Better proofs for rekeying

D. J. Bernstein

Security of AES-256 key k is

far below 22°% in most protocols:
(AES,(0), ..., AES,(n—1))

s distinguishable from uniform
with probability n(n — 1)/2%%7,
plus tiny key-guessing probability.
Yes, distinguishers matter.

Attacker actually has T targets:
independent keys ki, ..., KT .

Success chance ~ Tn(n—1)/21%°.

"Rekeying” seems less dangerous.

Expand k into F(k) =
(AES,(0), ..., AES,(999999)).

Split F(k) into 500000 “subkeys”.

Output F(k") for each subkey k':
e, F(AES,(0), AES, (1))
F(AES(2), AES.(3)): ...
F(AES,(999998), AES  (999999)).
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