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ROM? QROM? etc.

e |evel of verification of proof.
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2017 Saito—Xagawa—Yamakawa

(“XYZ" thm) uses 1, 3, 4, 5, 6.
Proves tight IND-CCA2 security
against QROM attacks

under stronger assumptions.

Our KEM has 1, 2, 3, 4, 5, 6
all of these proof strategies
appear to be applicable. See
Classic McEliece submission.

Ongoing work to modularize,
generalize, merge, verity proofs.

2017 Hofheinz—Hovelmanns—Kiltz:
improved modularization.



