Classic McEliece: conservative
code-based cryptography

D. J. Bernstein

classic.mceliece.org

Fundamental literature:
1962 Prange (attack)

many more attack papers.
1968 Berlekamp (decoder).
1970-1971 Goppa (codes).

1978 McEliece (cryptosystem).

1986 Niederreiter (dual)
+ many more optimizations.

Submission is joint work with:

Tung Chou, osaka-u.ac. jp

Tanja Lange, tue.nl*

Ingo von Maurich

Rafael Misoczki, intel. com

Ruben Niederhagen,
fraunhofer.de

Edoardo Persichetti, fau.edu

Christiane Peters

Peter Schwabe, ru.nl1*

Nicolas Sendrier, inria.fr*

Jakub Szefer, yale.edu
Wen Wang, yale.edu

¥ PQCRYPTO institutions.

VIcEliece: conservative
sed cryptography

rnstein

>.mceliece.org

ental literature:
ange (attack)

more attack papers.
rlekamp (decoder).
71 Goppa (codes).

-Eliece (cryptosystem).

2derreiter (dual)
more optimizations.

Submission is joint work with:

Tung Chou, osaka-u.ac.jp

Tanja Lange, tue.nl*

Ingo von Maurich

Rafael Misoczki, intel. com

Ruben Niederhagen,
fraunhofer.de

Edoardo Persichetti, fau.edu

Christiane Peters

Peter Schwabe, ru.nl*

Nicolas Sendrier, inria.fr*

Jakub Szefer, yale.edu
Wen Wang, yale.edu

¥ PQCRYPTO institutions.

mceliec

10473109
13908 b

mcelilec

1357824
14080 b

conservative
graphy

e .org

Iture:
Ck)
ick papers.

decoder).
(codes).

yptosystem).

(dual)

'mizations.

Submission is joint work with:

Tung Chou, osaka-u.ac. jp

Tanja Lange, tue.nl*

Ingo von Maurich

Rafael Misoczki, intel. com

Ruben Niederhagen,
fraunhofer.de

Edoardo Persichetti, fau.edu

Christiane Peters

Peter Schwabe, ru.nl1*

Nicolas Sendrier, inria.fr*

Jakub Szefer, yale.edu
Wen Wang, yale.edu

¥ PQCRYPTO institutions.

mceliece696011¢
1047319 bytes for
13908 bytes for se

mceliece319212¢
1357824 bytes for
14080 bytes for se

ve

Submission is joint work with:

Tung Chou, osaka-u.ac.jp

Tanja Lange, tue.nl*

Ingo von Maurich

Rafael Misoczki, intel. com

Ruben Niederhagen,
fraunhofer.de

Edoardo Persichetti, fau.edu

Christiane Peters

Peter Schwabe, ru.nl*

Nicolas Sendrier, inria.fr*

Jakub Szefer, yale.edu
Wen Wang, yale.edu

¥ PQCRYPTO institutions.

mceliece6960119 paramet

1047319 bytes for public key
13908 bytes for secret key.

mcelieced192128 paramet:

1357824 bytes for public ke
14080 bytes for secret key.

Submission is joint work with:

Tung Chou, osaka-u.ac. jp

Tanja Lange, tue.nl*

Ingo von Maurich

Rafael Misoczki, intel. com

Ruben Niederhagen,
fraunhofer.de

Edoardo Persichetti, fau.edu

Christiane Peters

Peter Schwabe, ru.nl1*

Nicolas Sendrier, inria.fr*

Jakub Szefer, yale.edu
Wen Wang, yale.edu

¥ PQCRYPTO institutions.

mceliece6960119 parameter set:

1047319 bytes for public key.
13908 bytes for secret key.

mcelieced192128 parameter set:

1357824 bytes for public key.
14080 bytes for secret key.

Submission is joint work with:

Tung Chou, osaka-u.ac. jp

Tanja Lange, tue.nl*

Ingo von Maurich

Rafael Misoczki, intel. com

Ruben Niederhagen,
fraunhofer.de

Edoardo Persichetti, fau.edu

Christiane Peters

Peter Schwabe, ru.nl1*

Nicolas Sendrier, inria.fr*

Jakub Szefer, yale.edu
Wen Wang, yale.edu

¥ PQCRYPTO institutions.

mceliece6960119 parameter set:

1047319 bytes for public key.
13908 bytes for secret key.

mcelieced192128 parameter set:

1357824 bytes for public key.
14080 bytes for secret key.

Current software: billions of cycles
to generate a key; not much
optimization effort yet.

Submission is joint work with:

Tung Chou, osaka-u.ac. jp

Tanja Lange, tue.nl*

Ingo von Maurich

Rafael Misoczki, intel. com

Ruben Niederhagen,
fraunhofer.de

Edoardo Persichetti, fau.edu

Christiane Peters

Peter Schwabe, ru.nl1*

Nicolas Sendrier, inria.fr*

Jakub Szefer, yale.edu
Wen Wang, yale.edu

¥ PQCRYPTO institutions.

mceliece6960119 parameter set:

1047319 bytes for public key.
13908 bytes for secret key.

mcelieced192128 parameter set:

1357824 bytes for public key.
14080 bytes for secret key.

Current software: billions of cycles
to generate a key; not much
optimization effort yet.

Very fast in hardware:
a few million cycles at 231MHz

using 129059 modules, 1126 RAM
blocks on Altera Stratix V FPGA.

lon Is joint work with:

10U, osaka-u.ac. jp
inge, tue.nl*

' Maurich

lisoczki, intel.com
liederhagen,
unhofer.de
Persichetti, fau.edu
1e Peters

hwabe, ru.nl*
Sendrier, inria.fr*
zefer, yale.edu

ng, yale.edu

RYPTO institutions.

mceliece6960119 parameter set:

1047319 bytes for public key.
13908 bytes for secret key.

mcelieced192128 parameter set:

1357824 bytes for public key.
14080 bytes for secret key.

Current software: billions of cycles
to generate a key; not much
optimization effort yet.

Very fast in hardware:
a few million cycles at 231MHz

using 129059 modules, 1126 RAM
blocks on Altera Stratix V FPGA.

mceliec

226 byte

mceliec
240 byte

- work with:

1-u.ac.]Jp

nl*

ntel.com
n,
de

tI, fau.edu

1.n1*

inria.fr*
e.edu

. edu

istitutions.

mceliece6960119 parameter set:

1047319 bytes for public key.
13908 bytes for secret key.

mcelieced192128 parameter set:

1357824 bytes for public key.
14080 bytes for secret key.

Current software: billions of cycles
to generate a key; not much
optimization effort yet.

Very fast in hardware:
a few million cycles at 231MHz

using 129059 modules, 1126 RAM
blocks on Altera Stratix V FPGA.

mceliece696011¢
226 bytes for ciph

mceliece819212¢
240 bytes for ciph:

lu

mceliece6960119 parameter set:

1047319 bytes for public key.
13908 bytes for secret key.

mcelieced192128 parameter set:

1357824 bytes for public key.
14080 bytes for secret key.

Current software: billions of cycles
to generate a key; not much
optimization effort yet.

Very fast in hardware:

a few million cycles at 231MHz
using 129059 modules, 1126 RAM
blocks on Altera Stratix V FPGA.

mceliece6960119 paramet
226 bytes for ciphertext.

mceliece8192128 paramet
240 bytes for ciphertext.

mceliece6960119 parameter set: mceliece6960119 parameter set:
1047319 bytes for public key. 226 bytes for ciphertext.

13908 bytes for secret key. mceliece8192128 parameter set:

mceliece8192128 parameter set: 240 bytes for ciphertext.
1357824 bytes for public key.
14080 bytes for secret key.

Current software: billions of cycles
to generate a key; not much
optimization effort yet.

Very fast in hardware:
a few million cycles at 231MHz

using 129059 modules, 1126 RAM
blocks on Altera Stratix V FPGA.

mceliece6960119 parameter set:

1047319 bytes for public key.
13908 bytes for secret key.

mcelieced192128 parameter set:

1357824 bytes for public key.
14080 bytes for secret key.

Current software: billions of cycles
to generate a key; not much
optimization effort yet.

Very fast in hardware:

a few million cycles at 231MHz
using 129059 modules, 1126 RAM
blocks on Altera Stratix V FPGA.

mceliece6960119 parameter set:
226 bytes for ciphertext.

mceliece8192128 parameter set:
240 bytes for ciphertext.

Software: 295932 cycles for enc,

355152 cyc
(decoding,

es for dec

nashing, etc.).

mceliece6960119 parameter set:

1047319 bytes for public key.
13908 bytes for secret key.

mcelieced192128 parameter set:

1357824 bytes for public key.
14080 bytes for secret key.

Current software: billions of cycles
to generate a key; not much
optimization effort yet.

Very fast in hardware:

a few million cycles at 231MHz
using 129059 modules, 1126 RAM
blocks on Altera Stratix V FPGA.

mceliece6960119 parameter set:
226 bytes for ciphertext.

mceliece8192128 parameter set:
240 bytes for ciphertext.

Software: 295932 cycles for enc,

355152 cyc
(decoding,

es for dec

nashing, etc.).

Again very fast in hardware:

17140 cycles for decoding.

mceliece6960119 parameter set:

1047319 bytes for public key.
13908 bytes for secret key.

mcelieced192128 parameter set:

1357824 bytes for public key.
14080 bytes for secret key.

Current software: billions of cycles
to generate a key; not much
optimization effort yet.

Very fast in hardware:
a few million cycles at 231MHz

using 129059 modules, 1126 RAM
blocks on Altera Stratix V FPGA.

mceliece6960119 parameter set:
226 bytes for ciphertext.

mceliece8192128 parameter set:
240 bytes for ciphertext.

Software: 295932 cycles for enc,

355152 cyc
(decoding,

es for dec

nashing, etc.).

Again very fast in hardware:

17140 cycles for decoding.

Can tweak parameters for

even smaller ciphertexts,

not much penalty in key size.

26960119 parameter set:
bytes for public key.
ytes for secret key.

23192128 parameter set:
bytes for public key.
ytes for secret key.

software: billions of cycles
ate a key; not much
tion effort yet.

t in hardware:

illion cycles at 231MHz
9059 modules, 1126 RAM
n Altera Stratix V FPGA.

mceliece6960119 parameter set:

226 bytes for ciphertext.

mceliece8192128 parameter set:

240 bytes for ciphertext.

Software: 295932 cycles for enc,
355152 cycles for dec
(decoding, hashing, etc.).

Again very fast in hardware:

17140 cycles for decoding.

Can tweak parameters for
even smaller ciphertexts,
not much penalty in key size.

Encodin

1978 Mc

matrix /

Cipherte
Ab is “C
weight-v

Original
1024 x !

Public k
with “b
structure
decoding

) parameter set:
public key.
cret key.

3 parameter set:
public key.
cret key.

billions of cycles
not much
~ yet.

are:
s at 231 MHz

ules, 1126 RAM
tratix V FPGA.

mceliece6960119 parameter set:

226 bytes for ciphertext.

mceliece8192128 parameter set:

240 bytes for ciphertext.

Software: 295932 cycles for enc,

355152 cyc
(decoding,

es for dec

nashing, etc.).

Again very fast in hardware:

17140 cycles for decoding.

Can tweak parameters for

even smaller ciphertexts,

not much penalty in key size.

Encoding and dec

1978 McEliece pul
matrix A over F».

Ciphertext: vector
Ab i1s “codeword"”
weight-w “error ve

Original proposal
1024 x 512 matrix

Public key is secre
with “binary Gopg
structure that allo
decoding: C — A

2r set:

ar set:

cycles

IHz
 RAM
PGA.

mceliece6960119 parameter set:

226 bytes for ciphertext.

mceliece8192128 parameter set:

240 bytes for ciphertext.

Software: 295932 cycles for enc,
355152 cycles for dec
(decoding, hashing, etc.).

Again very fast in hardware:

17140 cycles for decoding.

Can tweak parameters for
even smaller ciphertexts,
not much penalty in key size.

Encoding and decoding

1978 McEliece public key:
matrix A over F».

Ciphertext: vector C = Ab -
Ab 1s “codeword’: e Is rand
weight-w “error vector' .

Original proposal for 294 sec
1024 x 512 matrix; w = 50.

Public key is secretly genera
with “binary Goppa code”
structure that allows efficien
decoding: C — Ab, e.

mceliece6960119 parameter set:

226 bytes for ciphertext.

mceliece8192128 parameter set:

240 bytes for ciphertext.

Software: 295932 cycles for enc,
355152 cycles for dec
(decoding, hashing, etc.).

Again very fast in hardware:

17140 cycles for decoding.

Can tweak parameters for
even smaller ciphertexts,
not much penalty in key size.

Encoding and decoding

1978 McEliece public key:
matrix A over F».

Ciphertext: vector C = Ab + e.
Ab 1s “codeword’: e Is random
weight-w “error vector' .

Original proposal for 2% security:

1024 x 512 matrix; w = 50.

Public key is secretly generated
with “binary Goppa code”

structure that allows efficient
decoding: C — Ab, e.

26960119 parameter set:

s for ciphertext.

28192128 parameter set:

s for ciphertext.

295932 cycles for enc,

CyC
g,

ry fast in hardware:
ycles for decoding.

es for dec

nashing, etc.).

ak parameters for

aller ciphertexts,

h penalty in key size.

Encoding and decoding

1978 McEliece public key:
matrix A over F».

Ciphertext: vector C = Ab + e.
Ab 1s “codeword’: e Is random

weight-w “error vector' .

Original proposal for 204

1024 x 512 matrix; w = 50.

Public key is secretly generated
with “binary Goppa code”
structure that allows efficient
decoding: C — Ab, e.

Binary (

security:

Paramet
w € {2,
ne{wl

) parameter set:
ertext.

3 parameter set:
ertext.

cycles for enc,
dec
r, etc.).

hardware:

ecoding.

ters for
rtexts,
in key size.

Encoding and decoding

1978 McEliece public key:
matrix A over F».

Ciphertext: vector C = Ab + e.
Ab 1s “codeword’: e Is random

weight-w “error vector' .

Original proposal for 204

1024 x 512 matrix; w = 50.

Public key Is secretly generated
with “binary Goppa code”

structure that allows efficient
decoding: C — Ab, e.

Binary Goppa cod

security:

Parameters: g € {

we{2,3,...,|(q
nec{wlgg+1,..

2r set:

ar set:

enc,

Encoding and decoding

1978 McEliece public key:
matrix A over F».

Ciphertext: vector C = Ab + e.
Ab 1s “codeword’: e Is random
weight-w “error vector' .

Original proposal for 2%4 security:

1024 x 512 matrix; w = 50.

Public key is secretly generated
with “binary Goppa code”
structure that allows efficient
decoding: C — Ab, e.

Binary Goppa codes

Parameters: g € {8, 16, 32,

wei2,3,....1(g—1)/lgg
nec{wlgg+1,...,9—1,c

Encoding and decoding

1978 McEliece public key:
matrix A over F».

Ciphertext: vector C = Ab + e.
Ab 1s “codeword’: e Is random
weight-w “error vector' .

Original proposal for 2% security:
1024 x 512 matrix; w = 50.

Public key is secretly generated
with “binary Goppa code”

structure that allows efficient
decoding: C — Ab, e.

Binary Goppa codes

Parameters: g € {8,16,32,...};

Encoding and decoding

1978 McEliece public key:
matrix A over F».

Ciphertext: vector C = Ab + e.
Ab 1s “codeword’: e Is random

weight-w “error vector' .

Original proposal for 2% security:
1024 x 512 matrix; w = 50.

Public key is secretly generated
with “binary Goppa code”
structure that allows efficient

decoding: C — Ab, e.

Binary Goppa codes

Parameters: g € {8,16,32,...};

Secrets: distinct a1, ..., an € Fg;
monic irreducible degree-w

polynomial g € Fg[x].

Encoding and decoding

1978 McEliece public key:
matrix A over F».

Ciphertext: vector C = Ab + e.
Ab 1s “codeword’: e Is random
weight-w “error vector' .

Original proposal for 2% security:
1024 x 512 matrix; w = 50.

Public key is secretly generated
with “binary Goppa code”
structure that allows efficient

decoding: C — Ab, e.

Binary Goppa codes

Parameters: g € {8,16,32,...};

Secrets: distinct a1, ..., an € Fg;
monic irreducible degree-w
polynomial g € Fg[x].

Goppa code: kernel of

the map v —) . v;/(x — aj)
from FJ to Fy[x]|/g.

Typical dimension n — wlggqg.

Encoding and decoding

1978 McEliece public key:
matrix A over F».

Ciphertext: vector C = Ab + e.
Ab 1s “codeword’: e Is random
weight-w “error vector' .

Original proposal for 2% security:
1024 x 512 matrix; w = 50.

Public key is secretly generated
with “binary Goppa code”
structure that allows efficient

decoding: C — Ab, e.

Binary Goppa codes

Parameters: g € {8,16,32,...};

wedi2,3,.... [(g—1)/lgql};
ne{wlgg+1,...,9—1,q}.

Secrets: distinct a1, ..., an € Fg;
monic irreducible degree-w

polynomial g € Fg[x].

Goppa code: kernel of

the map v —) . v;/(x — aj)
from FJ to Fy[x]|/g.

Typical dimension n — wlggqg.

McEliece uses random matrix A
whose image Is this code.

o and decoding

“Eliece public key:
\ over F».

xt: vector C = Ab + e.
odeword” : e Is random

v ‘error vector .

264

proposal for security:

12 matrix; w = b0.

ey Is secretly generated
nary Goppa code”
> that allows efficient

. C — Ab, e.

Binary Goppa codes

Parameters: g € {8,16,32,...};

wei2,3,.... [(g—1)/lgql};
ne{wlgg+1,...,9—1,q}.

Secrets: distinct a1, ..., an € Fg;
monic irreducible degree-w
polynomial g € Fg[x].

Goppa code: kernel of

the map v —) . v;/(x — aj)
from FJ to Fy[x]|/g.

Typical dimension n — wlggqg.

McEliece uses random matrix A
whose image Is this code.

One-way

Fundam
Given ra
cipherte:
can atta

oding

olic key:

C = Ab + e.
e Is random

sctor’ .

or 2% security:
¢ w = 50.

tly generated
a code”
ws efficient

b, e.

Binary Goppa codes

Parameters: g € {8,16,32,...};

wedi2,3,.... [(g—1)/lgql};
ne{wlgg+1,...,9—1,q}.

Secrets: distinct a1, ..., an € Fg;
monic irreducible degree-w

polynomial g € Fg[x].

Goppa code: kernel of

the map v —) . v;/(x — aj)
from FJ to Fy[x]|/g.

Typical dimension n — wlggq.

McEliece uses random matrix A
whose image Is this code.

One-wayness (OW

Fundamental secu
Given random putk
ciphertext Ab+ e
can attacker efficie

om

urity:

ted

Binary Goppa codes

Parameters: g € {8,16,32,...};

wei2,3,.... [(g—1)/lgql};
ne{wlgg+1,...,9—1,q}.

Secrets: distinct a1, ..., an € Fg;
monic irreducible degree-w
polynomial g € Fg[x].

Goppa code: kernel of

the map v —) . v;/(x — aj)
from FJ to Fy[x]|/g.

Typical dimension n — wlggqg.

McEliece uses random matrix A
whose image Is this code.

One-wayness (OW-CPA)

Fundamental security questi

Given random
ciphertext Ab -

oublic key A
- e for randol

can attacker ef

Iciently find

Binary Goppa codes

Parameters: g € {8,16,32,...};

Secrets: distinct a1, ..., an € Fg;
monic irreducible degree-w
polynomial g € Fg[x].

Goppa code: kernel of

the map v —) . v;/(x — a)
from FJ to Fy[x]|/g.

Typical dimension n — wlggq.

McEliece uses random matrix A
whose image Is this code.

One-wayness (OW-CPA)

Fundamental security question:
Given random public key A and
ciphertext Ab + e for random b, e,
can attacker efficiently find b, €7

Binary Goppa codes

Parameters: g € {8,16,32,...};

Secrets: distinct a1, ..., an € Fg;

monic irreducible degree-w

polynomial g € Fg[x].

Goppa code: kernel of

the map v —) . v;/(x — a)
from FJ to Fy[x]|/g.

Typical dimension n — wlggq.

McEliece uses random matrix A
whose image Is this code.

One-wayness (OW-CPA)

Fundamental security question:
Given random public key A and
ciphertext Ab + e for random b, e,
can attacker efficiently find b, €7

1962 Prange: simple attack idea
guiding sizes in 1978 McEliece.

Binary Goppa codes

Parameters: g € {8,16,32,...};

Secrets: distinct a1, ..., an € Fg;
monic irreducible degree-w
polynomial g € Fg[x].

Goppa code: kernel of

the map v —) . v;/(x — a)
from FJ to Fy[x]|/g.

Typical dimension n — wlggq.

McEliece uses random matrix A
whose image Is this code.

One-wayness (OW-CPA)

Fundamental security question:
Given random public key A and
ciphertext Ab + e for random b, e,
can attacker efficiently find b, €7

1962 Prange: simple attack idea
guiding sizes in 1978 McEliece.

The McEliece system

(with later key-size optimizations)
uses (cp + o(1))A%(Ig X)?-bit keys
as A\ — oo to achieve 2* security

against Prange’s attack.
Here cg ~ 0.7418860694.

0ppa codes

ers: g € {8,16,32,...};

distinct a1, ..., an € Fg;
reducible degree-w
ial g € Fglx].

ode: kernel of

v > i vi/(x — aj)

to Fq[x]/g.

dimension n — wlgq.

> uses random matrix A
nage Is this code.

One-wayness (OW-CPA)

Fundamental security question:
Given random public key A and

ciphertext Ab + e for random b, e,

can attacker efficiently find b, €7

1962 Prange: simple attack idea
guiding sizes in 1978 McEliece.

The McEliece system

(with later key-size optimizations)
uses (cp + o(1))A%(Ig X)?-bit keys
as A — oo to achieve 2* security
against Prange’s attack.

Here cg ~ 0.7418860694.

>2b5 sub
analyzin

1981 Cl:

Cre
1988 Le
1988 Le
1989 Kr
1989 St
1989 D
1990 Co
1990 val
1991 Du
1991 Co
1993 Ch

8,16,32,.. .}
—1)/lgql};

vq_]"q}

’]_,...,anEFq;

degree-w
[x].

e| of

vi/(x — aj)
g.
n—wlgaq.

dom matrix A
s code.

One-wayness (OW-CPA)

Fundamental security question:
Given random public key A and

ciphertext Ab + e for random b, e,

can attacker efficiently find b, €7

1962 Prange: simple attack idea
guiding sizes in 1978 McEliece.

The McEliece system

(with later key-size optimizations)
uses (cp + o(1))A%(Ig X)?-bit keys
as A\ — oo to achieve 2* security

against Prange’s attack.
Here cg ~ 0.7418860694.

>25 subsequent p
analyzing one-way

1981 Clark—Cain,
crediting On

1988 Lee—Brickell.

1988 Leon.

1989 Krouk.

1989 Stern.

1989 Dumer.

1990 Coffey—Good

1990 van Tilburg.

1991 Dumer.

1991 Coffey—Gooc

1993 Chabanne—C

X A

One-wayness (OW-CPA)

Fundamental security question:
Given random public key A and

ciphertext Ab + e for random b, e,

can attacker efficiently find b, €7

1962 Prange: simple attack idea
guiding sizes in 1978 McEliece.

The McEliece system

(with later key-size optimizations)
uses (cp + o(1))A%(Ig X)?-bit keys
as A — oo to achieve 2* security
against Prange’s attack.

Here cg ~ 0.7418860694.

>25 subsequent publication:
analyzing one-wayness of sy:

1981 Clark—Cain,
crediting Omura.

1988 Lee—Brickell.

1988 Leon.

1989 Krouk.

1989 Stern.

1989 Dumer.

1990 Coffey—Goodman.

1990 van Tilburg.

1991 Dumer.

1991 Coffey—Goodman—Farr

1993 Chabanne—Courteau.

One-wayness (OW-CPA)

Fundamental security question:
Given random public key A and

ciphertext Ab + e for random b, e,

can attacker efficiently find b, €7

1962 Prange: simple attack idea
guiding sizes in 1978 McEliece.

The McEliece system

(with later key-size optimizations)
uses (cp + o(1))A%(Ig X)?-bit keys
as A\ — oo to achieve 2* security
against Prange’s attack.

Here cg ~ 0.7418860694.

>25 subsequent publications
analyzing one-wayness of system:

1981 Clark—Cain,
crediting Omura.

1988 Lee—Brickell.

1988 Leon.

1989 Krouk.

1989 Stern.

1989 Dumer.

1990 Coffey—Goodman.

1990 van Tilburg.

1991 Dumer.

1991 Coffey—Goodman—Farrell.

1993 Chabanne—Courteau.

ness (OW-CPA)

ental security question:
ndom public key A and

xt Ab + e for random b, e,

cker efficiently find b, e?

ange: simple attack idea
sizes In 1978 McEliece.

Fliece system

er key-size optimizations)
+ 0(1))X?(Ig X)?-bit keys
> to achieve 2 security
Prange’'s attack.

~ 0.74138860694.

>25 subsequent publications

analyzing one-wayness of system:

1981 Clark—Cain,
crediting Omura.

1988 Lee—Brickell.

1988 Leon.

1989 Krouk.

1989 Stern.

1989 Dumer.

1990 Coffey—Goodman.

1990 van Tilburg.

1991 Dumer.

1991 Coffey—Goodman—Farrell.

1993 Chabanne—Courteau.

1993 Ch
1994 vai
1994 Ca
1998 Ca
1998 Ca
2008 Be
2009 Be

val
2009 Fir
2011 Be
2011 M:
2012 Be
2013 Ha
2015 M:
2016 Ca

-CPA)

rity question:
lic key A and

for random b, e,

ntly find b, €7

ple attack idea
78 MckEliece.

em
e optimizations)
’(Ig X)?-bit keys
eve 2 security
ttack.

360694

>25 subsequent publications

analyzing one-wayness of system:

1981 Clark—Cain,
crediting Omura.

1988 Lee—Brickell.

1988 Leon.

1989 Krouk.

1989 Stern.

1989 Dumer.

1990 Coffey—Goodman.

1990 van Tilburg.

1991 Dumer.

1991 Coffey—Goodman—Farrell.

1993 Chabanne—Courteau.

1993 Chabaud.
1994 van Tilburg.
1994 Canteaut—Ct
1998 Canteaut—Ct
1998 Canteaut—Se
2008 Bernstein—Lz:
2009 Bernstein—Lz
van Tilborg.
2009 Finiasz—Senc
2011 Bernstein—Lz
2011 May—Meurer
2012 Becker—Joux
2013 Hamdaoui-S
2015 May—Ozerov
2016 Canto Torres

on:
and

M b, e,

b, e’

Idea
ce.

|tions)
t keys
urity

>25 subsequent publications

analyzing one-wayness of system:

1981 Clark—Cain,
crediting Omura.

1988 Lee—Brickell.

1988 Leon.

1989 Krouk.

1989 Stern.

1989 Dumer.

1990 Coffey—Goodman.

1990 van Tilburg.

1991 Dumer.

1991 Coffey—Goodman—Farrell.

1993 Chabanne—Courteau.

1993 Chabaud.

1994 van Tilburg.

1994 Canteaut—Chabanne.

1998 Canteaut—Chabaud.

1998 Canteaut—Sendrier.

2008 Bernstein—Lange—Pete

2009 Bernstein—Lange—Pete
van Tilborg.

2009 Finiasz—Sendrier.

2011 Bernstein—Lange—Pete

2011 May—Meurer—Thomae.

2012 Becker—Joux—May—Me

2013 Hamdaoui—Sendrier.

2015 May—Ozerov.

2016 Canto Torres—Sendrier

>25 subsequent publications

analyzing one-wayness of system:

1981 Clark—Cain,
crediting Omura.

1988 Lee—Brickell.

1988 Leon.

1989 Krouk.

1989 Stern.

1989 Dumer.

1990 Coffey—Goodman.

1990 van Tilburg.

1991 Dumer.

1991 Coffey—Goodman—Farrell.

1993 Chabanne—Courteau.

1993 Chabaud.

1994 van Tilburg.

1994 Canteaut—Chabanne.

1998 Canteaut—Chabaud.

1998 Canteaut—Sendrier.

2008 Bernstein—Lange—Peters.

2009 Bernstein—Lange—Peters—
van Tilborg.

2009 Finiasz—Sendrier.

2011 Bernstein—Lange—Peters.

2011 May—Meurer—Thomae.

2012 Becker—Joux—May—Meurer.

2013 Hamdaoui—Sendrier.

2015 May—Ozerov.

2016 Canto Torres—Sendrier.

sequent publications

o one-wayness of system:

irk—Cain,

diting Omura.
e—Brickell.

on.

ouk.

rn.

mer.
ffey—Goodman.

1 Tilburg.

mer.
ffey—Goodman—Farrell.
abanne—Courteau.

1993 Chabaud.

1994 van Tilburg.

1994 Canteaut—Chabanne.

1998 Canteaut—Chabaud.

1998 Canteaut—Sendrier.

2008 Bernstein—Lange—Peters.

2009 Bernstein—Lange—Peters—
van Tilborg.

2009 Finiasz—Sendrier.

2011 Bernstein—Lange—Peters.

2011 May—Meurer—Thomae.

2012 Becker—Joux—May—Meurer.

2013 Hamdaoui—Sendrier.

2015 May—Ozerov.

2016 Canto Torres—Sendrier.

The Mc
uses (g
as A\ —
against .
Same ¢

ublications

ness of system:

1ura.

'man.

'man—Farrell.
ourteau.

1993 Chabaud.

1994 van Tilburg.

1994 Canteaut—Chabanne.

1998 Canteaut—Chabaud.

1998 Canteaut—Sendrier.

2008 Bernstein—Lange—Peters.

2009 Bernstein—Lange—Peters—
van Tilborg.

2009 Finiasz—Sendrier.

2011 Bernstein—Lange—Peters.

2011 May—Meurer—Thomae.

2012 Becker—Joux—May—Meurer.

2013 Hamdaoui—Sendrier.

2015 May—Ozerov.

2016 Canto Torres—Sendrier.

The McEliece syst
uses (cp + o(1))\
as A — 0o to achi

against all attacks
Same ¢y ~ 0.7418

V)

stem:

ell.

1993 Chabaud.

1994 van Tilburg.

1994 Canteaut—Chabanne.

1998 Canteaut—Chabaud.

1998 Canteaut—Sendrier.

2008 Bernstein—Lange—Peters.

2009 Bernstein—Lange—Peters—
van Tilborg.

2009 Finiasz—Sendrier.

2011 Bernstein—Lange—Peters.

2011 May—Meurer—Thomae.

2012 Becker—Joux—May—Meurer.

2013 Hamdaoui—Sendrier.

2015 May—Ozerov.

2016 Canto Torres—Sendrier.

The McEliece system
uses (cp + o(1))X%(Ig X)?-bi
as A\ — 0o to achieve 2* sec

against all attacks known to
Same ¢ ~ 0.7418860694.

1993 Chabaud.

1994 van Tilburg.

1994 Canteaut—Chabanne.

1998 Canteaut—Chabaud.

1998 Canteaut—Sendrier.

2008 Bernstein—Lange—Peters.

2009 Bernstein—Lange—Peters—
van Tilborg.

2009 Finiasz—Sendrier.

2011 Bernstein—Lange—Peters.

2011 May—Meurer—Thomae.

2012 Becker—Joux—May—Meurer.

2013 Hamdaoui—Sendrier.

2015 May—Ozerov.

2016 Canto Torres—Sendrier.

The McEliece system

uses (cg + o(1))A?(Ig X)?-bit keys
as A\ — oo to achieve 22 security
against all attacks known today.

Same ¢g ~ 0.7418860694.

10

1993 Chabaud.

1994 van Tilburg.

1994 Canteaut—Chabanne.

1998 Canteaut—Chabaud.

1998 Canteaut—Sendrier.

2008 Bernstein—Lange—Peters.

2009 Bernstein—Lange—Peters—
van Tilborg.

2009 Finiasz—Sendrier.

2011 Bernstein—Lange—Peters.

2011 May—Meurer—Thomae.

2012 Becker—Joux—May—Meurer.

2013 Hamdaoui—Sendrier.

2015 May—Ozerov.

2016 Canto Torres—Sendrier.

10
The McEliece system

uses (cg + o(1))A?(Ig X)?-bit keys
as A\ — oo to achieve 22 security
against all attacks known today.

Same ¢g ~ 0.7418860694.

Replacing A with 2\

stops all known quantum attacks
(and is probably massive overkill),
as In symmetric crypto.

1993 Chabaud.

1994 van Tilburg.

1994 Canteaut—Chabanne.

1998 Canteaut—Chabaud.

1998 Canteaut—Sendrier.

2008 Bernstein—Lange—Peters.

2009 Bernstein—Lange—Peters—
van Tilborg.

2009 Finiasz—Sendrier.

2011 Bernstein—Lange—Peters.
2011 May—Meurer—Thomae.

2012 Becker—Joux—May—Meurer.

2013 Hamdaoui—Sendrier.
2015 May—Ozerov.
2016 Canto Torres—Sendrier.

10
The McEliece system

uses (cg + o(1))A?(Ig X)?-bit keys
as A\ — oo to achieve 22 security
against all attacks known today.

Same ¢g ~ 0.7418860694.

Replacing A with 2\

stops all known quantum attacks
(and is probably massive overkill),
as In symmetric crypto.

mceliece6960119 parameter set
(2008 Bernstein—Lange—Peters):
g = 8192, n = 6960, w = 119.

mcelieced192128 parameter set:
g =38192, n=28192, w = 128.

abaud.

1 Tilburg.
nteaut—Chabanne.
nteaut—Chabaud.
nteaut—Sendrier.
rnstein—Lange—Peters.
rnstein—Lange—Peters—
1 Tilborg.
1iasz—Sendrier.
rnstein—Lange—Peters.
wy—Meurer—Thomae.

cker—Joux—May—Meurer.

mdaoui—Sendrier.
y—Ozerov.
nto Torres—Sendrier.

The McEliece system
uses (cg + o(1))A?(Ig A)?-bit keys
as A — oo to achieve 2* security

against all attacks known today.
Same ¢g ~ 0.7418860694.

Replacing A with 2\

stops all known quantum attacks
(and is probably massive overkill),
as In symmetric crypto.

mceliece6960119 parameter set
(2008 Bernstein—Lange—Peters):
g = 8192, n = 6960, w = 119.

mcelieced192128 parameter set:
qg=28192, n=28192, w = 128.

10

McEliec
huge anr

Some wi
while cle
e.g., Nie
e.g., ma
Classic |

1abanne.
1abaud.
ndrier.
inge—Peters.
inge—Peters—

rier.
nge—Peters.
— T homae.

—May—Meurer.

endrier.

—Sendrier.

The McEliece system

uses (cg + o(1))A?(Ig X\)?-bit keys
as A\ — oo to achieve 22 security
against all attacks known today.

Same ¢ ~ 0.7418860694.

Replacing A with 2\

stops all known quantum attacks
(and is probably massive overkill),
as In symmetric crypto.

mceliece6960119 parameter set
(2008 Bernstein—Lange—Peters):
g = 8192, n = 6960, w = 119.

mcelieced192128 parameter set:
g =38192, n=28192, w = 128.

10

McEliece's system
huge amount of fc

Some work impro\
while clearly prese
e.g., Niederreiter's
e.g., many decodii
Classic McEliece L

S.
(S—

S.

urer.

The McEliece system

uses (cg + o(1))A?(Ig X)?-bit keys
as A — oo to achieve 22 security
against all attacks known today.

Same ¢ ~ 0.7418860694.

Replacing A with 2\

stops all known quantum attacks
(and is probably massive overkill),
as In symmetric crypto.

mceliece6960119 parameter set
(2008 Bernstein—Lange—Peters):
g = 8192, n = 6960, w = 119.

mcelieced192128 parameter set:
qg=28192, n=28192, w = 128.

10

McEliece's system prompted
huge amount of followup wc

Some work improves efficien
while clearly preserving secu
e.g., Niederreiter's dual PKE
e.g., many decoding speedu|
Classic McEliece uses all thi

The McEliece system

uses (cg + o(1))A?(Ig X)?-bit keys
as A\ — oo to achieve 22 security
against all attacks known today.

Same ¢g ~ 0.7418860694.

Replacing A with 2\

stops all known quantum attacks
(and is probably massive overkill),
as In symmetric crypto.

mceliece6960119 parameter set
(2008 Bernstein—Lange—Peters):
g = 8192, n = 6960, w = 119.

mcelieced192128 parameter set:
g =238192, n=28192, w = 128.

10

McEliece's system prompted a
huge amount of followup work.

Some work improves efficiency

while clearly preserving security:

e.g., Niederreiter's dual PKE;
e.g., many decoding speedups.
Classic McEliece uses all this.

11

The McEliece system
uses (cg + o(1))A?(Ig X)?-bit keys
as A\ — oo to achieve 22 security

against all attacks known today.
Same ¢y ~ 0.7418860694.

Replacing A with 2\

stops all known quantum attacks
(and is probably massive overkill),
as In symmetric crypto.

mceliece6960119 parameter set
(2008 Bernstein—Lange—Peters):
g = 8192, n = 6960, w = 119.

mcelieced192128 parameter set:
g =238192, n=28192, w = 128.

10

McEliece's system prompted a
huge amount of followup work.

Some work improves efficiency
while clearly preserving security:
e.g., Niederreiter's dual PKE;
e.g., many decoding speedups.
Classic McEliece uses all this.

Classic McEliece does not use
variants whose security has not

been studied as thoroughly:

e.g., replacing binary Goppa codes
with other families of codes;

e.g., lattice-based cryptography.

11

Fliece system

+ o(1))A?(Ig X)?-bit keys
> to achieve 2* security
1l attacks known today.

~ 0.7418860694.

g A with 2\

known quantum attacks
orobably massive overkill),
nmetric crypto.

26960119 parameter set
ernstein—Lange—Peters):

2, n = 6960, w = 119.

23192128 parameter set:
2, n=238192, w = 128.

10 11
McEliece's system prompted a

huge amount of followup work.

Some work improves efficiency
while clearly preserving security:
e.g., Niederreiter's dual PKE;
e.g., many decoding speedups.
Classic McEliece uses all this.

Classic McEliece does not use
variants whose security has not

been studied as thoroughly:

e.g., replacing binary Goppa codes
with other families of codes;

e.g., lattice-based cryptography.

Niederre

Generats
of lengtl
nxkm

McEliec

random

em

’(Ig X)?-bit keys

eve 2 security
known today.

860694

I\
i1antum attacks
1assive overkill),

ypto.

) parameter set
ange—Peters):
0, w = 1109.

3 parameter set:
)2 w = 128.

10 11
McEliece's system prompted a

huge amount of followup work.

Some work improves efficiency
while clearly preserving security:
e.g., Niederreiter's dual PKE;
e.g., many decoding speedups.
Classic McEliece uses all this.

Classic McEliece does not use
variants whose security has not

been studied as thoroughly:

e.g., replacing binary Goppa codes
with other families of codes;

e.g., lattice-based cryptography.

Niederreiter key c

Generator matrix 1
of length n and di
n X k matrix G wi

McEliece public ke
random k X k inve

tacks
rkill),

er set
1)
19.

ar set:
28.

10

McEliece's system prompted a
huge amount of followup work.

Some work improves efficiency
while clearly preserving security:
e.g., Niederreiter's dual PKE;
e.g., many decoding speedups.
Classic McEliece uses all this.

Classic McEliece does not use
variants whose security has not

been studied as thoroughly:

e.g., replacing binary Goppa codes
with other families of codes;

e.g., lattice-based cryptography.

11

Niederreiter key compressior

Generator matrix for code I
of length n and dimension k
nx kmatrix Gwith =G

McEliece public key: G time
random k X k invertible mas

11 12
McEliece's system prompted a Niederreiter key compression

huge amount of followup work. .
5 P Generator matrix for code I

Some work improves efficiency of length n and dimension k:
while clearly preserving security: n X k matrix G with I =G - Fé.
e.g., Niederreiter's dual PKE;

| McEliece public key: G times
e.g., many decoding speedups.

_ _ _ random k X k invertible matrix.
Classic McEliece uses all this.

Classic McEliece does not use
variants whose security has not

been studied as thoroughly:

e.g., replacing binary Goppa codes
with other families of codes;

e.g., lattice-based cryptography.

McEliece's system prompted a
huge amount of followup work.

Some work improves efficiency
while clearly preserving security:
e.g., Niederreiter's dual PKE;
e.g., many decoding speedups.
Classic McEliece uses all this.

Classic McEliece does not use

variants whose security has not

been studied as thoroughly:

e.g., replacing binary Goppa codes
with other families of codes;

e.g., lattice-based cryptography.

11

12
Niederreiter key compression

Generator matrix for code I

of length n and dimension k:
n X k matrix G with [= G-FIQ‘.

McEliece public key: G times
random k X k invertible matrix.

Niederreiter instead reduces G

to the unique generator matrix
bottom k
rows are k X k identity matrix I.

in “systematic form":

Public key T is top n — k rows.

McEliece's system prompted a
huge amount of followup work.

Some work improves efficiency
while clearly preserving security:
e.g., Niederreiter's dual PKE;
e.g., many decoding speedups.
Classic McEliece uses all this.

Classic McEliece does not use

variants whose security has not

been studied as thoroughly:

e.g., replacing binary Goppa codes
with other families of codes;

e.g., lattice-based cryptography.

11

12
Niederreiter key compression

Generator matrix for code I

of length n and dimension k:
n X k matrix G with [= G-FIQ‘.

McEliece public key: G times
random k X k invertible matrix.

Niederreiter instead reduces G

to the unique generator matrix
bottom k
rows are k X k identity matrix I.

in “systematic form":

Public key T is top n — k rows.

Pr ~29% that systematic form
exists. Security loss: <2 bits.

2's system prompted a
ount of followup work.

ork improves efficiency
arly preserving security:
derreiter's dual PKE;
ny decoding speedups.
VIcEliece uses all this.

VIcEliece does not use
whose security has not

died as thoroughly:

lacing binary Goppa codes
er families of codes;
ice-based cryptography.

11

Niederreiter key compression

Generator matrix for code I
of length n and dimension k:

n X k matrix G with r:G-Fé.

McEliece public key: G times
random k X k invertible matrix.

Niederreiter instead reduces G
to the unique generator matrix
in “systematic form”: bottom k

rows are k X k identity matrix I.

Public key T is top n — k rows.

Pr ~29% that systematic form
exists. Security loss: <2 bits.

12

Niederre

Use Niec

McEliece

prompted a
Illowup work.

res efficiency
rving security:
dual PKE;
1g speedups.
ses all this.

loes not use
urity has not

oroughly:
ary Goppa codes
> of codes;

cryptography.

11

12
Niederreiter key compression

Generator matrix for code I
of length n and dimension k:

n X k matrix G with r:G-FIQ‘.

McEliece public key: G times
random k X k invertible matrix.

Niederreiter instead reduces G

to the unique generator matrix

in “systematic form”: bottom k
rows are k X k identity matrix I.
Public key T is top n — k rows.

Pr ~29% that systematic form
exists. Security loss: <2 bits.

Niederreiter ciphet

Use Niederreiter k

McEliece cipherte

| 3
rk.

Cy
rity:

0S.

se
NOt

codes

11

Niederreiter key compression

Generator matrix for code I

of length n and dimension k:
n X k matrix G with [= G-Fé.

McEliece public key: G times
random k X k invertible matrix.

Niederreiter instead reduces G
to the unique generator matrix
in “systematic form”: bottom k

rows are k X k identity matrix I.

Public key T is top n — k rows.

Pr ~29% that systematic form
exists. Security loss: <2 bits.

12

Niederreiter ciphertext comg

Use Niederreiter key A = (]

McEliece ciphertext: Ab+ €

Niederreiter key compression

Generator matrix for code I

of length n and dimension k:
n X k matrix G with [= G-FIQ‘.

McEliece public key: G times
random k X k invertible matrix.

Niederreiter instead reduces G

to the unique generator matrix
bottom k
rows are k X k identity matrix I.

in “systematic form":

Public key T is top n — k rows.

Pr ~29% that systematic form
exists. Security loss: <2 bits.

12

Niederreiter ciphertext compression

Use Niederreiter key A = (%)

McEliece ciphertext: Ab+ e € FJ5.

13

Niederreiter key compression

Generator matrix for code I

of length n and dimension k:
n X k matrix G with [= G-FIQ‘.

McEliece public key: G times
random k X k invertible matrix.

Niederreiter instead reduces G

to the unique generator matrix

in “systematic form”: bottom k
rows are k X k identity matrix I.
Public key T is top n — k rows.

Pr ~29% that systematic form
exists. Security loss: <2 bits.

12

Niederreiter ciphertext compression
. . T
Use Niederreiter key A = (ﬂ)

McEliece ciphertext: Ab+ e € FJ5.

Niederreiter ciphertext, shorter:
He € FJ X where H = (I,_|T).

13

Niederreiter key compression

Generator matrix for code I

of length n and dimension k:
n X k matrix G with [= G-FIQ‘.

McEliece public key: G times
random k X k invertible matrix.

Niederreiter instead reduces G

to the unique generator matrix

in “systematic form”: bottom k
rows are k X k identity matrix I.
Public key T is top n — k rows.

Pr ~29% that systematic form
exists. Security loss: <2 bits.

12

Niederreiter ciphertext compression

Use Niederreiter key A = (%)

McEliece ciphertext: Ab+ e € FJ5.

Niederreiter ciphertext, shorter:
He € FJ X where H = (I,_|T).

Given H and Niederreiter's He,

can attacker efficiently find e?

13

Niederreiter key compression

Generator matrix for code I

of length n and dimension k:
n X k matrix G with [= G-FIQ‘.

McEliece public key: G times
random k X k invertible matrix.

Niederreiter instead reduces G
to the unique generator matrix

in “systematic form”: bottom k

rows are k X k identity matrix I.

Public key T is top n — k rows.

Pr ~29% that systematic form
exists. Security loss: <2 bits.

12

13
Niederreiter ciphertext compression

Use Niederreiter key A = (%)

McEliece ciphertext: Ab+ e € FJ5.

Niederreiter ciphertext, shorter:
He € FJ X where H = (I,_|T).

Given H and Niederreiter's He,

can attacker efficiently find e?

If so, attacker can efficiently
find b, e given A and Ab + e:

compute H(Ab + e) = He;
find e; compute b from Ab.

Iter key compression

or matrix for code [

1 n and dimension k:
atrix G with I = G - Fé.

> public key: G times
k X k invertible matrix.

iter instead reduces G
nique generator matrix
matic form’ : bottom k

k X k identity matrix Iy.

ey T Is top n — k rows.

o that systematic form
ecurity loss: <2 bits.

12

Niederreiter ciphertext compression

Use Niederreiter key A = (%)

McEliece ciphertext: Ab+ e € FJ.

Niederreiter ciphertext, shorter:
He € Fi % where H = (I,_|T).

Given H and Niederreiter's He,

can attacker efficiently find e?

If so, attacker can efficiently
find b, e given A and Ab + e:

compute H(Ab + e) = He;
find e; compute b from Ab.

13

Samplin

How to
random
One ans
generate
sort ther

mpression

or code [
mension k:

th =G - F§.

y: G times
rtible matrix.

d reduces G

rator matrix
M : bottom k

ntity matrix Iy.

D N — K rows.

tematic form
5s: <2 bits.

12

Niederreiter ciphertext compression

Use Niederreiter key A = (%)

McEliece ciphertext: Ab+ e € FJ7.

Niederreiter ciphertext, shorter:
He € FJ X where H = (I,_|T).

Given H and Niederreiter's He,

can attacker efficiently find e?

If so, attacker can efficiently
find b, e given A and Ab + e:

compute H(Ab + e) = He;
find e; compute b from Ab.

13

Sampling via sorti

How to generate

random permutati
One answer (see,
generate g randon
sort them togethe

12

Niederreiter ciphertext compression

Use Niederreiter key A = (%)

McEliece ciphertext: Ab+ e € FJ.

Niederreiter ciphertext, shorter:
He € Fi % where H = (I,_|T).

Given H and Niederreiter's He,

can attacker efficiently find e?

If so, attacker can efficiently
find b, e given A and Ab + e:

compute H(Ab + e) = He;
find e; compute b from Ab.

13

Sampling via sorting

How to generate

random permutation of Fg?
One answer (see, e.g., Knut
generate g random numbers
sort them together with Fg.

Niederreiter ciphertext compression

Use Niederreiter key A = (%)

McEliece ciphertext: Ab+ e € FJ5.

Niederreiter ciphertext, shorter:
He € FJ X where H = (I,_|T).

Given H and Niederreiter's He,

can attacker efficiently find e?

If so, attacker can efficiently
find b, e given A and Ab + e:
compute H(Ab + e) = He;
find e; compute b from Ab.

13

Sampling via sorting

How to generate
random permutation of Fg?

One answer (see, e.g., Knuth):

generate g random numbers,
sort them together with F.

14

Niederreiter ciphertext compression

T

Use Niederreiter key A = (—)
Iy

McEliece ciphertext: Ab+ e € FJ5.

Niederreiter ciphertext, shorter:
He € FJ X where H = (I,_|T).

Given H and Niederreiter's He,

can attacker efficiently find e?

If so, attacker can efficiently
find b, e given A and Ab + e:

compute H(Ab + e) = He;
find e; compute b from Ab.

13

Sampling via sorting

How to generate

random permutation of Fg?
One answer (see, e.g., Knuth):
generate g random numbers,
sort them together with F.

How to generate

random weight-w vector e € FJ7?
One answer:

generate n random numbers,

sort them together with
(1,1,...,1,0,0,...,0).

14

Niederreiter ciphertext compression

Use Niederreiter key A = (%)

McEliece ciphertext: Ab+ e € FJ5.

Niederreiter ciphertext, shorter:
He € FJ X where H = (I,_|T).

Given H and Niederreiter's He,

can attacker efficiently find e?

If so, attacker can efficiently
find b, e given A and Ab + e:

compute H(Ab + e) = He;
find e; compute b from Ab.

13

14
Sampling via sorting

How to generate

random permutation of Fg?
One answer (see, e.g., Knuth):
generate g random numbers,
sort them together with F.

How to generate

random weight-w vector e € FJ7?
One answer:

generate n random numbers,
sort them together with

(1,1,...,1,0,0,...,0).

Divergence analysis = use 32-bit
random numbers for typical n.

Iter ciphertext compression

lerreiter key A = (I>
Ik
> ciphertext: Ab+e € FJ.

Iter ciphertext, shorter:
K where H = (I,,_x|T).

and Niederreiter's He,
cker efficiently find e?

acker can efficiently
given A and Ab + e:
 H(Ab + e) = He;
ompute b from Ab.

13

14
Sampling via sorting

How to generate

random permutation of Fg?
One answer (see, e.g., Knuth):
generate g random numbers,
sort them together with Fg.

How to generate

random weight-w vector e € FJ7?
One answer:

generate n random numbers,
sort them together with

(1,1,...,1,0,0,...,0).

Divergence analysis = use 32-bit
random numbers for typical n.

Similar «
used In «

text compression

T
ov A= | —.
4= ()
<t Ab+eEFg.

text, shorter:
H = (In—k‘T)-

erreiter's He,
ently find e?

efficiently
nd Ab + e:

e) = He;
from Ab.

13

14
Sampling via sorting

How to generate

random permutation of Fg?
One answer (see, e.g., Knuth):
generate g random numbers,
sort them together with Fg.

How to generate

random weight-w vector e € FJ7
One answer:

generate n random numbers,
sort them together with

(1,1,...,1,0,0,...,0).

Divergence analysis = use 32-bit
random numbers for typical n.

Similar computatic
used in other NIS

)ression

13

Sampling via sorting

How to generate

random permutation of Fg?
One answer (see, e.g., Knuth):
generate g random numbers,
sort them together with Fg.

How to generate

random weight-w vector e € FJ7?
One answer:

generate n random numbers,
sort them together with

(1,1,...,1,0,0,...,0).

Divergence analysis = use 32-bit
random numbers for typical n.

14

Similar computations are
used in other NIST submissi

Sampling via sorting

How to generate

random permutation of Fg?
One answer (see, e.g., Knuth):
generate g random numbers,
sort them together with F.

How to generate

random weight-w vector e € FJ7
One answer:

generate n random numbers,
sort them together with

(1,1,...,1,0,0,...,0).

Divergence analysis = use 32-bit
random numbers for typical n.

14

Similar computations are
used in other NIST submissions.

15

Sampling via sorting

How to generate

random permutation of Fg?
One answer (see, e.g., Knuth):
generate g random numbers,
sort them together with F.

How to generate

random weight-w vector e € FJ7
One answer:

generate n random numbers,
sort them together with

(1,1,...,1,0,0,...,0).

Divergence analysis = use 32-bit
random numbers for typical n.

14

Similar computations are
used in other NIST submissions.

To avoid timing attacks, use
constant-time sorting networks.

15

Sampling via sorting

How to generate

random permutation of Fg?
One answer (see, e.g., Knuth):
generate g random numbers,
sort them together with F.

How to generate

random weight-w vector e € FJ7
One answer:

generate n random numbers,
sort them together with

(1,1,...,1,0,0,...,0).

Divergence analysis = use 32-bit
random numbers for typical n.

14

Similar computations are
used in other NIST submissions.

To avoid timing attacks, use
constant-time sorting networks.

NTRU Prime (Bernstein,
Chuengsatiansup, Lange, van
Vredendaal): new vectorized
constant-time sorting software
using Batcher's merge exchange.

15

Sampling via sorting

How to generate

random permutation of Fg?
One answer (see, e.g., Knuth):
generate g random numbers,
sort them together with F.

How to generate

random weight-w vector e € FJ7
One answer:

generate n random numbers,
sort them together with

(1,1,...,1,0,0,...,0).

Divergence analysis = use 32-bit
random numbers for typical n.

14

Similar computations are
used in other NIST submissions.

To avoid timing attacks, use
constant-time sorting networks.

NTRU Prime (Bernstein,
Chuengsatiansup, Lange, van
Vredendaal): new vectorized
constant-time sorting software

using Batcher's merge exchange.

Optimized non-constant-time
radix sort Iin Intel's Integrated
Performance Primitives library
IS ...

15

Sampling via sorting

How to generate

random permutation of Fg?
One answer (see, e.g., Knuth):
generate g random numbers,
sort them together with F.

How to generate

random weight-w vector e € FJ7
One answer:

generate n random numbers,
sort them together with

(1,1,...,1,0,0,...,0).

Divergence analysis = use 32-bit
random numbers for typical n.

14

Similar computations are
used in other NIST submissions.

To avoid timing attacks, use
constant-time sorting networks.

NTRU Prime (Bernstein,
Chuengsatiansup, Lange, van
Vredendaal): new vectorized
constant-time sorting software

using Batcher's merge exchange.

Optimized non-constant-time
radix sort Iin Intel's Integrated
Performance Primitives library
Is ... bx slower than this.

15

o via sorting

generate

permutation of Fg?
wer (see, e.g., Knuth):
g random numbers,
n together with Fg.

generate

weight-w vector e € F5?
Wer:

' n random numbers,

n together with
,1,0,0,...,0).

1ce analysis = use 32-bit
numbers for typical n.

14

Similar computations are
used in other NIST submissions.

To avoid timing attacks, use
constant-time sorting networks.

NTRU Prime (Bernstein,
Chuengsatiansup, Lange, van
Vredendaal): new vectorized
constant-time sorting software

using Batcher's merge exchange.

Optimized non-constant-time
radix sort in Intel's Integrated
Performance Primitives library
s ... bx slower than this.

15

Much m

See, e.g.
and refe

2013 Be
"McBits

code-ba:
2017 Ch

2017 W
“"FPGA-

the Niec
using bl

2018 W
FPGA c

Ng,

on of Fg?
.g., Knuth):
1 numbers,
r with Fg.

vector e € F’27?

1 numbers,
r with

,0).

s = use 32-bit
or typical n.

14

Similar computations are
used in other NIST submissions.

To avoid timing attacks, use
constant-time sorting networks.

NTRU Prime (Bernstein,
Chuengsatiansup, Lange, van
Vredendaal): new vectorized
constant-time sorting software

using Batcher's merge exchange.

Optimized non-constant-time
radix sort Iin Intel's Integrated
Performance Primitives library
Is ... bx slower than this.

15

Much more on pel

See, e.g., the follo
and references cite

2013 Bernstein—Cl
“McBits: fast con
code-based crypto

2017 Chou “McBi

2017 Wang—Szefe

"FPGA-based key
the Niederreiter cr

using binary Gopp

2018 Wang—Szefel
FPGA cryptosyste

2-bit

14

Similar computations are
used in other NIST submissions.

To avoid timing attacks, use
constant-time sorting networks.

NTRU Prime (Bernstein,
Chuengsatiansup, Lange, van
Vredendaal): new vectorized
constant-time sorting software

using Batcher's merge exchange.

Optimized non-constant-time
radix sort in Intel's Integrated
Performance Primitives library
Is ... bXx slower than this.

15

Much more on performance

See, e.g., the following pape
and references cited therein:

2013 Bernstein—Chou—-Schw.
“"McBits: fast constant-time
code-based cryptography' .

2017 Chou “McBits revisite

2017 Wang—Szefer—Niederh:
"FPGA-based key generator

the Niederreiter cryptosyster
using binary Goppa codes’ .

2018 Wang—Szefer—Niederh:
FPGA cryptosystem, to app

Similar computations are
used in other NIST submissions.

To avoid timing attacks, use
constant-time sorting networks.

NTRU Prime (Bernstein,
Chuengsatiansup, Lange, van
Vredendaal): new vectorized
constant-time sorting software

using Batcher's merge exchange.

Optimized non-constant-time
radix sort Iin Intel's Integrated
Performance Primitives library
IS ... bx slower than this.

15

16
Much more on performance

See, e.g., the following papers
and references cited therein:

2013 Bernstein—Chou—Schwabe
“McBits: fast constant-time

code-based cryptography' .

2017 Chou “McBits revisited”.

2017 Wang—Szefer—Niederhagen
"FPGA-based key generator for

the Niederreiter cryptosystem
using binary Goppa codes’ .

2018 Wang—Szefer—Niederhagen,
FPGA cryptosystem, to appear.

“omputations are
other NIST submissions.

| timing attacks, use
-time sorting networks.

’rime (Bernstein,
atiansup, Lange, van
aal): new vectorized
-time sorting software

'tcher's merge exchange.

ed non-constant-time
t in Intel's Integrated
ance Primitives library
< slower than this.

15

Much more on performance

See, e.g., the following papers
and references cited therein:

2013 Bernstein—Chou—Schwabe
“McBits: fast constant-time
code-based cryptography' .

2017 Chou “McBits revisited”.

2017 Wang—Szefer—Niederhagen
"FPGA-based key generator for

the Niederreiter cryptosystem
using binary Goppa codes’ .

2018 Wang—Szefer—Niederhagen,
FPGA cryptosystem, to appear.

16

IND-CC.

Classic |
stronger
original

indisting
chosen-c
Many pr

NS are
' submissions.

'tacks, use
Ing networks.

nstein,
Lange, van
vectorized
ing software

erge exchange.

1stant-time
s Integrated
itives library
han this.

15

Much more on performance

See, e.g., the following papers
and references cited therein:

2013 Bernstein—Chou—Schwabe
“McBits: fast constant-time
code-based cryptography' .

2017 Chou “McBits revisited”.

2017 Wang—Szefer—Niederhagen
"FPGA-based key generator for

the Niederreiter cryptosystem
using binary Goppa codes’ .

2018 Wang—Szefer—Niederhagen,
FPGA cryptosystem, to appear.

16

IND-CCA2 conver

Classic McEliece a
stronger security g
original McEliece |
indistinguishability
chosen-ciphertext
Many protocols ne

ons.

rks.

14S

nge.

ry

15

Much more on performance

See, e.g., the following papers
and references cited therein:

2013 Bernstein—Chou—Schwabe
“McBits: fast constant-time
code-based cryptography' .

2017 Chou “McBits revisited”.

2017 Wang—Szefer—Niederhagen
"FPGA-based key generator for

the Niederreiter cryptosystem
using binary Goppa codes’ .

2018 Wang—Szefer—Niederhagen,
FPGA cryptosystem, to appear.

16

IND-CCA2 conversions

Classic McEliece aims for
stronger security goal than
original McEliece paper:
indistinguishability vs. adapt
chosen-ciphertext attacks.
Many protocols need this.

Much more on performance

See, e.g., the following papers
and references cited therein:

2013 Bernstein—Chou—Schwabe
“McBits: fast constant-time
code-based cryptography’ .

2017 Chou “McBits revisited”.

2017 Wang—Szefer—Niederhagen
"FPGA-based key generator for

the Niederreiter cryptosystem
using binary Goppa codes’ .

2018 Wang—Szefer—Niederhagen,
FPGA cryptosystem, to appear.

16

IND-CCA2 conversions

Classic McEliece aims for
stronger security goal than
original McEliece paper:
indistinguishability vs. adaptive
chosen-ciphertext attacks.
Many protocols need this.

17

Much more on performance

See, e.g., the following papers
and references cited therein:

2013 Bernstein—Chou—Schwabe
“McBits: fast constant-time
code-based cryptography’ .

2017 Chou “McBits revisited”.

2017 Wang—Szefer—Niederhagen
"FPGA-based key generator for

the Niederreiter cryptosystem
using binary Goppa codes’ .

2018 Wang—Szefer—Niederhagen,

FPGA cryptosystem, to appear.

16

IND-CCA2 conversions

Classic McEliece aims for
stronger security goal than
original McEliece paper:
indistinguishability vs. adaptive
chosen-ciphertext attacks.
Many protocols need this.

Useful simplification: Encrypt
user's plaintext with AES-GCM.
Goal for public-key system:

transmit random AES-GCM key.

I.e. obtain IND-CCA2 PKE
by designing IND-CCA2 KEM.

17

ore on performance

, the following papers
rences cited therein:

rnstein—Chou—Schwabe
. fast constant-time
sed cryptography' .

ou ‘McBits revisited' .

ang—Szefer—Niederhagen
nased key generator for

erreiter cryptosystem
1ary Goppa codes’ .

ang—Szefer—Niederhagen,

ryptosystem, to appear.

16

IND-CCA2 conversions

Classic McEliece aims for
stronger security goal than
original McEliece paper:
indistinguishability vs. adaptive
chosen-ciphertext attacks.
Many protocols need this.

Useful simplification: Encrypt
user’'s plaintext with AES-GCM.
Goal for public-key system:

transmit random AES-GCM key.

i.e. obtain IND-CCA2 PKE
by designing IND-CCA2 KEM.

17

Want fu
confiden
Classic |
practices

1. Sessi
through

formance

wing papers
d therein:

you=Schwabe
stant-time

graphy’ .
ts revisited” .

—Niederhagen
generator for
yptosystem

a codes’ .

—Niederhagen,
m, to appear.

16

IND-CCA2 conversions

Classic McEliece aims for
stronger security goal than
original McEliece paper:
indistinguishability vs. adaptive
chosen-ciphertext attacks.
Many protocols need this.

Useful simplification: Encrypt
user's plaintext with AES-GCM.
Goal for public-key system:
transmit random AES-GCM key.
I.e. obtain IND-CCA2 PKE

by designing IND-CCA2 KEM.

17

Want future audit

confident in long-1
Classic McEliece f
practices from lite

1. Session key: fe
through standard

IS

1be

s I

gen
for

gen,
ear.

16

IND-CCA2 conversions

Classic McEliece aims for
stronger security goal than
original McEliece paper:
indistinguishability vs. adaptive
chosen-ciphertext attacks.
Many protocols need this.

Useful simplification: Encrypt
user’'s plaintext with AES-GCM.
Goal for public-key system:
transmit random AES-GCM key.
i.e. obtain IND-CCA2 PKE

by designing IND-CCA2 KEM.

17

Want future auditors to be
confident in long-term secur
Classic McEliece follows bes
practices from literature:

1. Session key: feed randon
through standard hash funct

IND-CCA2 conversions

Classic McEliece aims for
stronger security goal than
original McEliece paper:
indistinguishability vs. adaptive
chosen-ciphertext attacks.
Many protocols need this.

Useful simplification: Encrypt
user's plaintext with AES-GCM.
Goal for public-key system:
transmit random AES-GCM key.
I.e. obtain IND-CCA2 PKE

by designing IND-CCA2 KEM.

17

18
Want future auditors to be

confident in long-term security.
Classic McEliece follows best
practices from literature:

1. Session key: feed random e
through standard hash function.

IND-CCA2 conversions

Classic McEliece aims for
stronger security goal than
original McEliece paper:
indistinguishability vs. adaptive
chosen-ciphertext attacks.
Many protocols need this.

Useful simplification: Encrypt
user's plaintext with AES-GCM.
Goal for public-key system:
transmit random AES-GCM key.
I.e. obtain IND-CCA2 PKE

by designing IND-CCA2 KEM.

17

18
Want future auditors to be

confident in long-term security.
Classic McEliece follows best
practices from literature:

1. Session key: feed random e
through standard hash function.

2. Ciphertext includes another
hash of e (“confirmation™).

IND-CCA2 conversions

Classic McEliece aims for
stronger security goal than
original McEliece paper:
indistinguishability vs. adaptive
chosen-ciphertext attacks.
Many protocols need this.

Useful simplification: Encrypt
user's plaintext with AES-GCM.
Goal for public-key system:
transmit random AES-GCM key.
I.e. obtain IND-CCA2 PKE

by designing IND-CCA2 KEM.

17

18
Want future auditors to be

confident in long-term security.
Classic McEliece follows best
practices from literature:

1. Session key: feed random e
through standard hash function.

2. Ciphertext includes another
hash of e (“confirmation™).

3. Dec includes recomputation
and verification of ciphertext.

IND-CCA2 conversions

Classic McEliece aims for
stronger security goal than
original McEliece paper:
indistinguishability vs. adaptive
chosen-ciphertext attacks.
Many protocols need this.

Useful simplification: Encrypt
user's plaintext with AES-GCM.
Goal for public-key system:

transmit random AES-GCM key.

I.e. obtain IND-CCA2 PKE
by designing IND-CCA2 KEM.

17

18
Want future auditors to be

confident in long-term security.
Classic McEliece follows best
practices from literature:

1. Session key: feed random e
through standard hash function.

2. Ciphertext includes another
hash of e (“confirmation™).

3. Dec includes recomputation
and verification of ciphertext.

4. KEM never fails: if inversion
fails or ciphertext does not match,
return hash of (secret, ciphertext).

A2 conversions

VIcEliece aims for
security goal than
McEliece paper:
uishability vs. adaptive
Iphertext attacks.
otocols need this.

mplification: Encrypt
aintext with AES-GCM.
public-key system:

‘random AES-GCM key.

in IND-CCA2 PKE
ning IND-CCA2 KEM.

17

Want future auditors to be
confident in long-term security.
Classic McEliece follows best
practices from literature:

1. Session key: feed random e
through standard hash function.

2. Ciphertext includes another
hash of e (“confirmation™).

3. Dec includes recomputation
and verification of ciphertext.

4. KEM never fails: if inversion
fails or ciphertext does not match,
return hash of (secret, ciphertext).

18

Further
that sim

5. Ciphe
function
Inversior

used to

s1ons

ms for

oal than
Daper:

' vs. adaptive
attacks.

ed this.

on: Encrypt
th AES-GCM.
/ system:

\ES-GCM key.

A2 PKE
CCA2 KEM.

17

Want future auditors to be
confident in long-term security.
Classic McEliece follows best
practices from literature:

1. Session key: feed random e
through standard hash function.

2. Ciphertext includes another
hash of e (“confirmation™).

3. Dec includes recomputation
and verification of ciphertext.

4. KEM never fails: if inversion
fails or ciphertext does not match,
return hash of (secret, ciphertext).

18

Further features o
that simplify attac

5. Ciphertext is d¢
function of input ¢
INVErsion recovers
used to create cip|

e

Ot
CM.

key.

17

Want future auditors to be
confident in long-term security.
Classic McEliece follows best
practices from literature:

1. Session key: feed random e
through standard hash function.

2. Ciphertext includes another
hash of e (“confirmation™).

3. Dec includes recomputation
and verification of ciphertext.

4. KEM never fails: if inversion

fails or ciphertext does not match,

return hash of (secret, ciphertext).

18

Further features of system
that simplify attack analysis

5. Ciphertext is deterministi
function of input e: I.e.,
inversion recovers all randon
used to create ciphertexts.

Want future auditors to be
confident in long-term security.
Classic McEliece follows best
practices from literature:

1. Session key: feed random e
through standard hash function.

2. Ciphertext includes another
hash of e (“confirmation™).

3. Dec includes recomputation
and verification of ciphertext.

4. KEM never fails: if inversion
fails or ciphertext does not match,
return hash of (secret, ciphertext).

18

Further features of system
that simplify attack analysis:

5. Ciphertext is deterministic
function of input e: I.e.,
inversion recovers all randomness
used to create ciphertexts.

19

Want future auditors to be
confident in long-term security.
Classic McEliece follows best
practices from literature:

1. Session key: feed random e
through standard hash function.

2. Ciphertext includes another
hash of e (“confirmation™).

3. Dec includes recomputation
and verification of ciphertext.

4. KEM never fails: if inversion
fails or ciphertext does not match,
return hash of (secret, ciphertext).

18

Further features of system
that simplify attack analysis:

5. Ciphertext is deterministic
function of input e: I.e.,
inversion recovers all randomness
used to create ciphertexts.

6. There are no inversion failures
for legitimate ciphertexts.

19

Want future auditors to be
confident in long-term security.
Classic McEliece follows best
practices from literature:

1. Session key: feed random e
through standard hash function.

2. Ciphertext includes another
hash of e (“confirmation™).

3. Dec includes recomputation
and verification of ciphertext.

4. KEM never fails: if inversion

fails or ciphertext does not match,
return hash of (secret, ciphertext).

18

Further features of system
that simplify attack analysis:

5. Ciphertext is deterministic
function of input e: I.e.,
inversion recovers all randomness
used to create ciphertexts.

6. There are no inversion failures
for legitimate ciphertexts.

Intuition for attackers:

can't predict session key
without knowing e in advance;
can't generate fake ciphertexts;
dec doesn't reveal anything.

19

ture auditors to be

t In long-term security.
VicEliece follows best

5 from literature:

on key: feed random e
standard hash function.

rtext 1ncludes another

e (“confirmation™).

ncludes recomputation
fication of ciphertext.

never fails: if inversion

Iphertext does not match,

ash of (secret, ciphertext).

18

Further features of system
that simplify attack analysis:

5. Ciphertext is deterministic
function of input e: I.e.,
inversion recovers all randomness
used to create ciphertexts.

6. There are no inversion failures
for legitimate ciphertexts.

Intuition for attackers:

can't predict session key
without knowing e in advance;
can't generate fake ciphertexts;
dec doesn't reveal anything.

19

To some
capturec
Attack c
implies ¢

ors to be
erm security.
ollows best
rature:

ed random e
hash function.

1des another
mation”).

computation
ciphertext.

s: If inversion
does not match,
cret, ciphertext).

18

Further features of system
that simplify attack analysis:

5. Ciphertext is deterministic
function of input e: I.e.,
inversion recovers all randomness
used to create ciphertexts.

6. There are no inversion failures
for legitimate ciphertexts.

Intuition for attackers:

can't predict session key
without knowing e in advance;
can't generate fake ciphertexts;
dec doesn't reveal anything.

19

To some extent, I
captured by securi
Attack of type T
implies attack aga

1 e
1on.

1er

on

s10N
match,
rtext).

18

Further features of system
that simplify attack analysis:

5. Ciphertext is deterministic
function of input e: I.e.,
inversion recovers all randomness
used to create ciphertexts.

6. There are no inversion failures
for legitimate ciphertexts.

Intuition for attackers:

can't predict session key
without knowing e in advance;
can't generate fake ciphertexts;
dec doesn't reveal anything.

19

To some extent, intuition is
captured by security proofs.
Attack of type T against KE
implies attack against P.

Further features of system
that simplify attack analysis:

5. Ciphertext is deterministic
function of input e: I.e.,
inversion recovers all randomness
used to create ciphertexts.

6. There are no inversion failures
for legitimate ciphertexts.

Intuition for attackers:

can't predict session key
without knowing e in advance;
can't generate fake ciphertexts;
dec doesn't reveal anything.

19

To some extent, intuition Is
captured by security proofs.
Attack of type T against KEM
implies attack against P.

20

Further features of system
that simplify attack analysis:

5. Ciphertext is deterministic
function of input e: I.e.,
inversion recovers all randomness
used to create ciphertexts.

6. There are no inversion failures
for legitimate ciphertexts.

Intuition for attackers:

can't predict session key
without knowing e in advance;
can't generate fake ciphertexts;
dec doesn't reveal anything.

19

20
To some extent, intuition Is

captured by security proofs.
Attack of type T against KEM
implies attack against P.

Measuring quality of proofs:

e Security of P.
Useless if P is weak;
questionable if P is unstudied.

Further features of system
that simplify attack analysis:

5. Ciphertext is deterministic
function of input e: I.e.,
inversion recovers all randomness
used to create ciphertexts.

6. There are no inversion failures
for legitimate ciphertexts.

Intuition for attackers:

can't predict session key
without knowing e in advance;
can't generate fake ciphertexts;
dec doesn't reveal anything.

19

20
To some extent, intuition Is

captured by security proofs.
Attack of type T against KEM
implies attack against P.

Measuring quality of proofs:

e Security of P.
Useless if P is weak;
questionable if P is unstudied.

e [ightness of implication.
Most proofs are not tight.

Further features of system
that simplify attack analysis:

5. Ciphertext is deterministic
function of input e: I.e.,
inversion recovers all randomness
used to create ciphertexts.

6. There are no inversion failures
for legitimate ciphertexts.

Intuition for attackers:

can't predict session key
without knowing e in advance;
can't generate fake ciphertexts;
dec doesn't reveal anything.

19

20
To some extent, intuition Is

captured by security proofs.
Attack of type T against KEM
implies attack against P.

Measuring quality of proofs:

e Security of P.
Useless if P is weak;
questionable if P is unstudied.

e [ightness of implication.
Most proofs are not tight.

e Breadth of T.
ROM? QROM? etc.

Further features of system
that simplify attack analysis:

5. Ciphertext is deterministic
function of input e: I.e.,
inversion recovers all randomness
used to create ciphertexts.

6. There are no inversion failures
for legitimate ciphertexts.

Intuition for attackers:

can't predict session key
without knowing e in advance;
can't generate fake ciphertexts;
dec doesn't reveal anything.

19

20
To some extent, intuition Is

captured by security proofs.
Attack of type T against KEM
implies attack against P.

Measuring quality of proofs:

e Security of P.
Useless if P is weak;
questionable if P is unstudied.

e [ightness of implication.
Most proofs are not tight.

e Breadth of T.
ROM? QROM? etc.

e | evel of verification of proof.

features of system
plify attack analysis:

rtext Is deterministic

of input e: I.e.,

1 recovers all randomness
create ciphertexts.

> are no inversion failures
mate ciphertexts.

for attackers:

2dict session key
knowing e in advance;
nerate fake ciphertexts;
n't reveal anything.

19

To some extent, intuition is
captured by security proofs.
Attack of type T against KEM
implies attack against P.

Measuring quality of proofs:

e Security of P.
Useless if P is weak;
questionable if P is unstudied.

e [ightness of implication.
Most proofs are not tight.

e Breadth of T.
ROM? QROM? etc.

e |evel of verification of proof.

20

Reasona
formally
of IND-(
against .
(maybe

assumin,

f system
k analysis:

sterministic

2 .8,

all randomness
nertexts.

version failures
ertexts.

KErs:

on key

> In advance;
e ciphertexts;
anything.

19

To some extent, intuition Is
captured by security proofs.
Attack of type T against KEM
implies attack against P.

Measuring quality of proofs:

e Security of P.
Useless if P is weak;
questionable if P is unstudied.

e [ightness of implication.
Most proofs are not tight.

e Breadth of T.
ROM? QROM? etc.

e | evel of verification of proof.

20

Reasonable near-fi
formally verified ti
of IND-CCA2 sect
against all ROM a
(maybe all QROM
assuming OW-CP;

NTNESS

Hlures

ce:
XtS:;

19

To some extent, intuition is
captured by security proofs.
Attack of type T against KEM
implies attack against P.

Measuring quality of proofs:

e Security of P.
Useless if P is weak;
questionable if P is unstudied.

e [ightness of implication.
Most proofs are not tight.

e Breadth of T.
ROM? QROM? etc.

e |evel of verification of proof.

20

Reasonable near-future goal
formally verified tight proof
of IND-CCA2 security of KE
against all ROM attacks

(maybe all QROM attacks)
assuming OW-CPA for McE

20 21

To some extent, intuition is Reasonable near-future goal:
captured by security proofs. formally verified tight proof
Attack of type T against KEM of IND-CCA2 security of KEM
implies attack against P. against all ROM attacks

(maybe all QROM attacks)

Measuring quality of proofs: | |
assuming OW-CPA for McEliece.

e Security of P.
Useless if P is weak;
questionable if P is unstudied.

e [ightness of implication.
Most proofs are not tight.

e Breadth of T.
ROM? QROM? etc.

e | evel of verification of proof.

To some extent, intuition Is
captured by security proofs.
Attack of type T against KEM
implies attack against P.

Measuring quality of proofs:

e Security of P.
Useless if P is weak;

questionable if P is unstudied.

e [ightness of implication.
Most proofs are not tight.

e Breadth of T.
ROM? QROM? etc.

e | evel of verification of proof.

20

21
Reasonable near-future goal:

formally verified tight proof

of IND-CCAZ2 security of KEM
against all ROM attacks

(maybe all QROM attacks)
assuming OW-CPA for McEliece.

2002 Dent (Theorem 8)

uses 1, 2, 3, b, 6.

Proves tight IND-CCA2 security
against ROM attacks

under OW-CPA assumption.

To some extent, intuition Is
captured by security proofs.
Attack of type T against KEM
implies attack against P.

Measuring quality of proofs:

e Security of P.
Useless if P is weak;

questionable if P is unstudied.

e [ightness of implication.
Most proofs are not tight.

e Breadth of T.
ROM? QROM? etc.

e | evel of verification of proof.

20

21
Reasonable near-future goal:

formally verified tight proof

of IND-CCAZ2 security of KEM
against all ROM attacks

(maybe all QROM attacks)
assuming OW-CPA for McEliece.

2002 Dent (Theorem 8)

uses 1, 2, 3, b, 6.

Proves tight IND-CCA2 security
against ROM attacks

under OW-CPA assumption.

2012 Persichetti (Theorem 5.1):
4 allows simpler proof strategy.

» extent, intuition is

| by security proofs.

t type T against KEM
ittack against P.

g quality of proofs:

ty of P.
s if P is weak;

onable if P i1s unstudied.

1ess of implication.
oroofs are not tight.

th of T.
" QROM? etc.

of verification of proof.

20

Reasonable near-future goal:
formally verified tight proof
of IND-CCAZ2 security of KEM
against all ROM attacks
(maybe all QROM attacks)

assuming OW-CPA for McEliece.

2002 Dent (Theorem 8)

uses 1, 2, 3, 5 6.

Proves tight IND-CCA2 security
against ROM attacks

under OW-CPA assumption.

2012 Persichetti (Theorem 5.1):
4 allows simpler proof strategy.

21

2017 Sa
(“XYZ"
Proves t
against |
under st

Our KEI
all of th
appear t
Classic |

Ongoing
generaliz

2017 Hc

Improve:

1tuition Is
ty proofs.
against KEM

inst P.

of proofs:

eak:
2 Is unstudied.

ylication.
not tight.

etc.

ion of proof.

20

Reasonable near-future goal:
formally verified tight proof
of IND-CCAZ2 security of KEM
against all ROM attacks
(maybe all QROM attacks)

assuming OW-CPA for McEliece.

2002 Dent (Theorem 8)

uses 1, 2, 3, b, 6.

Proves tight IND-CCA2 security
against ROM attacks

under OW-CPA assumption.

2012 Persichetti (Theorem 5.1):
4 allows simpler proof strategy.

21

2017 Saito—Xagaw
(“XYZ" thm) uses
Proves tight IND-
against QROM at
under stronger ass

Our KEM has 1, 2

all of these proof :
appear to be appli
Classic McEliece s

Ongoing work to 1
generalize, merge,

2017 Hotheinz—Hc
improved modular

lied.

20

Reasonable near-future goal:
formally verified tight proof
of IND-CCAZ2 security of KEM
against all ROM attacks
(maybe all QROM attacks)

assuming OW-CPA for McEliece.

2002 Dent (Theorem 8)

uses 1, 2, 3, 5 6.

Proves tight IND-CCA2 security
against ROM attacks

under OW-CPA assumption.

2012 Persichetti (Theorem 5.1):
4 allows simpler proof strategy.

21

2017 Saito—Xagawa—Yamak:
(“XYZ" thm) uses 1, 3, 4, °
Proves tight IND-CCA2 secl
against QROM attacks

under stronger assumptions.

Our KEM has 1, 2, 3, 4, 5,
all of these proof strategies
appear to be applicable. Set
Classic McEliece submission

Ongoing work to modularize
generalize, merge, verify pro

2017 Hofheinz—Hovelmanns-

improved modularization.

Reasonable near-future goal:
formally verified tight proof
of IND-CCAZ2 security of KEM
against all ROM attacks
(maybe all QROM attacks)

assuming OW-CPA for McEliece.

2002 Dent (Theorem 8)

uses 1, 2, 3, b, 6.

Proves tight IND-CCA2 security
against ROM attacks

under OW-CPA assumption.

2012 Persichetti (Theorem 5.1):
4 allows simpler proof strategy.

21

22
2017 Saito—Xagawa—Yamakawa

(“XYZ" thm) uses 1, 3, 4, 5, 6.
Proves tight IND-CCA2 security
against QROM attacks

under stronger assumptions.

Our KEM has 1, 2, 3, 4, 5, 6
all of these proof strategies
appear to be applicable. See
Classic McEliece submission.

Ongoing work to modularize,
generalize, merge, verity proofs.

2017 Hofheinz—Hovelmanns—Kiltz:
improved modularization.

