Algorithms for Breakthrough STOC 2009 Gentry

multiquadratic number fields cryptosystem “Fully homomorphic

- encryption using ideal lattices”
D. J. Bernstein yp g

was broken several years later,

under reasonable assumptions.
Jens Bauch, Daniel J. Bernstein,

Henry de Valence, Tanja Lange,
Christine van Vredendaal.

“Short generators without
quantum computers: the case of
multiquadratics.” Eurocrypt 2017.

Paper and software:
https://multiquad.cr.yp.to

Algorithms for Breakthrough STOC 2009 Gentry

multiquadratic number fields cryptosystem “Fully homomorphic

- encryption using ideal lattices”
D. J. Bernstein yp g

was broken several years later,

under reasonable assumptions.
Jens Bauch, Daniel J. Bernstein,

Henry de Valence, Tanja Lange, Assumption 1: User chooses a

Christine van Vredendaal. (“small h*") cyclotomic field

“Short generators without as the underlying number field.
quantum computers: the case of

multiquadratics.” Eurocrypt 2017.

Paper and software:
https://multiquad.cr.yp.to

Algorithms for
multiquadratic number fields

D. J. Bernstein

Jens Bauch, Daniel J. Bernstein,
Henry de Valence, Tanja Lange,
Christine van Vredendaal.

“Short generators without
quantum computers: the case of

multiquadratics.” Eurocrypt 2017.

Paper and software:
https://multiquad.cr.yp.to

Breakthrough STOC 2009 Gentry
cryptosystem “Fully homomorphic
encryption using ideal lattices”
was broken several years later,
under reasonable assumptions.

Assumption 1: User chooses a
(“small h™") cyclotomic field
as the underlying number field.

Assumption 2: Attacker has a
large quantum computer.

Algorithms for
multiquadratic number fields

D. J. Bernstein

Jens Bauch, Daniel J. Bernstein,
Henry de Valence, Tanja Lange,
Christine van Vredendaal.

“Short generators without
quantum computers: the case of

multiquadratics.” Eurocrypt 2017.

Paper and software:
https://multiquad.cr.yp.to

Breakthrough STOC 2009 Gentry
cryptosystem “Fully homomorphic
encryption using ideal lattices”
was broken several years later,
under reasonable assumptions.

Assumption 1: User chooses a
(“small h™") cyclotomic field
as the underlying number field.

Assumption 2: Attacker has a
large quantum computer.

Can other fields be attacked?
Are there non-quantum attacks?
What about other cryptosystems?

ms for
ydratic number fields

rnstein

uch, Daniel J. Bernstein,
= Valence, Tanja Lange,
> van Vredendaal.
‘enerators without

) computers: the case of

ydratics.” Eurocrypt 2017.

1d software:
‘/multiquad.cr.yp.to

Breakthrough STOC 2009 Gentry
cryptosystem “Fully homomorphic
encryption using ideal lattices”
was broken several years later,
under reasonable assumptions.

Assumption 1: User chooses a
(“small h™") cyclotomic field
as the underlying number field.

Assumption 2: Attacker has a
large quantum computer.

Can other fields be attacked?
Are there non-quantum attacks?
What about other cryptosystems?

Compare
Pelkert—
algebraic
(includir
that we
brought
other pr
Yet desg
significa
these pri
The bes
ideal lat
no bette
countery
In practi

nber fields

| J. Bernstein,
Tanja Lange,
lendaal.
without
rs: the case of

Eurocrypt 2017.

e:
lad.cr.yp.to

Breakthrough STOC 2009 Gentry
cryptosystem “Fully homomorphic
encryption using ideal lattices”
was broken several years later,
under reasonable assumptions.

Assumption 1: User chooses a
(“small h™") cyclotomic field
as the underlying number field.

Assumption 2: Attacker has a
large quantum computer.

Can other fields be attacked?
Are there non-quantum attacks?
What about other cryptosystems?

Compare to 2013

Peikert—Regev: "/
algebraic and algo
(including quantur
that we employ ..

brought to bear aj
other problems on
Yet despite consid
significant progres
these problems ha
The best known a
ideal lattices perfc
no better than the
counterparts, both
In practice.”

V)

tein,
nge,

se of

- 2017.

0.To

Breakthrough STOC 2009 Gentry
cryptosystem “Fully homomorphic
encryption using ideal lattices”
was broken several years later,
under reasonable assumptions.

Assumption 1: User chooses a
(“small h™") cyclotomic field
as the underlying number field.

Assumption 2: Attacker has a
large quantum computer.

Can other fields be attacked?
Are there non-quantum attacks?
What about other cryptosystems?

Compare to 2013 Lyubashey
Peikert—Regev: “All of the

algebraic and algorithmic to
(including quantum comput.
that we employ ... can also

brought to bear against SV}
other problems on ideal latt;
Yet despite considerable effc
significant progress in attach
these problems has been ma
The best known algorithms
ideal lattices perform essent
no better than their generic
counterparts, both in theory
in practice.”

Breakthrough STOC 2009 Gentry
cryptosystem “Fully homomorphic
encryption using ideal lattices”
was broken several years later,
under reasonable assumptions.

Assumption 1: User chooses a
(“small h™") cyclotomic field
as the underlying number field.

Assumption 2: Attacker has a
large quantum computer.

Can other fields be attacked?
Are there non-quantum attacks?
What about other cryptosystems?

Compare to 2013 Lyubashevsky—
Peikert—Regev: “All of the
algebraic and algorithmic tools
(including quantum computation)
that we employ ... can also be

brought to bear against SVP and
other problems on ideal lattices.
Yet despite considerable effort, no
significant progress in attacking
these problems has been made.
The best known algorithms for
ideal lattices perform essentially
no better than their generic
counterparts, both in theory and
In practice.”

rough STOC 2009 Gentry
stem “Fully homomorphic
on using ideal lattices”
cen several years later,
asonable assumptions.

lon 1: User chooses a
h*") cyclotomic field
nderlying number field.

lon 2: Attacker has a
antum computer.

er flelds be attacked?
e non-quantum attacks?
yout other cryptosystems?

Compare to 2013 Lyubashevsky—
Peikert—Regev: “All of the
algebraic and algorithmic tools
(including quantum computation)
that we employ ... can also be

brought to bear against SVP and
other problems on ideal lattices.
Yet despite considerable effort, no
significant progress in attacking
these problems has been made.
The best known algorithms for
ideal lattices perform essentially
no better than their generic
counterparts, both In theory and
in practice.”

Secret k
short ele

R: eg.,
of a cyc

Public k

)C 2009 Gentry
ly homomorphic
Jeal lattices”
| years later,
1ssumptions.

er chooses a
tomic field
number field.

tacker has a
nputer.

> attacked?
ntum attacks?
cryptosystems?

Compare to 2013 Lyubashevsky—
Peikert—Regev: “All of the
algebraic and algorithmic tools
(including quantum computation)
that we employ ... can also be

brought to bear against SVP and
other problems on ideal lattices.
Yet despite considerable effort, no
significant progress in attacking
these problems has been made.
The best known algorithms for
ideal lattices perform essentially
no better than their generic
counterparts, both in theory and
In practice.”

Secret key in Gent
short element g of

R: e.g., ring of in’
of a cyclotomic fie

Public key: ideal ¢

entry
orphic

cks?

tems?

Compare to 2013 Lyubashevsky—
Peikert—Regev: “All of the
algebraic and algorithmic tools
(including quantum computation)
that we employ ... can also be

brought to bear against SVP and
other problems on ideal lattices.
Yet despite considerable effort, no
significant progress in attacking
these problems has been made.
The best known algorithms for
ideal lattices perform essentially
no better than their generic
counterparts, both In theory and
In practice.”

Secret key in Gentry's systel
short element g of R.

R: e.g., ring of integers Ok
of a cyclotomic field K.

Public key: ideal gR.

Compare to 2013 Lyubashevsky—
Peikert—Regev: “All of the
algebraic and algorithmic tools

(including c
that we em

uantum computation)
oloy ... can also be

brought to

vear against SVP and

other problems on ideal lattices.

Yet despite

considerable effort, no

significant progress in attacking

these problems has been made.

The best known algorithms for

ideal lattices perform essentially

no better than their generic

counterparts, both in theory and

In practice.”

Secret key in Gentry's system:
short element g of R.

R: e.g., ring of integers Ok
of a cyclotomic field K.

Public key: ideal gR.

Compare to 2013 Lyubashevsky— Secret key in Gentry's system:
Peikert—Regev: “All of the short element g of K.

algebraic and algorithmic tools R: e.g., ring of integers Ok

(including quantum computation) of a cyclotomic field K.
that we employ ... can also be
brought to bear against SVP and Public key: ideal gR.

other problems on ideal lattices. Attack stage 1, quantum:

Yet despite considerable effort, no SODA 2016 Biasse-Song

significant progress in attacking finds some generator of gR.

these problems has been made. Builds on Eisentrager—Hallgren—

The best known algorithms for Kitaev-Song algorithm for R*.
ideal lattices perform essentially
no better than their generic

counterparts, both in theory and

In practice.”

Compare to 2013 Lyubashevsky—
Peikert—Regev: “All of the
algebraic and algorithmic tools
(including quantum computation)
that we employ ... can also be

brought to bear against SVP and
other problems on ideal lattices.
Yet despite considerable effort, no
significant progress in attacking
these problems has been made.
The best known algorithms for
ideal lattices perform essentially
no better than their generic
counterparts, both in theory and
In practice.”

Secret key in Gentry's system:
short element g of R.

R: e.g., ring of integers Ok
of a cyclotomic field K.

Public key: ideal gR.

Attack stage 1, quantum:
SODA 2016 Biasse—Song

finds some generator of gR.
Builds on Eisentrager—Hallgren—
Kitaev—Song algorithm for R*.

Attack stage 2, cyclotomic:

simple reduction algorithm from
2014 Campbell-Groves—Shepherd.

> to 2013 Lyubashevsky—
Regev: “All of the

- and algorithmic tools

Ig quantum computation)
employ ... can also be

to bear against SVP and
oblems on ideal lattices.
ite considerable effort, no
nt progress in attacking
oblems has been made.

= known algorithms for

ices perform essentially
r than their generic
arts, both in theory and

CE.

Secret key in Gentry's system:
short element g of K.

R: e.g., ring of integers Ok
of a cyclotomic field K.

Public key: ideal gR.

Attack stage 1, quantum:
SODA 2016 Biasse-Song

finds some generator of gR.
Builds on Eisentrager—Hallgren—
Kitaev—Song algorithm for R*.

Attack stage 2, cyclotomic:

simple reduction algorithm from
2014 Campbell-Groves—Shepherd.

Standare
view of .
l.e., all ¢
Log u ra
Dirichlet

Log ug -

Lyubashevsky—
\|| of the
rithmic tools

n computation)
. can also be
rainst SVP and
ideal lattices.
erable effort, no
s In attacking

s been made.
lgorithms for
rm essentially
Ir generic

In theory and

Secret key in Gentry's system:
short element g of R.

R: e.g., ring of integers Ok
of a cyclotomic field K.

Public key: ideal gR.

Attack stage 1, quantum:
SODA 2016 Biasse—Song

finds some generator of gR.
Builds on Eisentrager—Hallgren—
Kitaev—Song algorithm for R*.

Attack stage 2, cyclotomic:

simple reduction algorithm from
2014 Campbell-Groves—Shepherd.

Standard algebraic
view of all generat
l.e., all ug where |
Log u ranges over
Dirichlet’s log-uni

Log ug = Log u

sky—

ols
ation)
' be

> and
ces.
rt, no
ang
de.
for
ally

and

Secret key in Gentry's system:
short element g of K.

R: e.g., ring of integers Ok
of a cyclotomic field K.

Public key: ideal gR.

Attack stage 1, quantum:
SODA 2016 Biasse—-Song

finds some generator of gR.
Builds on Eisentrager—Hallgren—
Kitaev—Song algorithm for R*.

Attack stage 2, cyclotomic:
simple reduction algorithm from

2014 Campbell-Groves—Shepherd.

Standard algebraic-number-1
view of all generators of gR
i.e., all ug where u € R*:
Log u ranges over
Dirichlet’s log-unit lattice;

Logug = Logu + Logg.

Secret key in Gentry's system: Standard algebraic-number-theory
short element g of K. view of all generators of gR,
i.e., all ug where u € R*:

R: e.g., ring of integers Ok

of a cyclotomic field K. Log u ranges over

Dirichlet’s log-unit lattice;
Public key: ideal gR. Log ug = Logu + Log g

Attack stage 1, quantum:
SODA 2016 Biasse—Song

finds some generator of gR.
Builds on Eisentrager—Hallgren—
Kitaev—Song algorithm for R*.

Attack stage 2, cyclotomic:

simple reduction algorithm from
2014 Campbell-Groves—Shepherd.

Secret key in Gentry's system: Standard algebraic-number-theory
short element g of K. view of all generators of gR,

. .
R: e.g., ring of integers Ok :_.e., all ug where u € R*:
of a cyclotomic field K. O U Tahgtes over

Dirichlet’s log-unit lattice;

Public key: ideal gR. Logug = Logu + Logg.

Attack stage 1, quantum: Given any generator ug, try to
SODA 2016 Biasse-Song find short Log g by finding lattice
finds some generator of gR. vector Log u close to Log ug.

Builds on Eisentrager—Hallgren—
Kitaev—Song algorithm for R*.

Attack stage 2, cyclotomic:

simple reduction algorithm from
2014 Campbell-Groves—Shepherd.

Secret key in Gentry's system:
short element g of R.

R: e.g., ring of integers Ok
of a cyclotomic field K.

Public key: ideal gR.

Attack stage 1, quantum:
SODA 2016 Biasse—Song

finds some generator of gR.
Builds on Eisentrager—Hallgren—
Kitaev—Song algorithm for R*.

Attack stage 2, cyclotomic:
simple reduction algorithm from

2014 Campbell-Groves—Shepherd.

Standard algebraic-number-theory
view of all generators of gR,

i.e., all ug where u € R*:

Log u ranges over

Dirichlet’s log-unit lattice;

Logug = Logu + Logg.

Given any generator ug, try to
find short Log g by finding lattice
vector Log u close to Log ug.

Apply, e.g., embedding or Babali,
starting from basis for Log R*?
Hard to find short enough basis,
unless g Is extremely short.

ey in Gentry's system:
ment g of R.

ring of integers Ok
otomic field K.

ey: I1deal gR.

tage 1, quantum:;

016 Biasse—Song

ne generator of gR.

n Eisentrager—Hallgren—
>ong algorithm for R*.

tage 2, cyclotomic:
aduction algorithm from

mpbell-Groves—Shepherd.

Standard algebraic-number-theory
view of all generators of gR,

i.e., all ug where u € R*:

Log u ranges over

Dirichlet’s log-unit lattice;

Logug = Logu + Logg.

Given any generator ug, try to
find short Log g by finding lattice
vector Log u close to Log ug.

Apply, e.g., embedding or Babali,
starting from basis for Log R*7
Hard to find short enough basis,
unless g Is extremely short.

For cycl
often u
Known
cycloton

ry's system:
- R.

regers Oy
ld K.

'R.

D

lantum:
e—Song

tor of gR.
ger—Hallgren—
ithm for R*.

clotomic:
lgorithm from

-oves—Shepherd.

Standard algebraic-number-theory
view of all generators of gR,

i.e., all ug where u € R*:

Log u ranges over

Dirichlet’s log-unit lattice;

Logug = Logu + Logg.

Given any generator ug, try to
find short Log g by finding lattice
vector Log u close to Log ug.

Apply, e.g., embedding or Babali,
starting from basis for Log R*?
Hard to find short enough basis,
unless g Is extremely short.

For cyclotomic fiel
often u is a “cyclc
Known textbook k
cyclotomic units I

‘en—
?*

rom

dherd.

Standard algebraic-number-theory
view of all generators of gR,

i.e., all ug where u € R*:

Log u ranges over

Dirichlet’s log-unit lattice;

Logug = Logu + Logg.

Given any generator ug, try to
find short Log g by finding lattice
vector Log u close to Log ug.

Apply, e.g., embedding or Babali,
starting from basis for Log R*7
Hard to find short enough basis,
unless g Is extremely short.

For cyclotomic fields,

often u is a “cyclotomic uni
Known textbook basis for
cyclotomic units is a short b

Standard algebraic-number-theory
view of all generators of gR,

i.e., all ug where u € R*:

Log u ranges over

Dirichlet’s log-unit lattice;

Logug = Logu+ Logg.

Given any generator ug, try to
find short Log g by finding lattice
vector Log u close to Log ug.

Apply, e.g., embedding or Babali,
starting from basis for Log R*?
Hard to find short enough basis,
unless g Is extremely short.

For cyclotomic fields,

often u is a “cyclotomic unit”.
Known textbook basis for
cyclotomic units is a short basis.

Standard algebraic-number-theory
view of all generators of gR,

i.e., all ug where u € R*:

Log u ranges over

Dirichlet’s log-unit lattice;

Logug = Logu + Logg.

Given any generator ug, try to
find short Log g by finding lattice
vector Log u close to Log ug.

Apply, e.g., embedding or Babali,
starting from basis for Log R*?
Hard to find short enough basis,
unless g Is extremely short.

For cyclotomic fields,

often u is a “cyclotomic unit”.
Known textbook basis for
cyclotomic units is a short basis.

Take, e.g., { = exp(27i/1024);
field Q(¢); ring R = Z[(].

Standard algebraic-number-theory
view of all generators of gR,

i.e., all ug where u € R*:

Log u ranges over

Dirichlet’s log-unit lattice;

Logug = Logu+ Logg.

Given any generator ug, try to
find short Log g by finding lattice
vector Log u close to Log ug.

Apply, e.g., embedding or Babali,
starting from basis for Log R*?
Hard to find short enough basis,
unless g Is extremely short.

For cyclotomic fields,

often u is a “cyclotomic unit”.
Known textbook basis for
cyclotomic units is a short basis.

Take, e.g., { = exp(27i/1024);
field Q(¢); ring R = Z[(].

(¢3—1)/(¢ —1) is a unit:
directly invert, or apply ¢ — (3
automorphism to factors of { — 1.

Standard algebraic-number-theory
view of all generators of gR,

i.e., all ug where u € R*:

Log u ranges over

Dirichlet’s log-unit lattice;

Logug = Logu+ Logg.

Given any generator ug, try to
find short Log g by finding lattice
vector Log u close to Log ug.

Apply, e.g., embedding or Babali,
starting from basis for Log R*?
Hard to find short enough basis,
unless g Is extremely short.

For cyclotomic fields,

often u is a “cyclotomic unit”.
Known textbook basis for
cyclotomic units is a short basis.

Take, e.g., { = exp(27i/1024);
field Q(¢); ring R = Z[(].

(¢3—1)/(¢ —1) is a unit:
directly invert, or apply ¢ — (3
automorphism to factors of { — 1.

(¢? —1)/(¢3 —1) is a unit.
(CZ? — 1)/(C9 — 1) is a unit.

Et cetera. Obtain short basis.

Standard algebraic-number-theory
view of all generators of gR,

i.e., all ug where u € R*:

Log u ranges over

Dirichlet’s log-unit lattice;

Logug = Logu+ Logg.

Given any generator ug, try to
find short Log g by finding lattice
vector Log u close to Log ug.

Apply, e.g., embedding or Babali,
starting from basis for Log R*?
Hard to find short enough basis,
unless g Is extremely short.

For cyclotomic fields,

often u is a “cyclotomic unit”.
Known textbook basis for
cyclotomic units is a short basis.

Take, e.g., { = exp(27i/1024);
field Q(¢); ring R = Z[(].

(¢3—1)/(¢ —1) is a unit:
directly invert, or apply ¢ — (3
automorphism to factors of { — 1.

(¢? —1)/(¢3 —1) is a unit.
(CZ? — 1)/(C9 — 1) is a unit.

Et cetera. Obtain short basis.

Now embedding easily finds g.

1 algebraic-number-theory
a1l generators of gR,

1g where u € R*:

nges over

s log-unit lattice;

= Logu+ Logg.

1y generator ug, try to
t Log g by finding lattice
og u close to Log ug.

.g., embedding or Babal,
from basis for Log R*?
find short enough basis,
Is extremely short.

For cyclotomic fields,

often u is a “cyclotomic unit”.
Known textbook basis for
cyclotomic units Is a short basis.

Take, e.g., { = exp(27i/1024);
field Q(¢); ring R = Z[{].
(¢3—1)/(¢ —1) is a unit:
directly invert, or apply ¢ — (3
automorphism to factors of { — 1.

(¢? —1)/(¢3 —1) is a unit.
(C27 — 1)/(C9 — 1) is a unit.

Et cetera. Obtain short basis.

Now embedding easily finds g.

Are you
Try to d
Ask: Dc
e the gf
o Gentn
e the or

multili

really m

-number-theory For cyclotomic fields, Are you a lattice <
ors of gR, often u is a “cyclotomic unit”. Try to dismiss latt
1 € R*; Known textbook basis for Ask: Do attacks a

cyclotomic units is a short basis. e the gR — g pro
- lattice; e Gentry's original

] Take, e.g., { = exp(27i/1024);
968 field Q(¢); ring R = Z[¢]
or ug, try to

e the original Garg

multilinear map:

(§3 —1)/(¢ —1) is a unit; really matter for u

y finding lattice directly invert, or apply ¢ — ¢3

to Log ug. automorphism to factors of { — 1.

(¢? —1)/(¢3 —1) is a unit.
(CZ? — 1)/(C9 — 1) is a unit.

Et cetera. Obtain short basis.

Iding or Babali,
s for Log R*7
enough basis,

ely short.
Now embedding easily finds g.

heory For cyclotomic fields, Are you a lattice salesman?

, often u is a “cyclotomic unit”. Try to dismiss lattice attack
Known textbook basis for Ask: Do attacks against
cyclotomic units is a short basis. e the gR — g problem,

Take, e.g.. ¢ = exp(2mi/1024): e Gentry's original FHE syst

field Q(¢): ring R = Z[¢]. e the o.r-lgmal Garg—Gentry—
‘o multilinear maps, ...
. (C3 —1)/(¢ —1) is a unit; really matter for users?
attice . . 3
directly invert, or apply ¢ — (
automorphism to factors of ¢ — 1.
?*bj" (0 1)/(¢3 —1) is a unit
| (¢ —1)/(¢? — 1) is a unit.
asis,

Et cetera. Obtain short basis.

Now embedding easily finds g.

For cyclotomic fields, Are you a lattice salesman?
often u is a “cyclotomic unit”. Try to dismiss lattice attacks.
Known textbook basis for Ask: Do attacks against
cyclotomic units is a short basis. e the gR — g problem,

Take, e.g. ¢ — exp(27i/1024); e Gentry's original FHE system,

field Q(¢): ring R = Z[¢]. e the c?r.lglnal Garg—Gentry—Halevi
multilinear maps, ...
(§3 —1)/(¢ —1) is a unit; really matter for users?

directly invert, or apply ¢ — (3
automorphism to factors of { — 1.

(¢? —1)/(¢3 —1) is a unit.
(CZ? — 1)/(C9 — 1) is a unit.

Et cetera. Obtain short basis.

Now embedding easily finds g.

For cyclotomic fields,

often u is a “cyclotomic unit”.
Known textbook basis for
cyclotomic units is a short basis.

Take, e.g., { = exp(27i/1024);
field Q(¢); ring R = Z[(].

(¢3 —1)/(¢ —1) is a unit:
directly invert, or apply ¢ — (3
automorphism to factors of { — 1.

(¢? —1)/(¢3 —1) is a unit.
(CZ? — 1)/(C9 — 1) is a unit.

Et cetera. Obtain short basis.

Now embedding easily finds g.

Are you a lattice salesman?

Try to dismiss lattice attacks.

Ask: Do attacks against

e the gR +— g problem,

e Gentry's original FHE system,

e the original Garg—Gentry—Halevi
multilinear maps, ...

really matter for users?

My response to the salesman:
Maybe not—but this problem
is a natural starting point for
studying other lattice problems

that we certainly care about.

“Canary in the coal mine.”

>tomic fields,

s a cyclotomic unit”.
extbook basis for

11C units iIs a short basis.

7., { = exp(2mi/1024);
); ring R = Z[¢].
/(¢ — 1) is a unit:

invert, or apply ¢ — (3
phism to factors of ¢ — 1.

/(¢3 — 1) is a unit.
)/(¢? — 1) is a unit.

3. Obtain short basis.

bedding easily finds g.

Are you a lattice salesman?

Try to dismiss lattice attacks.

Ask: Do attacks against
e the gR +— g problem,

e Gentry's original FHE system,

e the original Garg—Gentry—Halevi

multilinear maps, ...
really matter for users?

My response to the salesman:

Maybe not—but this problem

is a natural starting point f

studying other lattice prob

or
€ms

that we certainly care about.

“Canary in the coal mine.”

"Exact |

I — sho

“"Approx
I — sho

ds,

tomic unit' .
)asis for
> a short basis.

p(27i/1024);
= Z[¢].
S a unit:

apply ¢ — ¢
factors of ¢ — 1.

IS 2 unit.
) IS a unit.
short basis.

asily finds g.

Are you a lattice salesman?

Try to dismiss lattice attacks.

Ask: Do attacks against

e the gR +— g problem,

e Gentry's original FHE system,

e the original Garg—Gentry—Halevi
multilinear maps, ...

really matter for users?

My response to the salesman:
Maybe not—but this problem
Is a natural starting point for
studying other lattice problems

that we certainly care about.

“Canary in the coal mine.”

“Exact Ideal-SVP’
I — shortest nonz

“Approximate lde:
I — short nonzerc

Are you a lattice salesman? “Exact ldeal-SVP":
t" . Try to dismiss lattice attacks. I — shortest nonzero vector

Ask: Do attacks against “Approximate Ideal-SVP"

asis. e the oR — roblem, .
) & & P I — short nonzero vector In

4); e Gentry's original FHE system,
| e the original Garg—Gentry—Halevi
multilinear maps, ...

really matter for users?

> §3

¢ —1 My response to the salesman:
Maybe not—but this problem
is a natural starting point for
studying other lattice problems

S. that we certainly care about.

g- “Canary in the coal mine.”

Are you a lattice salesman? “Exact ldeal-SVP":
Try to dismiss lattice attacks. I — shortest nonzero vector in 1.

Ask: Do attacks against “Approximate Ideal-SVP"

e the gR — g problem, I — short nonzero vector in I.

e Gentry's original FHE system,

e the original Garg—Gentry—Halevi
multilinear maps, ...

really matter for users?

My response to the salesman:
Maybe not—but this problem
Is a natural starting point for
studying other lattice problems

that we certainly care about.

“Canary in the coal mine.”

Are you a lattice salesman?

Try to dismiss lattice attacks.

Ask: Do attacks against

e the gR +— g problem,

e Gentry's original FHE system,

e the original Garg—Gentry—Halevi
multilinear maps, ...

really matter for users?

My response to the salesman:
Maybe not—but this problem
Is a natural starting point for
studying other lattice problems

that we certainly care about.

“Canary in the coal mine.”

“Exact Ideal-SVP":
I — shortest nonzero vector In I.

“Approximate ldeal-SVP":
I — short nonzero vector in I.

Attack Is against ideal I
with a short generator.

Are you a lattice salesman?

Try to dismiss lattice attacks.

Ask: Do attacks against

e the gR +— g problem,

e Gentry's original FHE system,

e the original Garg—Gentry—Halevi
multilinear maps, ...

really matter for users?

My response to the salesman:
Maybe not—but this problem
Is a natural starting point for
studying other lattice problems

that we certainly care about.

“Canary in the coal mine.”

“Exact Ideal-SVP":
I — shortest nonzero vector In I.

“Approximate ldeal-SVP":
I — short nonzero vector in I.

Attack Is against ideal I
with a short generator.

2015 Peikert says idea I1s “useless”
for more general principal ideals:
“We simply hadn't realized

that the added guarantee of a

short generator would transform
the technique from useless to
devastatingly effective.”

a lattice salesman?
Ismiss lattice attacks.
 attacks against

X — g problem,

/'s original FHE system,
ginal Garg—Gentry—Halevi
near maps, ...

atter for users?

onse to the salesman:
\'ot—but this problem
iral starting point for

other lattice problems

certainly care about.

In the coal mine.”

“Exact ldeal-SVP":
I — shortest nonzero vector In I.

“Approximate Ideal-SVP":
I — short nonzero vector in I.

Attack Is against ideal I
with a short generator.

2015 Peikert says idea I1s “useless”

for more general principal ideals:
“We simply hadn't realized
that the added guarantee of a

short generator would transform
the technique from useless to
devastatingly effective.”

2015 Pe
limited t
“Althou;
lot of st
yet foun
attackin
For com
principa

extreme
ideals. .
not so n
of cyclof
extra str
that hav

alesman?
Ice attacks.
gainst
blem,

FHE system,
—Gentry—Halevi

sers?

e salesman:
his problem
g point for
Ice problems
are about.

3l mine.”

“Exact Ideal-SVP":
I — shortest nonzero vector in I.

“Approximate ldeal-SVP":
I — short nonzero vector in I.

Attack Is against ideal I
with a short generator.

2015 Peikert says idea I1s “useless”

for more general principal ideals:
“We simply hadn't realized
that the added guarantee of a

short generator would transform
the technique from useless to
devastatingly effective.”

2015 Pelkert also
limited to principa
“Although cycloto
lot of structure, nc
yet found a way t«
attacking Ideal-SV
For commonly use
principal ideals are

extremely small fr.
ideals. ... The we
not so much due t
of cyclotomics, bu
extra structure of
that have short ge

“Exact ldeal-SVP":
I — shortest nonzero vector In I.

“Approximate Ideal-SVP":
I — short nonzero vector in I.

Attack Is against ideal I
with a short generator.

2015 Peikert says idea I1s “useless”

for more general principal ideals:
“We simply hadn't realized
that the added guarantee of a

short generator would transform
the technique from useless to
devastatingly effective.”

2015 Pelkert also says idea |
limited to principal ideals:
“Although cyclotomics have
lot of structure, nobody has
yet found a way to exploit it
attacking ldeal-SVP/BDD .
For commonly used rings,
principal i1deals are an

extremely small fraction of ¢
ideals. ... The weakness he
not so much due to the stru
of cyclotomics, but rather tc
extra structure of principal |
that have short generators.”

“Exact Ideal-SVP":
I — shortest nonzero vector in I.

“Approximate ldeal-SVP":
I — short nonzero vector in I.

Attack Is against ideal I
with a short generator.

2015 Peikert says idea I1s “useless”

for more general principal ideals:
“We simply hadn't realized
that the added guarantee of a

short generator would transform
the technique from useless to
devastatingly effective.”

2015 Pelikert also says idea is
limited to principal ideals:
"Although cyclotomics have a
lot of structure, nobody has
yet found a way to exploit it in
attacking ldeal-SVP/BDD ...
For commonly used rings,
principal ideals are an

extremely small fraction of all
ideals. ... The weakness here Is
not so much due to the structure
of cyclotomics, but rather to the
extra structure of principal ideals
that have short generators.”

deal-SVP":
rtest nonzero vector in 1.

imate ldeal-SVP":
rt nonzero vector in I.

s against ideal
hort generator.

Ikert says idea Is “useless”
- general principal ideals:
iply hadn't realized

added guarantee of a
nerator would transform
nique from useless to
ingly effective.”

2015 Pelkert also says idea s
limited to principal ideals:
"Although cyclotomics have a
lot of structure, nobody has
yet found a way to exploit it in
attacking ldeal-SVP/BDD ...
For commonly used rings,
principal i1deals are an

extremely small fraction of all
ideals. ... The weakness here Is
not so much due to the structure
of cyclotomics, but rather to the
extra structure of principal ideals
that have short generators.”

Actually
attacks

2016 Cr

|deal-SV
2N1/2—|—O(

under p

about ¢
Start frc
more fec:

2015 Pelkert also says idea is Actually, the idea
ero vector in I. limited to principal ideals: attacks far beyonc
"Although cyclotomics have a

[-SVP" ot of odv 2016 Cramer—Duc
 vector in I. ot of structure, nobody has - deal-SVP attack -

yet found a way to exploit it in n1/2+0(1) .
| 2 in deg-/

deal I attacking Ideal-SVP/BDD
| under plausible as:

ator. For commonly used rings,

about class-group

principal ideals are an

idea 1s “useless Start from Biasse-

extremely small fraction of all

rincipal ideals: more features of c

- realized ideals. ... The weakness here is

arantee of a not so much due to the structure

suld transform of cyclotomics, but rather to the

1 useless to extra structure of principal ideals

tive” that have short generators.

2015 Pelkert also says idea iIs Actually, the idea produces
in I. limited to principal ideals: attacks far beyond this case
"Although cyclotomics have a

2016 Cramer—Ducas—Wesolc
lot of structure, nobody has

I. . it ldeal-SVP attack for approx
et Tound a way to exploit It In 1/240(1) .
y | y P oN f2+oll) in deg-N cyclotor
attacking ldeal-SVP/BDD
| under plausible assumptions
For commonly used rings,

S about class-group generator:
seless” principal ideals are ar.1 Start from Biasse—Song, use
eals: .extreme y small fraction of all | more features of cyclotomic

ideals. ... The weakness here Is
5 not so much due to the structure
orm of cyclotomics, but rather to the
o extra structure of principal ideals

that have short generators.”

2015 Pelkert also says idea is
limited to principal ideals:
"Although cyclotomics have a
lot of structure, nobody has
yet found a way to exploit it in
attacking ldeal-SVP/BDD ...
For commonly used rings,
principal ideals are an

extremely small fraction of all
ideals. ... The weakness here Is
not so much due to the structure
of cyclotomics, but rather to the
extra structure of principal ideals
that have short generators.”

10
Actually, the idea produces

attacks far beyond this case.

2016 Cramer—Ducas—Wesolowski:
ldeal-SVP attack for approx factor
2N1/2+O(1) in deg-N cyclotomics,

under plausible assumptions

about class-group generators etc.
Start from Biasse—Song, use
more features of cyclotomic fields.

2015 Pelkert also says idea is
limited to principal ideals:
"Although cyclotomics have a
lot of structure, nobody has
yet found a way to exploit it in
attacking ldeal-SVP/BDD ...
For commonly used rings,
principal ideals are an

extremely small fraction of all
ideals. ... The weakness here Is
not so much due to the structure
of cyclotomics, but rather to the
extra structure of principal ideals
that have short generators.”

10
Actually, the idea produces

attacks far beyond this case.

2016 Cramer—Ducas—Wesolowski:
ldeal-SVP attack for approx factor
2N1/2+O(1) in deg-N cyclotomics,

under plausible assumptions

about class-group generators etc.
Start from Biasse—Song, use
more features of cyclotomic fields.

Can techniques be pushed
to smaller approx factors?

Can techniques be adapted
to break, e.g., Ring-LWE?

ikert also says idea Is
o principal ideals:
ch cyclotomics have a
ructure, nobody has
d a way to exploit it In
g |deal-SVP/BDD ...
monly used rings,

ideals are an
y small fraction of all
.. The weakness here Is
1uch due to the structure
omics, but rather to the
ucture of principal ideals
e short generators.”

Actually, the idea produces
attacks far beyond this case.

2016 Cramer—Ducas—Wesolowski:
ldeal-SVP attack for approx factor
2N1/2+O(1) in deg-N cyclotomics,

under plausible assumptions

about class-group generators etc.
Start from Biasse—Song, use
more features of cyclotomic fields.

Can techniques be pushed
to smaller approx factors?

Can techniques be adapted
to break, e.g., Ring-LWE?

10

NIST

PC

69 su

DM

inclug

I

says Idea Is

| 1deals:

mics have a
bbody has

) exploit It In
'P/BDD ...

d rings,

' an

yction of all
akness here Is
o the structure
t rather to the
principal ideals
nerators.”

Actually, the idea produces
attacks far beyond this case.

2016 Cramer—Ducas—Wesolowski:
ldeal-SVP attack for approx factor
2N1/2+O(1) in deg-N cyclotomics,

under plausible assumptions

about class-group generators etc.
Start from Biasse—Song, use
more features of cyclotomic fields.

Can techniques be pushed
to smaller approx factors?

Can techniques be adapted
to break, e.g., Ring-LWE?

10

NIST

post-quantu

69 su

bmissions (5

inclug

ing 20 lattic

1N

1]

re IS
cture
) the
deals

10
Actually, the idea produces

attacks far beyond this case.

2016 Cramer—Ducas—Wesolowski:
ldeal-SVP attack for approx factor
2N1/2+O(1) in deg-N cyclotomics,

under plausible assumptions

about class-group generators etc.
Start from Biasse—Song, use
more features of cyclotomic fields.

Can techniques be pushed
to smaller approx factors?

Can techniques be adapted
to break, e.g., Ring-LWE?

NIST

post-quantum compet

69 su

bmissions (5 withdrawi

inclug

ing 20 lattice-based er

Actually, the idea produces
attacks far beyond this case.

2016 Cramer—Ducas—Wesolowski:
ldeal-SVP attack for approx factor
2N1/2+O(1) in deg-N cyclotomics,

under plausible assumptions

about class-group generators etc.
Start from Biasse—Song, use
more features of cyclotomic fields.

Can techniques be pushed
to smaller approx factors?

Can techniques be adapted
to break, e.g., Ring-LWE?

10

NIST post-quantum competition

69 su

bmissions (5 withdrawn),

inclug

ing 20 lattice-based enc.

11

10 11
Actually, the idea produces NIST post-quantum competition

attacks far beyond this case. 69 submissions (5 withdrawn),

2016 Cramer—Ducas—Wesolowski: including 20 lattice-based enc.

ldeal-SVP attack for approx factor .
2N1/2+o(1) Most lattice-based enc systems

in deg-N cyclotomics, .
& Y use power-of-2 cyclotomics.

under plausible assumptions .
Some non-power-of-2 cyclotomics:

about class-group generators etc. . ;
STOUP & LIMA has ®1919 option, “more

Start from Biasse—Song, use . . o
& conservative choice of field”:

NTRU-HRSS-KEM uses ®7q1;
Can techniques be pushed N TRUEncrypt uses ®743 etc.

more features of cyclotomic fields.

to smaller approx factors?

Can techniques be adapted
to break, e.g., Ring-LWE?

Actually, the idea produces
attacks far beyond this case.

2016 Cramer—Ducas—Wesolowski:
ldeal-SVP attack for approx factor
2N1/2+O(1) in deg-N cyclotomics,

under plausible assumptions

about class-group generators etc.
Start from Biasse—Song, use
more features of cyclotomic fields.

Can techniques be pushed
to smaller approx factors?

Can techniques be adapted
to break, e.g., Ring-LWE?

10

NIST post-quantum competition

69 submissions (5 withdrawn),

including 20 lattice-based enc.

Most lattice-based enc systems
use power-of-2 cyclotomics.

Some non-power-of-2 cyclotomics:

LIMA has ®1919 option, “more
conservative choice of field”:
NTRU-HRSS-KEM uses ®7q1;

N TRUEncrypt uses ®743 etc.

Can cyclotomic attacks on Gentry
be extended to these systems?

11

- the 1dea produces
far beyond this case.

amer—Ducas—Wesolowski:
P attack for approx factor
1) . :
in deg-N cyclotomics,
ausible assumptions
ass-group generators etc.
m Biasse—Song, use

itures of cyclotomic fields.

niques be pushed
er approx factors?

niques be adapted
, e.g., Ring-LWE?

10

NIST

post-quantum competition

69 su

omissions (5 withdrawn),

inclug

Most

ing 20 lattice-based enc.

lattice-based enc systems

use power-of-2 cyclotomics.

Some

non-power-of-2 cyclotomics:

LIMA has ®1919 option, “more

conservative choice of field”:
NTRU-HRSS-KEM uses ®7q1;
NTRUEncrypt uses ®743 etc.

Can cyclotomic attacks on Gentry

be extended to these systems?

11

Some sy

FrodoKE
relies on
commut

the pote

due to t

produces
| this case.

as—\Wesolowski:
‘or approx factor
\/ cyclotomics,
sumptions
generators etc.
-Song, use
yclotomic fields.

' pushed
factors?
' adapted
e-lWE?

10

NIST

post-quantum competition

69 su

bmissions (5 withdrawn),

Inclug

Most

ing 20 lattice-based enc.

lattice-based enc systems

use power-of-2 cyclotomics.

Some
LIMA

non-power-of-2 cyclotomics:

has $1g19 option, “more

conservative choice of field”:
NTRU-HRSS-KEM uses ®7q1;
N TRUEncrypt uses ®743 etc.

Can cyclotomic attacks on Gentry

be extended to these systems?

11

Some systems avo

FrodoKEM-640, 9
relies on matrix ri
commutative rings
the potential for v
due to the extra s

10

WsKiI:
factor
nics,

S etcC.

fields.

NIST

post-quantum competition

69 su

omissions (5 withdrawn),

inclug

Most

ing 20 lattice-based enc.

lattice-based enc systems

use power-of-2 cyclotomics.

Some non-power-of-2 cyclotomics:

LIMA

has ®1g19 option, “more

conservative choice of field”:
NTRU-HRSS-KEM uses ®7q1;
NTRUEncrypt uses ®743 etc.

Can cyclotomic attacks on Gentry

be extended to these systems?

11

Some systems avoid cycloto

FrodoKEM-640, 9616-byte |
relies on matrix rings; says t
commutative rings “have

the potential for weaknesses

due to the extra structure’ .

NIST

post-quantum competition

69 su

bmissions (5 withdrawn),

Inclug

Most

ing 20 lattice-based enc.

lattice-based enc systems

use power-of-2 cyclotomics.

Some non-power-of-2 cyclotomics:

LIMA

has $1919 option, “more

conservative choice of field”:
NTRU-HRSS-KEM uses ®7q1;
N TRUEncrypt uses ®743 etc.

Can cyclotomic attacks on Gentry

be extended to these systems?

11

Some systems avoid cyclotomics.

FrodoKEM-640, 9616-byte key:
relies on matrix rings; says that
commutative rings “have

the potential for weaknesses
due to the extra structure’.

12

NIST post-quantum competition

69 submissions (5 withdrawn),

including 20 lattice-based enc.

Most lattice-based enc systems
use power-of-2 cyclotomics.

Some non-power-of-2 cyclotomics:

LIMA has #1919 option, “more
conservative choice of field”:

NTRU-HRSS-KEM uses ®7q1;
N TRUEncrypt uses ®743 etc.

Can cyclotomic attacks on Gentry
be extended to these systems?

11

Some systems avoid cyclotomics.

FrodoKEM-640, 9616-byte key:
relies on matrix rings; says that
commutative rings “have

the potential for weaknesses
due to the extra structure’.

Titanium-lite, 14720-byte key:
uses “middle product” to
"hedge against the weakness
of specific polynomial rings”.

12

NIST

post-quantum competition

69 su

bmissions (5 withdrawn),

Inclug

Most

ing 20 lattice-based enc.

lattice-based enc systems

use power-of-2 cyclotomics.

Some
LIMA

non-power-of-2 cyclotomics:

has $1919 option, “more

conservative choice of field”:
NTRU-HRSS-KEM uses ®7q1;
N TRUEncrypt uses ®743 etc.

Can cyclotomic attacks on Gentry

be extended to these systems?

11

Some systems avoid cyclotomics.

FrodoKEM-640, 9616-byte key:
relies on matrix rings; says that
commutative rings “have

the potential for weaknesses
due to the extra structure’.

Titanium-lite, 14720-byte key:
uses “middle product” to
"hedge against the weakness
of specific polynomial rings”.

Streamlined NTRU Prime
4591701 1218-byte key:
see Tanja's talk later today.

12

st-quantum competition

issions (5 withdrawn),
r 20 lattice-based enc.

tice-based enc systems
er-of-2 cyclotomics.

n-power-of-2 cyclotomics:

s P10919 option, “more
tive choice of field”:
1RSS-KEM uses ®7q1;

ncrypt uses ®743 etc.

lotomic attacks on Gentry
ded to these systems?

11

Some systems avoid cyclotomics.

FrodoKEM-640, 9616-byte key:
relies on matrix rings; says that
commutative rings “have

the potential for weaknesses

due to the extra structure’ .

Titanium-lite, 14720-byte key:
uses “middle product” to
"hedge against the weakness
of specific polynomial rings”.

Streamlined NTRU Prime
4591701 1218-byte key:
see Tanja's talk later today.

12

Two the

Theory
are choi
“attack
— attac
where L

m _competition

withdrawn),
e-based enc.

| enc systems
“lotomics.

f-2 cyclotomics:

ption, “more
e of field”;
1 uses P701;
s @743 etc.

tacks on Gentry
2se systems?

11

Some systems avoid cyclotomics.

FrodoKEM-640, 9616-byte key:
relies on matrix rings; says that
commutative rings “have

the potential for weaknesses
due to the extra structure’ .

Titanium-lite, 14720-byte key:
uses “middle product” to
"hedge against the weakness
of specific polynomial rings”.

Streamlined NTRU Prime
4591701 1218-byte key:
see Tanja's talk later today.

12

Two theories of la

Theory 1: Best ch
are choices where
“attack against cr
= attack against
where Lg i1s a “lat

1tion

1C.

ms

OMmICS:

Oore

)1

sentry

11

Some systems avoid cyclotomics.

FrodoKEM-640, 9616-byte key:
relies on matrix rings; says that
commutative rings “have

the potential for weaknesses

due to the extra structure’ .

Titanium-lite, 14720-byte key:
uses “middle product” to
"hedge against the weakness
of specific polynomial rings”.

Streamlined NTRU Prime
4591701 1218-byte key:
see Tanja's talk later today.

12

Two theories of lattice safet

Theory 1: Best choices of fi
are choices where we know |
“attack against cryptosyster
= attack against problem L
where Lg 1s a "lattice probl

Some systems avoid cyclotomics.

FrodoKEM-640, 9616-byte key:
relies on matrix rings; says that
commutative rings “have

the potential for weaknesses
due to the extra structure’ .

Titanium-lite, 14720-byte key:
uses “middle product” to
"hedge against the weakness
of specific polynomial rings”.

Streamlined NTRU Prime
4591701 1218-byte key:
see Tanja's talk later today.

12

13
Two theories of lattice safety

Theory 1: Best choices of field F
are choices where we know proofs
“attack against cryptosystem Cpg
= attack against problem Lg",
where Lg is a “lattice problem”.

Some systems avoid cyclotomics.

FrodoKEM-640, 9616-byte key:
relies on matrix rings; says that
commutative rings “have

the potential for weaknesses
due to the extra structure’ .

Titanium-lite, 14720-byte key:
uses “middle product” to
"hedge against the weakness
of specific polynomial rings”.

Streamlined NTRU Prime
4591701 1218-byte key:
see Tanja's talk later today.

12

13
Two theories of lattice safety

Theory 1: Best choices of field F
are choices where we know proofs
“attack against cryptosystem Cpg
= attack against problem Lg",
where Lg is a “lattice problem”.

Intuitive flaw in theory 1. Maybe
these choices make Lg weak!

Some systems avoid cyclotomics.

FrodoKEM-640, 9616-byte key:
relies on matrix rings; says that
commutative rings “have

the potential for weaknesses
due to the extra structure’ .

Titanium-lite, 14720-byte key:
uses “middle product” to
"hedge against the weakness
of specific polynomial rings”.

Streamlined NTRU Prime
4591701 1218-byte key:
see Tanja's talk later today.

12

13
Two theories of lattice safety

Theory 1: Best choices of field F
are choices where we know proofs
“attack against cryptosystem Cpg
= attack against problem Lg",
where Lg is a “lattice problem”.

Intuitive flaw in theory 1. Maybe
these choices make Lg weak!

Theory 2: Safety of field F is
damaged by extra automorphisms,
extra subfields, etc. Similar
situation to discrete-log crypto.

Some systems avoid cyclotomics.

FrodoKEM-640, 9616-byte key:
relies on matrix rings; says that
commutative rings “have

the potential for weaknesses
due to the extra structure’ .

Titanium-lite, 14720-byte key:
uses “middle product” to
"hedge against the weakness
of specific polynomial rings”.

Streamlined NTRU Prime
4591701 1218-byte key:
see Tanja's talk later today.

12

13
Two theories of lattice safety

Theory 1: Best choices of field F
are choices where we know proofs
“attack against cryptosystem Cpg
= attack against problem Lg",
where Lg is a “lattice problem”.

Intuitive flaw in theory 1. Maybe
these choices make Lg weak!

Theory 2: Safety of field F is

damaged by extra automorphisms,
extra subfields, etc. Similar
situation to discrete-log crypto.

What's a good test case for F7?

stems avoid cyclotomics.

-M-640, 9616-byte key:
matrix rings; says that
ative rings “have

ntial for weaknesses

he extra structure’ .

n-lite, 14720-byte key:
iddle product” to
gainst the weakness
Ic polynomial rings”.

ned NTRU Prime
- 1218-byte key:
a's talk later today.

12

Two theories of lattice safety

Theory 1: Best choices of field F
are choices where we know proofs
“attack against cryptosystem Crg
= attack against problem Lg",
where Lg is a “lattice problem”.

Intuitive flaw in theory 1. Maybe
these choices make Lg weak!

Theory 2: Safety of field F is

damaged by extra automorphisms,
extra subfields, etc. Similar
situation to discrete-log crypto.

What's a good test case for F7?

13

Multiqu:

Assumpt
squarefr

Hjej dj

honemp’

K = Q(
smallest
containi

Kisad
Basis: |
subset J

Id cyclotomics.

616-byte key:
1gs; says that
, "have
/eaknesses
tructure’ .

20-byte key:
uct’ to

> weakness
nial rings” .

J Prime
e key:
ter today.

12

Two theories of lattice safety

Theory 1: Best choices of field F
are choices where we know proofs
“attack against cryptosystem Crg
= attack against problem Lg",
where Lg is a “lattice problem”.

Intuitive flaw in theory 1. Maybe
these choices make Lg weak!

Theory 2: Safety of field F is

damaged by extra automorphisms,
extra subfields, etc. Similar
situation to discrete-log crypto.

What's a good test case for F7?

13

Multiquadratic fiel

Assumptions: n &
squarefree di, .. .,

[1jc dj non-squa
nonempty subset .

K=Q(d, ...,

smallest subfield o
containing +/di, ..

K is a degree-2" r
Basis: ||, dj fot
subset J C {1, ...

e.g. Q(v2,V3) =
Qo QV23 QV3

MICS.

ey:
hat

Y :

V)

12

Two theories of lattice safety

Theory 1: Best choices of field F
are choices where we know proofs
“attack against cryptosystem Crg
= attack against problem Lg",
where L is a “lattice problem”™.

Intuitive flaw in theory 1. Maybe
these choices make Lg weak!

Theory 2: Safety of field F is

damaged by extra automorphisms,

extra subfields, etc. Similar
situation to discrete-log crypto.

What's a good test case for F7?

13

Multiquadratic fields

Assumptions: n € {0,1,2, ..
squarefree di, .. ., d, € Z;
| ;e d; non-square for each

J
nonempty subset J C {1,..

smallest subfield of C

containing +/dy, . .., v dg.

K is a degree-2" number fie
Basis: | [;c dj for each
subset J CH{1,..., nt.

e.g. Q(v2,V3) =
Qe QvV2e QV3® QVeE.

Two theories of lattice safety

Theory 1: Best choices of field F
are choices where we know proofs
“attack against cryptosystem Cg
= attack against problem Lg",
where Lg is a “lattice problem”.

Intuitive flaw in theory 1. Maybe
these choices make Lg weak!

Theory 2: Safety of field F is

damaged by extra automorphisms,

extra subfields, etc. Similar
situation to discrete-log crypto.

What's a good test case for F7?

13

14

Multiquadratic fields

Assumptions: n € {0,1,2,...};
squarefree di, .. ., d, € Z;

| |jc dj non-square for each
nonempty subset J C {1,..., n}.

smallest subfield of C

containing +/dq, . .., v dp.

K is a degree-2" number field.
Basis: || dj for each
subset J C{1,..., nt.

e.g. Q(v2,V3) =
Qo QvV29 QV3a QVe.

ories of lattice safety

. Best choices of field F
~es where we know proofs
against cryptosystem Cfg
k against problem Lg",
F Is a “lattice problem”.

flaw in theory 1: Maybe
oices make L weak!

2. Safety of field F is

1 by extra automorphisms,

bfields, etc. Similar
| to discrete-log crypto.

3 good test case for F?

13

Multiquadratic fields

Assumptions: n € {0,1,2,...};

squarefree di, .. ., d, € Z;

[|jc dj non-square for each

nonempty subset J C {1,..., n}.

smallest subfield of C

containing +/dy, . .., v d.

K is a degree-2" number field.

Basis: [[;c dj for each
subset J CH{1,..., nt.

e.g. Q(v2,V3) =
Qe QvV2e QV33 QVeE.

14

This fiel
has 2™ 3

e.g. autc

a— b/~

ttice safety

oices of field F
we know proofs
yptosystem Crg
problem Lfg",
tice problem”.

eory 1: Maybe
e L weak!

of field F is

automorphisms,

. Similar
te-log crypto.

t case for F?

13

Multiquadratic fields

Assumptions: n € {0,1,2,...};
squarefree di, .. ., d, € £,

| |jc dj non-square for each

nonempty subset J C {1,..., nt.

smallest subfield of C

containing +/dq, . .., v dp.

K is a degree-2" number field.
Basis: || dj for each
subset J C{1,..., nt.

e.g. Q(v2,V3) =
Qo QvV29 QV3a QVe.

14

This field is Galois
has 2”7 automorph

e.g. automorphisir
map a + b\/2 + ¢
a+ bv2+ cv3+
a— byv?2+cyv3—
a+ bv?2 —cv/3—
a—bv2—cv3+

13

Multiquadratic fields

Assumptions: n € {0,1,2,...};
squarefree di, .. ., d, € Z;

[|jc dj non-square for each

nonempty subset J C {1, ..., nt.

smallest subfield of C

containing +/dy, . .., v d.

K is a degree-2" number field.
Basis: [[;c dj for each
subset J CH{1,..., nt.

e.g. Q(v2,V3) =
Qo QV2e QV33 QVeE.

14

This field is Galois:
has 2" automorphisms.

e.g. automorphisms of Q(+/
map a+ bv?2 -+ cv3+ dve
a+ byv2+ c/3+ dve:
a— byv2 4+ cv/3 — dv/6;
a+ byv2 — cv/3 — dv6;
a— bv?2 — cv/3 -+ dv6.

Multiquadratic fields

Assumptions: n € {0,1,2,...};
squarefree di, .. ., d, € £,

| |jc dj non-square for each

nonempty subset J C {1,..., nt.

smallest subfield of C

containing +/dq, . .., v dp.

K is a degree-2" number field.
Basis: || dj for each
subset J C{1,..., nt.

e.g. Q(v2,V3) =
Qo QvV29 QV3a QVe.

14

This field is Galois:
has 2" automorphisms.

e.g. automorphisms of Q(+/2, v/3)
map a+ bv?2 -+ cv3+ dve to
a+ bv2+ cv/3+ dv6;

a— bv2+ cv/3 — dv6;

a+ bv2 — cv/3 — dv/6;

a— bv?2 — cv/3+ d/6.

15

Multiquadratic fields

Assumptions: n € {0,1,2,...};
squarefree di, .. ., d, € £,

| |jc dj non-square for each

nonempty subset J C {1,..., nt.

smallest subfield of C

containing +/dq, . .., v dp.

K is a degree-2" number field.
Basis: || dj for each
subset J C{1,..., nt.

e.g. Q(v2,V3) =
Qo QvV29 QV3a QVe.

14

This field is Galois:
has 2" automorphisms.

e.g. automorphisms of Q(+/2, v/3)
map a+ bv?2 -+ cv3+ dve to
a+ bv2+ cv/3+ dv6;
a— bv2+ cv/3 — dv6;
a+ bv2 — cv/3 — dv/6;
a— bv?2 — cv/3+ d/6.

About 2”2/4 subfields.

e.g. subfields of Q(\/§ \/§)
Q(Vv2,3),

Q(v2), Q(v3), Q(v6),

Q.

ydratic fields

ions: n€{0,1,2,...};

non-square for each

ty subset J C {1,..., nt.

egree-2" number field.
TJEJ d; for each

CAL, ..., n}.

/2,4/3) =
23 QV33QV6.

14

This field is Galois:
has 2" automorphisms.

e.g. automorphisms of Q(+/2, v/3)
map a+ bv?2 -+ cv/3+ dvé to
+ ¢cv/3 + dV/6;

+ ¢cv/3 — dV/6;

a+ bv2 — cv/3 — dv6;

a— bv?2 — cv/3 -+ dv6.

a—+ bv?2
a— by?2

About 2”2/4 subfields.

e.g. subfields of Q(\/§ \/§)

Q(v2,v3),

Q(v2), Q(v3), Q(V6),

Q.

15

Gentry f

Use opti
PKC 20
Eurocryj

ds

{0,1,2,...};
d, € Z;
e for each

\umber field.
each

, n}.

® Q6.

14

This field is Galois:
has 2" automorphisms.

e.g. automorphisms of Q(+/2, v/3)
map a+ bv?2 -+ cyv3+ dve to
a+ bv2+ cv/3+ dv6;

a— byv2+ cv/3 — dv6;

a+ b2 — cv/3 — dv/6;

a— bv?2 — cv/3+ d/6.

About 2”2/4 subfields.

e.g. subfields of Q(\/§ \/§)
Q(Vv2,3),

Q(v2), Q(v3), Q(v6),

Q.

15

Gentry for multigt

Use optimizations
PKC 2010 Smart-

Eurocrypt 2011 G

14

This field is Galois:
has 2" automorphisms.

e.g. automorphisms of Q(+/2, v/3)
map a+ bv?2 -+ cv/3+ dvé to
a+ bv2+ cv/3+ dv6;

a— byv2 4+ cv/3 — dv/6;

a+ bv2 — cv/3 — dv6;

a— bv?2 — cv/3+ dv/6.

About 2”2/4 subfields.

e.g. subfields of Q(\/§ \/§)
Q(v2,3),

Q(v2), Q(v3), Q(v6),

Q.

15

Gentry for multiquadratics

Use optimizations from
PKC 2010 Smart—Vercauter

Eurocrypt 2011 Gentry—Hale

This field is Galois:
has 2" automorphisms.

e.g. automorphisms of Q(+/2, v/3)
map a+ bv?2 -+ cyv3+ dvé to
a+ bv2+ cv3+ dv6;

a— b2+ cv/3 — dv6;

a+ b2 — cv/3 — dv/6;

a— bv?2 — cv/3+ d/6.

About 2”2/4 subfields.

e.g. subfields of Q(\/§ \/§)
Q(Vv2,3),

Q(v2), Q(v3), Q(v6),

Q.

15

Gentry for multiquadratics

Use optimizations from
PKC 2010 Smart—Vercauteren,
Eurocrypt 2011 Gentry—Halevi.

16

This field is Galois:
has 2" automorphisms.

e.g. automorphisms of Q(+/2, v/3)
map a+ bv?2 -+ cyv3+ dvé to
a+ bv2+ cv3+ dv6;

a— b2+ cv/3 — dv6;

a+ b2 — cv/3 — dv/6;

a— bv?2 — cv/3+ d/6.

About 2”2/4 subfields.

e.g. subfields of Q(\/§ \/§)
Q(Vv2,3),

Q(v2), Q(v3), Q(v6),

Q.

15

Gentry for multiquadratics

Use optimizations from
PKC 2010 Smart—Vercauteren,
Eurocrypt 2011 Gentry—Halevi.

F: monic irreducible polynomial.

Ring R = Z|x|/F; not required

to be ring of integers of Q[x]|/F.

16

This field is Galois:
has 2" automorphisms.

e.g. automorphisms of Q(+/2, v/3)
map a+ bv?2 -+ cyv3+ dvé to
a+ bv2+ cv3+ dv6;

a— b2+ cv/3 — dv6;

a+ b2 — cv/3 — dv/6;

a— bv?2 — cv/3+ d/6.

About 2”2/4 subfields.

e.g. subfields of Q(\/§ \/§)
Q(Vv2,3),

Q(v2), Q(v3), Q(v6),

Q.

15

Gentry for multiquadratics

Use optimizations from
PKC 2010 Smart—Vercauteren,
Eurocrypt 2011 Gentry—Halevi.

F: monic irreducible polynomial.
Ring R = Z|x|/F; not required
to be ring of integers of Q[x]|/F.

Multiquadratics: take, e.g.,
= (x —v2—-+3)-
(x ++v2—+3)
(x —vV2+/3)
(x +v2+v3).

Note Q(v2 + v/3) = Q(v2, v3).

16

15 16
d is Galois: Gentry for multiquadratics Smart-\

utomorphisms. L. Take shc
Use optimizations from

ymorphisms of Q(\/_ \/_) PKC 2010 Smart—Vercauteren, gompub
b2 + cv/3 + dv/6 to Eurocrypt 2011 Gentry—Halevi. tart ov
)+ ¢cv/3 + dV/6: o . .
_ F: monic irreducible polynomial.
)+ ¢cv/3 — dV6; . .
_ Ring R = Z|x]|/F; not required
— V3 - dV6, to be ring of integers of Q[x|/F
— /3 + dV/6. |
Multiquadratics: take, e.g.
n2/4 . q J g !
subfields. F=(x— 3 \/—)
ields of Q(+/2, v/3): (x + 2 —+/3)-
3) (x = vV2+3).
Q(v3), Q(v6), (x +v2++/3).

Note Q(v2 + v/3) = Q(v/2, v/3).

N |
) .

1SMS.

s of Q(v/2,v/3)
V3 + dv/6 to
d+/6;

d+/6;

d+/6;

d+/6.

15

Gentry for multiquadratics

Use optimizations from
PKC 2010 Smart—Vercauteren,
Eurocrypt 2011 Gentry—Halevi.

F: monic irreducibl

e polynomial.

Ring R = Z|x|/F; not required

to be ring of intege

Multiquadratics: ta
= (x—v2-+3
(x +v2—+/3
(x—v2+ 3
(x + V2 ++/3

Note Q(v/2 + v/3) =

rs of Q[x]|/F.

ke, e.g.,
3)-
3)-
) :
).
Q(v2,v3).

16

Smart—Vercautere
Take short randon
Compute g, absol
Start over if g is r

15

Gentry for multiquadratics

Use optimizations from
PKC 2010 Smart—Vercauteren,
Eurocrypt 2011 Gentry—Halevi.

F: monic irreducible polynomial.
Ring R = Z|x]|/F; not required
to be ring of integers of Q[x]/F.

Multiquadratics: take, e.g.,
= (x —v2—-+3)-
(x ++v2—+/3)
(x —vV2+/3)
(x +v2+3).

Note Q(v2 + v/3) = Q(v/2, v/3).

16

Smart—Vercauteren keygen:
Take short random g € R.

Compute g, absolute norm
Start over if g is not prime.

Gentry for multiquadratics

Use optimizations from
PKC 2010 Smart—Vercauteren,
Eurocrypt 2011 Gentry—Halevi.

F: monic irreducible polynomial.
Ring R = Z|x|/F; not required
to be ring of integers of Q[x]|/F.

Multiquadratics: take, e.g.,
= (x —v2—-+3)-

(x ++v2—+/3)

(x —vV2+/3)

(x +v2+3).

Note Q(v/2 + v/3) =

Q(v2,v3).

16

17
Smart—Vercauteren keygen:

Take short random g € R.
Compute g, absolute norm of g.
Start over if g is not prime.

Gentry for multiquadratics

Use optimizations from
PKC 2010 Smart—Vercauteren,
Eurocrypt 2011 Gentry—Halevi.

F: monic irreducible polynomial.
Ring R = Z|x|/F; not required
to be ring of integers of Q[x]|/F.

Multiquadratics: take, e.g.,
= (x —v2—-+3)-
(x ++v2—+/3)
(x —vV2+/3)
(x +v2+3).

Note Q(v/2 + v/3) = Q(v/2,V3).

16

17
Smart—Vercauteren keygen:

Take short random g € R.
Compute g, absolute norm of g.
Start over if g is not prime.

Compute root r of g in Z/q.
Public key gR =qgR+ (x — r)R
is represented as (q, r).

Gentry for multiquadratics

Use optimizations from
PKC 2010 Smart—Vercauteren,
Eurocrypt 2011 Gentry—Halevi.

F: monic irreducible polynomial.
Ring R = Z|x|/F; not required
to be ring of integers of Q[x]|/F.

Multiquadratics: take, e.g.,
= (x —v2—-+3)-

(x ++v2—+/3)

(x —vV2+/3)

(x +v2+3).

Note Q(v/2 + v/3) =

Q(v2,v3).

16

17
Smart—Vercauteren keygen:

Take short random g € R.
Compute g, absolute norm of g.
Start over if g is not prime.

Compute root r of g in Z/q.
Public key gR =qgR+ (x — r)R
is represented as (q, r).

(We implemented multiquadratic
adaptation of Gentry—Halevi
cyclotomic keygen speedup:
instead of requiring prime g,
require gcd{b, g} > 1 for each
relative norm a + by/d; of g.
Any squarefree g will work.)

or multiquadratics

mizations from
10 Smart—Vercauteren,
ot 2011 Gentry—Halevi.

c Irreducible polynomial.
= Z|x|/F; not required
g of integers of Q[x]|/F.

adratics: take, e.g.,
V2-V3)
Fv2-+3)-

V3 +V3)

F V24 /3).
V2++/3)=Q(v2,v3).

16

Smart—Vercauteren keygen:
Take short random g € R.
Compute g, absolute norm of g.
Start over if g is not prime.

Compute root r of g in Z/q.
Public key gR =qR + (x — r)R
is represented as (q, r).

(We implemented multiquadratic
adaptation of Gentry—Halevi
cyclotomic keygen speedup:
instead of requiring prime g,
require gcd{b, g} > 1 for each
relative norm a + by/d; of g.
Any squarefree g will work.)

17

Smart—=\
Take shc
Cipherte

ladratics

from
Vercauteren,
antry—Halevi.

ble polynomial.
not required

ers of Q[x]/F.

ake, e.g.,

16

Smart—Vercauteren keygen:
Take short random g € R.
Compute g, absolute norm of g.
Start over if g is not prime.

Compute root r of g in Z/q.
Public key gR =qR + (x — r)R
is represented as (q, r).

(We implemented multiquadratic
adaptation of Gentry—Halevi
cyclotomic keygen speedup:
instead of requiring prime g,
require gcd{b, g} > 1 for each
relative norm a + by/d; of g.
Any squarefree g will work.)

17

Smart—Vercautere
Take short me Z
Ciphertext is m(r)

an,

V1.

mial.

red

|/ F.

16

Smart—Vercauteren keygen:
Take short random g € R.
Compute g, absolute norm of g.
Start over if g is not prime.

Compute root r of g in Z/q.
Public key gR =qR + (x — r)R
is represented as (q, r).

(We implemented multiquadratic
adaptation of Gentry—Halevi
cyclotomic keygen speedup:
instead of requiring prime g,
require gcd{b, g} > 1 for each
relative norm a + by/d; of g.
Any squarefree g will work.)

17

Smart—Vercauteren encrypti
Take short m € Z|[x]/F.

Ciphertext is m(r) € Z/q.

Smart—Vercauteren keygen:
Take short random g € R.
Compute g, absolute norm of g.
Start over if g is not prime.

Compute root r of g in Z/q.
Public key gR =qR + (x — r)R
is represented as (q, r).

(We implemented multiquadratic
adaptation of Gentry—Halevi
cyclotomic keygen speedup:
instead of requiring prime g,
require gcd{b, g} > 1 for each
relative norm a + by/d; of g.
Any squarefree g will work.)

17

Smart—Vercauteren encryption:
Take short m € Z|x|/F.

Ciphertext is m(r) € Z/q.

18

Smart—Vercauteren keygen:
Take short random g € R.
Compute g, absolute norm of g.
Start over if g is not prime.

Compute root r of g in Z/q.
Public key gR =qR + (x — r)R
is represented as (q, r).

(We implemented multiquadratic
adaptation of Gentry—Halevi
cyclotomic keygen speedup:
instead of requiring prime g,
require gcd{b, g} > 1 for each
relative norm a + by/d; of g.
Any squarefree g will work.)

17

Smart—Vercauteren encryption:

Take short m € Z|x|/F.
Ciphertext is m(r) € Z/q.

Homomorphic operations:

add /multiply ciphertexts m(r)
to add/multiply messages m.

18

Smart—Vercauteren keygen:
Take short random g € R.
Compute g, absolute norm of g.
Start over if g is not prime.

Compute root r of g in Z/q.
Public key gR =qR + (x — r)R
is represented as (q, r).

(We implemented multiquadratic
adaptation of Gentry—Halevi
cyclotomic keygen speedup:
instead of requiring prime g,
require gcd{b, g} > 1 for each
relative norm a + by/d; of g.
Any squarefree g will work.)

17

Smart—Vercauteren encryption:

Take short m € Z|x|/F.
Ciphertext is m(r) € Z/q.

Homomorphic operations:

add /multiply ciphertexts m(r)
to add/multiply messages m.

Decryption:

given c€{0,1,...,9— 1},
compute c/g € Q[x|/F,

round to element of Z|x|/F,
multiply by g, subtract from c.

18

Smart—Vercauteren keygen:
Take short random g € R.
Compute g, absolute norm of g.
Start over if g is not prime.

Compute root r of g in Z/q.
Public key gR =qR + (x — r)R
is represented as (q, r).

(We implemented multiquadratic
adaptation of Gentry—Halevi
cyclotomic keygen speedup:
instead of requiring prime g,
require gcd{b, g} > 1 for each
relative norm a + by/d; of g.
Any squarefree g will work.)

17

Smart—Vercauteren encryption:
Take short m € Z|x|/F.

Ciphertext is m(r) € Z/q.

Homomorphic operations:

add /multiply ciphertexts m(r)
to add/multiply messages m.

Decryption:

given c€{0,1,...,9— 1},
compute c/g € Q[x|/F,

round to element of Z|x|/F,
multiply by g, subtract from c.

Decryption works if
each coefficient of m/g € Q[x]/F
isin (—1/2,1/2).

18

/ercauteren keygen:

ort random g € R.

e g, absolute norm of g.
er if g I1s not prime.

e root r of ginZ/q.
ey gR=qR+ (x —r)R
ented as (q, r).

lemented multiquadratic
on of Gentry—Halevi

1ic keygen speedup:

of requiring prime g,
rcd{b, g} > 1 for each
norm a + by/d; of g.
arefree g will work.)

17

Smart—Vercauteren encryption:
Take short m € Z|[x]/F.

Ciphertext is m(r) € Z/q.

Homomorphic operations:

add /multiply ciphertexts m(r)
to add/multiply messages m.

Decryption:

given c€{0,1,...,9— 1},
compute ¢/g € Q[x]/F,

round to element of Z|[x|/F,
multiply by g, subtract from c.

Decryption works if
each coefficient of m/g € Q[x]/F
isin (—1/2,1/2).

18

Gentry s
complex
algorithr
In securl

Flaw in
for some
keygen t

IN Securl

n keygen:

1 g2 € R.

ite norm of g.
ot prime.

FginZ/q.
IR+ (x —r)R

q,r).

multiquadratic
try—Halevi
speedup:

g prime g,
> 1 for each

b\/d; of g.

vill work.)

17

Smart—Vercauteren encryption:
Take short m € Z|x|/F.

Ciphertext is m(r) € Z/q.

Homomorphic operations:

add /multiply ciphertexts m(r)
to add/multiply messages m.

Decryption:

given c€{0,1,...,q9— 1},
compute c/g € Q[x|/F,

round to element of Z|[x|/F,
multiply by g, subtract from c.

Decryption works if
each coefficient of m/g € Q[x]/F
isin (—1/2,1/2).

18

Gentry says “comj
complexity of all ¢
algorithms must b
In security parame

Flaw in Smart—Ve
for some choices ¢
keygen time Is not
In security parame

17

Smart—Vercauteren encryption:
Take short m € Z|[x]/F.

Ciphertext is m(r) € Z/q.

Homomorphic operations:

add /multiply ciphertexts m(r)
to add/multiply messages m.

Decryption:

given c€{0,1,...,9— 1},
compute ¢/g € Q[x]/F,

round to element of Z|[x|/F,
multiply by g, subtract from c.

Decryption works if
each coefficient of m/g € Q[x]/F
isin (—1/2,1/2).

18

Gentry says “computational
complexity of all of these
algorithms must be polynom
In security parameter’ .

Flaw in Smart—Vercauteren:
for some choices of F,
keygen time Is not polynomi
In security parameter.

Smart—Vercauteren encryption:
Take short m € Z|x|/F.

Ciphertext is m(r) € Z/q.

Homomorphic operations:

add /multiply ciphertexts m(r)
to add/multiply messages m.

Decryption:

given c€{0,1,...,9— 1},
compute c/g € Q|x|/F,

round to element of Z|[x|/F,
multiply by g, subtract from c.

Decryption works if
each coefficient of m/g € Q[x]/F
isin (—1/2,1/2).

18

Gentry says “computational
complexity of all of these
algorithms must be polynomial
In security parameter’ .

Flaw in Smart—Vercauteren:
for some choices of F.

keygen time iIs not polynomial
In security parameter.

19

Smart—Vercauteren encryption:
Take short m € Z|x|/F.

Ciphertext is m(r) € Z/q.

Homomorphic operations:

add /multiply ciphertexts m(r)
to add/multiply messages m.

Decryption:

given c€{0,1,...,9— 1},
compute c/g € Q|x|/F,

round to element of Z|[x|/F,
multiply by g, subtract from c.

Decryption works if
each coefficient of m/g € Q[x]/F
isin (—1/2,1/2).

18

19
Gentry says “computational

complexity of all of these
algorithms must be polynomial
In security parameter’ .

Flaw in Smart—Vercauteren:
for some choices of F.

keygen time iIs not polynomial
In security parameter.

For multiquadratic F, keygen is
disastrously slow: far too many
tries to find prime q. (Adaptation
of Gentry—Halevi speedup gives
only a polynomial improvement.)

/ercauteren encryption:
ort m e Z[x|/F.

xt is m(r) € Z/q.

orphic operations:

tiply ciphertexts m(r)
nultiply messages m.

on:

- {0,1,...,9— 1},
c/g € Q[x]/F,
 element of Z|x]/F,
by g, subtract from c.

on works if
fficient of m/g € Q|x|/F

1/2,1/2).

18

Gentry says “computational
complexity of all of these
algorithms must be polynomial
In security parameter’ .

Flaw in Smart—Vercauteren:
for some choices of F,

keygen time iIs not polynomial
In security parameter.

For multiquadratic F, keygen is
disastrously slow: far too many
tries to find prime g. (Adaptation
of Gentry—Halevi speedup gives
only a polynomial improvement.)

19

Why thi
Take fie

N encryption:

x|/F.
cZ/q.

rations:
rtexts m(r)
essages m.

., q—1},

x]/F,
of Z|[x|/F,
tract from c.

f
m/g € Q|x]/F

18

Gentry says “computational
complexity of all of these
algorithms must be polynomial
In security parameter’ .

Flaw in Smart—Vercauteren:
for some choices of F.

keygen time iIs not polynomial
In security parameter.

For multiquadratic F, keygen is
disastrously slow: far too many
tries to find prime q. (Adaptation
of Gentry—Halevi speedup gives
only a polynomial improvement.)

19

Why this happens
Take field k of siz

on.

| C.

x|/ F

18

Gentry says “computational
complexity of all of these
algorithms must be polynomial
In security parameter’ .

Flaw in Smart—Vercauteren:
for some choices of F,
keygen time Is not polynomial

In security parameter.

For multiquadratic F, keygen is
disastrously slow: far too many
tries to find prime g. (Adaptation
of Gentry—Halevi speedup gives
only a polynomial improvement.)

19

Why this happens: Fix prim
Take field k of size p?.

Gentry says “computational
complexity of all of these
algorithms must be polynomial
In security parameter’ .

Flaw in Smart—Vercauteren:
for some choices of F,
keygen time Is not polynomial

In security parameter.

For multiquadratic F, keygen is
disastrously slow: far too many
tries to find prime q. (Adaptation
of Gentry—Halevi speedup gives
only a polynomial improvement.)

19

Why this happens: Fix prime p.
Take field k of size p?.

20

19 20
Gentry says “computational Why this happens: Fix prime p.

complexity of all of these Take field k of size p?.
?Igorithms must be p:)lynomial di. .. dy are squares in k.
N securnity parameter:. so F splits completely in k[x].
Flaw in Smart—Vercauteren: deg h € {1, 2} for each

for some choices of F, irred factor h of F in Fp[x].
keygen time iIs not polynomial

In security parameter.

For multiquadratic F, keygen is
disastrously slow: far too many
tries to find prime q. (Adaptation
of Gentry—Halevi speedup gives
only a polynomial improvement.)

Gentry says “computational
complexity of all of these
algorithms must be polynomial
In security parameter’ .

Flaw in Smart—Vercauteren:
for some choices of F,

keygen time iIs not polynomial
In security parameter.

For multiquadratic F, keygen is
disastrously slow: far too many
tries to find prime q. (Adaptation
of Gentry—Halevi speedup gives
only a polynomial improvement.)

19

Why this happens: Fix prime p.
Take field k of size p?.

di,...,dp are squares In k,
so F splits completely in k[x].
deg h € {1, 2} for each

irred factor h of F in Fp[x].

Heuristic: for most p < 2”7 have
©(p) distinct linear factors h.

20

Gentry says “computational
complexity of all of these
algorithms must be polynomial
In security parameter’ .

Flaw in Smart—Vercauteren:
for some choices of F,

keygen time iIs not polynomial
In security parameter.

For multiquadratic F, keygen is
disastrously slow: far too many
tries to find prime q. (Adaptation
of Gentry—Halevi speedup gives
only a polynomial improvement.)

19

Why this happens: Fix prime p.
Take field k of size p?.

di,...,dp are squares In k,
so F splits completely in k[x].
deg h € {1, 2} for each

irred factor h of F in Fp[x].

Heuristic: for most p < 2”7 have
©(p) distinct linear factors h.

For each linear factor h:

with probability ~1/p,

h divides g in Fp|x],

forcing p? to divide norm of g
if any d; is non-square in Fp.

20

ays ‘computational
ity of all of these

ns must be polynomial
ty parameter’ .

Smart—Vercauteren:
 choices of F,

ime Is not polynomial
ty parameter.

iquadratic F, keygen is
1sly slow: far too many
find prime g. (Adaptation
y—Halevi speedup gives
olynomial improvement.)

19

Why this happens: Fix prime p.
Take field k of size p?.

di, ..
so F splits completely in k[x].
deg h € {1, 2} for each

irred factor h of F in Fp[x].

., dn are squares In Kk,

Heuristic: for most p < 2”7 have
©(p) distinct linear factors h.

For each linear factor h:

with probability ~1/p,

h divides g in Fp|x],

forcing p? to divide norm of g
if any d; is non-square in Fp.

20

Our mul
Smart—\
adaptati

1. Gene
support
Use R =

yutational
f these
e polynomial

ter .

rcauteren:

f F.

- polynomial
ter.

- F, keygen s
far too many
g. (Adaptation
peedup gives
improvement.)

19

Why this happens: Fix prime p.
Take field k of size p?.

di, ..
so F splits completely in k[x].
deg h € {1, 2} for each

irred factor h of F in Fp[x].

., dn are squares In Kk,

Heuristic: for most p < 2”7 have
©(p) distinct linear factors h.

For each linear factor h:

with probability ~1/p,

h divides g in Fp|x],

forcing p? to divide norm of g
if any d; is non-square in Fp.

20

Our multiquadrati
Smart—Vercautere
adaptation of Gen

1. Generalize cryp

support n polynon
Use R = Z[+/d1, .

1al

al

nis
any
tation
Ves
ent.)

19

Why this happens: Fix prime p.
Take field k of size p?.

di,...,dn are squares In Kk,
so F splits completely in k[x].
deg h € {1, 2} for each

irred factor h of F in F,[x].

Heuristic: for most p < 2”7 have
©(p) distinct linear factors h.

For each linear factor h:

with probability ~1/p,

h divides g in Fp|x],

forcing p? to divide norm of g
if any d; is non-square in Fp.

20

Our multiquadratic tweaks t
Smart—Vercauteren (includir
adaptation of Gentry—Halevi

1. Generalize cryptosystem
support n polynomial variab

Use R = Z[/d1,...,v/dn].

Why this happens: Fix prime p.
Take field k of size p?.

di,...,dn are squares In Kk,
so F splits completely in k[x].
deg h € {1, 2} for each

irred factor h of F in Fp[x].

Heuristic: for most p < 2”7 have
©(p) distinct linear factors h.

For each linear factor h:

with probability ~1/p,

h divides g in Fp|x],

forcing p? to divide norm of g
if any d; is non-square in Fp.

20

Our multiquadratic tweaks to
Smart—Vercauteren (including
adaptation of Gentry—Halevi):

1. Generalize cryptosystem to

support n polynomial variables.

Use R = Z[/d1,...,v/dn].

21

Why this happens: Fix prime p.
Take field k of size p?.

di,...,dn are squares In Kk,
so F splits completely in k[x].
deg h € {1, 2} for each

irred factor h of F in Fp[x].

Heuristic: for most p < 2”7 have
©(p) distinct linear factors h.

For each linear factor h:

with probability ~1/p,

h divides g in Fp|x],

forcing p? to divide norm of g
if any d; is non-square in Fp.

20

Our multiquadratic tweaks to
Smart—Vercauteren (including
adaptation of Gentry—Halevi):

1. Generalize cryptosystem to
support n polynomial variables.

Use R = Z[/d1,...,v/dn].

2. Subroutine: Construct uniform

random invertible element of R/p.

21

Why this happens: Fix prime p.
Take field k of size p?.

di,...,dn are squares In Kk,
so F splits completely in k[x].
deg h € {1, 2} for each

irred factor h of F in Fp[x].

Heuristic: for most p < 2”7 have
©(p) distinct linear factors h.

For each linear factor h:

with probability ~1/p,

h divides g in Fp|x],

forcing p? to divide norm of g
if any d; is non-square in Fp.

20

Our multiquadratic tweaks to
Smart—Vercauteren (including
adaptation of Gentry—Halevi):

1. Generalize cryptosystem to
support n polynomial variables.

Use R = Z[/d1,...,v/dn].

2. Subroutine: Construct uniform

random invertible element of R/p.

3. Choose y € ©(2"/n).

Force g to be invertible mod all
primes p < y. Heuristically,
good chance of squarefree norm.

21

s happens: Fix prime p.
d k of size p°.

1, are squares In Kk,

its completely in k[x].
{1, 2} for each
tor h of F in Fy[x].

= for most p < 2", have
tinct linear factors h.

 linear factor h:

bability ~1/p,

5 g in Fplx],

»2 to divide norm of g
Is non-square in F.

20

Our multiquadratic tweaks to
Smart—Vercauteren (including
adaptation of Gentry—Halevi):

1. Generalize cryptosystem to
support n polynomial variables.

Use R = Z[/d1,...,v/dn].

2. Subroutine: Construct uniform

random invertible element of R/p.

3. Choose y € ©(2"/n).

Force g to be invertible mod all
primes p < y. Heuristically,
good chance of squarefree norm.

21

Comput

Fix posi
Assume
l.e., log

. Fix prime p.
o p?.

ares In k,
tely In k[X].
each

in Fplx].

t p <27 have
\r factors h.

tor h:

1/p,

x|,

e norm of g
uare in Fp.

20

Our multiquadratic tweaks to
Smart—Vercauteren (including
adaptation of Gentry—Halevi):

1. Generalize cryptosystem to
support n polynomial variables.

Use R = Z[/d1,...,v/dn].

2. Subroutine: Construct uniform
random invertible element of R/p.

3. Choose y € ©(2"/n).

Force g to be invertible mod all
primes p < y. Heuristically,
good chance of squarefree norm.

21

Computing units

Fix positive non-sc
Assume d quasipc
l.e., logd & nO1).

have

20

Our multiquadratic tweaks to
Smart—Vercauteren (including
adaptation of Gentry—Halevi):

1. Generalize cryptosystem to
support n polynomial variables.

Use R = Z[/d1,...,v/dn].

2. Subroutine: Construct uniform
random invertible element of R/p.

3. Choose y € ©(2"/n).

Force g to be invertible mod all
primes p < y. Heuristically,
good chance of squarefree norm.

21

Computing units

Fix positive non-square d €
Assume d quasipoly in 2"
l.e., logd & nf).

Our multiquadratic tweaks to
Smart—Vercauteren (including
adaptation of Gentry—Halevi):

1. Generalize cryptosystem to
support n polynomial variables.

Use R = Z[/d1,...,v/dn].

2. Subroutine: Construct uniform
random invertible element of R/p.

3. Choose y € ©(2"/n).

Force g to be invertible mod all
primes p < y. Heuristically,
good chance of squarefree norm.

21

Computing units

Fix positive non-square d € Z.
Assume d quasipoly in 2"
l.e., logd & n).

22

Our multiquadratic tweaks to
Smart—Vercauteren (including
adaptation of Gentry—Halevi):

1. Generalize cryptosystem to
support n polynomial variables.

Use R = Z[/d1,...,v/dn].

2. Subroutine: Construct uniform

random invertible element of R/p.

3. Choose y € ©(2"/n).

Force g to be invertible mod all
primes p < y. Heuristically,
good chance of squarefree norm.

21

22
Computing units

Fix positive non-square d € Z.
Assume d quasipoly in 2"
l.e., logd & n).

{...,::E , & ,::1,::8,::82,...}

is unit group of ring of integers of
Q(v/d) for a unique € > 1, the
normalized fundamental unit.

log e < v/d(2 + log4d); quasipoly.

Our multiquadratic tweaks to
Smart—Vercauteren (including
adaptation of Gentry—Halevi):

1. Generalize cryptosystem to
support n polynomial variables.

Use R = Z[/d1,...,v/dn].

2. Subroutine: Construct uniform

random invertible element of R/p.

3. Choose y € ©(2"/n).

Force g to be invertible mod all
primes p < y. Heuristically,
good chance of squarefree norm.

21

22
Computing units

Fix positive non-square d € Z.
Assume d quasipoly in 2"
l.e., logd & n).

{...,::E , & ,::1,::8,::82,...}

is unit group of ring of integers of
Q(v/d) for a unique € > 1, the
normalized fundamental unit.

log e < v/d(2 + log4d); quasipoly.

Standard algorithms compute
a, b € Q with e = a+ bvd

in time (log e)1T°(); quasipoly.
(Can save time by instead
representing € as product.)

tiquadratic tweaks to
lercauteren (including
on of Gentry—Halevi):

ralize cryptosystem to
n polynomial variables.

Z[VdL, .. /).

yutine: Construct uniform

invertible element of R/p.

se y € ©(2"/n).

to be invertible mod all
) < y. Heuristically,
ance of squarefree norm.

21

Computing units

Fix positive non-square d € Z.
Assume d quasipoly in 2"
l.e., logd & n).

{...,::8 , €& ,::1,::8,::82,..

is unit group of ring of integers of
Q(V/d) for a unique € > 1, the
normalized fundamental unit.

log e < v/d(2 + log4d); quasipoly.

Standard algorithms compute
a, b € Q with e = a+ bvd

in time (log €)1 T°(1); quasipoly.
(Can save time by instead
representing ¢ as product.)

22

3

Take ar
K=Q(

Assume

The set

Is the gr
of all 2"
Analogo

Comput

all norm

c tweaks to
n (including
try—Halevi):

tosystem to
nal variables.

VAL

nstruct uniform

element of R/p.

2" /n).
rtible mod all

aristically,
uarefree norm.

21

Computing units

Fix positive non-square d € Z.
Assume d quasipoly in 2"
l.e., logd & nO).

{...,::E , & ,::1,::8,::82,..

is unit group of ring of integers of
Q(v/d) for a unique € > 1, the
normalized fundamental unit.

log e < v/d(2 + log4d); quasipoly.

Standard algorithms compute
a, b € Q with e = a+ bvd

in time (log e)1T°(1); quasipoly.
(Can save time by instead
representing ¢ as product.)

22

3

Take a multiquadr

K=Q(Vd,

Assume n > 0 anc

The set of multiq
Is the group gener

of all 2" — 1 quad
Analogous to cycl

Compute this grot
all normalized fun

0
g

):

to
les.

1iform

f R/p.

1 all

orm.

21

Computing units

Fix positive non-square d € Z.
Assume d quasipoly in 2"
l.e., logd & nO).

{. . ::8_2, ::8_1, +1, +¢g, teg°, ..

is unit group of ring of integers of
Q(V/d) for a unique € > 1, the
normalized fundamental unit.

log e < /d(2 + log4d); quasipoly.

Standard algorithms compute
a, b € Q with e = a+ bvd

in time (log e)1T°(); quasipoly.
(Can save time by instead
representing ¢ as product.)

22

3

Take a multiquadratic field

K=Q(/d,....\/dy)

Assume n > 0 and all d; >

The set of multiquadratic 1
Is the group generated by ur
of all 2" — 1 quadratic subfi
Analogous to cyclotomic un

Compute this group by com
all normalized fundamental |

22 23
Computing units Take a multiquadratic field

K=Q(/dr,....\/dy)

Assume n > 0 and all d; > 0.

Fix positive non-square d € Z.
Assume d quasipoly in 2"
l.e., logd € nO), The set of multiquadratic units

{... ke % +e ! £1, £, +e%,. .} s the group generate.d by units
of all 27 — 1 quadratic subfields.

is unit group of ring of integers of
Q(v/d) for a unique € > 1, the
normalized fundamental unit. Compute this group by computing

Analogous to cyclotomic units.

log e < v/d(2 + log4d); quasipoly. all normalized fundamental units.

Standard algorithms compute
a, b € Q with e = a+ bvd

in time (log £)1°W); quasipoly.
(Can save time by instead
representing ¢ as product.)

Computing units

Fix positive non-square d € Z.
Assume d quasipoly in 2"
l.e., logd & nO).

{...,::E , & ,::1,::8,::82,..

is unit group of ring of integers of
Q(v/d) for a unique € > 1, the
normalized fundamental unit.

log e < v/d(2 + log4d); quasipoly.

Standard algorithms compute
a, b € Q with e = a+ bvd

in time (log e)1T°(1); quasipoly.
(Can save time by instead
representing ¢ as product.)

22

3

23
Take a multiquadratic field

K=Q(/dr,....\/dy)

Assume n > 0 and all d; > 0.

The set of multiquadratic units
Is the group generated by units
| 2" — 1 quadratic subfields.
ogous to cyclotomic units.

of a
Ana

Compute this group by computing
all normalized fundamental units.

- .
We go beyond this: compute O}
Could use Eisentrager—Hallgren—
Kitaev—Song, but we don't want
to wait for quantum computers.

22 23
ng units Take a multiquadratic field 1966 W

K=Q(Vdi,...,vdn). algorithr

Assume n > 0 and all d; > 0.

lve non-square d € Z.
d quasipoly in 2";
4 e nf1). The set of multiquadratic units

:—2’ 228_1, +1, ¢, ::82, .. } s the group generated by units

. . of all 2" — 1 quadratic subfields.
roup of ring of integers of

. Analogous to cyclotomic units.
for a unique € > 1, the & Y

zed fundamental unit. Compute this group by computing
/d(2 + log 4d); quasipoly. all normalized fundamental units.

1 algorithms compute We go beyond this: compute O .
‘with e = a+ bVd Could use Eisentrager—Hallgren—
log £)17°(1); quasipoly. Kitaev—=Song, but we don’t want
/e time by instead to wait for quantum computers.

ting € as product.)

22 23
Take a multiquadratic field 1966 Wada: expo
ware d € Z. K=Q(+vdi,...,vdn). algorithm for mult
CAn Assume n > 0 and all d; > 0.
ly in 27;
The set of multiquadratic units
11 de g2 ! s the group generated by units
L of all 2" — 1 quadratic subfields.
g of integers of | |
Analogous to cyclotomic units.
le € > 1, the
yimental unit. Compute this group by computing
o 4d); quasipoly. all normalized fundamental units.
ns compute We go beyond this: compute O .
a+ bvd Could use Eisentrager—Hallgren—
1). quasipoly. Kitaev—Song, but we don't want
instead to wait for quantum computers.
roduct.)

22

23
Take a multiquadratic field

K=Q(/d,....\/dy)

Assume n > 0 and all d; > 0.

The set of multiquadratic units
Is the group generated by units
of all 27 — 1 quadratic subfields.

Analogous to cyclotomic units.

Compute this group by computing
all normalized fundamental units.

. .
We go beyond this: compute O} .
Could use Eisentrager—Hallgren—
Kitaev—Song, but we don't want
to wait for quantum computers.

1966 Wada: exponential-tin
algorithm for multiquadratic

Take a multiquadratic field

K=Q(Vdr,....\/dy)

Assume n > 0 and all d; > 0.

The set of multiquadratic units
Is the group generated by units
of all 2”7 — 1 quadratic subfields.

Analogous to cyclotomic units.

Compute this group by computing
all normalized fundamental units.

We go beyond this: compute O .
Could use Eisentrager—Hallgren—
Kitaev—Song, but we don't want
to wait for quantum computers.

23

1966 Wada: exponential-time O3
algorithm for multiquadratics.

24

Take a multiquadratic field

K=Q(Vdr,....\/dy)

Assume n > 0 and all d; > 0.

The set of multiquadratic units
Is the group generated by units
of all 2”7 — 1 quadratic subfields.

Analogous to cyclotomic units.

Compute this group by computing
all normalized fundamental units.

We go beyond this: compute O .
Could use Eisentrager—Hallgren—
Kitaev—Song, but we don't want
to wait for quantum computers.

23

1966 Wada: exponential-time O3
algorithm for multiquadratics.

First step: Recursively compute

unit groups for three proper
subfields K5, K+, K5+ of K.

Base cases: Q; Q(vd).

o, T: distinct non-identity
automorphisms of K.

Ks =4{x € K:o0(x) = x}.

24

Take a multiquadratic field

Assume n > 0 and all d; > 0.

The set of multiquadratic units
Is the group generated by units
of all 2”7 — 1 quadratic subfields.

Analogous to cyclotomic units.

Compute this group by computing
all normalized fundamental units.

We go beyond this: compute O .
Could use Eisentrager—Hallgren—
Kitaev—Song, but we don't want
to wait for quantum computers.

23

24
1966 Wada: exponential-time O3

algorithm for multiquadratics.

First step: Recursively compute

unit groups for three proper
subfields K5, K+, K5+ of K.

Base cases: Q; Q(vd).

o, T: distinct non-identity
automorphisms of K.

Ks =4{x € K:o0(x) = x}.
e.g. K =Q(v2,v3,v5),

appropriate o, T: have

Ko = Q(\/Z \/§),

Kr = (\/_ \/—)
Kor = Q(v'2,V15).

nultiquadratic field

Ja)

n>0and all d; > 0.

of multiquadratic units
oup generated by units
— 1 quadratic subfields.
us to cyclotomic units.

e this group by computing
alized fundamental units.

eyond this: compute OF .
se Eisentrager—Hallgren—
>ong, but we don’'t want
‘or quantum computers.

23

24
1966 Wada: exponential-time O3

algorithm for multiquadratics.

First step: Recursively compute

unit groups for three proper
subfields K5, K+, Ks+ of K.

Base cases: Q; Q(vd).

o, T: distinct non-identity
automorphisms of K.

Ks =4{x € K:0(x) = x}.
e.g. K =Q(v2,v3,v5b),

appropriate o, 7: have
ch — Q(\/ﬁ, \/5),

Ky = Q(\/Z \/g),
KO'T — Q(\/Z m)

Second
Comput:

atic field

/dp).
| all d: > 0.

uadratic units
ated by units
ratic subfields.
tomic units.

Ip by computing
damental units.

5: compute O
\ger—Hallgren—
we don't want
m computers.

23

24
1966 Wada: exponential-time Oj

algorithm for multiquadratics.

First step: Recursively compute

unit groups for three proper
subfields K5, K+, Ks+ of K.

Base cases: Q; Q(vd).

o, T: distinct non-identity
automorphisms of K.

Ks =4{x € K:o0(x) = x}.
e.g. K =Q(v2,v3,v5b),

appropriate o, 7: have

Ko = Q(\/Z \/§),

Kr = (\/_ \/—)
Kor = Q(v/2,v/15).

Second step:
Compute U = Oj

anits
11tS
elds.
ts.

puting
Inits.

%
e (’)K.
ren—

vant

ErS.

23

24
1966 Wada: exponential-time O3

algorithm for multiquadratics.

First step: Recursively compute

unit groups for three proper
subfields K5, K+, K5+ of K.

Base cases: Q; Q(vd).

o, T: distinct non-identity
automorphisms of K.

Ks =4{x € K:0(x) = x}.
e.g. K =Q(v2,v3,vb),

appropriate o, 7: have
ch — Q(\/ﬁ, \/5),

Ky = Q(\/Z \/g),
KO'T — Q(\/Z m)

Second step:
Compute U = (’)

k,o(O

1966 Wada: exponential-time O3

algorithm for multiquadratics.

First step: Recursively compute

unit groups for three proper
subfields K4, K+, Ks+ of K.

Base cases: Q; Q(vd).

o, T: distinct non-identity
automorphisms of K.

Ks =4{x € K:o0(x) = x}.
e.g. K =Q(v2,v3,v5),

appropriate o, 7: have

Ko = Q(\/Z \/§),

Kr = (\/_ \/—)
Kor = Q(v/2,v/15).

24

Second step:

Compute U = Oy Oy o(Oj).

25

1966 Wada: exponential-time O3

algorithm for multiquadratics.

First step: Recursively compute

unit groups for three proper
subfields K4, K+, Ks+ of K.

Base cases: Q; Q(vd).

o, T: distinct non-identity
automorphisms of K.

Ks =4{x € K:o0(x) = x}.
e.g. K =Q(v2,v3,v5),

appropriate o, 7: have

Ko = Q(\/Z \/§),

Kr = (\/_ \/—)
Kor = Q(v/2,v/15).

24

Second step:

Compute U = (’)
Fact: U < O.

K‘T (>;<O'T).

25

1966 Wada: exponential-time O3

algorithm for multiquadratics.

First step: Recursively compute

unit groups for three proper
subfields K4, K+, Ks+ of K.

Base cases: Q; Q(vd).

o, T: distinct non-identity
automorphisms of K.

Ks =4{x € K:o0(x) = x}.
e.g. K =Q(v2,v3,v5),

appropriate o, 7: have

Ko = Q(\/Z \/§),

Kr = (\/_ \/—)
Kor = Q(v/2,v/15).

24

Second step:

Compute U = Oy Oy o(Oj).
Fact: U < O.

Fact: (O%)?

<U.

25

1966 Wada: exponential-time O3

algorithm for multiquadratics.

First step: Recursively compute

unit groups for three proper
subfields K4, K+, Ks+ of K.

Base cases: Q; Q(vd).

o, T: distinct non-identity
automorphisms of K.

Ks =4{x € K:o0(x) = x}.
e.g. K =Q(v2,v3,v5),

appropriate o, 7: have

Ko = Q(\/Z \/§),

Kr = (\/_ \/—)
Kor = Q(v/2,v/15).

24

Second step:

Compute U = Oy Oy o(Oj).

Fact: U < O.
Fact: (0%)? < U.

Proof:

If u e Of then

uo(u) € Ok ;

ut(u) € O ;

uo(T(u)) € Ok __; so
)

uo(u)ut(u)/o(uc(T(u))) € U.

25

1966 Wada: exponential-time O3

algorithm for multiquadratics.

First step: Recursively compute

unit groups for three proper
subfields K4, K+, Ks+ of K.

Base cases: Q; Q(vd).

o, T: distinct non-identity
automorphisms of K.

Ks =4{x € K:o0(x) = x}.
e.g. K =Q(v2,v3,v5),

appropriate o, 7: have

Ko = Q(\/Z \/§),

Kr = (\/_ \/—)
Kor = Q(v/2,v/15).

24

Second step:

Compute U = Oy Oy o(Oj).

Fact: U < O.
Fact: (0%)? < U.

Proof:

If u e Of then
uo(u) € Ok ;

ut(u) € O ;
uo(T(u)) € (’)KM' SO

uo(uw)ut(u)/o(uo(T(u))) e U

In other words, v cU.

25

ada: exponential-time O

n for multiquadratics.

p: Recursively compute

ups for three proper
Ko, K, Ko of K.
es: Q; Q(V/d).

tinct non-identity
phisms of K.

€ K:o(x) = x}.
- Q(v2,v3,v/5),

ate o, T7: have
(v2,v/3);
(v2,v/5);
)(v/2,/15).

24

25
Second step:

Compute U = Oy Oy 0(Oj).
Fact: U < O
Fact: (;‘()2 < U.

Proof:

If ue O then

uo(u) € Ok ;

ut(u) € O ;

uo(T(u)) € Ok __; so
uo(u)ut(u)/o(uo(7(u))) € U.
In other words, u? € U.

Third st
identify
trying tc
of produ

nential-time (’)’[(

Iquadratics.

vely compute
‘ee proper
{s7 of K.
Vd).

identity
K

x) = x}.
3,V5),

1aVe

24

25
Second step:

Compute U = Oy Oy o(Ojc).
Fact: U < O
Fact: ((’)";()2 < U.

Proof:

If u e Of then

uo(u) € Ok ;

ut(u) € O ;

uo(T(u)) € Ok __; so
uo(u)ut(u)/o(uc(T(u))) € U.
In other words, u? € U.

Third step:

identify (O%)? ins
trying to compute
of products of gen

> 3
e (’)K

yute

24

25
Second step:

Compute U = Oy Oy 0(Oj).
Fact: U < O
Fact: (;‘()2 < U.

Proof:

If ue O then

uo(u) € Ok ;

ut(u) € O ;

uo(T(u)) € Ok __; so
uo(u)ut(u)/o(uo(T(u))) € U.
In other words, u? € U.

Third step:

identify (O%})? inside U by
trying to compute square ro
of products of generators of

Second step:
Compute U = Oy Oy o(Oj).

Fact: U < O
Fact: (0%)? <U.

Proof:

If u e Of then

uo(u) € Ok ;

ut(u) € O ;

uo(T(u)) € Ok __; so
uo(u)ut(u)/o(uc(T(u))) € U.
In other words, u® € U.

25

Third step:

identify (O%)? inside U by
trying to compute square roots
of products of generators of U.

26

Second step:
Compute U = Oy Oy o(Oj).

Fact: U < O
Fact: (0%)? <U.

Proof:

If u e Of then

uo(u) € Ok ;

ut(u) € O ;

uo(T(u)) € Ok __; so
uo(u)ut(u)/o(uc(T(u))) € U.
In other words, u® € U.

25

Third step:

identify (O%)? inside U by
trying to compute square roots
of products of generators of U.

20(2") products.

26

Second step:
Compute U = Oy Oy o(Oj).

Fact: U < O
Fact: (0%)? <U.

Proof:

If u e Of then

uo(u) € Ok ;

ut(u) € O ;

uo(T(u)) € Ok __; so
uo(u)ut(u)/o(uc(T(u))) € U.
In other words, u® € U.

25

Third step:

identify (O%)? inside U by
trying to compute square roots
of products of generators of U.

20(2") products.

We do much better using

an NFS idea from 1991 Adleman.

26

Second step:
Compute U = Oy Oy o(Oj).

Fact: U < O
Fact: (0%)? <U.

Proof:

If u e Of then

uo(u) € Ok ;

ut(u) € O ;

uo(T(u)) € Ok __; so
uo(u)ut(u)/o(uc(T(u))) € U.
In other words, u® € U.

25

Third step:

identify (O%)? inside U by
trying to compute square roots
of products of generators of U.

20(2") products.

We do much better using

an NFS idea from 1991 Adleman.

e
ajl -k square =

X(a1) - x(ag)* =1
for any quadratic character x

with x(a1), ..., x(ax) € {—1,1}.

26

Second step:

Compute U = (’)
Fact: U < O
Fact: (0%)? <U.

Proof:

If u e Of then
uo(u) € Ok ;

ut(u) € O ;
uo(T(u)) € (’)KM' SO

vuo(u)ut(u)/o(uo(T(u))) e U

In other words, v cU.

K‘T (>;<O'T).

25

Third step:

identify (O%)? inside U by
trying to compute square roots
of products of generators of U.

20(2") products.

We do much better using

an NFS idea from 1991 Adleman.

all. ..k square =
1 k 9

X(a1) - x (o) =1
for any quadratic character x

with x(a1), ..., x (k)

Linear equation, usually reducing
dim{e} by 1. Use many such x.

c{-1,1}.

26

) € (’)KUT' SO

(u)/o(ua((v))) € U.

words, u? c U.

).

25

Third step:

identify (O%)? inside U by
trying to compute square roots
of products of generators of U.

20(2") products.

We do much better using

an NFS idea from 1991 Adleman.

agl - o square =
1 k >

x(a1) - x(ak)* =1
for any quadratic character x

with x(a1), ..., x(ax) € {—1,1}.

Linear equation, usually reducing
dim{e} by 1. Use many such x.

26

Comput

Main go
where R

>k X
, 9k, 9(O%k,,

SO

(7(u))) € U.

).

25

Third step:

identify (O%)? inside U by
trying to compute square roots
of products of generators of U.

20(2") products.

We do much better using

an NFS idea from 1991 Adleman.

e
ajl -k square =

X(0)1 - x(ag) =1
for any quadratic character x

with x(a1), ..., x(ax) € {—1,1}.

Linear equation, usually reducing
dim{e} by 1. Use many such x.

26

Computing genera

Main goal: Find g
where R = Z[+/dq

25

Third step:

identify (O%)? inside U by
trying to compute square roots
of products of generators of U.

20(2") products.

We do much better using

an NFS idea from 1991 Adleman.

€
ajl -+ o)k square =

X(0)1 - x(ag) =1
for any quadratic character x

with x(a1), ..., x(ak) € {—1, 1}

Linear equation, usually reducing
dim{e} by 1. Use many such x.

26

Computing generators

Main goal: Find g given gk

where R = Z[+/d1, ..

. Vdn

Third step:

identify (O%)? inside U by
trying to compute square roots
of products of generators of U.

20(2") products.

We do much better using
an NFS idea from 1991 Adleman.

e
ajl -k square =

X(01)°1 - x(e)% =1
for any quadratic character x
with x(a1), ..., x(ax) € {—1,1}.

Linear equation, usually reducing
dim{e} by 1. Use many such x.

26

Computing generators

Main goal: Find g given gR,

where R = Z[+/d1, ..

LV

27

Third step:

identify (O%)? inside U by
trying to compute square roots
of products of generators of U.

20(2") products.

We do much better using
an NFS idea from 1991 Adleman.

e
ajl -k square =

X(01)°1 - x(e)% =1
for any quadratic character x
with x(a1), ..., x(ak) € {—1,1}.

Linear equation, usually reducing
dim{e} by 1. Use many such x.

26

27
Computing generators

Main goal: Find g given gR,

where R = Z[\/d1, ..., v dp].

Strategy: Reuse the equation

g° =go(g)gT(g)/o(go(T(g))):
Square root of g2 is +g.

Third step:

identify (O%)? inside U by
trying to compute square roots
of products of generators of U.

20(2") products.

We do much better using
an NFS idea from 1991 Adleman.

e
ajl -k square =

X(01)°1 - x(e)% =1
for any quadratic character x
with x(a1), ..., x(ax) € {—1,1}.

Linear equation, usually reducing
dim{e} by 1. Use many such x.

26

27
Computing generators

Main goal: Find g given gR,

where R = Z[\/d1, ..., v/dn].

Strategy: Reuse the equation

g° =go(g)gT(g)/o(go(T(g))):
Square root of g2 is +g.

How to compute go(g)?

Third step:

identify (O%)? inside U by
trying to compute square roots
of products of generators of U.

20(2") products.

We do much better using
an NFS idea from 1991 Adleman.

e
ajl -k square =

X(01)°1 - x(e)% =1
for any quadratic character x
with x(a1), ..., x(ax) € {—1,1}.

Linear equation, usually reducing
dim{e} by 1. Use many such x.

26

27
Computing generators

Main goal: Find g given gR,

where R = Z[\/d1, ..., v/dn].

Strategy: Reuse the equation

g° =go(g)gT(g)/o(go(T(g))):
Square root of g2 is +g.

How to compute go(g)?

First compute relative norm
of ideal gR from K to K.
Obtain ideal generated by go(g).

Third step:

identify (O%)? inside U by
trying to compute square roots
of products of generators of U.

20(2") products.

We do much better using

an NFS idea from 1991 Adleman.

e
ajl -k square =

X(a1) - x(ak)* =1
for any quadratic character x

with x(a1), ..., x(ak) € {—1,1}.

Linear equation, usually reducing
dim{e} by 1. Use many such x.

26

27
Computing generators

Main goal: Find g given gR,

where R = Z[\/d1, ..., v/dn].

Strategy: Reuse the equation

g° =go(g)gT(g)/o(go(T(g))):
Square root of g2 is +g.

How to compute go(g)?

First compute relative norm
of ideal gR from K to K.
Obtain ideal generated by go(g).

Recursively compute a generator
of this ideal: probably not go(g).
Some ugo(g) with u € O .

ep:
(O%)? inside U by

) compute square roots
cts of generators of U.

roducts.

nuch better using

idea from 1991 Adleman.

€k
L square =

- x(ou) =1
yuadratic character x

¥1), ...

quation, usually reducing
by 1. Use many such x.

X(ak) € {-1,1}.

26

27
Computing generators

Main goal: Find g given gR,

where R = Z[\/d1, ..., v/d].

Strategy: Reuse the equation

g° =go(g)gT(g)/o(go(T(g)))-
Square root of g2 is +g.

How to compute go(g)?

First compute relative norm
of ideal gR from K to K.
Obtain ideal generated by go(g).

Recursively compute a generator
of this ideal: probably not go(g).
Some ugo(g) with u € O .

Unit mu

unit mu

unit mu

—> some

ide U by

square roots
erators of U.

r using

1991 Adleman.

—
ek — 1

character x

(ag) € {—1,1}.

sually reducing
many such .

26

27
Computing generators

Main goal: Find g given gR,
where R = Z[\/d1, ..., v/dn].

Strategy: Reuse the equation

g° =go(g)gT(g)/o(go(T(g)))-
Square root of g2 is +g.

How to compute go(g)?

First compute relative norm
of ideal gR from K to K.
Obtain ideal generated by go(g).

Recursively compute a generator
of this ideal: probably not go(g).
Some ugo(g) with u € O .

Unit multiple of g
unit multiple of g-

unit multiple of g
= some ug? with

26 27
Computing generators Unit multiple of go(g),

Main goal: Find g given gR, unit multiple of g7(g)

ots where R = Z[\/dy. ... /di] unit multip 2 of.ga(T(g))
U. = some ug“ with u € Of.

Strategy: Reuse the equation
g° = go(g)g(g)/o(ga(T(g)))
Square root of g2 is +g.

-man. How to compute go(g)?
First compute relative norm
of ideal gR from K to K.
Xl n Obtain ideal generated by go(g).
| Recursively compute a generator
Jhcmg of this ideal: probably not go(g).
X

Some ugo(g) with u € O

Computing generators

Main goal: Find g given gR,

where R = Z[\/d1, ..., v/dn].

Strategy: Reuse the equation

g° =go(g)gT(g)/o(go(T(g))):
Square root of g2 is +g.

How to compute go(g)?

First compute relative norm
of ideal gR from K to K.
Obtain ideal generated by go(g).

Recursively compute a generator
of this ideal: probably not go(g).
Some ugo(g) with u € O .

21

28
Unit multiple of go(g),

unit multiple of g7(g),

unit multiple of ga(7(g))
— some ug? with u € Ok

Computing generators

Main goal: Find g given gR,
where R = Z[\/d1, ..., v/dn].

Strategy: Reuse the equation

g° =go(g)gT(g)/o(go(T(g))):
Square root of g2 is +g.

How to compute go(g)?

First compute relative norm
of ideal gR from K to K.
Obtain ideal generated by go(g).

Recursively compute a generator
of this ideal: probably not go(g).
Some ugo(g) with u € O .

21

Unit multiple of go(g),
unit multiple of g7(g),

unit multiple of ga(7(g))

= some ug? with u & O

Use quadratic characters

(with values +1 on g)
to identify v € O}

such that vug? is a square.

23

07 28
Computing generators Unit multiple of go(g),

Main goal: Find g given gR, unit multiple of g7(g),

where R = Z[\/dy, ... \/dy] unit multip 2 o--.go'(T(g))
= some ug“ with u € OF.

Strategy: Reuse the equation

g° =go(g)gT(g)/o(go(T(g))):
Square root of g2 is +g.

Use quadratic characters

(with values +1 on g)

to identify v € O}

How to compute go(g)? such that vug? is a square.

First compute relative norm Now compute square root:

of ideal gR from K to K. some unit multiple of g,

Obtain Ideal generated by gO'(g) i_e_, some g, Wlth g/OK — gOK

Recursively compute a generator
of this ideal: probably not go(g).
Some ugo(g) with u € O .

07 28
Computing generators Unit multiple of go(g),

Main goal: Find g given gR, unit multiple of g7(g),

where R = Z[\/dy, ... \/dy] unit multip 2 o--.go'(T(g))
= some ug“ with u € OF.

Strategy: Reuse the equation

g° =go(g)gT(g)/o(go(T(g))):
Square root of g2 is +g.

Use quadratic characters

(with values +1 on g)
to identify v € O}

How to compute go(g)? such that vug? is a square.

First compute relative norm Now compute square root:

of ideal gR from K to K. some unit multiple of g,

Obtain Ideal generated by gO'(g) i_e_, some g, Wlth g/OK — gOK
Recursively compute a generator All of this takes quasipoly time.

of this ideal: probably not go(g).
Some ugo(g) with u € O .

ng generators

al: Find g given gR,

= Z[J/d, ..., /]

. Reuse the equation

(8)gT(g)/o(go(T(g))).

oot of g2 is +g.

compute go(g)?

npute relative norm
gR from K to K.

deal generated by go(g).

ely compute a generator

leal: probably not go(g).

o (g) with u € Oy

27

Unit multiple of go(g),
unit multiple of g7(g),

unit multiple of go(7(g))
= some ug” with u € O%.

Use quadratic characters

(with values +1 on g)
: £ *
to identify v € Oy
such that vug? is a square.

Now compute square root:
some unit multiple of g,

i.e., some g’ with g'Ox = g0y

All of this takes quasipoly time.

28

Comput

Assume
(More w
to <n2;

tors

- given gR,

A

e equation

/o(ga(T(g)))-

IS Tg.

70(g)?

tive norm

K to K.

ated by go(g).

'te a generator

ably not go(g).
1u € O .

21

28
Unit multiple of go(g),

unit multiple of g7(g),

unit multiple of go(7(g))
= some ug” with u € O%.

Use quadratic characters

(with values +1 on g)

to identify v € O}
such that vug? is a square.

Now compute square root:
some unit multiple of g,
i.e., some g’ with g0y = gO.

All of this takes quasipoly time.

Computing short ¢

Assume di, ..., d;
(More work seems
to <n°; see paper

o(g).

rator

a(g).

27

Unit multiple of go(g),

unit

unit

= some ug? with u & O

mu

mu

tiple of g7(g),
tiple of go(7(g))

Use quadratic characters

(with va

to IC

such that vug?

Now compute square root:

enti

ues +£1 on g)

ify ve O

some unit multiple of g,

i.e., some g’ with g'Ox = g0y

All of this takes quasipoly time.

IS a square.

28

Computing short generators

Assume dq, .. .,

dn > 21.03n_

(More work seems to push &

to <n2

- see paper and softw

28 29
Unit multiple of go(g), Computing short generators

unit multiple of g7(g),

Assume d, ..., d, > 21.037,
(More work seems to push bound

unit multiple of go(7(g))

2 *
= some ug“ with v € O7F,.
g < Uk to <n?: see paper and software.)

Use quadratic characters

(with values +1 on g)
to identify v € O}
such that vug? is a square.

Now compute square root:
some unit multiple of g,
i.e., some g’ with g0y = gO.

All of this takes quasipoly time.

Unit multiple of go(g),
unit multiple of g7(g),

unit multiple of go(7(g))
= some ug” with u € O%.

Use quadratic characters

(with values +1 on g)
to identify v € O}
such that vug? is a square.

Now compute square root:
some unit multiple of g,
i.e., some g’ with g0y = gO.

All of this takes quasipoly time.

23

29
Computing short generators

Assume d, ..., d, > 21.037,
(More work seems to push bound
to <n’; see paper and software.)

Find multiquadratic (MQ) units.

Find all units.

Find some generator ug.

Unit multiple of go(g),
unit multiple of g7(g),

unit multiple of go(7(g))
= some ug” with u € O%.

Use quadratic characters

(with values +1 on g)
to identify v € O}
such that vug? is a square.

Now compute square root:
some unit multiple of g,

i.e., some g’ with g0y = gO.

All of this takes quasipoly time.

23

29
Computing short generators

Assume d, ..., d, > 21.037,
(More work seems to push bound
to <n’; see paper and software.)

Find multiquadratic (MQ) units.
Find all units.

Find some generator ug.

Heuristic: For most dy, ..., d,,
all regulators log ¢

are larger than 29217

so coefficients of 2" Log g
on MQ unit basis are

almost certainly in (—0.1,0.1).

28
tiple of go(g),
tiple of g7(g),

tiple of go(7(g))
ug? with u € O

dratic characters

ues +£1 on g)

£ *

y v e Oy

t vug2 IS a square.

npute square root:
it multiple of g,
e g’ with g0k = g0y

Is takes quasipoly time.

Computing short generators

Assume d, ..., d, > 2103,
(More work seems to push bound
to <n?; see paper and software.)

Find multiquadratic (MQ) units.

Find all units.

Find some generator ug.

Heuristic: For most dy, ..., dj,
all regulators log ¢

are larger than 29217

so coefficients of 2" Log g
on MQ unit basis are

almost certainly in (—0.1,0.1).

29

n .
U2 IS al

n
Log u?
closest v

o(g).
r(g),
7(7(g))

%
uE(’)K.

racters
n g)

/
\

a square.

are root:
> of g,

g'Ox = gOk.

1asipoly time.

23

Computing short generators

Assume d, ..., d, > 21.037,
(More work seems to push bound

to <n’; see paper and software.)

Find multiquadratic (MQ) units.
Find all units.

Find some generator ug.

Heuristic: For most dy, ..., d,,
all regulators log ¢

are larger than 29217

so coefficients of 2" Log g
on MQ unit basis are

almost certainly in (—0.1,0.1).

29

u2" is an MQ unit

Log u?" = 2" Log 1

closest vector to 2

28

Computing short generators

Assume d, ..., d, > 2103,
(More work seems to push bound
to <n?; see paper and software.)

Find multiquadratic (MQ) units.
Find all units.

Find some generator ug.

Heuristic: For most dy, ..., d,,
all regulators log ¢

are larger than 29217

so coefficients of 2" Log g
on MQ unit basis are

almost certainly in (—0.1,0.1).

29

u?" is an MQ unit.
Log u?’ = 2n Log u is
closest vector to 2" Log ug.

Computing short generators

Assume d, ..., d, > 21.037,
(More work seems to push bound
to <n’; see paper and software.)

Find multiquadratic (MQ) units.
Find all units.

Find some generator ug.

Heuristic: For most dy, ..., d,,
all regulators log ¢

are larger than 29217

so coefficients of 2" Log g
on MQ unit basis are

almost certainly in (—0.1,0.1).

29

u?" is an MQ unit.
Log u?" = 2" Logu is
closest vector to 2" Log ug.

30

Computing short generators

Assume d, ..., d, > 21.037,
(More work seems to push bound
to <n’; see paper and software.)

Find multiquadratic (MQ) units.
Find all units.

Find some generator ug.

Heuristic: For most dy, ..., d,,
all regulators log ¢

are larger than 29217

so coefficients of 2" Log g
on MQ unit basis are

almost certainly in (—0.1,0.1).

29

u?" is an MQ unit.
Log u?" = 2" Logu is
closest vector to 2" Log ug.

MQ unit lattice is orthogonal.
Round 2" Log ug to find 2" Log u
and 2" Log g. Deduce +g2 .

30

Computing short generators

Assume d, ..., d, > 21.037,
(More work seems to push bound
to <n’; see paper and software.)

Find multiquadratic (MQ) units.

Find all units.

Find some generator ug.

Heuristic: For most dy, ..., d,,
all regulators log ¢

are larger than 29217

so coefficients of 2" Log g
on MQ unit basis are

almost certainly in (—0.1,0.1).

29

u?" is an MQ unit.

Log u?" = 2" Logu is

closest vector to 2" Log ug.

MQ unit lattice is orthogonal.

Round 2" Log ug to find 2" Log u
2n

and 2" Log g. Deduce +g

Use quadratic character: gzn.

30

Computing short generators

Assume d, ..., d, > 21.037,
(More work seems to push bound
to <n’; see paper and software.)

Find multiquadratic (MQ) units.
Find all units.

Find some generator ug.

Heuristic: For most dy, ..., d,,
all regulators log ¢

are larger than 29217

so coefficients of 2" Log g
on MQ unit basis are

almost certainly in (—0.1,0.1).

29

u?" is an MQ unit.
Log u?" = 2" Logu is
closest vector to 2" Log ug.

MQ unit lattice is orthogonal.
Round 2" Log ug to find 2" Log u
and 2" Log g. Deduce +g2 .

Use quadratic character: gzn.
2/7—1

Square root: +g

30

Computing short generators

L dp > 2108

(More work seems to push bound

Assume di, ..

to <n’; see paper and software.)

multiquadratic (MQ) units.

all units.

Fing
Find

Find some generator ug.

Heuristic: For most dy, ..., d,,
all regulators log ¢

are larger than 29217

so coefficients of 2" Log g
on MQ unit basis are

almost certainly in (—0.1,0.1).

29

u?" is an MQ unit.

Log u?" = 2" Logu is

closest vector to 2" Log ug.

MQ unit lattice is orthogonal.

Round 2" Log ug to find 2" Log u
2n

and 2" Log g. Deduce +g

Use quadratic character: gzn.
2/7—1

Square root: +g

| -1
Use quadratic character: g2’
2[7—2

Square root: +g

30

Computing short generators

L dp > 2108

(More work seems to push bound

Assume di, ..

to <n’; see paper and software.)

Find multiquadratic (MQ) units.

Find all units.

Find some generator ug.

Heuristic: For most dy, ..., d,,
all regulators log ¢

are larger than 29217

so coefficients of 2" Log g
on MQ unit basis are

almost certainly in (—0.1,0.1).

29

u?" is an MQ unit.

Log u?" = 2" Logu is

closest vector to 2" Log ug.

MQ unit lattice is orthogonal.

Round 2" Log ug to find 2" Log u
2n

and 2" Log g. Deduce +g

Use quadratic character: gzn.
2/7—1

Square root: +g

| -1
Use quadratic character: g2’
2[7—2

Square root: +g

Square root: +g. Donel
MQ cryptosystem is broken
for all of these fields.

30

ng short generators

di, ..., d, >2103n
ork seems to push bound
see paper and software.)

ltiquadratic (MQ) units.
units.
ne generator ug.

~: For most dy, ..., d,,
ators log e

r than 20-217

cients of 2" Log g

unit basis are
ertainly in (—0.1,0.1).

29

u?" is an MQ unit.

Log u?’ = 2n Log u is

closest vector to 2" Log ug.

MQ unit lattice is orthogonal.

Round 2" Log ug to find 2" Log u
2n

and 2" Log g. Deduce +g

Use quadratic character: gzn.
2n—1

Square root: +g
| 1
Use quadratic character: g2
2[7—2
Square root: +g° .

Square root: +g. Donel
MQ cryptosystem is broken
for all of these fields.

30

Slightly

Find M(
but skip

renerators

’ Z 21.03/7.

to push bound
and software.)

ic (MQ) units.

or ug.

5t d]_,...,dn,

Hhln.

" Log g
are
 (—0.1,0.1).

29

u2" is an MQ unit.

Log u?" = 2" Logu is

closest vector to 2" Log ug.

MQ unit lattice is orthogonal.

Round 2" Log ug to find 2" Log u
2n

and 2" Log g. Deduce +g

Use quadratic character: gzn.
2/7—1

Square root: +g

| -1
Use quadratic character: g2’
2[7—2

Square root: +g

Square root: +g. Donel
MQ cryptosystem is broken
for all of these fields.

30

Slightly simpler:

Find MQ units,
but skip finding al

ound
are.)

nits.

29

u?" is an MQ unit.

Log u?’ = 2n Log u is

closest vector to 2" Log ug.

MQ unit lattice is orthogonal.

Round 2" Log ug to find 2" Log u
2n

and 2" Log g. Deduce +g

Use quadratic character: gzn.
2n—1

Square root: +g
| 1
Use quadratic character: g2
2[7—2
Square root: +g° .

Square root: +g. Donel
MQ cryptosystem is broken
for all of these fields.

30

Slightly simpler:

Find MQ units,
but skip finding all units.

u2" is an MQ unit.

Log u?" = 2" Logu is

closest vector to 2" Log ug.

MQ unit lattice is orthogonal.

Round 2" Log ug to find 2" Log u
2n

and 2" Log g. Deduce +g

Use quadratic character: gzn.
2/7—1

Square root: +g

| -1
Use quadratic character: g2’
2[7—2

Square root: +g

Square root: +g. Donel
MQ cryptosystem is broken
for all of these fields.

30

Slightly simpler:

Find MQ units,
but skip finding all units.

31

u2" is an MQ unit.

Log u?" = 2" Logu is

closest vector to 2" Log ug.

MQ unit lattice is orthogonal.

Round 2" Log ug to find 2" Log u
2n

and 2" Log g. Deduce +g

Use quadratic character: gzn.

2/7—1

Square root: +g

| -1
Use quadratic character: g2’
2[7—2

Square root: +g

Square root: +g. Donel
MQ cryptosystem is broken
for all of these fields.

30

Slightly simpler:

Find MQ units,
but skip finding all units.

Recursively find ung'—l

where u is an MQ unit; i.e.
skip square-root computations.

31

u2" is an MQ unit.

Log u?" = 2" Logu is

closest vector to 2" Log ug.

MQ unit lattice is orthogonal.

Round 2" Log ug to find 2" Log u
2n

and 2" Log g. Deduce +g

Use quadratic character: gzn.

2/7—1

Square root: +g

| -1
Use quadratic character: g2’
2[7—2

Square root: +g

Square root: +g. Donel
MQ cryptosystem is broken
for all of these fields.

30

Slightly simpler:

Find MQ units,
but skip finding all units.

Recursively find ung'—l

where u is an MQ unit; i.e.

skip square-root computations.

Take logs: Log qu”—l

Round: Log u.

31

u2" is an MQ unit.

Log u?" = 2" Logu is

closest vector to 2" Log ug.

MQ unit lattice is orthogonal.

Round 2" Log ug to find 2" Log u
2n

and 2" Log g. Deduce +g

Use quadratic character: gzn.

2/7—1

Square root: +g

| -1
Use quadratic character: g2’
2[7—2

Square root: +g

Square root: +g. Donel
MQ cryptosystem is broken
for all of these fields.

30

31
Slightly simpler:
Find MQ units,
but skip finding all units.

Recursively find ung'—l

where u is an MQ unit; i.e.
skip square-root computations.

Take logs: Log qu”—l

Round: Log u.
2/7—1

Deduce g

: n—1
Use quadratic character: g?2
2n—2

Square root: +g

Square root: +g.

