Challenges in
quantum algorithms for
integer factorization

D. J. Bernstein

University of lllinois at Chicago

Prelude: What is the fastest
algorithm to sort an array?

def blindsort(x) :
while not issorted(x):

permuterandomly (x)

def bubblesort(x):
for j in range(len(x)):
for i in reversed(range(j)):
x[i] ,x[i+1] = (

min(x[i],x[i+1]),

max (x[i],x[i+1])
)
bubblesort takes poly time.
©(n®) comparisons.
Huge speedup over blindsort!

Is this the end of the story?



Challenges in
quantum algorithms for
integer factorization

D. J. Bernstein

University of lllinois at Chicago

Prelude: What is the fastest
algorithm to sort an array?

def blindsort(x) :
while not issorted(x):

permuterandomly (x)

def bubblesort(x):
for j in range(len(x)):
for i in reversed(range(j)):
x[i] ,x[i+1] = (

min(x[i],x[i+1]),

max (x[i],x[i+1])

)

bubblesort takes poly time.
©(n®) comparisons.

Huge speedup over blindsort!
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def bubblesort(x):

for j in range(len(x)):

for i in reversed(range(j)):

x[i],x[i+1]
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bubblesort takes poly time.

©(n?) comparisons.

Huge speedup over blindsort!

Is this the end of the story?

No, still not optimal.

Analogous: What is the fast
algorithm to factor integers:

Shor’s algorithm takes poly
Huge speedup over NFS!

b2(log b)11°(1) qubit operat
to factor b-bit integer,
using standard subroutines
for fast integer arithmetic.

Is this the end of the story?



def bubblesort(x): Analogous: What is the fastest
for j in range(len(x)): algorithm to factor integers?

for i in reversed(range(j)):
x[i],x[i+1] = (
min(x[i] ,x[i+1]),
max (x[i] ,x[i+1]) b2(|og b)1+°(1) qubit operations
) to factor b-bit integer,

Shor’s algorithm takes poly time.
Huge speedup over NFS!

| using standard subroutines
bubblesort takes poly time.

0 . for fast integer arithmetic.
©(n“) comparisons.

Huge speedup over blindsort! Is this the end of the story?
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0 . for fast integer arithmetic.
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| No, still not optimal.
Is this the end of the story?

No, still not optimal. “Shor's algorithm: the bubble sort
of integer factorization.”
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Analogous: What is the fastest
algorithm to factor integers?

Shor’s algorithm takes poly time.
Huge speedup over NFS!

b2(log b)1T°(1) qubit operations
to factor b-bit integer,

using standard subroutines

for fast integer arithmetic.

Is this the end of the story?
No, still not optimal.

“Shor’s algorithm: the bubble sort
of integer factorization.”

A simple
suboptir
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314159265358979323
986280348253421170
284102701938521105
527120190914564856
748815209209628292
433057270365759591
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Analogous: What is the fastest
algorithm to factor integers?

Shor’s algorithm takes poly time.
Huge speedup over NFS!

b2(log b)1T°(1) qubit operations
to factor b-bit integer,

using standard subroutines

for fast integer arithmetic.

Is this the end of the story?
No, still not optimal.

“Shor’s algorithm: the bubble sort
of integer factorization.”

A simple exercise
suboptimality of S
Find a prime divis:

3141592653589793238462643383279502884197
9862803482534211706798214808651328230664
2841027019385211055596446229489549303819
5271201909145648566923460348610454326648
7488152092096282925409171536436789259036
4330572703657595919530921861173819326117
4891227938183011949129833673362440656643
7053921717629317675238467481846766940513
1736371787214684409012249534301465495853
0864034418159813629774771309960518707211
9502445945534690830264252230825334468503
3814206171776691473035982534904287554687
2171226806613001927876611195909216420198
682303019520353018529689957736225994 1389
9508295331168617278558890750983817546374
2858361603563707660104710181942955596198
4620804668425906949129331367702898915210
0355876402474964732639141992726042699227
0286182974555706749838505494588586926995
6023648066549911988183479775356636980742
0816470600161452491921732172147723501414
8438523323907394143334547762416862518983
9049460165346680498862723279178608578438
2251252051173929848960841284886269456042
5047123713786960956364371917287467764657
9946576407895126946839835259570982582262
1363944374553050682034962524517493996514
7410597885959772975498930161753928468138
4997252468084598727364469584865383673622
7807977156914359977001296160894416948685
6016842739452267467678895252138522549954
3559363456817432411251507606947945109659
5601015033086179286809208747609178249385
1682998948722658804857564014270477555132
2105114135473573952311342716610213596953
4037420073105785390621983874478084 784896
1005370614680674919278191197939952061419
1956181467514269123974894090718649423196
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Analogous: What is the fastest
algorithm to factor integers?

Shor’s algorithm takes poly time.
Huge speedup over NFS!

b2(log b)1T°(1) qubit operations
to factor b-bit integer,

using standard subroutines

for fast integer arithmetic.

Is this the end of the story?
No, still not optimal.

“Shor’s algorithm: the bubble sort
of integer factorization.”

A simple exercise to illustrat
suboptimality of Shor's algo
Find a prime divisor of |10°

31415926535897932384626433832795028841971693993751058209749445
98628034825342117067982148086513282306647093844609550582231725
28410270193852110555964462294895493038196442881097566593344612
52712019091456485669234603486104543266482133936072602491412737
74881520920962829254091715364367892590360011330530548820466521
43305727036575959195309218611738193261179310511854807446237996
4891227938183011949129833673362440656643086021394946395224 7371
70539217176293176752384674818467669405132000568127145263560827
17363717872146844090122495343014654958537105079227968925892354
08640344181598136297747713099605187072113499999983729780499510
95024459455346908302642522308253344685035261931188171010003137
38142061717766914730359825349042875546873115956286388235378759
21712268066130019278766111959092164201989380952572010654858632
68230301952035301852968995773622599413891249721775283479131515
95082953311686172785588907509838175463746493931925506040092770
28583616035637076601047101819429555961989467678374494482553797
46208046684259069491293313677028989152104752162056966024058038
03558764024749647326391419927260426992279678235478163600934172
02861829745557067498385054945885869269956909272107975093029553
60236480665499119881834/797753566369807426542527862551818417574
08164706001614524919217321721477235014144197356854816136115735
84385233239073941433345477624168625189835694855620992192221842
90494601653466804988627232791786085784383827967976681454100953
22512520511739298489608412848862694560424196528502221066118630
50471237137869609563643719172874677646575739624138908658326459
99465764078951269468398352595709825822620522489407726719478268
13639443745530506820349625245174939965143142980919065925093722
74105978859597729754989301617539284681382686838689427741559918
49972524680845987273644695848653836736222626099124608051243884
78079771569143599770012961608944169486855584840635342207222582
60168427394522674676788952521385225499546667278239864565961163
35593634568174324112515076069479451096596094025228879710893145
56010150330861792868092087476091782493858900971490967598526136
16829989487226588048575640142704775551323796414515237462343645
21051141354735739523113427166102135969536231442952484937187110
40374200731057853906219838744780847848968332144571386875194350
10053706146806749192781911979399520614196634287544406437451237
19561814675142691239748940907186494231961567945208



Analogous: What is the fastest
algorithm to factor integers?

Shor’s algorithm takes poly time.
Huge speedup over NFS!

b2(log b)1T°(1) qubit operations
to factor b-bit integer,

using standard subroutines

for fast integer arithmetic.

Is this the end of the story?
No, still not optimal.

“Shor’s algorithm: the bubble sort
of integer factorization.”

A simple exercise to illustrate

suboptimality of Shor's algorithm:
Find a prime divisor of 103097,

31415926535897932384626433832795028841971693993751058209749445923078164062862089
98628034825342117067982148086513282306647093844609550582231725359408128481117450
28410270193852110555964462294895493038196442881097566593344612847564823378678316
52712019091456485669234603486104543266482133936072602491412737245870066063155881
74881520920962829254091715364367892590360011330530548820466521384146951941511609
43305727036575959195309218611738193261179310511854807446237996274956735188575272
48912279381830119491298336733624406566430860213949463952247371907021798609437027
70539217176293176752384674818467669405132000568127145263560827785771342757789609
17363717872146844090122495343014654958537105079227968925892354201995611212902196
08640344181598136297747713099605187072113499999983729780499510597317328160963185
95024459455346908302642522308253344685035261931188171010003137838752886587533208
38142061717766914730359825349042875546873115956286388235378759375195778185778053
21712268066130019278766111959092164201989380952572010654858632788659361533818279
68230301952035301852968995773622599413891249721775283479131515574857242454150695
95082953311686172785588907509838175463746493931925506040092770167113900984882401
28583616035637076601047101819429555961989467678374494482553797747268471040475346
46208046684259069491293313677028989152104752162056966024058038150193511253382430
03558764024749647326391419927260426992279678235478163600934172164121992458631503
02861829745557067498385054945885869269956909272107975093029553211653449872027559
60236480665499119881834797753566369807426542527862551818417574672890977772793800
08164706001614524919217321721477235014144197356854816136115735255213347574184946
84385233239073941433345477624168625189835694855620992192221842725502542568876717
90494601653466804988627232791786085784383827967976681454100953883786360950680064
22512520511739298489608412848862694560424196528502221066118630674427862203919494
50471237137869609563643719172874677646575739624138908658326459958133904780275900
99465764078951269468398352595709825822620522489407726719478268482601476990902640
13639443745530506820349625245174939965143142980919065925093722169646151570985838
74105978859597729754989301617539284681382686838689427741559918559252459539594310
49972524680845987273644695848653836736222626099124608051243884390451244136549762
78079771569143599770012961608944169486855584840635342207222582848864815845602850
60168427394522674676788952521385225499546667278239864565961163548862305774564980
35593634568174324112515076069479451096596094025228879710893145669136867228748940
56010150330861792868092087476091782493858900971490967598526136554978189312978482
16829989487226588048575640142704775551323796414515237462343645428584447952658678
21051141354735739523113427166102135969536231442952484937187110145765403590279934
40374200731057853906219838/744780847848968332144571386875194350643021845319104848
10053706146806749192781911979399520614196634287544406437451237181921799983910159
19561814675142691239748940907186494231961567945208
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31415926535897932384626433832795028841971693993751058209749445923078164062862089
9862803482534211706798214808651328230664 7093844609550582231725359408128481117450
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43305727036575959195309218611738193261179310511854807446237996274956735188575272
48912279381830119491298336733624406566430860213949463952247371907021798609437027
70539217176293176752384674818467669405132000568127145263560827785771342757789609
17363717872146844090122495343014654958537105079227968925892354201995611212902196
08640344181598136297747713099605187072113499999983729780499510597317328160963185
95024459455346908302642522308253344685035261931188171010003137838752886587533208
38142061717766914730359825349042875546873115956286388235378759375195778185778053
21712268066130019278766111959092164201989380952572010654858632788659361533818279
68230301952035301852968995773622599413891249721775283479131515574857242454150695
95082953311686172785588907509838175463746493931925506040092770167113900984882401
28583616035637076601047101819429555961989467678374494482553797747268471040475346
46208046684259069491293313677028989152104752162056966024058038150193511253382430
03558764024749647326391419927260426992279678235478163600934172164121992458631503
02861829745557067498385054945885869269956909272107975093029553211653449872027559
60236480665499119881834/797753566369807426542527862551818417574672890977772793800
08164706001614524919217321721477235014144197356854816136115735255213347574184946
84385233239073941433345477624168625189835694855620992192221842725502542568876717
90494601653466804988627232791786085784383827967976681454100953883786360950680064
22512520511739298489608412848862694560424196528502221066118630674427862203919494
50471237137869609563643719172874677646575739624138908658326459958133904 780275900
99465764078951269468398352595709825822620522489407726719478268482601476990902640
13639443745530506820349625245174939965143142980919065925093722169646151570985838
74105978859597729754989301617539284681382686838689427741559918559252459539594310
49972524680845987273644695848653836736222626099124608051243884390451244136549762
78079771569143599770012961608944169486855584840635342207222582848864815845602850
60168427394522674676788952521385225499546667278239864565961163548862305774564980
35593634568174324112515076069479451096596094025228879710893145669136867228748940
56010150330861792868092087476091782493858900971490967598526136554978189312978482
16829989487226588048575640142704775551323796414515237462343645428584447952658678
21051141354735739523113427166102135969536231442952484937187110145765403590279934
40374200731057853906219838744780847848968332144571386875194350643021845319104848
10053706146806749192781911979399520614196634287544406437451237181921799983910159
19561814675142691239748940907186494231961567945208
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A simple exercise to illustrate

suboptimality of Shor's algorithm:
Find a prime divisor of 103097,

31415926535897932384626433832795028841971693993751058209749445923078164062862089
9862803482534211706798214808651328230664 7093844609550582231725359408128481117450
28410270193852110555964462294895493038196442881097566593344612847564823378678316
52712019091456485669234603486104543266482133936072602491412737245870066063155881
74881520920962829254091715364367892590360011330530548820466521384146951941511609
43305727036575959195309218611738193261179310511854807446237996274956735188575272
48912279381830119491298336733624406566430860213949463952247371907021798609437027
70539217176293176752384674818467669405132000568127145263560827785771342757789609
17363717872146844090122495343014654958537105079227968925892354201995611212902196
08640344181598136297747713099605187072113499999983729780499510597317328160963185
95024459455346908302642522308253344685035261931188171010003137838752886587533208
38142061717766914730359825349042875546873115956286388235378759375195778185778053
21712268066130019278766111959092164201989380952572010654858632788659361533818279
68230301952035301852968995773622599413891249721775283479131515574857242454150695
95082953311686172785588907509838175463746493931925506040092770167113900984882401
28583616035637076601047101819429555961989467678374494482553797747268471040475346
46208046684259069491293313677028989152104752162056966024058038150193511253382430
03558764024749647326391419927260426992279678235478163600934172164121992458631503
02861829745557067498385054945885869269956909272107975093029553211653449872027559
60236480665499119881834797753566369807426542527862551818417574672890977772793800
08164706001614524919217321721477235014144197356854816136115735255213347574184946
84385233239073941433345477624168625189835694855620992192221842725502542568876717
90494601653466804988627232791786085784383827967976681454100953883786360950680064
22512520511739298489608412848862694560424196528502221066118630674427862203919494
50471237137869609563643719172874677646575739624138908658326459958133904 780275900
99465764078951269468398352595709825822620522489407726719478268482601476990902640
13639443745530506820349625245174939965143142980919065925093722169646151570985838
74105978859597729754989301617539284681382686838689427741559918559252459539594310
49972524680845987273644695848653836736222626099124608051243884390451244136549762
78079771569143599770012961608944169486855584840635342207222582848864815845602850
60168427394522674676788952521385225499546667278239864565961163548862305774564980
35593634568174324112515076069479451096596094025228879710893145669136867228748940
56010150330861792868092087476091782493858900971490967598526136554978189312978482
16829989487226588048575640142704775551323796414515237462343645428584447952658678
21051141354735739523113427166102135969536231442952484937187110145765403590279934
40374200731057853906219838/744780847848968332144571386875194350643021845319104848
10053706146806749192781911979399520614196634287544406437451237181921799983910159
19561814675142691239748940907186494231961567945208

Important variatio

factorization probl

e Maybe need one

May
May
May
May
May

be need all

DE |

‘actors a

DE |

‘actors a

he there are

e Inputs In

Important variatio

(even assuming pe
e Qubits.
e Area (“A”, inclL
e Qubit operation:
e Depth.
e Time (“T": late



est

time.
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A simple exercise to illustrate

suboptimality of Shor's algorithm:
Find a prime divisor of 103097,

31415926535897932384626433832795028841971693993751058209749445923078164062862089
98628034825342117067982148086513282306647093844609550582231725359408128481117450
28410270193852110555964462294895493038196442881097566593344612847564823378678316
52712019091456485669234603486104543266482133936072602491412737245870066063155881
74881520920962829254091715364367892590360011330530548820466521384146951941511609
43305727036575959195309218611738193261179310511854807446237996274956735188575272
48912279381830119491298336733624406566430860213949463952247371907021798609437027
70539217176293176752384674818467669405132000568127145263560827785771342757789609
17363717872146844090122495343014654958537105079227968925892354201995611212902196
08640344181598136297747713099605187072113499999983729780499510597317328160963185
95024459455346908302642522308253344685035261931188171010003137838752886587533208
38142061717766914730359825349042875546873115956286388235378759375195778185778053
21712268066130019278766111959092164201989380952572010654858632788659361533818279
68230301952035301852968995773622599413891249721775283479131515574857242454150695
95082953311686172785588907509838175463746493931925506040092770167113900984882401
28583616035637076601047101819429555961989467678374494482553797747268471040475346
46208046684259069491293313677028989152104752162056966024058038150193511253382430
03558764024749647326391419927260426992279678235478163600934172164121992458631503
02861829745557067498385054945885869269956909272107975093029553211653449872027559
60236480665499119881834/797753566369807426542527862551818417574672890977772793800
08164706001614524919217321721477235014144197356854816136115735255213347574184946
84385233239073941433345477624168625189835694855620992192221842725502542568876717
90494601653466804988627232791786085784383827967976681454100953883786360950680064
22512520511739298489608412848862694560424196528502221066118630674427862203919494
50471237137869609563643719172874677646575739624138908658326459958133904 780275900
99465764078951269468398352595709825822620522489407726719478268482601476990902640
13639443745530506820349625245174939965143142980919065925093722169646151570985838
74105978859597729754989301617539284681382686838689427741559918559252459539594310
49972524680845987273644695848653836736222626099124608051243884390451244136549762
78079771569143599770012961608944169486855584840635342207222582848864815845602850
60168427394522674676788952521385225499546667278239864565961163548862305774564980
35593634568174324112515076069479451096596094025228879710893145669136867228748940
56010150330861792868092087476091782493858900971490967598526136554978189312978482
16829989487226588048575640142704775551323796414515237462343645428584447952658678
21051141354735739523113427166102135969536231442952484937187110145765403590279934
40374200731057853906219838744780847848968332144571386875194350643021845319104848
10053706146806749192781911979399520614196634287544406437451237181921799983910159
19561814675142691239748940907186494231961567945208

Important variations in the

factorization problem:

e Maybe need one factor.

e May
o May
o May

o May
e May

be need all factors.

e factors are small.
ne factors are large.
ne there are many Ing

oe Inputs In superpos

Important variations in metr

(even assuming perfect devi
e Qubits.
e Area (“A", including wire

e Qubit operations ( “gates”
e Depth.
e Time (“T": latency).



A simple exercise to illustrate Important variations in the
suboptimality of Shor's algorithm: factorization problem:

Find a prime divisor of L1030097TJ. e Maybe need one factor.
srarsozesassarsapsadsaesassapTasozsse o sassesTstossanorasaasesorsieacezsecss | @ Mlaybe need all factors.

9862803482534211706798214808651328230664 7093844609550582231725359408128481117450
28410270193852110555964462294895493038196442881097566593344612847564823378678316 o~
52712019091456485669234603486104543266482133936072602491412737245870066063155881 o I\/I y T | |

74881520920962829254091715364367892590360011330530548820466521384146951941511609 a :) e a Cto rs a re S m a )
43305727036575959195309218611738193261179310511854807446237996274956735188575272

48912279381830119491298336733624406566430860213949463952247371907021798609437027 V £ |
70539217176293176752384674818467669405132000568127145263560827785771342757789609 ® ay :) e a CtO rS a re a rge -
17363717872146844090122495343014654958537105079227968925892354201995611212902196
08640344181598136297747713099605187072113499999983729780499510597317328160963185 '\/' h .
95024459455346908302642522308253344685035261931188171010003137838752886587533208 ® ay 3 e t e re a re I I I a n y I n p U tS .

38142061717766914730359825349042875546873115956286388235378759375195778185778053
21712268066130019278766111959092164201989380952572010654858632788659361533818279 . . -
68230301952035301852968995773622599413891249721775283479131515574857242454150695 ® M ay DEe 1IN p uts 1N su p er p osltion.
95082953311686172785588907509838175463746493931925506040092770167113900984882401
28583616035637076601047101819429555961989467678374494482553797747268471040475346
46208046684259069491293313677028989152104752162056966024058038150193511253382430
03558764024749647326391419927260426992279678235478163600934172164121992458631503 - - - -
0286182974555706749838505494588586926995690927210797509302955321 1653449872027559 I mpo rtant variations in metrics
60236480665499119881834797753566369807426542527862551818417574672890977772793800
08164706001614524919217321721477235014144197356854816136115735255213347574184946 - .
84385233239073941433345477624168625189835694855620992192221842725502542568876717 ( even assumin g p e rfeCt d evi CeS) )
90494601653466804988627232791786085784383827967976681454100953883786360950680064
22512520511739298489608412848862694560424196528502221066118630674427862203919494 .
50471237137869609563643719172874677646575739624138908658326459958133904780275900 ® Q u b ITS.
99465764078951269468398352595709825822620522489407726719478268482601476990902640
13639443745530506820349625245174939965143142980919065925093722169646151570985838 Ay . ] ]
74105978859597729754989301617539284681382686838689427741559918559252459539594310 /ﬁ\ /[\ | (j
49972524680845987273644695848653836736222626099124608051243884390451244136549762 ® rea ( , 1NCiudin g WIre area ) L
780797715691435997700129616089441694868555848406353422072225828488648 15845602850
60168427394522674676788952521385225499546667278239864565961163548862305774564980 - - G "
35593634568174324112515076069479451096596094025228879710893145669136867228748940 ® Q u b It O p erations ( g ates ) .
56010150330861792868092087476091782493858900971490967598526136554978189312978482
16829989487226588048575640142704775551323796414515237462343645428584447952658678
21051141354735739523113427166102135969536231442952484937187110145765403590279934 o D e pt h ]
40374200731057853906219838744780847848968332144571386875194350643021845319104848
10053706146806749192781911979399520614196634287544406437451237181921799983910159

19561814675142691239748940907186494231961567945208 [ ) T i m e ( ‘ ‘T, ' | a te n Cy)




» exercise to illustrate

nality of Shor’s algorithm:
rime divisor of |10°9%r]|.

84626433832795028841971693993751058209749445923078164062862089
67982148086513282306647093844609550582231725359408128481117450
55964462294895493038196442881097566593344612847564823378678316
69234603486104543266482133936072602491412737245870066063155881
04091715364367892590360011330530548820466521384146951941511609
95309218611738193261179310511854807446237996274956735188575272
91298336733624406566430860213949463952247371907021798609437027
52384674818467669405132000568127145263560827785771342757789609
90122495343014654958537105079227968925892354201995611212902196
97747713099605187072113499999983729780499510597317328160963185
02642522308253344685035261931188171010003137838752886587533208
30359825349042875546873115956286388235378759375195778185778053
78766111959092164201989380952572010654858632788659361533818279
52968995773622599413891249721775283479131515574857242454150695
85588907509838175463746493931925506040092770167113900984882401
01047101819429555961989467678374494482553797747268471040475346
91293313677028989152104752162056966024058038150193511253382430
26391419927260426992279678235478163600934172164121992458631503
98385054945885869269956909272107975093029553211653449872027559
81834797753566369807426542527862551818417574672890977772793800
19217321721477235014144197356854816136115735255213347574184946
33345477624168625189835694855620992192221842725502542568876717
88627232791786085784383827967976681454100953883786360950680064
8960841284886269456042419652850222106611863067/4427862203919494
63643719172874677646575739624138908658326459958133904780275900
68398352595709825822620522489407726719478268482601476990902640
20349625245174939965143142980919065925093722169646151570985838
54989301617539284681382686838689427741559918559252459539594310
73644695848653836736222626099124608051243884390451244136549762
70012961608944169486855584840635342207222582848864815845602850
76788952521385225499546667278239864565961163548862305774564980
12515076069479451096596094025228879710893145669136867228748940
68092087476091782493858900971490967598526136554978189312978482
48575640142704775551323796414515237462343645428584447952658678
23113427166102135969536231442952484937187110145765403590279934
06219838744 780847848968332144571386875194350643021845319104848
92781911979399520614196634287544406437451237181921799983910159
39748940907186494231961567945208

Important variations in the
factorization problem:

e Maybe need one factor.
e Maybe need all factors.
e Maybe factors are small.
e Maybe factors are large.

e Maybe there are many inputs.

e Maybe Inputs In superposition.

Important variations in metrics
(even assuming perfect devices):

e Qubits.

e Area (“A", including wire area).

e Qubit operations ( “gates”).
e Depth.
e Time (“T": latency).

Short-te

1995 Kis
Barenco
Chari-D
1998 Za
2000 Pa
2002 K
Beaureg
Kunihirc
2014 Sv
2015 Gr
Smith, Z
Svore, 2
Johnstol
factors ¢



to illustrate

hor's algorithm:
or of [10°9%7|.

1693993751058209749445923078164062862089
7093844609550582231725359408128481117450
6442881097566593344612847564823378678316
2133936072602491412737245870066063155881
0011330530548820466521384146951941511609
9310511854807446237996274956735188575272
0860213949463952247371907021798609437027
2000568127145263560827785771342757789609
7105079227968925892354201995611212902196
3499999983729780499510597317328160963185
5261931188171010003137838752886587533208
3115956286388235378759375195778185778053
9380952572010654858632788659361533818279
1249721775283479131515574857242454150695
6493931925506040092770167113900984882401
9467678374494482553797747268471040475346
4752162056966024058038150193511253382430
9678235478163600934172164121992458631503
6909272107975093029553211653449872027559
6542527862551818417574672890977772793800
4197356854816136115735255213347574184946
5694855620992192221842725502542568876717
3827967976681454100953883786360950680064
4196528502221066118630674427862203919494
5739624138908658326459958133904 780275900
0522489407726719478268482601476990902640
3142980919065925093722169646151570985838
2686838689427741559918559252459539594310
2626099124608051243884390451244136549762
5584840635342207222582848864815845602850
6667278239864565961163548862305774564980
6094025228879710893145669136867228748940
8900971490967598526136554978189312978482
3796414515237462343645428584447952658678
6231442952484937187110145765403590279934
8332144571386875194350643021845319104848
6634287544406437451237181921799983910159
1567945208

Important variations in the
factorization problem:

e Maybe need one factor.
e Maybe need all factors.
e Maybe factors are small.

e Maybe factors are large.

e Maybe there are many Inputs.

e Maybe inputs In superposition.

Important variations in metrics
(even assuming perfect devices):

e Qubits.

e Area (“A", including wire area).

e Qubit operations ( “gates”).
e Depth.
e Time (“T": latency).

Short-term RSA s

1995 Kitaev, 1996
Barenco—Ekert, 1€
Chari—Devabhaktu
1998 Zalka, 1999
2000 Parker—Pleni
2002 Kitaev—Shen
Beauregard, 2006
Kunihiro, 2010 Ah
2014 Svore—Hastir
2015 Grosshans—L
Smith, 2016 Hane
Svore, 2017 Ekera
Johnston: try to s

factors out of Sho



€

rithm:
DO97TJ |

923078164062862089
359408128481117450
847564823378678316
245870066063155881
384146951941511609
274956735188575272
907021798609437027
785771342757789609
201995611212902196
597317328160963185
838752886587533208
375195778185778053
788659361533818279
574857242454150695
167113900984882401
747268471040475346
150193511253382430
164121992458631503
211653449872027559
672890977772793800
255213347574184946
725502542568876717
883786360950680064
674427862203919494
958133904780275900
482601476990902640
169646151570985838
559252459539594310
390451244136549762
848864815845602850
548862305774564980
669136867228748940
554978189312978482
428584447952658678
145765403590279934
643021845319104848
181921799983910159

Important variations in the
factorization problem:

e Maybe need one factor.
e Maybe need all factors.
e Maybe factors are small.
e Maybe factors are large.

e Maybe there are many inputs.

e Maybe Inputs In superposition.

Important variations in metrics

(even assuming perfect devices):
e Qubits.

e Area (“A", including wire area).

e Qubit operations ( “gates”).
e Depth.
e Time (“T": latency).

Short-term RSA security

1995 Kitaev, 1996 Vedral—

Barenco—Ekert, 1996 Beckm
Chari—Devabhaktuni—Preskil
1998 Zalka, 1999 Mosca—Ek
enio, 2001 S«

2000 Parker—P
2002 Kitaev-S

nen—Vya

Beauregard, 2006 Taka
Kunihiro, 2010 Ahmadi—Chi
2014 Svore—Hastings—Freedr
2015 Grosshans—Lawson—Mc
Smith, 2016 Haner—Roettele
Svore, 2017 Ekera—Hastad,
Johnston: try to squeeze co

yi, 2

nashi

factors out of Shor's algoritl



Important variations in the
factorization problem:

e Maybe need one factor.
e Maybe need all factors.
e Maybe factors are small.
e Maybe factors are large.

e Maybe there are many Inputs.

e Maybe inputs In superposition.

Important variations in metrics
(even assuming perfect devices):

e Qubits.

e Area (“A", including wire area).

e Qubit operations ( “gates”).
e Depth.
e Time (“T": latency).

Short-term RSA security

1995 Kitaev, 1996 Vedral-
Barenco—Ekert, 1996 Beckman—
Chari—Devabhaktuni—Preskill,
1998 Zalka, 1999 Mosca—Ekert,
2000 Parker—Plenio, 2001 Seifert,
2002 Kitaev—Shen—Vyalyi, 2003
Beauregard, 2006 Takahashi—
Kunihiro, 2010 Ahmadi—Chiang,
2014 Svore—Hastings—Freedman,

2015 Grosshans—Lawson—Morain—
Smith, 2016 Haner—Roetteler—
Svore, 2017 Ekerd—Hastad, 2017
Johnston: try to squeeze constant
factors out of Shor's algorithm.



1t variations in the

tion problem:

» need one factor.

» need all factors.

» factors are small.

> factors are large.

> there are many Inputs.
 Inputs In superposition.

1t variations in metrics
suming perfect devices):

).

“A", including wire area).

operations ( “gates”).

(“T": latency).

Short-term RSA security

1995 Kitaev, 1996 Vedral—
Barenco—Ekert, 1996 Beckman—
Chari—Devabhaktuni—Preskill,
1998 Zalka, 1999 Mosca—Ekert,

2000 Parker—P
2002 Kitaev-S

enio, 2001 Seifert,

nen—Vya

Beauregard, 2006 Taka
Kunihiro, 2010 Ahmadi—Chiang,

2014 Svore—Hastings—Freedman,
2015 Grosshans—Lawson—Morain—

yi, 2003

nashi—

Smith, 2016 Haner—Roetteler—

Svore, 2017 Ekerd—Hastad, 2017
Johnston: try to squeeze constant

factors out of Shor's algorithm.

2003 Be
... 2016
2b 4+ 2 «
Toffoli g
CNOT ¢



ns in the

em:

factor.
factors.

re small.

re large.
“many Inputs.
superposition.

ns in metrics
rfect devices):

ding wire area).

5 ( “gates”).

ncy).

Short-term RSA security

1995 Kitaev, 1996 Vedral-
Barenco—Ekert, 1996 Beckman—
Chari—Devabhaktuni—Preskill,
1998 Zalka, 1999 Mosca—Ekert,
2000 Parker—Plenio, 2001 Seifert,
2002 Kitaev—Shen—Vyalyi, 2003
Beauregard, 2006 Takahashi—
Kunihiro, 2010 Ahmadi—Chiang,
2014 Svore—Hastings—Freedman,

2015 Grosshans—Lawson—Morain—

Smith, 2016 Haner—Roetteler—
Svore, 2017 Ekerd—Hastad, 2017
Johnston: try to squeeze constant
factors out of Shor's algorithm.

2003 Beauregard:
... 2016 Haner—-R
2b + 2 qubits; 64/
Toffoli gates; simil

CNOT gates; dept



Short-term RSA security

1995 Kitaev, 1996 Vedral-
Barenco—Ekert, 1996 Beckman—
Chari—Devabhaktuni—Preskill,
1998 Zalka, 1999 Mosca—Ekert,
2000 Parker—Plenio, 2001 Seifert,
2002 Kitaev—Shen—Vyalyi, 2003
Beauregard, 2006 Takahashi—
Kunihiro, 2010 Ahmadi—Chiang,
2014 Svore—Hastings—Freedman,

2015 Grosshans—Lawson—Morain—

Smith, 2016 Haner—Roetteler—
Svore, 2017 Ekerd—Hastad, 2017
Johnston: try to squeeze constant
factors out of Shor's algorithm.

2003 Beauregard: 2b + 3 qt
... 2016 Haner—Roetteler—S
2b + 2 qubits; 64b3(|g b+ (
Toffoli gates; similar numbe
CNOT gates; depth O(b3).



Short-term RSA security

1995 Kitaev, 1996 Vedral-
Barenco—Ekert, 1996 Beckman—
Chari—Devabhaktuni—Preskill,
1998 Zalka, 1999 Mosca—Ekert,

2000 Parker—-P
2002 Kitaev-S

nen—Vya

Beauregard, 2006 Taka
Kunihiro, 2010 Ahmadi—Chiang,
2014 Svore—Hastings—Freedman,

enio, 2001 Seifert,

yi, 2003

nashi—

2015 Grosshans—Lawson—Morain—
Smith, 2016 Haner—Roetteler—

Svore, 2017 Ekerd—Hastad, 2017
Johnston: try to squeeze constant

factors out of Shor's algorithm.

2003 Beauregard: 2b + 3 qubits.
... 2016 Haner—Roetteler—Svore:
2b + 2 qubits; 64b3(Ig b + O(1))
Toffoli gates; similar number of
CNOT gates; depth O(b?).



Short-term RSA security

1995 Kitaev, 1996 Vedral-
Barenco—Ekert, 1996 Beckman—
Chari—Devabhaktuni—Preskill,
1998 Zalka, 1999 Mosca—Ekert,

2000 Parker—-P
2002 Kitaev-S

nen—Vya

Beauregard, 2006 Taka
Kunihiro, 2010 Ahmadi—Chiang,
2014 Svore—Hastings—Freedman,

enio, 2001 Seifert,

yi, 2003

nashi—

2015 Grosshans—Lawson—Morain—
Smith, 2016 Haner—Roetteler—

Svore, 2017 Ekerd—Hastad, 2017
Johnston: try to squeeze constant

factors out of Shor's algorithm.

2003 Beauregard: 2b + 3 qubits.
... 2016 Haner—Roetteler—Svore:
2b + 2 qubits; 64b3(Ig b + O(1))

Toffoli gates;

similar number of

CNOT gates; depth O(b3).

Conventiona

cannot avolc

wisdom:
2b qubits

for controlled mulmod.
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