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Conjectured asymptotic random MQ
How quickly can we solve a system of
m quadratic equations in n variables over Fq?

Focus on random systems:
each coefficient in equations is chosen randomly.
Solving this problem for m ≈ n
conjecturally breaks, e.g., HFEv− signatures.
Focus on asymptotic cost exponents:
scalability as n→∞ with m/n→ µ.
Focus on best conjectured speeds.
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Previous exponents for q = 2 and µ = 1
2(e+o(1))n operations as n→∞:

I e = 1 proven: Brute force.
I e = 0.8765 proven:

2017 Lokshtanov–Paturi–Tamaki–Williams–Yu.

I e = 0.87280 . . .: “XL”. Algorithm from
1981 Lazard. Analysis and optimization from
2004 Yang–Chen–Courtois.

I e = 0.79106 . . .: “FXL”. Algorithm from 2000
Courtois–Klimov–Patarin–Shamir. Analysis and
optimization from 2004 Yang–Chen–Courtois.

I e = 0.5 proven: Grover’s quantum algorithm.
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New exponents
e = 0.46240 . . .:
“GroverXL”, 2017.12.15 Bernstein–Yang.
Independently “QuantumBooleanSolve”, 2017.12.19
Faugère–Horan–Kahrobaei–Kaplan–Kashefi–Perret.

More results in 2017.12.15 (not 2017.12.19) paper:
I Area-time product on mesh: 0.47210 . . ..
I Area under specified time limits.
I q > 2: e.g., 0.72468 . . . (base 2) for q = 3.
I µ > 1: e.g., 0.65688 . . . for µ = 2, q = 3.
I Sage script to automate all these analyses.
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A small example of XL
Goal: Find (x , y , z) ∈ F3

2 with
xy + x + yz + z = 0;
xz + x + y + 1 = 0;
xz + yz + y + z = 0.

Degree-d XL multiplies each quadratic equation
by each monomial of degree ≤d − 2.
e.g.: Degree-3 XL multiplies each quadratic equation
by each monomial of degree ≤1: i.e., by x , y , z , 1.
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A small example of XL: products
xyz + xy + xz + x = 0 (x · first equation)

0 = 0 (y · first equation)
xyz + xz + yz + z = 0 (z · first equation)
xy + x + yz + z = 0 (1 · first equation)

xy + xz = 0 (x · second equation)
xyz + xy = 0 (y · second equation)
yz + z = 0 (z · second equation)

xz + x + y + 1 = 0 (1 · second equation)
xyz + xy = 0 (x · third equation)
xyz + y = 0 (y · third equation)
xz + z = 0 (z · third equation)

xz + yz + y + z = 0 (1 · third equation)
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A small example of XL: Macaulay matrix

1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0
0 1 0 1 1 0 1 0
0 1 1 0 0 0 0 0
1 1 0 0 0 0 0 0
0 0 0 0 1 0 1 0
0 0 1 1 0 1 0 1
1 1 0 0 0 0 0 0
1 0 0 0 0 1 0 0
0 0 1 0 0 0 1 0
0 0 1 0 1 1 1 0





xyz
xy
xz
x
yz
y
z
1


= 0
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A small example of XL: row-echelon form

1 1 1 1 0 0 0 0
0 1 0 1 1 0 1 0
0 0 1 1 1 0 1 0
0 0 0 1 0 1 0 0
0 0 0 0 1 0 1 0
0 0 0 0 0 1 0 1
0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0





xyz
xy
xz
x
yz
y
z
1


= 0

Now have
linear
relations:
x = 1,
y = 1,
z = 1.
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Does XL produce enough relations?
Write A for number of monomials of degree ≤d
in n variables with exponents <q.

Then A is zd coeff in ϕq(z)n/(1− z)
where ϕq(z) = (1− zq)/(1− z).
Define B as zd coeff in ϕq(z)n/(1− z)ϕq(z2)m.
2004 Yang–Chen: Rank of XL matrix ≤ A− B.
Sharp switch between cases as d crosses a cutoff:
• Huge B; experimentally, XL (almost always) fails.
• Huge −B; experimentally, XL succeeds.
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What is the asymptotic cutoff?
Say m/n→ µ ≥ 1 as n→∞.

Define h ∈ R[x , z ] as

z 1− z2q

1− z

−x
z −

qzq−1

1− zq + 1
1− z−

2µz
1− z2 +2µqz2q−1

1− z2q

 .
Define ∆ ∈ R[x ] as z-discriminant of h.
Define δ as unique positive real root of ∆.
Then B transition is for d/n→ δ as n→∞.
(log2 A)/n→ log2(ϕq(ρ)/ρδ) for d/n→ δ
where ρ is unique positive solution to
−δ+(1−δ)ρ+(2−δ)ρ2 + · · ·+(q−1−δ)ρq−1 = 0.
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FXL and naive Grover search
FXL: Guess values for some variables.
Apply XL to the other variables.

Conceptually straightforward quantum speedup:
Grover search for values of some variables
where XL finds a solution for the other variables.
Hopeless-for-big-enough-sizes analysis: 2016
Chen–Hülsing–Rijneveld–Samardjiska–Schwabe.
Asymptotic exponent 0.46240 . . . : 2017.12.15
Bernstein–Yang, independently 2017.12.19
Faugère–Horan–Kahrobaei–Kaplan–Kashefi–Perret.
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Why the naive approach is unsatisfactory
Internally, XL uses sparse linear algebra.
See 2004 Yang–Chen, 2004 Yang–Chen–Courtois.
(Various implementations starting in 2006:
e.g., 2012 Cheng–Chou–Niederhagen–Yang.)

Bottleneck inside sparse linear algebra:
repeatedly overwrite a vector v with Mv .
Cannot erase data inside quantum computation!
Can uncompute, but only if input is still available.
Naive Grover for XL ends up storing many
intermediate vectors. Can this compete with
parallel non-quantum machine of same size?
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ReversibleXL and GroverXL
1989 Bennett thm for multitape Turing machines:
time-T space-S computation ⇒ reversible
time-T log2 3 space-O(S log T ) computation.

1989 Bennett–Tompa: 1 + ε instead of log2 3.
1995 Knill: subexponential overhead in both S,T .
2017 Bernstein–Yang: conversion idea is compatible
with parallelism and local computation.
“ReversibleXL”: apply this conversion to
XL using parallel sparse linear algebra.
“GroverXL”: Grover’s method using ReversibleXL.
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Backup slide: finding linear relations
1986 Wiedemann sparse-linear-algebra algorithm
quickly finds solution to Mx = y if solution exists.

Also finds uniform random r with Mr = 0: take
uniform random s; solve Mx = Ms; r = x − s.
Easy exercises: use Wiedemann to quickly
• check whether relations give 1 = 0;
• check whether relations give linear equation;
• check whether relations give all monomials.
2013 Bardet–Faugère–Salvy–Spaenlehauer
incorrectly claims that this requires computation of
“row echelon form” (no known quick algorithms).
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