Better proofs for rekeying

D. J. Bernstein

Security of AES-256 key k is

far below 22°% in most protocols:
(AES,(0), ..., AES,(n—1))

s distinguishable from uniform
with probability n(n — 1)/2%%7,
plus tiny key-guessing probability.
Yes, distinguishers matter.

Attacker actually has T targets:
independent keys ki, ..., KT .

Success chance ~ Tn(n—1)/21%°.

"Rekeying” seems less dangerous.

Expand k into F(k) =
(AES,(0), ..., AES,(999999)).

Split F(k) into 500000 “subkeys”.

Output F(k") for each subkey k':
e, F(AES,(0), AES, (1))
F(AES(2), AES.(3)): ...
F(AES,(999998), AES (999999)).

Better proofs for rekeying

D. J. Bernstein

Security of AES-256 key k is

far below 22°% in most protocols:
(AES,(0), ..., AES,(n—1))

s distinguishable from uniform
with probability n(n — 1)/2%%7,
plus tiny key-guessing probability.
Yes, distinguishers matter.

Attacker actually has T targets:

independent keys ki, ..., KT .
Success chance ~ Tn(n—1)/21%°.

"Rekeying” seems less dangerous.

Expand k into F(k) =
(AES,(0), ..., AES,(999999)).

Split F(k) into 500000 “subkeys”.

Output F(k") for each subkey k':
e, F(AES,(0), AES, (1))
F(AES(2), AES.(3)): ...
F(AES,(999998), AES (999999)).

Repeat for ki, ..., k7. What is
attacker’s success chance p7?

Better proofs for rekeying

D. J. Bernstein

Security of AES-256 key k is

far below 22°% in most protocols:
(AES,(0), ..., AES,(n—1))

s distinguishable from uniform
with probability n(n — 1)/2%%7,
plus tiny key-guessing probability.
Yes, distinguishers matter.

Attacker actually has T targets:
independent keys ki, ..., KT .

Success chance ~ Tn(n—1)/21%°.

"Rekeying” seems less dangerous.

Expand k into F(k) =
(AES,(0), ..., AES,(999999)).

Split F(k) into 500000 “subkeys”.

Output F(k") for each subkey k':
e, F(AES,(0), AES, (1))
F(AES(2), AES.(3)): ...
F(AES,(999998), AES (999999)).

Repeat for ki, ..., k7. What is
attacker’s success chance p7?

Intuitively clear that pr < T p3.

So let's analyze p;.

roofs for rekeying

rnstein

of AES-256 key k is

v 2290 in most protocols:

), ..., AES,(n— 1))
ruishable from uniform
bability n(n — 1)/21%°,

' key-guessing probability:.
inguishers matter.

~actually has T targets:
lent keys ki, ..., KT .

chance ~ Tn(n—1)/2%.

"Rekeying” seems less dangerous.

Expand k into F(k) =
(AES,(0), ..., AES,(999999)).

Split F(k) into 500000 “subkeys”.

Output F(k") for each subkey k':
e., F(AES,(0), AES, (1))
F(AES(2), AES.(3)): ...
F(AES,(999998), AES, (999999)).

Repeat for kg, ..., k7. What is
attacker’s success chance p7?

Intuitively clear that pr < T p;.

So let's analyze p;.

Attack s
master |
from a

Years of
to distin
uniform

Distincti

ekeying

0 key k Is
nost protocols:

Sk(n—1))
rom uniform
:n o 1)/2129’
sing probability.
matter.

nas [targets:

"Rekeying” seems less dangerous.

Expand k into F(k) =
(AES,(0), ..., AES,(999999)).

Split F(k) into 500000 “subkeys”.

Output F(k") for each subkey k':
e., F(AES,(0), AES, (1))
F(AES(2), AES.(3)): ...
F(AES,(999998), AES, (999999)).

Repeat for ki, ..., k7. What is
attacker’s success chance p7?

Intuitively clear that pr < T p3.

So let's analyze p;.

Attack strategy 1:
master key k. Dis

from a uniform rai

Years of cryptanal
to distinguish AES
uniform string of «
Distinctness loses

"Rekeying” seems less dangerous.

Expand k into F(k) =
(AES,(O), ..., AES,(999999)).

Split F(k) into 500000 “subkeys”.

Output F(k") for each subkey k':
e., F(AES,(0), AES, (1))
F(AES(2), AES.(3)): ...
F(AES,(999998), AES, (999999)).

Repeat for kg, ..., k7. What is
attacker’s success chance p7?

Intuitively clear that pr < T p;.

So let's analyze p;.

Attack strategy 1: Attack tl
master key k. Distinguish F
from a uniform random strir

Years of cryptanalysis say: I
to distinguish AES outputs |
uniform string of distinct blc
Distinctness loses ~1/239.

"Rekeying” seems less dangerous.

Expand k into F(k) =
(AES,(0), ..., AES,(999999)).

Split F(k) into 500000 “subkeys”.

Output F(k") for each subkey k':
e, F(AES,(0), AES, (1))
F(AES(2), AES.(3)): ...
F(AES,(999998), AES, (999999)).

Repeat for ki, ..., k7. What is
attacker’s success chance py?

Intuitively clear that pr < T p3.

So let's analyze p;.

Attack strategy 1: Attack the
master key k. Distinguish F(k)
from a uniform random string.

Years of cryptanalysis say: hard
to distinguish AES outputs from
uniform string of distinct blocks.
Distinctness loses ~1/239.

"Rekeying” seems less dangerous.

Expand k into F(k) =
(AES,(0), ..., AES,(999999)).

Split F(k) into 500000 “subkeys”.

Output F(k") for each subkey k':
e, F(AES,(0), AES, (1))
F(AES(2), AES.(3)): ...

F(AES,(999998), AES,(999999)).

Repeat for ki, ..., k7. What is
attacker’s success chance py?

Intuitively clear that pr < T p3.

So let's analyze p;.

Attack strategy 1: Attack the
master key k. Distinguish F(k)
from a uniform random string.

Years of cryptanalysis say: hard
to distinguish AES outputs from
uniform string of distinct blocks.
Distinctness loses ~1/239.

Attack strategy 2: Attack a
subkey k'. Distinguish F(k") from

uniform, assuming k' is uniform.

"Rekeying” seems less dangerous.

Expand k into F(k) =
(AES,(0), ..., AES,(999999)).

Split F(k) into 500000 “subkeys”.

Output F(k") for each subkey k':
e, F(AES,(0), AES, (1))
F(AES(2), AES.(3)): ...

F(AES,(999998), AES,(999999)).

Repeat for ki, ..., k7. What is
attacker’s success chance py?

Intuitively clear that pr < T p3.

So let's analyze p;.

Attack strategy 1: Attack the
master key k. Distinguish F(k)
from a uniform random string.

Years of cryptanalysis say: hard
to distinguish AES outputs from
uniform string of distinct blocks.
Distinctness loses ~1/239.

Attack strategy 2: Attack a
subkey k'. Distinguish F(k") from

uniform, assuming k' is uniform.

Intuition: No other attacks exist.
But where is this proven?

g seems less dangerous.

k into F(k) =
), ..., AES,(999999)).

k) into 500000 “subkeys"”.

F(k") for each subkey k'
\ESk(O),AESk(l));
(2), AESk(3)); C

(999998), AES (999999)).

or ki, ..., k7. What is
r's success chance pt?

ly clear that p7 < T py.

analyze pj.

Attack strategy 1: Attack the
master key k. Distinguish F(k)
from a uniform random string.

Years of cryptanalysis say: hard
to distinguish AES outputs from
uniform string of distinct blocks.
Distinctness loses ~1/25%9.

Attack strategy 2: Attack a
subkey k'. Distinguish F (k") from

uniform, assuming k' is uniform.

Intuition: No other attacks exist.
But where is this proven?

FOCS 1

Krawczy
security

2-level ¢
(N1, No;

less dangerous.

() =
S,(999999)).

0000 “subkeys".

~ach subkey k'
ES,(1));
(3)); ...

AES,(999999)).

k1. What is
s chance p7?

at pt < T'py.

Attack strategy 1: Attack the
master key k. Distinguish F(k)
from a uniform random string.

Years of cryptanalysis say: hard
to distinguish AES outputs from
uniform string of distinct blocks.
Distinctness loses ~1/239.

Attack strategy 2: Attack a
subkey k'. Distinguish F (k") from

uniform, assuming k' is uniform.

Intuition: No other attacks exist.
But where is this proven?

FOCS 1996 Bellar
Krawczyk claims t

security of £-level

2-level cascade: k
(N1, No); output !

crous.

keys' .

sy k'

999)).

t iIs
pr?

p1-

Attack strategy 1: Attack the
master key k. Distinguish F(k)
from a uniform random string.

Years of cryptanalysis say: hard
to distinguish AES outputs from
uniform string of distinct blocks.
Distinctness loses ~1/239.

Attack strategy 2: Attack a
subkey k'. Distinguish F (k") from

uniform, assuming k' is uniform.

Intuition: No other attacks exist.
But where is this proven?

FOCS 1996 Bellare—Canetti-
Krawczyk claims to prove

security of £-level “cascade”

2-level cascade: key k; inpu
(N1, Nb); output S(S(k, N

Attack strategy 1: Attack the FOCS 1996 Bellare—Canetti—
master key k. Distinguish F(k) Krawczyk claims to prove

from a uniform random string. security of £-level “cascade”.
Years of cryptanalysis say: hard 2-level cascade: key k; input

to distinguish AES outputs from (N1, Nb); output S(S(k, Np), N»).

uniform string of distinct blocks.
Distinctness loses ~1/239.

Attack strategy 2: Attack a
subkey k'. Distinguish F (k") from

uniform, assuming k' is uniform.

Intuition: No other attacks exist.
But where is this proven?

Attack strategy 1: Attack the
master key k. Distinguish F(k)
from a uniform random string.

Years of cryptanalysis say: hard
to distinguish AES outputs from
uniform string of distinct blocks.
Distinctness loses ~1/239.

Attack strategy 2: Attack a
subkey k'. Distinguish F (k") from

uniform, assuming k' is uniform.

Intuition: No other attacks exist.
But where is this proven?

FOCS 1996 Bellare—Canetti—
Krawczyk claims to prove

security of £-level “cascade”.

2-level cascade: key k; input
(Nl, NQ); output S(S(k, Nl), NQ).

Example: Define S(k, N) =
(AES,(2N), AES, (2N + 1)),
with N € {0,1,..., 499999} .
S expands AES-256 key k into
(AES,(0), ..., AES,(999999)).

Attack strategy 1: Attack the
master key k. Distinguish F(k)
from a uniform random string.

Years of cryptanalysis say: hard
to distinguish AES outputs from
uniform string of distinct blocks.
Distinctness loses ~1/239.

Attack strategy 2: Attack a
subkey k'. Distinguish F (k") from

uniform, assuming k' is uniform.

Intuition: No other attacks exist.
But where is this proven?

FOCS 1996 Bellare—Canetti—
Krawczyk claims to prove

security of £-level “cascade”.

2-level cascade: key k; input
(Nl, NQ); output S(S(k, Nl), NQ).

Example: Define S(k, N) =
(AES,(2N), AES, (2N + 1)),
with N € {0,1,..., 499999} .
S expands AES-256 key k into
(AES,(0), ..., AES,(999999)).

Paper credits 1986 Goldwasser—
Goldreich—Micali for 1-bit N;:
S expands k into S(k,0), S(k,1).

trategy 1: Attack the
ey k. Distinguish F(k)
iniform random string.

cryptanalysis say: hard
guish AES outputs from
string of distinct blocks.
ress loses ~1/289.

trategy 2: Attack a
(. Distinguish F(k") from
assuming k' is uniform.

. No other attacks exist.
ere is this proven?

FOCS 1996 Bellare—Canetti—
Krawczyk claims to prove

security of £-level “cascade”.

2-level cascade: key k; input

(Nl, NQ); output S(S(k, /Vl), NQ).

Example: Define S(k, N) =
(AES,(2N), AES, (2N + 1)),
with N € {0,1,..., 499999} .
S expands AES-256 key k into
(AESL(0), ..., AES,(999999)).

Paper credits 1986 Goldwasser—
Goldreich—Micali for 1-bit N;:

S expands k into S(k,0), S(k,1).

Theoren
omits fa

Here g |
The IntL

why doe

Attack the
tinguish F(k)
ndom string.

ysis say: hard
y outputs from

listinct blocks.
~1/2%9.

Attack a
uish F(k") from
k" is uniform.

r attacks exist.
, proven?

FOCS 1996 Bellare—Canetti—
Krawczyk claims to prove

security of £-level “cascade”.

2-level cascac
(Nl, NQ); out

e: key k; input

out S(S(k, Nl), NQ).

Example: Define S(k, N) =
(AES,(2N), AES, (2N + 1)),

with N € {0,

1,...,499999}.

S expands AES-256 key k into

(AES,(0), . ..

Paper credits

,AES,(999999)).
1986 Goldwasser—

Goldreich—Micali for 1-bit N;:

S expands k into S(k,0), S(k,1).

Theorem statemer
omits factor q. Fi

Here g 1s the num
The intuition didn
why does g matte

1€

(k)

g

\ard
‘rom

ycks.

) from

orm.

ex|st.

FOCS 1996 Bellare—Canetti—
Krawczyk claims to prove

security of £-level “cascade”.

2-level cascac

e: key k; input

(Nl, NQ); out

Example: Define S(k, N) =
(AES,(2N), AES, (2N + 1)),

with N € {0,

1,...,499999}.

S expands AES-256 key k into

(AES(0), . ..

Paper credits

,AES(999999)).
1986 Goldwasser—

Goldreich—Micali for 1-bit N;:

S expands k into S(k,0), S(k,1).

out S(S(k, /Vl), NQ).

Theorem statement is wrong
omits factor g. Fixed in 20C

Here g is the number of que
The intuition didn't notice ¢

why does g matter for the

FOCS 1996 Bellare—Canetti—
Krawczyk claims to prove

security of £-level “cascade”.

2-level cascade: key k; input

(Nl, NQ); output S(S(k, Nl), NQ).

Example: Define S(k, N) =
(AES,(2N), AES, (2N + 1)),
with N € {0,1,..., 499999} .
S expands AES-256 key k into
(AES,(0), ..., AES,(999999)).

Paper credits 1986 Goldwasser—
Goldreich—Micali for 1-bit N;:

S expands k into S(k,0), S(k,1).

Theorem statement Is wrong:
omits factor g. Fixed in 2005.

Here g is the number of queries.
The intuition didn't notice g;

why does g matter for the proof?

FOCS 1996 Bellare—Canetti—
Krawczyk claims to prove

security of £-level “cascade”.

2-level cascade: key k; input

(Nl, NQ); output S(S(k, Nl), NQ).

Example: Define S(k, N) =
(AES,(2N), AES, (2N + 1)),
with N € {0,1,..., 499999} .
S expands AES-256 key k into
(AES,(0), ..., AES,(999999)).

Paper credits 1986 Goldwasser—
Goldreich—Micali for 1-bit N;:

S expands k into S(k,0), S(k,1).

Theorem statement Is wrong:
omits factor g. Fixed in 2005.

Here g is the number of queries.
The intuition didn't notice g;

why does g matter for the proof?

Proof outline: Take any cascade
attack A using at most g queries.

Proof has g + 1 steps.

FOCS 1996 Bellare—Canetti—
Krawczyk claims to prove

security of £-level “cascade”.

2-level cascade: key k; input

(Nl, NQ); output S(S(k, Nl), NQ).

Example: Define S(k, N) =
(AES,(2N), AES, (2N + 1)),
with N € {0,1,..., 499999} .
S expands AES-256 key k into
(AES,(0), ..., AES,(999999)).

Paper credits 1986 Goldwasser—
Goldreich—Micali for 1-bit N;:

S expands k into S(k,0), S(k,1).

Theorem statement Is wrong:
omits factor g. Fixed in 2005.

Here g is the number of queries.
The intuition didn't notice g;

why does g matter for the proof?

Proof outline: Take any cascade
attack A using at most g queries.

Proof has g + 1 steps.

Step 0: Replace outputs from
master key k with independent
uniform random outputs.

Distinguisher for this step
— attack against S.

096 Bellare—Canetti—
k claims to prove

of £-level “cascade’ .

ascade: key k; input

; output S(S(k, Ny), No).

. Define S(k, N) =
N), AES, (2N + 1)),

- 40,1, ..., 499999} .
ds AES-256 key k into
), ..., AES/(999999)).

edits 1986 Goldwasser—
h—Micali for 1-bit N;:

ds k into S(k,0), S(k,1).

Theorem statement Is wrong:
omits factor g. Fixed in 2005.

Here g is the number of queries.
The intuition didn't notice g;

why does g matter for the proof?

Proof outline: Take any cascade
attack A using at most g queries.

Proof has g + 1 steps.

Step 0: Replace outputs from
master key k with independent
uniform random outputs.

Distinguisher for this step
— attack against S.

Step 1:
for first

uniform

Distingu
= attac

e—Canetti—
O prove
“cascade’ .

2y K Input

>(S(k, N1), No).

> (k, N) =
(2N +1)),
,499999}.
0 key k Into
5,(999999)).

y Goldwasser—
or 1-bit N;:

S(k,0), S(k, 1).

Theorem statement Is wrong:
omits factor g. Fixed in 2005.

Here g is the number of queries.

T

W

ne Intuition didn't notice g;

ny does g matter for the proof?

Proof outline: Take any cascade

attack A using at most g queries.

Proof has g + 1 steps.

Step 0: Replace outputs from

master key k with independent

uniform random outputs.

Distinguisher for this step
— attack against S.

Step 1: Replace ¢
for first subkey wi

uniform random o

Distinguisher for t
= attack against

Theorem statement Is wrong:
omits factor g. Fixed in 2005.

Here g is the number of queries.
The intuition didn't notice g;

why does g matter for the proof?

Proof outline: Take any cascade
attack A using at most g queries.

Proof has g + 1 steps.

Step 0: Replace outputs from
master key k with independent
uniform random outputs.

Distinguisher for this step
— attack against S.

Step 1: Replace cascade out
for first subkey with indeper
uniform random outputs.

Distinguisher for this step
— attack against S.

Theorem statement Is wrong:
omits factor g. Fixed in 2005.

Here g is the number of queries.

T

W

ne Intuition didn't notice g;

ny does g matter for the proof?

Proof outline: Take any cascade

attack A using at most g queries.

Proof has g + 1 steps.

Step 0: Replace outputs from

master key k with independent

uniform random outputs.

Distinguisher for this step
— attack against S.

Step 1: Replace cascade outputs
for first subkey with independent
uniform random outputs.

Distinguisher for this step
— attack against S.

Theorem statement Is wrong:
omits factor g. Fixed in 2005.

Here g is the number of queries.

T

W

ne Intuition didn't notice g;

ny does g matter for the proof?

Proof outline: Take any cascade

attack A using at most g queries.

Proof has g + 1 steps.

Step 0: Replace outputs from

master key k with independent

uniform random outputs.

Distinguisher for this step
— attack against S.

Step 1: Replace cascade outputs
for first subkey with independent
uniform random outputs.

Distinguisher for this step
— attack against S.

Step 2: Replace cascade outputs

from next (distinct) subkey. ...
Step g: Replace cascade outputs
from gth (distinct) subkey.
Could skip steps if g > #{N}.

Theorem statement Is wrong:
omits factor g. Fixed in 2005.

Here g is the number of queries.

T

W

ne Intuition didn't notice g;

ny does g matter for the proof?

Proof outline: Take any cascade

attack A using at most g queries.

Proof has g + 1 steps.

Step 0: Replace outputs from

master key k with independent

uniform random outputs.

Distinguisher for this step
— attack against S.

Step 1: Replace cascade outputs
for first subkey with independent
uniform random outputs.

Distinguisher for this step
— attack against S.

Step 2: Replace cascade outputs

from next (distinct) subkey. ...
Step g: Replace cascade outputs
from gth (distinct) subkey.
Could skip steps if g > #{N}.

Further complications in proof
to monolithically handle £ levels.
2011 Bernstein: simpler to
compose better 2-level theorem.

1 statement 1s wrong:
ctor g. Fixed in 2005.

s the number of queries.
lition didn't notice g;
s g matter for the proof?

itline: Take any cascade
| using at most g queries.

s g + 1 steps.

Replace outputs from
ey k with independent
random outputs.

isher for this step
k against S.

Step 1: Replace cascade outputs
for first subkey with independent
uniform random outputs.

Distinguisher for this step
— attack against S.

Step 2: Replace cascade outputs

from next (distinct) subkey. ...
Step g: Replace cascade outputs
from gth (distinct) subkey.
Could skip steps if g > #{N}.

Further complications in proof
to monolithically handle £ levels.
2011 Bernstein: simpler to
compose better 2-level theorem.

Not hap

A differe
Crypto]
Krawczy

1t IS wrong:
xed in 2005.

ber of queries.
't notice q;
r for the proof?

e any cascade
most g queries.

eps.

utputs from
independent
utputs.

his step
S.

Step 1: Replace cascade outputs

for first subkey with independent

uniform random outputs.

Distinguisher for this step
— attack against S.

Step 2: Rep

from next (c

ace cascade outputs
istinct) subkey. ...

Step g: Replace cascade outputs
from gth (distinct) subkey.
Could skip steps if g > #{N}.

Further complications in proof

to monolithically handle £ levels.

2011 Bernstein: simpler to

compose better 2-level theorem.

Not happy with c:

A different proof ¢
Crypto 1996 Bella
Krawczyk NMAC/

»roof?

cade
leries.

Step 1: Replace cascade outputs

for first subkey with independent

uniform random outputs.

Distinguisher for this step
— attack against S.

Step 2: Rep

from next (c

ace cascade outputs
istinct) subkey. ...

Step g: Replace cascade outputs
from gth (distinct) subkey.
Could skip steps if g > #{N}.

Further complications in proof

to monolithically handle £ levels.

2011 Bernstein: simpler to

compose better 2-level theorem.

Not happy with cascade pro

A different proof appears in
Crypto 1996 Bellare—Canett
Krawczyk NMAC/HMAC pz

Step 1: Replace cascade outputs
for first subkey with independent
uniform random outputs.

Distinguisher for this step
— attack against S.

Step 2: Replace cascade outputs

from next (distinct) subkey. ...
Step g: Replace cascade outputs
from gth (distinct) subkey.
Could skip steps if g > #{N}.

Further complications in proof
to monolithically handle £ levels.
2011 Bernstein: simpler to
compose better 2-level theorem.

Not happy with cascade proofs?

A different proof appears in
Crypto 1996 Bellare—Canetti—
Krawczyk NMAC/HMAC paper.

Step 1: Replace cascade outputs
for first subkey with independent
uniform random outputs.

Distinguisher for this step
— attack against S.

Step 2: Replace cascade outputs

from next (distinct) subkey. ...
Step g: Replace cascade outputs
from gth (distinct) subkey.
Could skip steps if g > #{N}.

Further complications in proof
to monolithically handle £ levels.
2011 Bernstein: simpler to
compose better 2-level theorem.

Not happy with cascade proofs?

A different proof appears in
Crypto 1996 Bellare—Canetti—
Krawczyk NMAC/HMAC paper.

Given key k and input (N1, N»),
NMAC computes S(S(k, N1), N»),

where S is a strearm—etpher
“compression function” .

(Tweaks: output is encrypted;
no prefix-free requirement.)

Step 1: Replace cascade outputs
for first subkey with independent
uniform random outputs.

Distinguisher for this step
— attack against S.

Step 2: Replace cascade outputs

from next (distinct) subkey. ...
Step g: Replace cascade outputs
from gth (distinct) subkey.
Could skip steps if g > #{N}.

Further complications in proof
to monolithically handle £ levels.
2011 Bernstein: simpler to
compose better 2-level theorem.

Not happy with cascade proofs?

A different proof appears in
Crypto 1996 Bellare—Canetti—
Krawczyk NMAC/HMAC paper.

Given key k and input (N1, N»),
NMAC computes S(S(k, N1), N»),

where S is a strearm—etpher
“compression function” .

(Tweaks: output is encrypted;
no prefix-free requirement.)

Proof has weird assumptions.
Crypto 2006 Bellare proof: more
reasonable-sounding assumptions.

Replace cascade outputs
subkey with independent
random outputs.

isher for this step
k against S.

Replace cascade outputs

<t (distinct) subkey. . ..
Replace cascade outputs
1 (distinct) subkey.

ip steps if g > #{N}.

complications in proof
lithically handle £ levels.
rnstein: simpler to

> better 2-level theorem.

Not happy with cascade proofs?

A different proof appears in
Crypto 1996 Bellare—Canetti—
Krawczyk NMAC/HMAC paper.

Given key k and input (N, N»),
NMAC computes S(S(k, N1), N»),

where S is a stream—etpher
“compression function” .

(Tweaks: output is encrypted;
no prefix-free requirement.)

Proof has weird assumptions.
Crypto 2006 Bellare proof: more
reasonable-sounding assumptions.

Complic

2012 Kc
Bellare's

ascade outputs
th independent
utputs.

his step
S.

ascade outputs
t) subkey. ...

ascade outputs
) subkey.

q > #{N}.

ons in proof
1andle £ levels.
mpler to

level theorem.

Not happy with cascade proofs?

A different proof appears in
Crypto 1996 Bellare—Canetti—
Krawczyk NMAC/HMAC paper.

Given key k and input (N, N»),
NMAC computes S(S(k, N1), N»),

where S is a strearm——etpher
“compression function” .

(Tweaks: output is encrypted;
no prefix-free requirement.)

Proof has weird assumptions.
Crypto 2006 Bellare proof: more
reasonable-sounding assumptions.

Complicated; errol

2012 Koblitz—Men
Bellare's assumpti

Lputs
dent

Lputs

Cputs

‘€em.

Not happy with cascade proofs?

A different proof appears in
Crypto 1996 Bellare—Canetti—
Krawczyk NMAC/HMAC paper.

Given key k and input (N, N»),
NMAC computes S(S(k, N1), N»),

where S is a stream—etpher
“compression function” .

(Tweaks: output is encrypted;
no prefix-free requirement.)

Proof has weird assumptions.
Crypto 2006 Bellare proof: more
reasonable-sounding assumptions.

Complicated; error-prone.

2012 Koblitz—Menezes:
Bellare's assumptions are wr

Not happy with cascade proofs? Complicated; error-prone.

A different proof appears in 2012 Koblitz—Menezes:

Crypto 1996 Bellare—Canetti—- Bellare's assumptions are wrong.
Krawczyk NMAC/HMAC paper.

Given key k and input (N1, N»),
NMAC computes S(S(k, N1), N»),

where S is a strearm——etpher
“compression function” .

(Tweaks: output is encrypted;
no prefix-free requirement.)

Proof has weird assumptions.
Crypto 2006 Bellare proof: more
reasonable-sounding assumptions.

Not happy with cascade proofs? Complicated; error-prone.

A different proof appears in 2012 Koblitz—Menezes:

Crypto 1996 Bellare—Canetti—- Bellare's assumptions are wrong.

Krawczyk NMAC/HMAC paper. 2012 Katz—Lindell: public denials.

Given key k and input (N1, N»),
NMAC computes S(S(k, N1), N»),

where S is a strearm——etpher
“compression function” .

(Tweaks: output is encrypted;
no prefix-free requirement.)

Proof has weird assumptions.
Crypto 2006 Bellare proof: more
reasonable-sounding assumptions.

Not happy with cascade proofs?

A different proof appears in
Crypto 1996 Bellare—Canetti—
Krawczyk NMAC/HMAC paper.

Given key k and input (N1, N»),

NMAC computes S(S(k, N1), N»),

where S is a strearm——etpher
“compression function” .

(Tweaks: output is encrypted;
no prefix-free requirement.)

Proof has weird assumptions.
Crypto 2006 Bellare proof: more
reasonable-sounding assumptions.

Complicated; error-prone.

2012 Koblitz—Menezes:
Bellare's assumptions are wrong.

2012 Katz—Lindell: public denials.

2012 Bernstein—Lange:

Bellare's assumptions are wrong.

Not happy with cascade proofs?

A different proof appears in
Crypto 1996 Bellare—Canetti—
Krawczyk NMAC/HMAC paper.

Given key k and input (N1, N»),

NMAC computes S(S(k, N1), N»),

where S is a strearm——etpher
“compression function” .

(Tweaks: output is encrypted;
no prefix-free requirement.)

Proof has weird assumptions.
Crypto 2006 Bellare proof: more
reasonable-sounding assumptions.

Complicated; error-prone.

2012 Koblitz—Menezes:
Bellare's assumptions are wrong.

2012 Katz—Lindell: public denials.

2012 Bernstein—Lange:
Bellare's assumptions are wrong.

2013 Pietrzak: fixed theorem
from Koblitz—Menezes is wrong.

Not happy with cascade proofs?

A different proof appears in
Crypto 1996 Bellare—Canetti—
Krawczyk NMAC/HMAC paper.

Given key k and input (N1, N»),

NMAC computes S(S(k, N1), N»),

where S is a strearm——etpher
“compression function” .

(Tweaks: output is encrypted;
no prefix-free requirement.)

Proof has weird assumptions.
Crypto 2006 Bellare proof: more
reasonable-sounding assumptions.

Complicated; error-prone.

2012 Koblitz—Menezes:
Bellare's assumptions are wrong.

2012 Katz—Lindell: public denials.

2012 Bernstein—Lange:
Bellare's assumptions are wrong.

2013 Pietrzak: fixed theorem
from Koblitz—Menezes is wrong.

2013 Pietrzak, 2013 Koblitz—
Menezes, 2014 Gazi—Pietrzak—

Rybar: another NMAC proof,
as complicated as cascade proof.

py with cascade proofs?

nt proof appears in
1996 Bellare—Canetti—
k NMAC/HMAC paper.

y k and input (Nq, Nb),
omputes S(S(k, Ny), No),

IS a Sstream—€tpher
ssion function” .

. output Is encrypted;
-free requirement.)

1S welrd assumptions.
006 Bellare proof: more
le-sounding assumptions.

Complicated; error-prone.

2012 Koblitz—Menezes:
Bellare's assumptions are wrong.

2012 Katz—Lindell: public denials.

2012 Bernstein—Lange:
Bellare's assumptions are wrong.

2013 Pietrzak: fixed theorem
from Koblitz—Menezes is wrong.

2013 Pietrzak, 2013 Koblitz—
Menezes, 2014 Gazi—Pietrzak—

Rybar: another NMAC proof,
as complicated as cascade proof.

Hmmm.
“A mod
pseudo-t
applicati
RNG ou
Another

iscade proofs?

\ppears In

re—Canetti—
HMAC paper.

1put (/Vl, /\/2),

S(S(k, N1), N»),

N iInhon
L \..IlJ ICF

tion” .
s encrypted;

irement.)

ssumptions.
re proof: more

1g assumptions.

Complicated; error-prone.

2012 Koblitz—Menezes:
Bellare's assumptions are wrong.

2012 Katz—Lindell: public denials.

2012 Bernstein—Lange:

Bellare's assumptions are wrong.

2013 Pietrzak: fixed theorem
from Koblitz—Menezes is wrong.

2013 Pietrzak, 2013 Koblitz—
Menezes, 2014 Gazi—Pietrzak—

Rybar: another NMAC proof,
as complicated as cascade proof.

Hmmm. CCS 200
“A model and arc|
pseudo-random ge
applications to /d
RNG outputs F(k
Another complicat

ofs?

more
tions.

Complicated; error-prone.

2012 Koblitz—Menezes:
Bellare's assumptions are wrong.

2012 Katz—Lindell: public denials.

2012 Bernstein—Lange:
Bellare's assumptions are wrong.

2013 Pietrzak: fixed theorem
from Koblitz—Menezes is wrong.

2013 Pietrzak, 2013 Koblitz—
Menezes, 2014 Gazi—Pietrzak—

Rybar: another NMAC proof,
as complicated as cascade proof.

Hmmm. CCS 2005 Barak—F
“A model and architecture f
pseudo-random generation v
applications to /dev/rando
RNG outputs F(k), F(G(k)
Another complicated proof.

Complicated; error-prone.

2012 Koblitz—Menezes:
Bellare's assumptions are wrong.

2012 Katz—Lindell: public denials.

2012 Bernstein—Lange:
Bellare's assumptions are wrong.

2013 Pietrzak: fixed theorem
from Koblitz—Menezes is wrong.

2013 Pietrzak, 2013 Koblitz—
Menezes, 2014 Gazi—Pietrzak—
Rybar: another NMAC proof,

as complicated as cascade proof.

Hmmm. CCS 2005 Barak—Halevi
“A model and architecture for
pseudo-random generation with
applications to /dev/random” ?
RNG outputs F(k), F(G(k)), etc.
Another complicated proof.

Complicated; error-prone.

2012 Koblitz—Menezes:
Bellare's assumptions are wrong.

2012 Katz—Lindell: public denials.

2012 Bernstein—Lange:
Bellare's assumptions are wrong.

2013 Pietrzak: fixed theorem
from Koblitz—Menezes is wrong.

2013 Pietrzak, 2013 Koblitz—
Menezes, 2014 Gazi—Pietrzak—
Rybar: another NMAC proof,

as complicated as cascade proof.

Hmmm. CCS 2005 Barak—Halevi
“A model and architecture for
pseudo-random generation with
applications to /dev/random” ?
RNG outputs F(k), F(G(k)), etc.
Another complicated proof.

How about 2006 Campagna
“Security bounds for the NIST
codebook-based deterministic
random bit generator’? Doesn't
prove anything about rekeying.

Complicated; error-prone.

2012 Koblitz—Menezes:
Bellare's assumptions are wrong.

2012 Katz—Lindell: public denials.

2012 Bernstein—Lange:
Bellare's assumptions are wrong.

2013 Pietrzak: fixed theorem
from Koblitz—Menezes is wrong.

2013 Pietrzak, 2013 Koblitz—
Menezes, 2014 Gazi—Pietrzak—

Rybar: another NMAC proof,
as complicated as cascade proof.

Hmmm. CCS 2005 Barak—Halevi

“A model and architecture for

pseudo-random generation with
applications to /dev/random” ?
RNG outputs F(k), F(G(k)), etc.
Another complicated proof.

How about 2006 Campagna
“Security bounds for the NIST
codebook-based deterministic
random bit generator’? Doesn't
prove anything about rekeying.

2017 AES-GCM-SIV bounds?
Big errors found by lwata—Seurin.

ated; error-prone.

blitz—Menezes:
-assumptions are wrong.

tz—Lindell: public denials.

rnstein—Lange:
-assumptions are wrong.

trzak: fixed theorem
blitz—Menezes is wrong.

trzak, 2013 Koblitz—
. 2014 Gazi—Pietrzak—
ynother NMAC proof,

licated as cascade proof.

Hmmm. CCS 2005 Barak—Halevi
“A model and architecture for
pseudo-random generation with
applications to /dev/random" ?
RNG outputs F(k), F(G(k)), etc.
Another complicated proof.

How about 2006 Campagna
“Security bounds for the NIST
codebook-based deterministic
random bit generator’? Doesn't
prove anything about rekeying.

2017 AES-GCM-SIV bounds?
Big errors found by lwata—Seurin.

A simple

Rememt

There at
Cipher 1
Cipher 2

-prone.

ezes:
ons are wrong.

. public denials.

nge:
ons are wrong.

ed theorem
ezes IS wrong.

|3 Koblitz—
ZI—Pietrzak—
MIAC proof,
cascade proof.

Hmmm. CCS 2005 Barak—Halevi
“A model and architecture for
pseudo-random generation with
applications to /dev/random” ?

RNG outputs F(k), F(G(k)), etc.

Another complicated proof.

How about 2006 Campagna
“Security bounds for the NIST
codebook-based deterministic
random bit generator’? Doesn't
prove anything about rekeying.

2017 AES-GCM-SIV bounds?

Big errors found by lwata—Seurin.

A simple tight nev

Remember the go.

There are T keys.
Cipher 1: key — 1
Cipher 2: subkey

ong.

enials.

Hmmm. CCS 2005 Barak—Halevi
“A model and architecture for
pseudo-random generation with
applications to /dev/random’ 7

RNG outputs F(k), F(G(k)), etc.

Another complicated proof.

How about 2006 Campagna
“Security bounds for the NIST
codebook-based deterministic
random bit generator’? Doesn't
prove anything about rekeying.

2017 AES-GCM-SIV bounds?

Big errors found by lwata—Seurin.

A simple tight new proof

Remember the goal: analyz

There are T keys.
Cipher 1: key — many subk

Cipher 2: subkey — output:

Hmmm. CCS 2005 Barak—Halevi A simple tight new proof
“A model and architecture for

| | Remember the goal: analyze pt.
pseudo-random generation with

applications to /dev/random” ? There are T keys.
RNG outputs F(k), F(G(k)), etc. Cipher 1: key — many subkeys.
Another complicated proof. Cipher 2: subkey — outputs.

How about 2006 Campagna
“Security bounds for the NIST
codebook-based deterministic
random bit generator’? Doesn't
prove anything about rekeying.

2017 AES-GCM-SIV bounds?
Big errors found by lwata—Seurin.

Hmmm. CCS 2005 Barak—Halevi
“A model and architecture for
pseudo-random generation with
applications to /dev/random’ ?

RNG outputs F(k), F(G(k)), etc.

Another complicated proof.

How about 2006 Campagna
“Security bounds for the NIST
codebook-based deterministic
random bit generator’? Doesn't
prove anything about rekeying.

2017 AES-GCM-SIV bounds?
Big errors found by lwata—Seurin.

10

A simple tight new proof

Remember the goal: analyze pt.

There are T keys.

Ci
Ci

oher 1: key — many subkeys.

oher 2: subkey — outputs.

New proof has just two steps.

Hmmm. CCS 2005 Barak—Halevi A simple tight new proof
“A model and architecture for

| | Remember the goal: analyze pt.
pseudo-random generation with

applications to /dev/random” ? There are T keys.

RNG outputs F(k), F(G(k)), etc. Cipher 1: key — many subkeys.
Another complicated proof. Cipher 2: subkey — outputs.
How about 2006 Campagna New prOOf has jUSt two StepS.

“Security bounds for the NIST
codebook-based deterministic

Step 1. Replace all subkeys.
Distinguisher = T -target

. n? ! . .
random bit generator’ ? Doesn't attack against cipher 1.

prove anything about rekeying.

2017 AES-GCM-SIV bounds?
Big errors found by lwata—Seurin.

Hmmm. CCS 2005 Barak—Halevi
“A model and architecture for
pseudo-random generation with
applications to /dev/random’ ?

RNG outputs F(k), F(G(k)), etc.

Another complicated proof.

How about 2006 Campagna
“Security bounds for the NIST
codebook-based deterministic
random bit generator’? Doesn't
prove anything about rekeying.

2017 AES-GCM-SIV bounds?

Big errors found by lwata—Seurin.

10
A simple tight new proof

Remember the goal: analyze pt.

There are T keys.
Cipher 1: key — many subkeys.

Cipher 2: subkey — outputs.
New proof has just two steps.

Step 1. Replace all subkeys.
Distinguisher = T -target
attack against cipher 1.

Step 2. Replace all outputs.
Distinguisher = (T - many)-target
attack against cipher 2.

CCS 2005 Barak—Halevi
e| and architecture for
andom generation with
ons to /dev/random’ ?

tputs F(k), F(G(k)), etc.

complicated proof.

ut 2006 Campagna

vy bounds for the NIST
k-based deterministic
bit generator” ? Doesn't
ything about rekeying.

'S-GCM-SIV bounds?

rs found by Iwata—Seurin.

A simple tight new proof

Remember the goal: analyze prt.

There are T keys.
Cipher 1: key — many subkeys.

Cipher 2: subkey — outputs.
New proof has just two steps.

Step 1. Replace all subkeys.
Distinguisher = T -target
attack against cipher 1.

Step 2. Replace all outputs.
Distinguisher = (T - many)-target
attack against cipher 2.

10

multi-te
two-le
secur

/ /\

N\

I

multi-te
one-le
secur

4

Y

multi-te
many-|
secur

X: FOC!
Krawczy

not suit:

5 Barak—Halevi
nitecture for
neration with

ev/random’ 7

), F(G(k)), etc.

ed proof.

_ampagna

for the NIST
eterministic
tor’' ? Doesn't
out rekeying.

\VV bounds?

y lwata—Seurin.

A simple tight new proof

Remember the goal: analyze pr.

There are T keys.
Cipher 1: key — many subkeys.

Cipher 2: subkey — outputs.
New proof has just two steps.

Step 1. Replace all subkeys.
Distinguisher = T -target
attack against cipher 1.

Step 2. Replace all outputs.
Distinguisher = (T - many)-target
attack against cipher 2.

10

multi-target

two-level K—=
security
AN
new, easy

multi-target

one-level ——
security \
induct X
multi-target
many-level K=
security

X: FOCS 1996 Be
Krawczyk Lemma

not suitable for int

lalevi
or
vith
m'

), etc.

ST
1C
s 't

ng.

eurin.

A simple tight new proof

Remember the goal: analyze prt.

There are T keys.
Cipher 1: key — many subkeys.

Cipher 2: subkey — outputs.
New proof has just two steps.

Step 1. Replace all subkeys.
Distinguisher = T -target
attack against cipher 1.

Step 2. Replace all outputs.
Distinguisher = (T - many)-target
attack against cipher 2.

10

multi-target single-ta
two-level K two-ley
security securr
AN AN
new, easy h.
multi-target single-ta
one-level K one-le\
security | securr
induct X i

\v/ \v/
multi-target single-ta
many-level K many-le
security securr

X: FOCS 1996 Bellare—Cane
Krawczyk Lemma 3.2. Hard
not suitable for induction.

A simple tight new proof

Remember the goal: analyze pt.

There are T keys.
Cipher 1: key — many subkeys.

Cipher 2: subkey — outputs.
New proof has just two steps.

Step 1. Replace all subkeys.
Distinguisher = T -target
attack against cipher 1.

Step 2. Replace all outputs.
Distinguisher = (T - many)-target
attack against cipher 2.

10

multi-target

single-target

two-level K two-level
security security
/,\\ /,\\
new, €asy harder

multi-target

one-level K

security

iInduct X

\v/

multi-target

single-target
one-level
security

iInduct

\V/

AN

many-level &

security

single-target
many-level
security

X: FOCS 1996 Bellare—Canetti—
Krawczyk Lemma 3.2. Harder;

not suitable for induction.

11

