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Better proofs for rekeying

D. J. Bernstein

Security of AES-256 key k is

far below 2256 in most protocols:

(AESk (0); : : : ;AESk (n − 1))

is distinguishable from uniform

with probability n(n − 1)=2129,

plus tiny key-guessing probability.

Yes, distinguishers matter.

Attacker actually has T targets:

independent keys k1; : : : ; kT .

Success chance ≈ Tn(n− 1)=2129.

https://sweet32.info
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“Rekeying” seems less dangerous.

Expand k into F (k) =

(AESk (0); : : : ;AESk (999999)).

Split F (k) into 500000 “subkeys”.

Output F (k ′) for each subkey k ′:

i.e., F (AESk (0);AESk (1));

F (AESk (2);AESk (3)); : : :

F (AESk (999998);AESk (999999)).
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“Rekeying” seems less dangerous.

Expand k into F (k) =

(AESk (0); : : : ;AESk (999999)).

Split F (k) into 500000 “subkeys”.

Output F (k ′) for each subkey k ′:

i.e., F (AESk (0);AESk (1));

F (AESk (2);AESk (3)); : : :

F (AESk (999998);AESk (999999)).

Repeat for k1; : : : ; kT . What is

attacker’s success chance pT ?

Intuitively clear that pT ≤ Tp1.

So let’s analyze p1.
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Attack strategy 1: Attack the

master key k . Distinguish F (k)

from a uniform random string.

Years of cryptanalysis say: hard

to distinguish AES outputs from

uniform string of distinct blocks.

Distinctness loses ≈1=289.
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Attack strategy 1: Attack the

master key k . Distinguish F (k)

from a uniform random string.

Years of cryptanalysis say: hard

to distinguish AES outputs from

uniform string of distinct blocks.

Distinctness loses ≈1=289.

Attack strategy 2: Attack a

subkey k ′. Distinguish F (k ′) from

uniform, assuming k ′ is uniform.

Intuition: No other attacks exist.

But where is this proven?
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FOCS 1996 Bellare–Canetti–

Krawczyk claims to prove

security of ‘-level “cascade”.

2-level cascade: key k ; input

(N1; N2); output S(S(k; N1); N2).
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FOCS 1996 Bellare–Canetti–

Krawczyk claims to prove

security of ‘-level “cascade”.

2-level cascade: key k ; input

(N1; N2); output S(S(k; N1); N2).

Example: Define S(k; N) =

(AESk (2N);AESk (2N + 1)),

with N ∈ {0; 1; : : : ; 499999}.
S expands AES-256 key k into

(AESk (0); : : : ;AESk (999999)).

Paper credits 1986 Goldwasser–

Goldreich–Micali for 1-bit Ni :

S expands k into S(k; 0); S(k; 1).
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Theorem statement is wrong:

omits factor q. Fixed in 2005.

Here q is the number of queries.

The intuition didn’t notice q;

why does q matter for the proof?
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Theorem statement is wrong:

omits factor q. Fixed in 2005.

Here q is the number of queries.

The intuition didn’t notice q;

why does q matter for the proof?

Proof outline: Take any cascade

attack A using at most q queries.

Proof has q + 1 steps.

Step 0: Replace outputs from

master key k with independent

uniform random outputs.

Distinguisher for this step

⇒ attack against S.
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Step 2: Replace cascade outputs

from next (distinct) subkey. : : :

Step q: Replace cascade outputs

from qth (distinct) subkey.

Could skip steps if q > #{N}.
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Step 1: Replace cascade outputs

for first subkey with independent

uniform random outputs.

Distinguisher for this step

⇒ attack against S.

Step 2: Replace cascade outputs

from next (distinct) subkey. : : :

Step q: Replace cascade outputs

from qth (distinct) subkey.

Could skip steps if q > #{N}.

Further complications in proof

to monolithically handle ‘ levels.

2011 Bernstein: simpler to

compose better 2-level theorem.
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Not happy with cascade proofs?

A different proof appears in

Crypto 1996 Bellare–Canetti–

Krawczyk NMAC/HMAC paper.
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no prefix-free requirement.)
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Not happy with cascade proofs?

A different proof appears in

Crypto 1996 Bellare–Canetti–

Krawczyk NMAC/HMAC paper.

Given key k and input (N1; N2),

NMAC computes S(S(k; N1); N2),

where S is a stream cipher

“compression function”.

(Tweaks: output is encrypted;

no prefix-free requirement.)

Proof has weird assumptions.

Crypto 2006 Bellare proof: more

reasonable-sounding assumptions.
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Complicated; error-prone.

2012 Koblitz–Menezes:

Bellare’s assumptions are wrong.
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Complicated; error-prone.

2012 Koblitz–Menezes:

Bellare’s assumptions are wrong.

2012 Katz–Lindell: public denials.

2012 Bernstein–Lange:

Bellare’s assumptions are wrong.

2013 Pietrzak: fixed theorem

from Koblitz–Menezes is wrong.

2013 Pietrzak, 2013 Koblitz–

Menezes, 2014 Gaz̆i–Pietrzak–

Rybár: another NMAC proof,

as complicated as cascade proof.
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Hmmm. CCS 2005 Barak–Halevi

“A model and architecture for

pseudo-random generation with

applications to /dev/random”?

RNG outputs F (k), F (G(k)), etc.

Another complicated proof.
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Hmmm. CCS 2005 Barak–Halevi

“A model and architecture for

pseudo-random generation with

applications to /dev/random”?

RNG outputs F (k), F (G(k)), etc.

Another complicated proof.

How about 2006 Campagna

“Security bounds for the NIST

codebook-based deterministic

random bit generator”? Doesn’t

prove anything about rekeying.

2017 AES-GCM-SIV bounds?

Big errors found by Iwata–Seurin.
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There are T keys.

Cipher 1: key 7→ many subkeys.

Cipher 2: subkey 7→ outputs.
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A simple tight new proof

Remember the goal: analyze pT .

There are T keys.

Cipher 1: key 7→ many subkeys.

Cipher 2: subkey 7→ outputs.

New proof has just two steps.

Step 1. Replace all subkeys.

Distinguisher ⇒ T -target

attack against cipher 1.

Step 2. Replace all outputs.

Distinguisher ⇒ (T ·many)-target

attack against cipher 2.

https://blog.cr.yp.to/20170723-random.html
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X: FOCS 1996 Bellare–Canetti–

Krawczyk Lemma 3.2. Harder;

not suitable for induction.


