
1

Algorithms for

multiquadratic number fields

D. J. Bernstein

Jens Bauch, Daniel J. Bernstein,

Henry de Valence, Tanja Lange,

Christine van Vredendaal.

“Short generators without

quantum computers: the case of

multiquadratics.” Eurocrypt 2017.

Paper and software:

https://multiquad.cr.yp.to



2

Breakthrough STOC 2009 Gentry

cryptosystem “Fully homomorphic

encryption using ideal lattices”

was broken several years later,

under reasonable assumptions.



2

Breakthrough STOC 2009 Gentry

cryptosystem “Fully homomorphic

encryption using ideal lattices”

was broken several years later,

under reasonable assumptions.

Assumption 1: User chooses a

(“small h+”) cyclotomic field

as the underlying number field.



2

Breakthrough STOC 2009 Gentry

cryptosystem “Fully homomorphic

encryption using ideal lattices”

was broken several years later,

under reasonable assumptions.

Assumption 1: User chooses a

(“small h+”) cyclotomic field

as the underlying number field.

Assumption 2: Attacker has a

large quantum computer.



2

Breakthrough STOC 2009 Gentry

cryptosystem “Fully homomorphic

encryption using ideal lattices”

was broken several years later,

under reasonable assumptions.

Assumption 1: User chooses a

(“small h+”) cyclotomic field

as the underlying number field.

Assumption 2: Attacker has a

large quantum computer.

Can other fields be attacked?

Are there non-quantum attacks?

What about other cryptosystems?



3

Compare to 2013 Lyubashevsky–

Peikert–Regev: “All of the

algebraic and algorithmic tools

(including quantum computation)

that we employ : : : can also be

brought to bear against SVP and

other problems on ideal lattices.

Yet despite considerable effort, no

significant progress in attacking

these problems has been made.

The best known algorithms for

ideal lattices perform essentially

no better than their generic

counterparts, both in theory and

in practice.”



4

Secret key in Gentry’s system:

short element g of R.

R: e.g., ring of integers OK
of a cyclotomic field K.

Public key: ideal gR.



4

Secret key in Gentry’s system:

short element g of R.

R: e.g., ring of integers OK
of a cyclotomic field K.

Public key: ideal gR.

Attack stage 1, quantum:

SODA 2016 Biasse–Song

finds some generator of gR.

Builds on Eisenträger–Hallgren–

Kitaev–Song algorithm for R∗.



4

Secret key in Gentry’s system:

short element g of R.

R: e.g., ring of integers OK
of a cyclotomic field K.

Public key: ideal gR.

Attack stage 1, quantum:

SODA 2016 Biasse–Song

finds some generator of gR.

Builds on Eisenträger–Hallgren–

Kitaev–Song algorithm for R∗.

Attack stage 2, cyclotomic:

simple reduction algorithm from

2014 Campbell–Groves–Shepherd.



5

Standard algebraic-number-theory

view of all generators of gR,

i.e., all ug where u ∈ R∗:
Log u ranges over

Dirichlet’s log-unit lattice;

Log ug = Log u + Log g .



5

Standard algebraic-number-theory

view of all generators of gR,

i.e., all ug where u ∈ R∗:
Log u ranges over

Dirichlet’s log-unit lattice;

Log ug = Log u + Log g .

Given any generator ug , try to

find short Log g by finding lattice

vector Log u close to Log ug .



5

Standard algebraic-number-theory

view of all generators of gR,

i.e., all ug where u ∈ R∗:
Log u ranges over

Dirichlet’s log-unit lattice;

Log ug = Log u + Log g .

Given any generator ug , try to

find short Log g by finding lattice

vector Log u close to Log ug .

Apply, e.g., embedding or Babai,

starting from basis for LogR∗?

Hard to find short enough basis,

unless g is extremely short.



6

For cyclotomic fields,

often u is a “cyclotomic unit”.

Known textbook basis for

cyclotomic units is a short basis.



6

For cyclotomic fields,

often u is a “cyclotomic unit”.

Known textbook basis for

cyclotomic units is a short basis.

Take, e.g., “ = exp(2ıi=1024);

field Q(“); ring R = Z[“].



6

For cyclotomic fields,

often u is a “cyclotomic unit”.

Known textbook basis for

cyclotomic units is a short basis.

Take, e.g., “ = exp(2ıi=1024);

field Q(“); ring R = Z[“].

(“3 − 1)=(“ − 1) is a unit:

directly invert, or apply “ 7→ “3

automorphism to factors of “ − 1.



6

For cyclotomic fields,

often u is a “cyclotomic unit”.

Known textbook basis for

cyclotomic units is a short basis.

Take, e.g., “ = exp(2ıi=1024);

field Q(“); ring R = Z[“].

(“3 − 1)=(“ − 1) is a unit:

directly invert, or apply “ 7→ “3

automorphism to factors of “ − 1.

(“9 − 1)=(“3 − 1) is a unit.

(“27 − 1)=(“9 − 1) is a unit.

Et cetera. Obtain short basis.



6

For cyclotomic fields,

often u is a “cyclotomic unit”.

Known textbook basis for

cyclotomic units is a short basis.

Take, e.g., “ = exp(2ıi=1024);

field Q(“); ring R = Z[“].

(“3 − 1)=(“ − 1) is a unit:

directly invert, or apply “ 7→ “3

automorphism to factors of “ − 1.

(“9 − 1)=(“3 − 1) is a unit.

(“27 − 1)=(“9 − 1) is a unit.

Et cetera. Obtain short basis.

Now embedding easily finds g .



7

Are you a lattice salesman?

Try to dismiss lattice attacks.

Ask: Do attacks against

• the gR 7→ g problem,

• Gentry’s original FHE system,

• the original Garg–Gentry–Halevi

multilinear maps, : : :

really matter for users?



7

Are you a lattice salesman?

Try to dismiss lattice attacks.

Ask: Do attacks against

• the gR 7→ g problem,

• Gentry’s original FHE system,

• the original Garg–Gentry–Halevi

multilinear maps, : : :

really matter for users?

My response to the salesman:

Maybe not—but this problem

is a natural starting point for

studying other lattice problems

that we certainly care about.

“Canary in the coal mine.”



8

“Exact Ideal-SVP”:

I 7→ shortest nonzero vector in I.

“Approximate Ideal-SVP”:

I 7→ short nonzero vector in I.



8

“Exact Ideal-SVP”:

I 7→ shortest nonzero vector in I.

“Approximate Ideal-SVP”:

I 7→ short nonzero vector in I.

Attack is against ideal I

with a short generator .



8

“Exact Ideal-SVP”:

I 7→ shortest nonzero vector in I.

“Approximate Ideal-SVP”:

I 7→ short nonzero vector in I.

Attack is against ideal I

with a short generator .

2015 Peikert says idea is “useless”

for more general principal ideals:

“We simply hadn’t realized

that the added guarantee of a

short generator would transform

the technique from useless to

devastatingly effective.”



9

2015 Peikert also says idea is

limited to principal ideals:

“Although cyclotomics have a

lot of structure, nobody has

yet found a way to exploit it in

attacking Ideal-SVP/BDD : : :

For commonly used rings,

principal ideals are an

extremely small fraction of all

ideals. : : : The weakness here is

not so much due to the structure

of cyclotomics, but rather to the

extra structure of principal ideals

that have short generators.”



10

Actually, the idea produces

attacks far beyond this case.

2016 Cramer–Ducas–Wesolowski:

Ideal-SVP attack for approx factor

2N
1=2+o(1)

in deg-N cyclotomics,

under plausible assumptions

about class-group generators etc.

Start from Biasse–Song, use

more features of cyclotomic fields.



10

Actually, the idea produces

attacks far beyond this case.

2016 Cramer–Ducas–Wesolowski:

Ideal-SVP attack for approx factor

2N
1=2+o(1)

in deg-N cyclotomics,

under plausible assumptions

about class-group generators etc.

Start from Biasse–Song, use

more features of cyclotomic fields.

Can techniques be pushed

to smaller approx factors?

Can techniques be adapted

to break, e.g., Ring-LWE?



11

NIST post-quantum competition

69 submissions (5 withdrawn),

including 20 lattice-based enc.



11

NIST post-quantum competition

69 submissions (5 withdrawn),

including 20 lattice-based enc.

Most lattice-based enc systems

use power-of-2 cyclotomics.

Some non-power-of-2 cyclotomics:

LIMA has Φ1019 option, “more

conservative choice of field”;

NTRU-HRSS-KEM uses Φ701;

NTRUEncrypt uses Φ743 etc.



11

NIST post-quantum competition

69 submissions (5 withdrawn),

including 20 lattice-based enc.

Most lattice-based enc systems

use power-of-2 cyclotomics.

Some non-power-of-2 cyclotomics:

LIMA has Φ1019 option, “more

conservative choice of field”;

NTRU-HRSS-KEM uses Φ701;

NTRUEncrypt uses Φ743 etc.

Can cyclotomic attacks on Gentry

be extended to these systems?



12

Some systems avoid cyclotomics.

FrodoKEM-640, 9616-byte key:

relies on matrix rings; says that

commutative rings “have

the potential for weaknesses

due to the extra structure”.



12

Some systems avoid cyclotomics.

FrodoKEM-640, 9616-byte key:

relies on matrix rings; says that

commutative rings “have

the potential for weaknesses

due to the extra structure”.

Titanium-lite, 14720-byte key:

uses “middle product” to

“hedge against the weakness

of specific polynomial rings”.



12

Some systems avoid cyclotomics.

FrodoKEM-640, 9616-byte key:

relies on matrix rings; says that

commutative rings “have

the potential for weaknesses

due to the extra structure”.

Titanium-lite, 14720-byte key:

uses “middle product” to

“hedge against the weakness

of specific polynomial rings”.

Streamlined NTRU Prime

4591761, 1218-byte key:

see Tanja’s talk later today.



13

Two theories of lattice safety

Theory 1: Best choices of field F

are choices where we know proofs

“attack against cryptosystem CF
⇒ attack against problem LF ”,

where LF is a “lattice problem”.



13

Two theories of lattice safety

Theory 1: Best choices of field F

are choices where we know proofs

“attack against cryptosystem CF
⇒ attack against problem LF ”,

where LF is a “lattice problem”.

Intuitive flaw in theory 1: Maybe

these choices make LF weak!



13

Two theories of lattice safety

Theory 1: Best choices of field F

are choices where we know proofs

“attack against cryptosystem CF
⇒ attack against problem LF ”,

where LF is a “lattice problem”.

Intuitive flaw in theory 1: Maybe

these choices make LF weak!

Theory 2: Safety of field F is

damaged by extra automorphisms,

extra subfields, etc. Similar

situation to discrete-log crypto.



13

Two theories of lattice safety

Theory 1: Best choices of field F

are choices where we know proofs

“attack against cryptosystem CF
⇒ attack against problem LF ”,

where LF is a “lattice problem”.

Intuitive flaw in theory 1: Maybe

these choices make LF weak!

Theory 2: Safety of field F is

damaged by extra automorphisms,

extra subfields, etc. Similar

situation to discrete-log crypto.

What’s a good test case for F?



14

Multiquadratic fields

Assumptions: n ∈ {0; 1; 2; : : :};
squarefree d1; : : : ; dn ∈ Z;Q
j∈J dj non-square for each

nonempty subset J ⊆ {1; : : : ; n}.

K = Q(
√
d1; : : : ;

√
dn):

smallest subfield of C

containing
√
d1; : : : ;

√
dn.

K is a degree-2n number field.

Basis:
Q
j∈J dj for each

subset J ⊆ {1; : : : ; n}.

e.g. Q(
√

2;
√

3) =

Q⊕Q
√

2⊕Q
√

3⊕Q
√

6.



15

This field is Galois:

has 2n automorphisms.

e.g. automorphisms of Q(
√

2;
√

3)

map a + b
√

2 + c
√

3 + d
√

6 to

a + b
√

2 + c
√

3 + d
√

6;

a− b
√

2 + c
√

3− d
√

6;

a + b
√

2− c
√

3− d
√

6;

a− b
√

2− c
√

3 + d
√

6.



15

This field is Galois:

has 2n automorphisms.

e.g. automorphisms of Q(
√

2;
√

3)

map a + b
√

2 + c
√

3 + d
√

6 to

a + b
√

2 + c
√

3 + d
√

6;

a− b
√

2 + c
√

3− d
√

6;

a + b
√

2− c
√

3− d
√

6;

a− b
√

2− c
√

3 + d
√

6.

About 2n
2=4 subfields.

e.g. subfields of Q(
√

2;
√

3):

Q(
√

2;
√

3),

Q(
√

2), Q(
√

3), Q(
√

6),

Q.



16

Gentry for multiquadratics

Use optimizations from

PKC 2010 Smart–Vercauteren,

Eurocrypt 2011 Gentry–Halevi.



16

Gentry for multiquadratics

Use optimizations from

PKC 2010 Smart–Vercauteren,

Eurocrypt 2011 Gentry–Halevi.

F : monic irreducible polynomial.

Ring R = Z[x ]=F ; not required

to be ring of integers of Q[x ]=F .



16

Gentry for multiquadratics

Use optimizations from

PKC 2010 Smart–Vercauteren,

Eurocrypt 2011 Gentry–Halevi.

F : monic irreducible polynomial.

Ring R = Z[x ]=F ; not required

to be ring of integers of Q[x ]=F .

Multiquadratics: take, e.g.,

F = (x −
√

2−
√

3) ·
(x +

√
2−
√

3) ·
(x −

√
2 +
√

3) ·
(x +

√
2 +
√

3).

Note Q(
√

2 +
√

3) = Q(
√

2;
√

3).



17

Smart–Vercauteren keygen:

Take short random g ∈ R.

Compute q, absolute norm of g .

Start over if q is not prime.



17

Smart–Vercauteren keygen:

Take short random g ∈ R.

Compute q, absolute norm of g .

Start over if q is not prime.

Compute root r of g in Z=q.

Public key gR = qR + (x − r)R
is represented as (q; r).



17

Smart–Vercauteren keygen:

Take short random g ∈ R.

Compute q, absolute norm of g .

Start over if q is not prime.

Compute root r of g in Z=q.

Public key gR = qR + (x − r)R
is represented as (q; r).

(We implemented multiquadratic

adaptation of Gentry–Halevi

cyclotomic keygen speedup:

instead of requiring prime q,

require gcd{b; q} > 1 for each

relative norm a + b
√
di of g .

Any squarefree q will work.)



18

Smart–Vercauteren encryption:

Take short m ∈ Z[x ]=F .

Ciphertext is m(r) ∈ Z=q.



18

Smart–Vercauteren encryption:

Take short m ∈ Z[x ]=F .

Ciphertext is m(r) ∈ Z=q.

Homomorphic operations:

add/multiply ciphertexts m(r)

to add/multiply messages m.



18

Smart–Vercauteren encryption:

Take short m ∈ Z[x ]=F .

Ciphertext is m(r) ∈ Z=q.

Homomorphic operations:

add/multiply ciphertexts m(r)

to add/multiply messages m.

Decryption:

given c ∈ {0; 1; : : : ; q − 1},
compute c=g ∈ Q[x ]=F ,

round to element of Z[x ]=F ,

multiply by g , subtract from c .



18

Smart–Vercauteren encryption:

Take short m ∈ Z[x ]=F .

Ciphertext is m(r) ∈ Z=q.

Homomorphic operations:

add/multiply ciphertexts m(r)

to add/multiply messages m.

Decryption:

given c ∈ {0; 1; : : : ; q − 1},
compute c=g ∈ Q[x ]=F ,

round to element of Z[x ]=F ,

multiply by g , subtract from c .

Decryption works if

each coefficient of m=g ∈ Q[x ]=F

is in (−1=2; 1=2).



19

Gentry says “computational

complexity of all of these

algorithms must be polynomial

in security parameter”.

Flaw in Smart–Vercauteren:

for some choices of F ,

keygen time is not polynomial

in security parameter.



19

Gentry says “computational

complexity of all of these

algorithms must be polynomial

in security parameter”.

Flaw in Smart–Vercauteren:

for some choices of F ,

keygen time is not polynomial

in security parameter.

For multiquadratic F , keygen is

disastrously slow: far too many

tries to find prime q. (Adaptation

of Gentry–Halevi speedup gives

only a polynomial improvement.)



20

Why this happens: Fix prime p.

Take field k of size p2.



20

Why this happens: Fix prime p.

Take field k of size p2.

d1; : : : ; dn are squares in k ,

so F splits completely in k[x ].

deg h ∈ {1; 2} for each

irred factor h of F in Fp[x ].



20

Why this happens: Fix prime p.

Take field k of size p2.

d1; : : : ; dn are squares in k ,

so F splits completely in k[x ].

deg h ∈ {1; 2} for each

irred factor h of F in Fp[x ].

Heuristic: for most p ≤ 2n, have

Θ(p) distinct linear factors h.



20

Why this happens: Fix prime p.

Take field k of size p2.

d1; : : : ; dn are squares in k ,

so F splits completely in k[x ].

deg h ∈ {1; 2} for each

irred factor h of F in Fp[x ].

Heuristic: for most p ≤ 2n, have

Θ(p) distinct linear factors h.

For each linear factor h:

with probability ≈1=p,

h divides g in Fp[x ],

forcing p2 to divide norm of g

if any di is non-square in Fp.



21

Our multiquadratic tweaks to

Smart–Vercauteren (including

adaptation of Gentry–Halevi):

1. Generalize cryptosystem to

support n polynomial variables.

Use R = Z[
√
d1; : : : ;

√
dn].



21

Our multiquadratic tweaks to

Smart–Vercauteren (including

adaptation of Gentry–Halevi):

1. Generalize cryptosystem to

support n polynomial variables.

Use R = Z[
√
d1; : : : ;

√
dn].

2. Subroutine: Construct uniform

random invertible element of R=p.



21

Our multiquadratic tweaks to

Smart–Vercauteren (including

adaptation of Gentry–Halevi):

1. Generalize cryptosystem to

support n polynomial variables.

Use R = Z[
√
d1; : : : ;

√
dn].

2. Subroutine: Construct uniform

random invertible element of R=p.

3. Choose y ∈ Θ(2n=n).

Force g to be invertible mod all

primes p ≤ y . Heuristically,

good chance of squarefree norm.



22

Computing units

Fix positive non-square d ∈ Z.

Assume d quasipoly in 2n;

i.e., log d ∈ nO(1).



22

Computing units

Fix positive non-square d ∈ Z.

Assume d quasipoly in 2n;

i.e., log d ∈ nO(1).˘
: : : ;±"−2;±"−1;±1;±";±"2; : : :

¯
is unit group of ring of integers of

Q(
√
d) for a unique " > 1, the

normalized fundamental unit.

log " <
√
d(2 + log 4d); quasipoly.



22

Computing units

Fix positive non-square d ∈ Z.

Assume d quasipoly in 2n;

i.e., log d ∈ nO(1).˘
: : : ;±"−2;±"−1;±1;±";±"2; : : :

¯
is unit group of ring of integers of

Q(
√
d) for a unique " > 1, the

normalized fundamental unit.

log " <
√
d(2 + log 4d); quasipoly.

Standard algorithms compute

a; b ∈ Q with " = a + b
√
d

in time (log ")1+o(1); quasipoly.

(Can save time by instead

representing " as product.)



23

Take a multiquadratic field

K = Q(
√
d1; : : : ;

√
dn).

Assume n > 0 and all di > 0.

The set of multiquadratic units

is the group generated by units

of all 2n − 1 quadratic subfields.

Analogous to cyclotomic units.

Compute this group by computing

all normalized fundamental units.



23

Take a multiquadratic field

K = Q(
√
d1; : : : ;

√
dn).

Assume n > 0 and all di > 0.

The set of multiquadratic units

is the group generated by units

of all 2n − 1 quadratic subfields.

Analogous to cyclotomic units.

Compute this group by computing

all normalized fundamental units.

We go beyond this: compute O∗K .

Could use Eisenträger–Hallgren–

Kitaev–Song, but we don’t want

to wait for quantum computers.



24

1966 Wada: exponential-time O∗K
algorithm for multiquadratics.



24

1966 Wada: exponential-time O∗K
algorithm for multiquadratics.

First step: Recursively compute

unit groups for three proper

subfields Kff; Kfi ; Kfffi of K.

Base cases: Q; Q(
√
d).

ff; fi : distinct non-identity

automorphisms of K.

Kff = {x ∈ K : ff(x) = x}.



24

1966 Wada: exponential-time O∗K
algorithm for multiquadratics.

First step: Recursively compute

unit groups for three proper

subfields Kff; Kfi ; Kfffi of K.

Base cases: Q; Q(
√
d).

ff; fi : distinct non-identity

automorphisms of K.

Kff = {x ∈ K : ff(x) = x}.

e.g. K = Q(
√

2;
√

3;
√

5),

appropriate ff; fi : have

Kff = Q(
√

2;
√

3);

Kfi = Q(
√

2;
√

5);

Kfffi = Q(
√

2;
√

15).



25

Second step:

Compute U = O∗KffO
∗
Kfi
ff(O∗Kfffi ).



25

Second step:

Compute U = O∗KffO
∗
Kfi
ff(O∗Kfffi ).

Fact: U ≤ O∗K .



25

Second step:

Compute U = O∗KffO
∗
Kfi
ff(O∗Kfffi ).

Fact: U ≤ O∗K .

Fact: (O∗K)2 ≤ U.



25

Second step:

Compute U = O∗KffO
∗
Kfi
ff(O∗Kfffi ).

Fact: U ≤ O∗K .

Fact: (O∗K)2 ≤ U.

Proof:

If u ∈ O∗K then

uff(u) ∈ O∗Kff ;

ufi(u) ∈ O∗Kfi ;

uff(fi(u)) ∈ O∗Kfffi ; so

uff(u)ufi(u)=ff(uff(fi(u))) ∈ U.



25

Second step:

Compute U = O∗KffO
∗
Kfi
ff(O∗Kfffi ).

Fact: U ≤ O∗K .

Fact: (O∗K)2 ≤ U.

Proof:

If u ∈ O∗K then

uff(u) ∈ O∗Kff ;

ufi(u) ∈ O∗Kfi ;

uff(fi(u)) ∈ O∗Kfffi ; so

uff(u)ufi(u)=ff(uff(fi(u))) ∈ U.

In other words, u2 ∈ U.



26

Third step:

identify (O∗K)2 inside U by

trying to compute square roots

of products of generators of U.



26

Third step:

identify (O∗K)2 inside U by

trying to compute square roots

of products of generators of U.

2Θ(2n) products.



26

Third step:

identify (O∗K)2 inside U by

trying to compute square roots

of products of generators of U.

2Θ(2n) products.

We do much better using

an NFS idea from 1991 Adleman.



26

Third step:

identify (O∗K)2 inside U by

trying to compute square roots

of products of generators of U.

2Θ(2n) products.

We do much better using

an NFS idea from 1991 Adleman.

¸
e1
1 · · ·¸

ek
k square ⇒

ffl(¸1)e1 · · ·ffl(¸k )ek = 1

for any quadratic character ffl

with ffl(¸1); : : : ; ffl(¸k ) ∈ {−1; 1}.



26

Third step:

identify (O∗K)2 inside U by

trying to compute square roots

of products of generators of U.

2Θ(2n) products.

We do much better using

an NFS idea from 1991 Adleman.

¸
e1
1 · · ·¸

ek
k square ⇒

ffl(¸1)e1 · · ·ffl(¸k )ek = 1

for any quadratic character ffl

with ffl(¸1); : : : ; ffl(¸k ) ∈ {−1; 1}.

Linear equation, usually reducing

dim{e} by 1. Use many such ffl.



27

Computing generators

Main goal: Find g given gR,

where R = Z[
√
d1; : : : ;

√
dn].



27

Computing generators

Main goal: Find g given gR,

where R = Z[
√
d1; : : : ;

√
dn].

Strategy: Reuse the equation

g2 = gff(g)gfi(g)=ff(gff(fi(g))).

Square root of g2 is ±g .



27

Computing generators

Main goal: Find g given gR,

where R = Z[
√
d1; : : : ;

√
dn].

Strategy: Reuse the equation

g2 = gff(g)gfi(g)=ff(gff(fi(g))).

Square root of g2 is ±g .

How to compute gff(g)?



27

Computing generators

Main goal: Find g given gR,

where R = Z[
√
d1; : : : ;

√
dn].

Strategy: Reuse the equation

g2 = gff(g)gfi(g)=ff(gff(fi(g))).

Square root of g2 is ±g .

How to compute gff(g)?

First compute relative norm

of ideal gR from K to Kff.

Obtain ideal generated by gff(g).



27

Computing generators

Main goal: Find g given gR,

where R = Z[
√
d1; : : : ;

√
dn].

Strategy: Reuse the equation

g2 = gff(g)gfi(g)=ff(gff(fi(g))).

Square root of g2 is ±g .

How to compute gff(g)?

First compute relative norm

of ideal gR from K to Kff.

Obtain ideal generated by gff(g).

Recursively compute a generator

of this ideal: probably not gff(g).

Some ugff(g) with u ∈ O∗Kff .



28

Unit multiple of gff(g),

unit multiple of gfi(g),

unit multiple of gff(fi(g))

⇒ some ug2 with u ∈ O∗K .



28

Unit multiple of gff(g),

unit multiple of gfi(g),

unit multiple of gff(fi(g))

⇒ some ug2 with u ∈ O∗K .

Use quadratic characters

(with values ±1 on g)

to identify v ∈ O∗K
such that vug2 is a square.



28

Unit multiple of gff(g),

unit multiple of gfi(g),

unit multiple of gff(fi(g))

⇒ some ug2 with u ∈ O∗K .

Use quadratic characters

(with values ±1 on g)

to identify v ∈ O∗K
such that vug2 is a square.

Now compute square root:

some unit multiple of g ,

i.e., some g ′ with g ′OK = gOK .



28

Unit multiple of gff(g),

unit multiple of gfi(g),

unit multiple of gff(fi(g))

⇒ some ug2 with u ∈ O∗K .

Use quadratic characters

(with values ±1 on g)

to identify v ∈ O∗K
such that vug2 is a square.

Now compute square root:

some unit multiple of g ,

i.e., some g ′ with g ′OK = gOK .

All of this takes quasipoly time.



29

Computing short generators

Assume d1; : : : ; dn ≥ 21:03n.

(More work seems to push bound

to <n2; see paper and software.)



29

Computing short generators

Assume d1; : : : ; dn ≥ 21:03n.

(More work seems to push bound

to <n2; see paper and software.)

Find multiquadratic (MQ) units.

Find all units.

Find some generator ug .



29

Computing short generators

Assume d1; : : : ; dn ≥ 21:03n.

(More work seems to push bound

to <n2; see paper and software.)

Find multiquadratic (MQ) units.

Find all units.

Find some generator ug .

Heuristic: For most d1; : : : ; dn,

all regulators log "

are larger than 20:51n;

so coefficients of 2n Log g

on MQ unit basis are

almost certainly in (−0:1; 0:1).



30

u2n is an MQ unit.

Log u2n = 2n Log u is

closest vector to 2n Log ug .



30

u2n is an MQ unit.

Log u2n = 2n Log u is

closest vector to 2n Log ug .

MQ unit lattice is orthogonal.

Round 2n Log ug to find 2n Log u

and 2n Log g . Deduce ±g2n .



30

u2n is an MQ unit.

Log u2n = 2n Log u is

closest vector to 2n Log ug .

MQ unit lattice is orthogonal.

Round 2n Log ug to find 2n Log u

and 2n Log g . Deduce ±g2n .

Use quadratic character: g2n .



30

u2n is an MQ unit.

Log u2n = 2n Log u is

closest vector to 2n Log ug .

MQ unit lattice is orthogonal.

Round 2n Log ug to find 2n Log u

and 2n Log g . Deduce ±g2n .

Use quadratic character: g2n .

Square root: ±g2n−1
.



30

u2n is an MQ unit.

Log u2n = 2n Log u is

closest vector to 2n Log ug .

MQ unit lattice is orthogonal.

Round 2n Log ug to find 2n Log u

and 2n Log g . Deduce ±g2n .

Use quadratic character: g2n .

Square root: ±g2n−1
.

Use quadratic character: g2n−1
.

Square root: ±g2n−2
.



30

u2n is an MQ unit.

Log u2n = 2n Log u is

closest vector to 2n Log ug .

MQ unit lattice is orthogonal.

Round 2n Log ug to find 2n Log u

and 2n Log g . Deduce ±g2n .

Use quadratic character: g2n .

Square root: ±g2n−1
.

Use quadratic character: g2n−1
.

Square root: ±g2n−2
.

...

Square root: ±g . Done!

MQ cryptosystem is broken

for all of these fields.



31

Slightly simpler:

Find MQ units,

but skip finding all units.



31

Slightly simpler:

Find MQ units,

but skip finding all units.

Recursively find ug2n−1

where u is an MQ unit; i.e.,

skip square-root computations.



31

Slightly simpler:

Find MQ units,

but skip finding all units.

Recursively find ug2n−1

where u is an MQ unit; i.e.,

skip square-root computations.

Take logs: Log ug2n−1
.

Round: Log u.



31

Slightly simpler:

Find MQ units,

but skip finding all units.

Recursively find ug2n−1

where u is an MQ unit; i.e.,

skip square-root computations.

Take logs: Log ug2n−1
.

Round: Log u.

Deduce ±g2n−1
.

Use quadratic character: g2n−1
.

Square root: ±g2n−2
.

...

Square root: ±g .


