's crazy if post-quantum
standards can't handle this!”

21

Bernstein—Lange °
handles this scena



gets
et,
ory.

Om
FS™.

Shieh—
-0col

26

"Here's a natural scenario that
McEliece can't possibly handle:
e [o stop memory floods,

| want a tiny network server.
e For forward secrecy,

| want the server to encrypt a

session key to an ephemeral

public key sent by the client.
e [ his forces the public key

to fit into a network packet.

Is that 1500 bytes? Or 12807

Either way, your key Is too big.

It's crazy if post-quantum
standards can't handle this!”

27

Bernstein—Lange "McTiny"
handles this scenario.



"Here's a natural scenario that
McEliece can't possibly handle:
e [o stop memory floods,

| want a tiny network server.
e [or forward secrecy,

| want the server to encrypt a

session key to an ephemeral

public key sent by the client.
e [ his forces the public key

to fit into a network packet.

Is that 1500 bytes? Or 12807

Either way, your key Is too big.
It's crazy if post-quantum
standards can't handle this!”

21

Bernstein—-Lange “McTiny"
handles this scenario.

23



"Here's a natural scenario that
McEliece can't possibly handle:
e [o stop memory floods,

| want a tiny network server.
e [or forward secrecy,

| want the server to encrypt a

session key to an ephemeral

public key sent by the client.
e [ his forces the public key

to fit into a network packet.

Is that 1500 bytes? Or 12807

Either way, your key Is too big.
It's crazy if post-quantum
standards can't handle this!”

21

28
Bernstein—Lange "McTiny"

handles this scenario.

1. The easy part: Client
encrypts session key to server's
long-term McEliece public key.
This establishes an encrypted
authenticated session.



"Here's a natural scenario that
McEliece can't possibly handle:
e [o stop memory floods,
| want a tiny network server.
e [or forward secrecy,
| want the server to encrypt a
session key to an ephemeral
public key sent by the client.
e [ his forces the public key
to fit into a network packet.
Is that 1500 bytes? Or 12807

Either way, your key Is too big.

It's crazy if post-quantum
standards can't handle this!”

21

Bernstein—-Lange “McTiny"
handles this scenario.

1. The easy part: Client
encrypts session key to server's
long-term McEliece public key.
This establishes an encrypted
authenticated session.

Attacker who records this session
and later steals server’s secret key
can then decrypt everything.
Remaining problem:

within this session, encrypt to an

ephemeral key for forward secrecy.

23



a natural scenario that
> can't possibly handle:
p memory floods,

a tiny network server.
rward secrecy,

the server to encrypt a
1 key to an ephemeral
key sent by the client.
orces the public key
nto a network packet.

1500 bytes? Or 12807

way, your key Is too big.

y If post-quantum
s can't handle this!”

27

28
Bernstein—Lange "McTiny"

handles this scenario.

1. The easy part: Client
encrypts session key to server's
long-term McEliece public key.
This establishes an encrypted
authenticated session.

Attacker who records this session
and later steals server's secret key
can then decrypt everything.
Remaining problem:

within this session, encrypt to an
ephemeral key for forward secrecy.

2. Clien
public ke

K11
K2 1

Kr,l
Each blc
to fit int



scenario that
ssibly handle:
' tloods,
twork server.
ecy,

r to encrypt a
1 ephemeral
oy the client.
bublic key
vork packet.

es? Or 12807

key Is too big.

uantum
ndle this!”

21

28
Bernstein—Lange "McTiny"

handles this scenario.

1. The easy part: Client
encrypts session key to server's
long-term McEliece public key.
This establishes an encrypted
authenticated session.

Attacker who records this session
and later steals server’s secret key
can then decrypt everything.
Remaining problem:

within this session, encrypt to an
ephemeral key for forward secrecy.

2. Client decompc
public key K into

Kii1 Kio2 K
Ko1 Koo K
Kr1 Kro K

Each block is sma
to fit into a netwo



1at
dle:

27

28
Bernstein—Lange "McTiny"

handles this scenario.

1. The easy part: Client
encrypts session key to server's
long-term McEliece public key.
This establishes an encrypted
authenticated session.

Attacker who records this session
and later steals server's secret key
can then decrypt everything.
Remaining problem:

within this session, encrypt to an
ephemeral key for forward secrecy.

2. Client decomposes ephen
public key K Into blocks: K

Ki1 Kio Ki3
Ko1 Koo Koz

Kr,l Kr,2 Kr,3
Each block is small enough
to fit into a network packet.



23

Bernstein—Lange “McTiny" 2. Client decomposes ephemeral
handles this scenario. public key K Into blocks: K =
1. The easy part: Client K11 Ki2 Kiz ... Kig
encrypts session key to server's Ka1 Koz Koz o Koy
long-term MckEliece public key. f f f " f
This establishes an encrypted Kri Kr2 Krz ... Ky
authenticated session. Each block is small enough

. . to fit into a network packet.
Attacker who records this session P

and later steals server’s secret key
can then decrypt everything.
Remaining problem:

within this session, encrypt to an
ephemeral key for forward secrecy.




Bernstein—Lange “McTiny"
handles this scenario.

1. The easy part: Client
encrypts session key to server's
long-term McEliece public key.
This establishes an encrypted
authenticated session.

Attacker who records this session
and later steals server’s secret key
can then decrypt everything.
Remaining problem:

within this session, encrypt to an

ephemeral key for forward secrecy.

23

2. Client decomposes ephemeral
public key K Into blocks: K =

Kii1 Ki2 Ki3 K1g
K1 Koo Ko3 Ko ¢
Kr,l Kr,2 Kr,3 Kr,Z

Each block is small enough
to fit into a network packet.

3. Client sends K; ; to server.
Server sends back Kj ;e
encrypted to a server cookie key.

Server cookie key is not per-client.
Key is erased after a few minutes.

29



n—Lange “McTiny"
this scenario.

asy part: Client
session key to server's
m McEliece public key.
ablishes an encrypted
cated session.

~who records this session
r steals server’'s secret key
| decrypt everything.

ng problem:

11S session, encrypt to an
al key for forward secrecy.

28

2. Client decomposes ephemeral
public key K Into blocks: K =

Kii Kio Ki3 K¢
Ko1 Koo Kz3 Ko ¢
Kr,l Kr,2 Kr,3 Kr,Z

Each block is small enough
to fit into a network packet.

3. Client sends Kj ; to server.
Server sends back Kj ;e
encrypted to a server cookie key.

Server cookie key is not per-client.
Key is erased after a few minutes.

29

4. Clien
containi
Server s



‘McTiny"
rio.

Client

2y to server's
e public key.
1 encrypted
on.

rds this session

rver's secret key
verything.

n:

, encrypt to an

forward secrecy.

23

2. Client decomposes ephemeral
public key K Into blocks: K =

Kii1 Kiz2 Ki3z ... Kiyg
Ko1 Koo Koz ... Koy
Kr,l Kr,2 Kr,3 L Kr,Z

Each block is small enough
to fit into a network packet.

3. Client sends K; ; to server.
Server sends back Kj ;e
encrypted to a server cookie key.

Server cookie key is not per-client.
Key is erased after a few minutes.

29

4. Client sends on
containing several
Server sends back



or's

ey.

SSion
et key

[O an
2Crecy.

28

2. Client decomposes ephemeral
public key K Into blocks: K =

Kii1 Kiz2 K13z ... Kiyg
Ko1 Koo Koz ... Koy
Kr,l Kr,2 Kr,3 . Kr,Z

Each block is small enough
to fit into a network packet.

3. Client sends Kj ; to server.
Server sends back Kj ;e
encrypted to a server cookie key.

Server cookie key is not per-client.
Key is erased after a few minutes.

29

4. Client sends one packet
containing several K; je;.
Server sends back combinat



2. Client decomposes ephemeral
public key K Into blocks: K =

Kii1 Kiz2 Ki3z ... Kiyg
Ko1 Koo Koz ... Koy
Kr,l Kr,2 Kr,3 L Kr,Z

Each block is small enough
to fit into a network packet.

3. Client sends K; ; to server.
Server sends back Kj ;e
encrypted to a server cookie key.

Server cookie key is not per-client.
Key is erased after a few minutes.

29

4. Client sends one packet
containing several K; je;.
Server sends back combination.

30



2. Client decomposes ephemeral
public key K Into blocks: K =

Ki1 Ki2 Ki3 K1g
Ko1 Koo Ko3 Ko ¢
Kr,l Kr,2 Kr,3 Kr,Z

Each block is small enough
to fit into a network packet.

3. Client sends K; ; to server.
Server sends back Kj ;e
encrypted to a server cookie key.

Server cookie key is not per-client.
Key is erased after a few minutes.

29

4. Client sends one packet
containing several K; je;.
Server sends back combination.

5. Repeat to combine everything.

30



2. Client decomposes ephemeral
public key K Into blocks: K =

Kii1 Kiz2 Ki3z ... Kiyg
Ko1 Koo Koz ... Koy
Kr,l Kr,2 Kr,3 L Kr,Z

Each block is small enough
to fit into a network packet.

3. Client sends K; ; to server.
Server sends back Kj ;e
encrypted to a server cookie key.

Server cookie key is not per-client.
Key is erased after a few minutes.

29

4. Client sends one packet
containing several K; je;.
Server sends back combination.

5. Repeat to combine everything.

6. Server sends final Ke
directly to client,
encrypted by session key
but not by cookie key.

(. Client decrypts.

30



2. Client decomposes ephemeral
public key K Into blocks: K =

Ki1 Ki2 Ki3 K1g
Ko1 Koo Ko3 Ko ¢
Kr,l Kr,2 Kr,3 Kr,Z

Each block is small enough
to fit into a network packet.

3. Client sends K; ; to server.
Server sends back Kj ;e
encrypted to a server cookie key.

Server cookie key is not per-client.

Key Is erased after a few minutes.

29

4. Client sends one packet
containing several K; je;.
Server sends back combination.

5. Repeat to combine everything.

6. Server sends final Ke
directly to client,
encrypted by session key
but not by cookie key.

(. Client decrypts.

Forward secrecy: Once cookie key
and secret key for K are erased,
client and server cannot decrypt.
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