Challenges in
quantum algorithms for
integer factorization

D. J. Bernstein

University of lllinois at Chicago

Prelude: What is the fastest
algorithm to sort an array?

def blindsort(x) :
while not issorted(x):

permuterandomly (x)

def bubblesort(x):
for j in range(len(x)):
for i in reversed(range(j)):
x[i] ,x[i+1] = (

min(x[i],x[i+1]),

max (x[i],x[i+1])
)
bubblesort takes poly time.
©(n®) comparisons.
Huge speedup over blindsort!

Is this the end of the story?

Challenges in
quantum algorithms for
integer factorization

D. J. Bernstein

University of lllinois at Chicago

Prelude: What is the fastest
algorithm to sort an array?

def blindsort(x) :
while not issorted(x):

permuterandomly (x)

def bubblesort(x):
for j in range(len(x)):
for i in reversed(range(j)):
x[i] ,x[i+1] = (

min(x[i],x[i+1]),

max (x[i],x[i+1])

)

bubblesort takes poly time.
©(n®) comparisons.

Huge speedup over blindsort!

Is this the end of the story?
No, still not optimal.

es In
1 algorithms for
actorization

rnstein

ty of lllinois at Chicago

What is the fastest
n to sort an array?

ndsort (x) :
not issorted(x):

nuterandomly (x)

def bubblesort(x):
for j in range(len(x)):
for i in reversed(range(j)):
x[i] ,x[i+1] = (

min(x[i],x[i+1]),

max(x[i],x[i+1])
)

bubblesort takes poly time.
©(n?) comparisons.
Huge speedup over blindsort!

Is this the end of the story?
No, still not optimal.

Analogo
algorithr

Shor's a
Huge sp

b?(log b
to factol
using st:
for fast

Is this ti

ns for

N

is at Chicago

the fastest
N array’

rted(x):
mly(x)

def bubblesort(x):

for j in range(len(x)):

for i in reversed(range(j)):

x[i],x[i+1] =

min(x[i],x

max(x[i] ,x

)

(

(1+1]

(1+1]

)
)

bubblesort takes poly time.

©(n®) comparisons.

Huge speedup over blindsort!

Is this the end of the story?

No, still not optimal.

Analogous: What
algorithm to facto

Shor's algorithm t
Huge speedup ove

b2(|og b)1+o(1) qu
to factor b-bit inte
using standard sut
for fast integer ari

Is this the end of

120

def bubblesort(x):

for j in range(len(x)):

for i in reversed(range(j)):

x[i],x[i+1]

min(x[i],x

max(x[i] ,x

)

= (

(i+1

(i+1

1),
1)

bubblesort takes poly time.

©(n?) comparisons.

Huge speedup over blindsort!

Is this the end of the story?

No, still not optimal.

Analogous: What is the fast
algorithm to factor integers:

Shor’s algorithm takes poly
Huge speedup over NFS!

b2(log b)11°(1) qubit operat
to factor b-bit integer,
using standard subroutines
for fast integer arithmetic.

Is this the end of the story?

def bubblesort(x): Analogous: What is the fastest
for j in range(len(x)): algorithm to factor integers?

for i in reversed(range(j)):
x[i],x[i+1] = (
min(x[i] ,x[i+1]),
max (x[i] ,x[i+1]) b2(|og b)1+°(1) qubit operations
) to factor b-bit integer,

Shor’s algorithm takes poly time.
Huge speedup over NFS!

| using standard subroutines
bubblesort takes poly time.

0 . for fast integer arithmetic.
©(n“) comparisons.

Huge speedup over blindsort! Is this the end of the story?

Is this the end of the story?
No, still not optimal.

def bubblesort(x): Analogous: What is the fastest
for j in range(len(x)): algorithm to factor integers?

for i in reversed(range(j)):
x[i],x[i+1] = (
min(x[i] ,x[i+1]),
max (x[i] ,x[i+1]) b2(|og b)1+°(1) qubit operations
) to factor b-bit integer,

Shor’s algorithm takes poly time.
Huge speedup over NFS!

| using standard subroutines
bubblesort takes poly time.

0 . for fast integer arithmetic.
©(n“) comparisons.
Huge speedup over blindsort! Is this the end of the story?

| No, still not optimal.
Is this the end of the story?

No, still not optimal. “Shor's algorithm: the bubble sort
of integer factorization.”

blesort (x) :

in range(len(x)):

i in reversed(range(j)):

[i] ,x[i+1] = (

min(x[i] ,x[i+1]),

max(x[i],x[i+1])

sort takes poly time.
omparisons.
eedup over blindsort!

1e end of the story?
not optimal.

Analogous: What is the fastest
algorithm to factor integers?

Shor’s algorithm takes poly time.
Huge speedup over NFS!

b2(log b)1T°(1) qubit operations
to factor b-bit integer,

using standard subroutines

for fast integer arithmetic.

Is this the end of the story?
No, still not optimal.

“Shor’s algorithm: the bubble sort
of integer factorization.”

A simple
suboptir
Find a p

314159265358979323
986280348253421170
284102701938521105
527120190914564856
748815209209628292
433057270365759591
489122793818301194
705392171762931767
173637178721468440
086403441815981362
950244594553469083
381420617177669147
217122680661300192
682303019520353018
950829533116861727
285836160356370766
462080466842590694
035587640247496473
028618297455570674
602364806654991198
081647060016145249
843852332390739414
904946016534668049
225125205117392984
504712371378696095
994657640789512694
136394437455305068
741059788595977297
499725246808459872
780797715691435997
601684273945226746
355936345681743241
560101503308617928
168299894872265880
210511413547357395
403742007310578539
100537061468067491
195618146751426912

) :

(len(x)):
ersed(range(j)):
] =

,x[i+1]),

,x[i+1])

, poly time.
S.
r blindsort!

the story?
al.

Analogous: What is the fastest
algorithm to factor integers?

Shor’s algorithm takes poly time.
Huge speedup over NFS!

b2(log b)1T°(1) qubit operations
to factor b-bit integer,

using standard subroutines

for fast integer arithmetic.

Is this the end of the story?
No, still not optimal.

“Shor’s algorithm: the bubble sort
of integer factorization.”

A simple exercise
suboptimality of S
Find a prime divis:

3141592653589793238462643383279502884197
9862803482534211706798214808651328230664
2841027019385211055596446229489549303819
5271201909145648566923460348610454326648
7488152092096282925409171536436789259036
4330572703657595919530921861173819326117
4891227938183011949129833673362440656643
7053921717629317675238467481846766940513
1736371787214684409012249534301465495853
0864034418159813629774771309960518707211
9502445945534690830264252230825334468503
3814206171776691473035982534904287554687
2171226806613001927876611195909216420198
682303019520353018529689957736225994 1389
9508295331168617278558890750983817546374
2858361603563707660104710181942955596198
4620804668425906949129331367702898915210
0355876402474964732639141992726042699227
0286182974555706749838505494588586926995
6023648066549911988183479775356636980742
0816470600161452491921732172147723501414
8438523323907394143334547762416862518983
9049460165346680498862723279178608578438
2251252051173929848960841284886269456042
5047123713786960956364371917287467764657
9946576407895126946839835259570982582262
1363944374553050682034962524517493996514
7410597885959772975498930161753928468138
4997252468084598727364469584865383673622
7807977156914359977001296160894416948685
6016842739452267467678895252138522549954
3559363456817432411251507606947945109659
5601015033086179286809208747609178249385
1682998948722658804857564014270477555132
2105114135473573952311342716610213596953
4037420073105785390621983874478084 784896
1005370614680674919278191197939952061419
1956181467514269123974894090718649423196

ge(j)):

\v

Tt

Analogous: What is the fastest
algorithm to factor integers?

Shor’s algorithm takes poly time.
Huge speedup over NFS!

b2(log b)1T°(1) qubit operations
to factor b-bit integer,

using standard subroutines

for fast integer arithmetic.

Is this the end of the story?
No, still not optimal.

“Shor’s algorithm: the bubble sort
of integer factorization.”

A simple exercise to illustrat
suboptimality of Shor's algo
Find a prime divisor of |10°

31415926535897932384626433832795028841971693993751058209749445
98628034825342117067982148086513282306647093844609550582231725
28410270193852110555964462294895493038196442881097566593344612
52712019091456485669234603486104543266482133936072602491412737
74881520920962829254091715364367892590360011330530548820466521
43305727036575959195309218611738193261179310511854807446237996
4891227938183011949129833673362440656643086021394946395224 7371
70539217176293176752384674818467669405132000568127145263560827
17363717872146844090122495343014654958537105079227968925892354
08640344181598136297747713099605187072113499999983729780499510
95024459455346908302642522308253344685035261931188171010003137
38142061717766914730359825349042875546873115956286388235378759
21712268066130019278766111959092164201989380952572010654858632
68230301952035301852968995773622599413891249721775283479131515
95082953311686172785588907509838175463746493931925506040092770
28583616035637076601047101819429555961989467678374494482553797
46208046684259069491293313677028989152104752162056966024058038
03558764024749647326391419927260426992279678235478163600934172
02861829745557067498385054945885869269956909272107975093029553
60236480665499119881834/797753566369807426542527862551818417574
08164706001614524919217321721477235014144197356854816136115735
84385233239073941433345477624168625189835694855620992192221842
90494601653466804988627232791786085784383827967976681454100953
22512520511739298489608412848862694560424196528502221066118630
50471237137869609563643719172874677646575739624138908658326459
99465764078951269468398352595709825822620522489407726719478268
13639443745530506820349625245174939965143142980919065925093722
74105978859597729754989301617539284681382686838689427741559918
49972524680845987273644695848653836736222626099124608051243884
78079771569143599770012961608944169486855584840635342207222582
60168427394522674676788952521385225499546667278239864565961163
35593634568174324112515076069479451096596094025228879710893145
56010150330861792868092087476091782493858900971490967598526136
16829989487226588048575640142704775551323796414515237462343645
21051141354735739523113427166102135969536231442952484937187110
40374200731057853906219838744780847848968332144571386875194350
10053706146806749192781911979399520614196634287544406437451237
19561814675142691239748940907186494231961567945208

Analogous: What is the fastest
algorithm to factor integers?

Shor’s algorithm takes poly time.
Huge speedup over NFS!

b2(log b)1T°(1) qubit operations
to factor b-bit integer,

using standard subroutines

for fast integer arithmetic.

Is this the end of the story?
No, still not optimal.

“Shor’s algorithm: the bubble sort
of integer factorization.”

A simple exercise to illustrate

suboptimality of Shor's algorithm:
Find a prime divisor of 103097,

31415926535897932384626433832795028841971693993751058209749445923078164062862089
98628034825342117067982148086513282306647093844609550582231725359408128481117450
28410270193852110555964462294895493038196442881097566593344612847564823378678316
52712019091456485669234603486104543266482133936072602491412737245870066063155881
74881520920962829254091715364367892590360011330530548820466521384146951941511609
43305727036575959195309218611738193261179310511854807446237996274956735188575272
48912279381830119491298336733624406566430860213949463952247371907021798609437027
70539217176293176752384674818467669405132000568127145263560827785771342757789609
17363717872146844090122495343014654958537105079227968925892354201995611212902196
08640344181598136297747713099605187072113499999983729780499510597317328160963185
95024459455346908302642522308253344685035261931188171010003137838752886587533208
38142061717766914730359825349042875546873115956286388235378759375195778185778053
21712268066130019278766111959092164201989380952572010654858632788659361533818279
68230301952035301852968995773622599413891249721775283479131515574857242454150695
95082953311686172785588907509838175463746493931925506040092770167113900984882401
28583616035637076601047101819429555961989467678374494482553797747268471040475346
46208046684259069491293313677028989152104752162056966024058038150193511253382430
03558764024749647326391419927260426992279678235478163600934172164121992458631503
02861829745557067498385054945885869269956909272107975093029553211653449872027559
60236480665499119881834797753566369807426542527862551818417574672890977772793800
08164706001614524919217321721477235014144197356854816136115735255213347574184946
84385233239073941433345477624168625189835694855620992192221842725502542568876717
90494601653466804988627232791786085784383827967976681454100953883786360950680064
22512520511739298489608412848862694560424196528502221066118630674427862203919494
50471237137869609563643719172874677646575739624138908658326459958133904780275900
99465764078951269468398352595709825822620522489407726719478268482601476990902640
13639443745530506820349625245174939965143142980919065925093722169646151570985838
74105978859597729754989301617539284681382686838689427741559918559252459539594310
49972524680845987273644695848653836736222626099124608051243884390451244136549762
78079771569143599770012961608944169486855584840635342207222582848864815845602850
60168427394522674676788952521385225499546667278239864565961163548862305774564980
35593634568174324112515076069479451096596094025228879710893145669136867228748940
56010150330861792868092087476091782493858900971490967598526136554978189312978482
16829989487226588048575640142704775551323796414515237462343645428584447952658678
21051141354735739523113427166102135969536231442952484937187110145765403590279934
40374200731057853906219838/744780847848968332144571386875194350643021845319104848
10053706146806749192781911979399520614196634287544406437451237181921799983910159
19561814675142691239748940907186494231961567945208

us: What is the fastest
n to factor integers?

lgorithm takes poly time.
eedup over NFS!

)1+0(1) qubit operations
- b-bit integer,

andard subroutines
nteger arithmetic.

1e end of the story?
not optimal.

algorithm: the bubble sort
r factorization.”

A simple exercise to illustrate

suboptimality of Shor's algorithm:
Find a prime divisor of 103097,

31415926535897932384626433832795028841971693993751058209749445923078164062862089
9862803482534211706798214808651328230664 7093844609550582231725359408128481117450
28410270193852110555964462294895493038196442881097566593344612847564823378678316
52712019091456485669234603486104543266482133936072602491412737245870066063155881
74881520920962829254091715364367892590360011330530548820466521384146951941511609
43305727036575959195309218611738193261179310511854807446237996274956735188575272
48912279381830119491298336733624406566430860213949463952247371907021798609437027
70539217176293176752384674818467669405132000568127145263560827785771342757789609
17363717872146844090122495343014654958537105079227968925892354201995611212902196
08640344181598136297747713099605187072113499999983729780499510597317328160963185
95024459455346908302642522308253344685035261931188171010003137838752886587533208
38142061717766914730359825349042875546873115956286388235378759375195778185778053
21712268066130019278766111959092164201989380952572010654858632788659361533818279
68230301952035301852968995773622599413891249721775283479131515574857242454150695
95082953311686172785588907509838175463746493931925506040092770167113900984882401
28583616035637076601047101819429555961989467678374494482553797747268471040475346
46208046684259069491293313677028989152104752162056966024058038150193511253382430
03558764024749647326391419927260426992279678235478163600934172164121992458631503
02861829745557067498385054945885869269956909272107975093029553211653449872027559
60236480665499119881834/797753566369807426542527862551818417574672890977772793800
08164706001614524919217321721477235014144197356854816136115735255213347574184946
84385233239073941433345477624168625189835694855620992192221842725502542568876717
90494601653466804988627232791786085784383827967976681454100953883786360950680064
22512520511739298489608412848862694560424196528502221066118630674427862203919494
50471237137869609563643719172874677646575739624138908658326459958133904 780275900
99465764078951269468398352595709825822620522489407726719478268482601476990902640
13639443745530506820349625245174939965143142980919065925093722169646151570985838
74105978859597729754989301617539284681382686838689427741559918559252459539594310
49972524680845987273644695848653836736222626099124608051243884390451244136549762
78079771569143599770012961608944169486855584840635342207222582848864815845602850
60168427394522674676788952521385225499546667278239864565961163548862305774564980
35593634568174324112515076069479451096596094025228879710893145669136867228748940
56010150330861792868092087476091782493858900971490967598526136554978189312978482
16829989487226588048575640142704775551323796414515237462343645428584447952658678
21051141354735739523113427166102135969536231442952484937187110145765403590279934
40374200731057853906219838744780847848968332144571386875194350643021845319104848
10053706146806749192781911979399520614196634287544406437451237181921799983910159
19561814675142691239748940907186494231961567945208

Importal

factorizz
o Maybe

May
May
May
May
May

Importal

(even as
o Qubit:
e Area (
e Qubit
e Depth
e [ime

Is the fastest

r integers?

akes poly time.
r NFS!

bit operations
ger,

routines
thmetic.

the story?
al.

the bubble sort
ition.”

A simple exercise to illustrate

suboptimality of Shor's algorithm:
Find a prime divisor of 103097,

31415926535897932384626433832795028841971693993751058209749445923078164062862089
9862803482534211706798214808651328230664 7093844609550582231725359408128481117450
28410270193852110555964462294895493038196442881097566593344612847564823378678316
52712019091456485669234603486104543266482133936072602491412737245870066063155881
74881520920962829254091715364367892590360011330530548820466521384146951941511609
43305727036575959195309218611738193261179310511854807446237996274956735188575272
48912279381830119491298336733624406566430860213949463952247371907021798609437027
70539217176293176752384674818467669405132000568127145263560827785771342757789609
17363717872146844090122495343014654958537105079227968925892354201995611212902196
08640344181598136297747713099605187072113499999983729780499510597317328160963185
95024459455346908302642522308253344685035261931188171010003137838752886587533208
38142061717766914730359825349042875546873115956286388235378759375195778185778053
21712268066130019278766111959092164201989380952572010654858632788659361533818279
68230301952035301852968995773622599413891249721775283479131515574857242454150695
95082953311686172785588907509838175463746493931925506040092770167113900984882401
28583616035637076601047101819429555961989467678374494482553797747268471040475346
46208046684259069491293313677028989152104752162056966024058038150193511253382430
03558764024749647326391419927260426992279678235478163600934172164121992458631503
02861829745557067498385054945885869269956909272107975093029553211653449872027559
60236480665499119881834797753566369807426542527862551818417574672890977772793800
08164706001614524919217321721477235014144197356854816136115735255213347574184946
84385233239073941433345477624168625189835694855620992192221842725502542568876717
90494601653466804988627232791786085784383827967976681454100953883786360950680064
22512520511739298489608412848862694560424196528502221066118630674427862203919494
50471237137869609563643719172874677646575739624138908658326459958133904 780275900
99465764078951269468398352595709825822620522489407726719478268482601476990902640
13639443745530506820349625245174939965143142980919065925093722169646151570985838
74105978859597729754989301617539284681382686838689427741559918559252459539594310
49972524680845987273644695848653836736222626099124608051243884390451244136549762
78079771569143599770012961608944169486855584840635342207222582848864815845602850
60168427394522674676788952521385225499546667278239864565961163548862305774564980
35593634568174324112515076069479451096596094025228879710893145669136867228748940
56010150330861792868092087476091782493858900971490967598526136554978189312978482
16829989487226588048575640142704775551323796414515237462343645428584447952658678
21051141354735739523113427166102135969536231442952484937187110145765403590279934
40374200731057853906219838/744780847848968332144571386875194350643021845319104848
10053706146806749192781911979399520614196634287544406437451237181921799983910159
19561814675142691239748940907186494231961567945208

Important variatio

factorization probl

e Maybe need one

May
May
May
May
May

be need all

DE |

‘actors a

DE |

‘actors a

he there are

e Inputs In

Important variatio

(even assuming pe
e Qubits.
e Area (“A”, inclL
e Qubit operation:
e Depth.
e Time (“T": late

est

time.

ons

le sort

A simple exercise to illustrate

suboptimality of Shor's algorithm:
Find a prime divisor of 103097,

31415926535897932384626433832795028841971693993751058209749445923078164062862089
98628034825342117067982148086513282306647093844609550582231725359408128481117450
28410270193852110555964462294895493038196442881097566593344612847564823378678316
52712019091456485669234603486104543266482133936072602491412737245870066063155881
74881520920962829254091715364367892590360011330530548820466521384146951941511609
43305727036575959195309218611738193261179310511854807446237996274956735188575272
48912279381830119491298336733624406566430860213949463952247371907021798609437027
70539217176293176752384674818467669405132000568127145263560827785771342757789609
17363717872146844090122495343014654958537105079227968925892354201995611212902196
08640344181598136297747713099605187072113499999983729780499510597317328160963185
95024459455346908302642522308253344685035261931188171010003137838752886587533208
38142061717766914730359825349042875546873115956286388235378759375195778185778053
21712268066130019278766111959092164201989380952572010654858632788659361533818279
68230301952035301852968995773622599413891249721775283479131515574857242454150695
95082953311686172785588907509838175463746493931925506040092770167113900984882401
28583616035637076601047101819429555961989467678374494482553797747268471040475346
46208046684259069491293313677028989152104752162056966024058038150193511253382430
03558764024749647326391419927260426992279678235478163600934172164121992458631503
02861829745557067498385054945885869269956909272107975093029553211653449872027559
60236480665499119881834/797753566369807426542527862551818417574672890977772793800
08164706001614524919217321721477235014144197356854816136115735255213347574184946
84385233239073941433345477624168625189835694855620992192221842725502542568876717
90494601653466804988627232791786085784383827967976681454100953883786360950680064
22512520511739298489608412848862694560424196528502221066118630674427862203919494
50471237137869609563643719172874677646575739624138908658326459958133904 780275900
99465764078951269468398352595709825822620522489407726719478268482601476990902640
13639443745530506820349625245174939965143142980919065925093722169646151570985838
74105978859597729754989301617539284681382686838689427741559918559252459539594310
49972524680845987273644695848653836736222626099124608051243884390451244136549762
78079771569143599770012961608944169486855584840635342207222582848864815845602850
60168427394522674676788952521385225499546667278239864565961163548862305774564980
35593634568174324112515076069479451096596094025228879710893145669136867228748940
56010150330861792868092087476091782493858900971490967598526136554978189312978482
16829989487226588048575640142704775551323796414515237462343645428584447952658678
21051141354735739523113427166102135969536231442952484937187110145765403590279934
40374200731057853906219838744780847848968332144571386875194350643021845319104848
10053706146806749192781911979399520614196634287544406437451237181921799983910159
19561814675142691239748940907186494231961567945208

Important variations in the

factorization problem:

e Maybe need one factor.

e May
o May
o May

o May
e May

be need all factors.

e factors are small.
ne factors are large.
ne there are many Ing

oe Inputs In superpos

Important variations in metr

(even assuming perfect devi
e Qubits.
e Area (“A", including wire

e Qubit operations (“gates”
e Depth.
e Time (“T": latency).

A simple exercise to illustrate Important variations in the
suboptimality of Shor's algorithm: factorization problem:

Find a prime divisor of L1030097TJ. e Maybe need one factor.
srarsozesassarsapsadsaesassapTasozsse o sassesTstossanorasaasesorsieacezsecss | @ Mlaybe need all factors.

9862803482534211706798214808651328230664 7093844609550582231725359408128481117450
28410270193852110555964462294895493038196442881097566593344612847564823378678316 o~
52712019091456485669234603486104543266482133936072602491412737245870066063155881 o I\/I y T | |

74881520920962829254091715364367892590360011330530548820466521384146951941511609 a :) e a Cto rs a re S m a)
43305727036575959195309218611738193261179310511854807446237996274956735188575272

48912279381830119491298336733624406566430860213949463952247371907021798609437027 V £ |
70539217176293176752384674818467669405132000568127145263560827785771342757789609 ® ay :) e a CtO rS a re a rge -
17363717872146844090122495343014654958537105079227968925892354201995611212902196
08640344181598136297747713099605187072113499999983729780499510597317328160963185 '\/' h .
95024459455346908302642522308253344685035261931188171010003137838752886587533208 ® ay 3 e t e re a re I I I a n y I n p U tS .

38142061717766914730359825349042875546873115956286388235378759375195778185778053
21712268066130019278766111959092164201989380952572010654858632788659361533818279 . . -
68230301952035301852968995773622599413891249721775283479131515574857242454150695 ® M ay DEe 1IN p uts 1N su p er p osltion.
95082953311686172785588907509838175463746493931925506040092770167113900984882401
28583616035637076601047101819429555961989467678374494482553797747268471040475346
46208046684259069491293313677028989152104752162056966024058038150193511253382430
03558764024749647326391419927260426992279678235478163600934172164121992458631503 - - - -
0286182974555706749838505494588586926995690927210797509302955321 1653449872027559 I mpo rtant variations in metrics
60236480665499119881834797753566369807426542527862551818417574672890977772793800
08164706001614524919217321721477235014144197356854816136115735255213347574184946 - .
84385233239073941433345477624168625189835694855620992192221842725502542568876717 (even assumin g p e rfeCt d evi CeS))
90494601653466804988627232791786085784383827967976681454100953883786360950680064
22512520511739298489608412848862694560424196528502221066118630674427862203919494 .
50471237137869609563643719172874677646575739624138908658326459958133904780275900 ® Q u b ITS.
99465764078951269468398352595709825822620522489407726719478268482601476990902640
13639443745530506820349625245174939965143142980919065925093722169646151570985838 Ay .]]
74105978859597729754989301617539284681382686838689427741559918559252459539594310 /ﬁ\ /[\ | (j
49972524680845987273644695848653836736222626099124608051243884390451244136549762 ® rea (, 1NCiudin g WIre area) L
780797715691435997700129616089441694868555848406353422072225828488648 15845602850
60168427394522674676788952521385225499546667278239864565961163548862305774564980 - - G "
35593634568174324112515076069479451096596094025228879710893145669136867228748940 ® Q u b It O p erations (g ates) .
56010150330861792868092087476091782493858900971490967598526136554978189312978482
16829989487226588048575640142704775551323796414515237462343645428584447952658678
21051141354735739523113427166102135969536231442952484937187110145765403590279934 o D e pt h]
40374200731057853906219838744780847848968332144571386875194350643021845319104848
10053706146806749192781911979399520614196634287544406437451237181921799983910159

19561814675142691239748940907186494231961567945208 [) T i m e (‘ ‘T, ' | a te n Cy)

» exercise to illustrate

nality of Shor’s algorithm:
rime divisor of |10°9%r]|.

84626433832795028841971693993751058209749445923078164062862089
67982148086513282306647093844609550582231725359408128481117450
55964462294895493038196442881097566593344612847564823378678316
69234603486104543266482133936072602491412737245870066063155881
04091715364367892590360011330530548820466521384146951941511609
95309218611738193261179310511854807446237996274956735188575272
91298336733624406566430860213949463952247371907021798609437027
52384674818467669405132000568127145263560827785771342757789609
90122495343014654958537105079227968925892354201995611212902196
97747713099605187072113499999983729780499510597317328160963185
02642522308253344685035261931188171010003137838752886587533208
30359825349042875546873115956286388235378759375195778185778053
78766111959092164201989380952572010654858632788659361533818279
52968995773622599413891249721775283479131515574857242454150695
85588907509838175463746493931925506040092770167113900984882401
01047101819429555961989467678374494482553797747268471040475346
91293313677028989152104752162056966024058038150193511253382430
26391419927260426992279678235478163600934172164121992458631503
98385054945885869269956909272107975093029553211653449872027559
81834797753566369807426542527862551818417574672890977772793800
19217321721477235014144197356854816136115735255213347574184946
33345477624168625189835694855620992192221842725502542568876717
88627232791786085784383827967976681454100953883786360950680064
8960841284886269456042419652850222106611863067/4427862203919494
63643719172874677646575739624138908658326459958133904780275900
68398352595709825822620522489407726719478268482601476990902640
20349625245174939965143142980919065925093722169646151570985838
54989301617539284681382686838689427741559918559252459539594310
73644695848653836736222626099124608051243884390451244136549762
70012961608944169486855584840635342207222582848864815845602850
76788952521385225499546667278239864565961163548862305774564980
12515076069479451096596094025228879710893145669136867228748940
68092087476091782493858900971490967598526136554978189312978482
48575640142704775551323796414515237462343645428584447952658678
23113427166102135969536231442952484937187110145765403590279934
06219838744 780847848968332144571386875194350643021845319104848
92781911979399520614196634287544406437451237181921799983910159
39748940907186494231961567945208

Important variations in the
factorization problem:

e Maybe need one factor.
e Maybe need all factors.
e Maybe factors are small.
e Maybe factors are large.

e Maybe there are many inputs.

e Maybe Inputs In superposition.

Important variations in metrics
(even assuming perfect devices):

e Qubits.

e Area (“A", including wire area).

e Qubit operations (“gates”).
e Depth.
e Time (“T": latency).

Short-te

1995 Kis
Barenco
Chari-D
1998 Za
2000 Pa
2002 K
Beaureg
Kunihirc
2014 Sv
2015 Gr
Smith, Z
Svore, 2
Johnstol
factors ¢

to illustrate

hor's algorithm:
or of [10°9%7|.

1693993751058209749445923078164062862089
7093844609550582231725359408128481117450
6442881097566593344612847564823378678316
2133936072602491412737245870066063155881
0011330530548820466521384146951941511609
9310511854807446237996274956735188575272
0860213949463952247371907021798609437027
2000568127145263560827785771342757789609
7105079227968925892354201995611212902196
3499999983729780499510597317328160963185
5261931188171010003137838752886587533208
3115956286388235378759375195778185778053
9380952572010654858632788659361533818279
1249721775283479131515574857242454150695
6493931925506040092770167113900984882401
9467678374494482553797747268471040475346
4752162056966024058038150193511253382430
9678235478163600934172164121992458631503
6909272107975093029553211653449872027559
6542527862551818417574672890977772793800
4197356854816136115735255213347574184946
5694855620992192221842725502542568876717
3827967976681454100953883786360950680064
4196528502221066118630674427862203919494
5739624138908658326459958133904 780275900
0522489407726719478268482601476990902640
3142980919065925093722169646151570985838
2686838689427741559918559252459539594310
2626099124608051243884390451244136549762
5584840635342207222582848864815845602850
6667278239864565961163548862305774564980
6094025228879710893145669136867228748940
8900971490967598526136554978189312978482
3796414515237462343645428584447952658678
6231442952484937187110145765403590279934
8332144571386875194350643021845319104848
6634287544406437451237181921799983910159
1567945208

Important variations in the
factorization problem:

e Maybe need one factor.
e Maybe need all factors.
e Maybe factors are small.

e Maybe factors are large.

e Maybe there are many Inputs.

e Maybe inputs In superposition.

Important variations in metrics
(even assuming perfect devices):

e Qubits.

e Area (“A", including wire area).

e Qubit operations (“gates”).
e Depth.
e Time (“T": latency).

Short-term RSA s

1995 Kitaev, 1996
Barenco—Ekert, 1€
Chari—Devabhaktu
1998 Zalka, 1999
2000 Parker—Pleni
2002 Kitaev—Shen
Beauregard, 2006
Kunihiro, 2010 Ah
2014 Svore—Hastir
2015 Grosshans—L
Smith, 2016 Hane
Svore, 2017 Ekera
Johnston: try to s

factors out of Sho

€

rithm:
DO97TJ |

923078164062862089
359408128481117450
847564823378678316
245870066063155881
384146951941511609
274956735188575272
907021798609437027
785771342757789609
201995611212902196
597317328160963185
838752886587533208
375195778185778053
788659361533818279
574857242454150695
167113900984882401
747268471040475346
150193511253382430
164121992458631503
211653449872027559
672890977772793800
255213347574184946
725502542568876717
883786360950680064
674427862203919494
958133904780275900
482601476990902640
169646151570985838
559252459539594310
390451244136549762
848864815845602850
548862305774564980
669136867228748940
554978189312978482
428584447952658678
145765403590279934
643021845319104848
181921799983910159

Important variations in the
factorization problem:

e Maybe need one factor.
e Maybe need all factors.
e Maybe factors are small.
e Maybe factors are large.

e Maybe there are many inputs.

e Maybe Inputs In superposition.

Important variations in metrics

(even assuming perfect devices):
e Qubits.

e Area (“A", including wire area).

e Qubit operations (“gates”).
e Depth.
e Time (“T": latency).

Short-term RSA security

1995 Kitaev, 1996 Vedral—

Barenco—Ekert, 1996 Beckm
Chari—Devabhaktuni—Preskil
1998 Zalka, 1999 Mosca—Ek
enio, 2001 S«

2000 Parker—P
2002 Kitaev-S

nen—Vya

Beauregard, 2006 Taka
Kunihiro, 2010 Ahmadi—Chi
2014 Svore—Hastings—Freedr
2015 Grosshans—Lawson—Mc
Smith, 2016 Haner—Roettele
Svore, 2017 Ekera—Hastad,
Johnston: try to squeeze co

yi, 2

nashi

factors out of Shor's algoritl

Important variations in the
factorization problem:

e Maybe need one factor.
e Maybe need all factors.
e Maybe factors are small.
e Maybe factors are large.

e Maybe there are many Inputs.

e Maybe inputs In superposition.

Important variations in metrics
(even assuming perfect devices):

e Qubits.

e Area (“A", including wire area).

e Qubit operations (“gates”).
e Depth.
e Time (“T": latency).

Short-term RSA security

1995 Kitaev, 1996 Vedral-
Barenco—Ekert, 1996 Beckman—
Chari—Devabhaktuni—Preskill,
1998 Zalka, 1999 Mosca—Ekert,
2000 Parker—Plenio, 2001 Seifert,
2002 Kitaev—Shen—Vyalyi, 2003
Beauregard, 2006 Takahashi—
Kunihiro, 2010 Ahmadi—Chiang,
2014 Svore—Hastings—Freedman,

2015 Grosshans—Lawson—Morain—
Smith, 2016 Haner—Roetteler—
Svore, 2017 Ekerd—Hastad, 2017
Johnston: try to squeeze constant
factors out of Shor's algorithm.

1t variations in the

tion problem:

» need one factor.

» need all factors.

» factors are small.

> factors are large.

> there are many Inputs.
 Inputs In superposition.

1t variations in metrics
suming perfect devices):

).

“A", including wire area).

operations (“gates”).

(“T": latency).

Short-term RSA security

1995 Kitaev, 1996 Vedral—
Barenco—Ekert, 1996 Beckman—
Chari—Devabhaktuni—Preskill,
1998 Zalka, 1999 Mosca—Ekert,

2000 Parker—P
2002 Kitaev-S

enio, 2001 Seifert,

nen—Vya

Beauregard, 2006 Taka
Kunihiro, 2010 Ahmadi—Chiang,

2014 Svore—Hastings—Freedman,
2015 Grosshans—Lawson—Morain—

yi, 2003

nashi—

Smith, 2016 Haner—Roetteler—

Svore, 2017 Ekerd—Hastad, 2017
Johnston: try to squeeze constant

factors out of Shor's algorithm.

2003 Be
... 2016
2b 4+ 2 «
Toffoli g
CNOT ¢

ns in the

em:

factor.
factors.

re small.

re large.
“many Inputs.
superposition.

ns in metrics
rfect devices):

ding wire area).

5 (“gates”).

ncy).

Short-term RSA security

1995 Kitaev, 1996 Vedral-
Barenco—Ekert, 1996 Beckman—
Chari—Devabhaktuni—Preskill,
1998 Zalka, 1999 Mosca—Ekert,
2000 Parker—Plenio, 2001 Seifert,
2002 Kitaev—Shen—Vyalyi, 2003
Beauregard, 2006 Takahashi—
Kunihiro, 2010 Ahmadi—Chiang,
2014 Svore—Hastings—Freedman,

2015 Grosshans—Lawson—Morain—

Smith, 2016 Haner—Roetteler—
Svore, 2017 Ekerd—Hastad, 2017
Johnston: try to squeeze constant
factors out of Shor's algorithm.

2003 Beauregard:
... 2016 Haner—-R
2b + 2 qubits; 64/
Toffoli gates; simil

CNOT gates; dept

Short-term RSA security

1995 Kitaev, 1996 Vedral-
Barenco—Ekert, 1996 Beckman—
Chari—Devabhaktuni—Preskill,
1998 Zalka, 1999 Mosca—Ekert,
2000 Parker—Plenio, 2001 Seifert,
2002 Kitaev—Shen—Vyalyi, 2003
Beauregard, 2006 Takahashi—
Kunihiro, 2010 Ahmadi—Chiang,
2014 Svore—Hastings—Freedman,

2015 Grosshans—Lawson—Morain—

Smith, 2016 Haner—Roetteler—
Svore, 2017 Ekerd—Hastad, 2017
Johnston: try to squeeze constant
factors out of Shor's algorithm.

2003 Beauregard: 2b + 3 qt
... 2016 Haner—Roetteler—S
2b + 2 qubits; 64b3(|g b+ (
Toffoli gates; similar numbe
CNOT gates; depth O(b3).

Short-term RSA security

1995 Kitaev, 1996 Vedral-
Barenco—Ekert, 1996 Beckman—
Chari—Devabhaktuni—Preskill,
1998 Zalka, 1999 Mosca—Ekert,

2000 Parker—-P
2002 Kitaev-S

nen—Vya

Beauregard, 2006 Taka
Kunihiro, 2010 Ahmadi—Chiang,
2014 Svore—Hastings—Freedman,

enio, 2001 Seifert,

yi, 2003

nashi—

2015 Grosshans—Lawson—Morain—
Smith, 2016 Haner—Roetteler—

Svore, 2017 Ekerd—Hastad, 2017
Johnston: try to squeeze constant

factors out of Shor's algorithm.

2003 Beauregard: 2b + 3 qubits.
... 2016 Haner—Roetteler—Svore:
2b + 2 qubits; 64b3(Ig b + O(1))
Toffoli gates; similar number of
CNOT gates; depth O(b?).

Short-term RSA security

1995 Kitaev, 1996 Vedral-
Barenco—Ekert, 1996 Beckman—
Chari—Devabhaktuni—Preskill,
1998 Zalka, 1999 Mosca—Ekert,

2000 Parker—-P
2002 Kitaev-S

nen—Vya

Beauregard, 2006 Taka
Kunihiro, 2010 Ahmadi—Chiang,
2014 Svore—Hastings—Freedman,

enio, 2001 Seifert,

yi, 2003

nashi—

2015 Grosshans—Lawson—Morain—
Smith, 2016 Haner—Roetteler—

Svore, 2017 Ekerd—Hastad, 2017
Johnston: try to squeeze constant

factors out of Shor's algorithm.

2003 Beauregard: 2b + 3 qubits.
... 2016 Haner—Roetteler—Svore:
2b + 2 qubits; 64b3(Ig b + O(1))

Toffoli gates;

similar number of

CNOT gates; depth O(b3).

Conventiona

cannot avolc

wisdom:
2b qubits

for controlled mulmod.

e.g. 4096 qubits for b = 2048,
very common RSA key size.

So 2048-bit factorization
needs 4096 qubits?

Short-term RSA security

1995 Kitaev, 1996 Vedral-
Barenco—Ekert, 1996 Beckman—
Chari—Devabhaktuni—Preskill,
1998 Zalka, 1999 Mosca—Ekert,

2000 Parker—-P
2002 Kitaev-S

nen—Vya

Beauregard, 2006 Taka
Kunihiro, 2010 Ahmadi—Chiang,
2014 Svore—Hastings—Freedman,

enio, 2001 Seifert,

yi, 2003

nashi—

2015 Grosshans—Lawson—Morain—
Smith, 2016 Haner—Roetteler—

Svore, 2017 Ekerd—Hastad, 2017
Johnston: try to squeeze constant

factors out of Shor's algorithm.

2003 Beauregard: 2b + 3 qubits.
... 2016 Haner—Roetteler—Svore:
2b + 2 qubits; 64b3(Ig b + O(1))

Toffoli gates;

similar number of

CNOT gates; depth O(b3).

Conventiona

cannot avolc

wisdom:
2b qubits

for controlled mulmod.

e.g. 4096 qubits for b = 2048,
very common RSA key size.

So 2048-bit factorization
needs 4096 qubits?
No: NFS uses 0 qubits.

rm RSA security

aev, 1996 Vedral—
—-Ekert, 1996 Beckman-—
evabhaktuni—Preskill,
lka, 1999 Mosca—Ekert,
rker—Plenio, 2001 Seifert,
aev—Shen—Vyalyi, 2003
ard, 2000 Takahashi—

, 2010 Ahmadi—Chiang,
ore—Hastings—Freedman,

osshans—Lawson—Morain—
016 Haner—Roetteler—
017 Ekera—Hastad, 2017
1: try to squeeze constant
ut of Shor’s algorithm.

2003 Beauregard: 2b + 3 qubits.
... 2016 Haner—Roetteler—Svore:
2b + 2 qubits; 64b3(Ig b + O(1))
Toffoli gates; similar number of
CNOT gates; depth O(b3).

Conventional wisdom:

cannot avoid 2b qubits
for controlled mulmod.

e.g. 4096 qubits for b = 2048,
very common RSA key size.

So 2048-bit factorization
needs 4096 qubits?
No: NFS uses 0 qubits.

NFS tak
with p =
log L =

Analysis
Very rou

scurity

Vedral-

96 Beckman-—
ni—Preskill,
Mosca—Ekert,
o, 2001 Seifert,
—Vyalyi, 2003
Takahashi—
madi—Chiang,

1gs—Freedman,
awson—Morain—
r—Roetteler—
—Hastad, 2017
queeze constant
r's algorithm.

2003 Beauregard: 2b + 3 qubits.
... 2016 Haner—Roetteler—Svore:
2b + 2 qubits; 64b3(Ig b + O(1))

Toffoli gates;

similar number of

CNOT gates; depth O(b3).

Conventiona

cannot avolc

wisdom:
2b qubits

for controlled mulmod.

e.g. 4096 qubits for b = 2048,
very common RSA key size.

So 2048-bit factorization
needs 4096 qubits?
No: NFS uses 0 qubits.

NFS takes LPto(l
with p = v/92 +°
log L = (log 2P)1/3

Analysis for b = 2

very roughly 2112

an—
|,

ert,
ifert,
003

ang,
nan,

rain—
r—
2017
nstant

1m.

2003 Beauregard: 2b + 3 qubits.
... 2016 Haner—Roetteler—Svore:
2b + 2 qubits; 64b3(Ig b + O(1))

Toffoli gates;

similar number of

CNOT gates; depth O(b>).

Conventiona

cannot avolc

wisdom:
2b qubits

for controlled mulmod.

e.g. 4096 qubits for b = 2048,
very common RSA key size.

So 2048-bit factorization
needs 4096 qubits?
No: NFS uses 0 qubits.

NFS takes LPT(1) operatio
with p = v/92 + 26+/13/3
log L = (log 2b)1/3(log log 2!

Analysis for b = 2048 (not ¢

112

very roughly operations

2003 Beauregard: 2b + 3 qubits.
... 2016 Haner—Roetteler—Svore:
2b + 2 qubits; 64b3(Ig b + O(1))
Toffoli gates; similar number of
CNOT gates; depth O(b3).

Conventional wisdom:

cannot avoid 2b qubits
for controlled mulmod.

e.g. 4096 qubits for b = 2048,
very common RSA key size.

So 2048-bit factorization
needs 4096 qubits?
No: NFS uses 0 qubits.

NFS takes LPT°(1) operations

with p = v/92 + 26+/13/3 > 1.9,
log L = (log 20)1/3(log log 22)2/3.

Analysis for b = 2048 (not easy!):
very roughly 2112 operations.

2003 Beauregard: 2b + 3 qubits.
... 2016 Haner—Roetteler—Svore:
2b + 2 qubits; 64b3(Ig b + O(1))
Toffoli gates; similar number of
CNOT gates; depth O(b?).

Conventional wisdom:

cannot avoid 2b qubits
for controlled mulmod.

e.g. 4096 qubits for b = 2048,
very common RSA key size.

So 2048-bit factorization
needs 4096 qubits?
No: NFS uses 0 qubits.

NFS takes LPT°(1) operations

with p = v/92 + 26+/13/3 > 1.9,
log L = (log 20)1/3(log log 22)2/3.

Analysis for b = 2048 (not easy!):
very roughly 2112 operations.

2017 Bernstein—Biasse—Mosca:
[9+o(1) operations

with g = W ~ 1.387,
using b2/31t°(1) qubits

(and many non-quantum bits).

2003 Beauregard: 2b + 3 qubits.
... 2016 Haner—Roetteler—Svore:
2b + 2 qubits; 64b3(Ig b + O(1))
Toffoli gates; similar number of
CNOT gates; depth O(b3).

Conventional wisdom:

cannot avoid 2b qubits
for controlled mulmod.

e.g. 4096 qubits for b = 2048,
very common RSA key size.

So 2048-bit factorization
needs 4096 qubits?
No: NFS uses 0 qubits.

NFS takes LPT°(1) operations

with p = v/92 + 26+/13/3 > 1.9,
log L = (log 20)1/3(log log 22)2/3.

Analysis for b = 2048 (not easy!):

112

very roughly operations.

2017 Bernstein—Biasse—Mosca:
[9+o(1) operations

with g = W ~ 1.387,
using b2/31t°(1) qubits

(and many non-quantum bits).

Open: Analyze for b = 2048.
Fewer than 4096 qubits?
Fewer than 2048 qubits?

auregard: 2b + 3 qubits.
) Haner—Roetteler—Svore:
jubits; 64b3(Ig b + O(1))
ates; similar number of
ates; depth O(b3).

ional wisdom:

wvoid 2b qubits
olled mulmod.

O qubits for b = 2048,
1mon RSA key size.

-bit factorization
)96 qubits?
> uses 0 qubits.

NFS takes LPTo(1) operations

with p = v/92 + 26+/13/3 > 1.9,

log L = (log 22)1/3(log log 22)2/3.

Analysis for b = 2048 (not easy!):

112

very roughly operations.

2017 Bernstein—Biasse—Mosca:
[9+o(1) operations

with ¢ = 3/8/3 ~ 1.387,
using b2/31t°(1) qubits

(and many non-quantum bits).

Open: Analyze for b = 2048.
Fewer than 4096 qubits?
Fewer than 2048 qubits?

Countin;
oversimyj
commur
See, e.g.
theorem

2b + 3 qubits.

oetteler—Svore:
'93(Ig b+ O(1))
ar number of

h O(b3).

om:
ubits
mod.

r b = 2048,
\ key size.

1zation
?

ubits.

NFS takes LPT°(1) operations

with p = v/92 + 26+/13/3 > 1.9,

log L = (log 20)1/3(log log 22)2/3.

Analysis for b = 2048 (not easy!):

2112

very roughly operations.

2017 Bernstein—Biasse—Mosca:
[9+o(1) operations

with g = W ~ 1.387,
using b2/31t0°(1) qubits

(and many non-quantum bits).

Open: Analyze for b = 2048.
Fewer than 4096 qubits?
Fewer than 2048 qubits?

Counting operatio
oversimplified cost
communication co

See, e.g., 1981 Br
theorem for realist

1bits.
vore:

)(1))

r of

NFS takes LPT°(1) operations

with p = v/92 + 26+/13/3 > 1.9,

log L = (log 22)1/3(log log 22)2/3.

Analysis for b = 2048 (not easy!):

very roughly 2112 operations.

2017 Bernstein—Biasse—Mosca:
[9+o(1) operations

with g = W ~ 1.337,
using b2/31t°(1) qubits

(and many non-quantum bits).

Open: Analyze for b = 2048.
Fewer than 4096 qubits?
Fewer than 2048 qubits?

Counting operations is an

oversimplified cost model: i
communication costs, parall
See, e.g., 1981 Brent—Kung
theorem for realistic chip mc

NFS takes LPT°(1) operations

with p = v/92 + 26+/13/3 > 1.9,
log L = (log 20)1/3(log log 22)2/3.

Analysis for b = 2048 (not easy!):

very roughly 2112 operations.

2017 Bernstein—Biasse—Mosca:
[9+o(1) operations

with g = W ~ 1.387,
using b2/31t°(1) qubits

(and many non-quantum bits).

Open: Analyze for b = 2048.
Fewer than 4096 qubits?
Fewer than 2048 qubits?

Counting operations is an
oversimplified cost model: ignores
communication costs, parallelism.

See, e.g., 1981 Brent—Kung AT
theorem for realistic chip model.

NFS takes LPT°(1) operations

with p = v/92 + 26+/13/3 > 1.9,
log L = (log 20)1/3(log log 22)2/3.

Analysis for b = 2048 (not easy!):
very roughly 2112 operations.

2017 Bernstein—Biasse—Mosca:
[9+o(1) operations

with g = W ~ 1.387,
using b2/31t°(1) qubits

(and many non-quantum bits).

Open: Analyze for b = 2048.
Fewer than 4096 qubits?
Fewer than 2048 qubits?

Counting operations is an
oversimplified cost model: ignores
communication costs, parallelism.

See, e.g., 1981 Brent—Kung AT
theorem for realistic chip model.

NFS suffers somewhat from
communication costs inside
big linear-algebra subroutine.

2001 Bernstein:
AT = LP'+o(1) with p’ ~ 1.976.

2017 Bernstein—Biasse—Mosca:
AT = 19+°(1) with ¢’ ~ 1.456
using b2/31t°(1) qubits.

Open: Analyze for b = 2048.

es LPto(1) operations

- /92 + 264/13/3 > 1.9,
(log 22)1/3(log log 20)2/3.

for b = 2048 (not easy!):
shly 2112 operations.

rnstein—Biasse—Mosca:
operations

- 3/8/3 ~ 1.387,

/3+0(1) qubits

ny non-quantum bits).

\nalyze for b = 2048.
1an 4096 qubits?
1an 2048 qubits?

Counting operations is an
oversimplified cost model: ignores
communication costs, parallelism.

See, e.g., 1981 Brent—Kung AT
theorem for realistic chip model.

NFS suffers somewhat from
communication costs inside
big linear-algebra subroutine.

2001 Bernstein:
AT = LP'+o(1) with p’ ~ 1.976.

2017 Bernstein—Biasse—Mosca:
AT = 19+°(1) with ¢’ ~ 1.456
using b2/3t°(1) qubits.

Open: Analyze for b = 2048.

Actually
| ower c«
| ower c«

) operations

64/13/3 > 1.9,
(log log 20)2/3.

048 (not easy!):

operations.

asse—Mosca:
- 1.387,

Ibits

antum bits).

- b = 2048.
yubits?

iubits?

Counting operations is an
oversimplified cost model: ignores
communication costs, parallelism.
See, e.g., 1981 Brent—Kung AT

theorem for realistic chip model.

NFS suffers somewhat from
communication costs inside
big linear-algebra subroutine.

2001 Bernstein:
AT = LP'+o(1) with p’ ~ 1.976.

2017 Bernstein—Biasse—Mosca:
AT = 19+°(1) with ¢’ ~ 1.456
using b2/3t°(1) qubits.

Open: Analyze for b = 2048.

Actually have mar
| ower cost for sor
| ower cost for ma

Counting operations is an
oversimplified cost model: ignores
communication costs, parallelism.

See, e.g., 1981 Brent—Kung AT
theorem for realistic chip model.

NFS suffers somewhat from
communication costs inside
big linear-algebra subroutine.

2001 Bernstein:
AT = LP'+o(1) with p’ ~ 1.976.

2017 Bernstein—Biasse—Mosca:
AT = 19+°(1) with ¢’ ~ 1.456
using b2/31t°(1) qubits.

Open: Analyze for b = 2048.

Actually have many inputs.
Lower cost for some output’
Lower cost for many output

Counting operations is an

oversimplified cost

model: ignores

communication costs, parallelism.
See, e.g., 1981 Brent—Kung AT
theorem for realistic chip model.

NFS suffers somewhat from

communication costs inside

big linear-algebra subroutine.

2001 Bernstein:

AT = LP'+o(1) with p’ ~ 1.976.

2017 Bernstein—Biasse—Mosca:

AT = L9+o(1) wit
using b2/3t°(1) qu
Open: Analyze for

h g’ ~ 1.456

DItS.
b = 2048.

Actually have many inputs.
Lower cost for some output?
Lower cost for many outputs?

10

Counting operations is an
oversimplified cost model: ignores
communication costs, parallelism.

See, e.g., 1981 Brent—Kung AT
theorem for realistic chip model.

NFS suffers somewhat from
communication costs inside

big linear-algebra subroutine.

2001 Bernstein:
AT = LP'+o(1) with p’ ~ 1.976.

2017 Bernstein—Biasse—Mosca:
AT = 19+°(1) with ¢’ ~ 1.456
using b2/3t°(1) qubits.

Open: Analyze for b = 2048.

10
Actually have many inputs.

Lower cost for some output?
Lower cost for many outputs?

1993 Coppersmith:

after precomp(b) involving

Counting operations is an
oversimplified cost model: ignores
communication costs, parallelism.
See, e.g., 1981 Brent—Kung AT

theorem for realistic chip model.

NFS suffers somewhat from
communication costs inside
big linear-algebra subroutine.

2001 Bernstein:
AT = LP'+o(1) with p’ ~ 1.976.

2017 Bernstein—Biasse—Mosca:
AT = 19+°(1) with ¢’ ~ 1.456
using b2/3t°(1) qubits.

Open: Analyze for b = 2048.

10
Actually have many inputs.

Lower cost for some output?
Lower cost for many outputs?

1993 Coppersmith:

after precomp(b) involving

2014 Bernstein—Lange:
AT — L2.2O4...+o(1)

to factor L0-21°(1) inputs:

Counting operations is an
oversimplified cost model: ignores
communication costs, parallelism.

See, e.g., 1981 Brent—Kung AT
theorem for realistic chip model.

NFS suffers somewhat from
communication costs inside
big linear-algebra subroutine.

2001 Bernstein:
AT = LP'+o(1) with p’ ~ 1.976.

2017 Bernstein—Biasse—Mosca:
AT = 19+°(1) with ¢’ ~ 1.456
using b2/3t°(1) qubits.

Open: Analyze for b = 2048.

10
Actually have many inputs.

Lower cost for some output?
Lower cost for many outputs?

1993 Coppersmith:

after precomp(b) involving

2014 Bernstein—Lange:
AT — L2.2O4...+o(1)

to factor L0-21°(1) inputs:

Open: Any quantum speedups
for factoring many integers?

> operations Is an

lifled cost model: ignores
Ication costs, parallelism.
, 1981 Brent—Kung AT

for realistic chip model.

fers somewhat from
1cation costs inside
r-algebra subroutine.

rnstein:
o'+0(1) with p' ~ 1.976.

rnstein—Biasse—Mosca:
7'+0(1) with g’ ~ 1.456
/3+0(1) qubits.

\nalyze for b = 2048.

Actually have many inputs.
Lower cost for some output?
Lower cost for many outputs?

1993 Coppersmith:

after precomp(b) involving

2014 Bernstein—Lange:
AT — L2.2O4...+0(1)

to factor L0-21°(1) inputs:

Open: Any quantum speedups
for factoring many integers?

10

Long-ter

Long his
In Intege

Long his
switchin
not far t

ns IS an

- model: ignores
sts, parallelism.
ent—Kung AT

ic chip model.

vhat from
sts inside

subroutine.

h p’ ~ 1.976.

asse—Mosca:
h g’ ~ 1.456
Ibits.

- b = 2048.

Actually have many inputs.
Lower cost for some output?
Lower cost for many outputs?

1993 Coppersmith:

after precomp(b) involving

2014 Bernstein—Lange:
AT — L2.2O4...+o(1)

to factor L0-21°(1) inputs:

Open: Any quantum speedups
for factoring many integers?

10

Long-term RSA se

Long history of ad
in integer factoriz:

Long history of RS
switching to largel
not far beyond brc

INOres

alism.
AT

rdel.

)70.

o}
156

Actually have many inputs.
Lower cost for some output?
Lower cost for many outputs?

1993 Coppersmith:

after precomp(b) involving

2014 Bernstein—Lange:
AT — L2.2O4...+0(1)

to factor L0-21°(1) inputs:

Open: Any quantum speedups
for factoring many integers?

10

Long-term RSA security

Long history of advances
in Integer factorization.

Long history of RSA users
switching to larger key sizes
not far beyond broken sizes.

Actually have many inputs.
Lower cost for some output?
Lower cost for many outputs?

1993 Coppersmith:

after precomp(b) involving

2014 Bernstein—Lange:
AT — L2.2O4...+o(1)

to factor L0-21t°(1) inputs:

Open: Any quantum speedups
for factoring many integers?

10

Long-term RSA security

Long history of advances
in Integer factorization.

Long history of RSA users
switching to larger key sizes,
not far beyond broken sizes.

11

Actually have many inputs.
Lower cost for some output?
Lower cost for many outputs?

1993 Coppersmith:

after precomp(b) involving

2014 Bernstein—Lange:
AT — L2.2O4...+o(1)

to factor L0-21t°(1) inputs:

Open: Any quantum speedups
for factoring many integers?

10

Long-term RSA security

Long history of advances
in Integer factorization.

Long history of RSA users
switching to larger key sizes,
not far beyond broken sizes.

“"Expert” cryptographers:
“Obviously they won't react to
Shor's algorithm this way! They'll
switch to codes, lattices, etc. long
before quantum computers break
RSA-2048! We don't need to
analyze the security of RSA-4096,
RSA-8192, RSA-16384, etc.!”

11

have many Inputs.
st for some output?
st for many outputs?

ppersmith:

-o(1) operations
comp(b) involving
-o(1) operations.
rnstein—Lange:
.204...+0(1)

) LO.5—|—O(1) inputs;

-0(1) per input.

\ny quantum speedups
ring many integers?

Long-term RSA security

Long history of advances
in Integer factorization.

Long history of RSA users
switching to larger key sizes,
not far beyond broken sizes.

"Expert”’ cryptographers:
“Obviously they won't react to
Shor’s algorithm this way! They'll
switch to codes, lattices, etc. long
before quantum computers break
RSA-2048! We don't need to
analyze the security of RSA-4096,
RSA-8192, RSA-16384, etc.!”

11

We cons
quantun
we also
of users

Iy Inputs.
ne output?
ny outputs?

ations
nvolving

ytions.

nge:
)

|

Inputs;
nput.

1m speedups
Integers?

10

Long-term RSA security

Long history of advances
in Integer factorization.

Long history of RSA users
switching to larger key sizes,
not far beyond broken sizes.

"Expert” cryptographers:
“Obviously they won't react to
Shor's algorithm this way! They'll
switch to codes, lattices, etc. long
before quantum computers break
RSA-2048! We don't need to
analyze the security of RSA-4096,
RSA-8192, RSA-16384, etc.!”

11

We consider possi
quantum compute
we also consider p
of users wanting t

PS

10

Long-term RSA security

Long history of advances
in Integer factorization.

Long history of RSA users
switching to larger key sizes,
not far beyond broken sizes.

"Expert” cryptographers:
“Obviously they won't react to
Shor’s algorithm this way! They'll
switch to codes, lattices, etc. long
before quantum computers break
RSA-2048! We don't need to
analyze the security of RSA-4096,
RSA-8192, RSA-16384, etc.!”

11

We consider possible impact
quantum computers. Shoulc

we also consider possible im
of users wanting to stick to

Long-term RSA security

Long history of advances
in Integer factorization.

Long history of RSA users
switching to larger key sizes,
not far beyond broken sizes.

“"Expert” cryptographers:
“Obviously they won't react to
Shor's algorithm this way! They'll
switch to codes, lattices, etc. long
before quantum computers break
RSA-2048! We don't need to
analyze the security of RSA-4096,
RSA-8192, RSA-16384, etc.!”

11

12
We consider possible impact of

quantum computers. Shouldn't

we also consider possible impact
of users wanting to stick to RSA?

Long-term RSA security

Long history of advances
in Integer factorization.

Long history of RSA users
switching to larger key sizes,
not far beyond broken sizes.

“"Expert” cryptographers:
“Obviously they won't react to
Shor's algorithm this way! They'll
switch to codes, lattices, etc. long
before quantum computers break
RSA-2048! We don't need to
analyze the security of RSA-4096,
RSA-8192, RSA-16384, etc.!”

11

12
We consider possible impact of

quantum computers. Shouldn't

we also consider possible impact
of users wanting to stick to RSA?

2017 Bernstein—Heninger—Lou—
Valenta “Post-quantum RSA”
(PqRSA): Generated 1-terabyte
RSA key; 2000000 core-hours.
Shor's algorithm: >2100 gates.

Long-term RSA security

Long history of advances
in Integer factorization.

Long history of RSA users
switching to larger key sizes,
not far beyond broken sizes.

“"Expert” cryptographers:
“Obviously they won't react to
Shor's algorithm this way! They'll
switch to codes, lattices, etc. long
before quantum computers break
RSA-2048! We don't need to
analyze the security of RSA-4096,
RSA-8192, RSA-16384, etc.!”

11

12
We consider possible impact of

quantum computers. Shouldn't

we also consider possible impact
of users wanting to stick to RSA?

2017 Bernstein—Heninger—Lou—
Valenta “Post-quantum RSA”
(PqRSA): Generated 1-terabyte
RSA key; 2000000 core-hours.
Shor's algorithm: >2100 gates.

Bernstein—Fried—Heninger—Lou—
Valenta: Draft NIST submission
proposing 1-gigabyte RSA keys.
Much faster to generate.

'm RSA security

tory of advances
r factorization.

tory of RSA users
g to larger key sizes,
yeyond broken sizes.

" cryptographers:

sly they won't react to
lgorithm this way! They'll
0 codes, lattices, etc. long
uantum computers break
181 We don't need to

the security of RSA-4096,
)2, RSA-16384, etc.!”

11

We consider possible impact of
quantum computers. Shouldn't

we also consider possible impact
of users wanting to stick to RSA?

2017 Bernstein—Heninger—Lou—
Valenta “Post-quantum RSA"
(PgRSA): Generated 1-terabyte
RSA key; 2000000 core-hours.

2100

Shor’s algorithm: > gates.

Bernstein—Fried—Heninger—Lou—
Valenta: Draft NIST submission
proposing 1-gigabyte RSA keys.
Much faster to generate.

12

The sec

4096
1024

olls

DIt

Importal

keygen,

Is this a

ECM fin
using L\

where |c
Beats Sl

(log log 1

Public E
274-bit 1

curity

vances
tion.

A users
- key sizes,
yken sizes.

aphers:

on't react to
his way! They'll
ttices, etc. long
omputers break
n't need to

'y of RSA-4096,
6334, etc.!”

11

We consider possible impact of
quantum computers. Shouldn't

we also consider possible impact
of users wanting to stick to RSA?

2017 Bernstein—Heninger—Lou—
Valenta “Post-quantum RSA”
(PqRSA): Generated 1-terabyte
RSA key; 2000000 core-hours.

2100

Shor’s algorithm: > gates.

Bernstein—Fried—Heninger—Lou—
Valenta: Draft NIST submission
proposing 1-gigabyte RSA keys.
Much faster to generate.

12

The secret primes
4096 bits in teraby
1024 bits In gigab
Important time-sa

keygen, signing, d
Is this a weakness

ECM finds any pri
using [V2+o(1) m
where log L = (log
Beats Shor for log
(log log modulus)?

Public ECM recor:
274-bit factor of 7

11

We consider possible impact of
quantum computers. Shouldn't

we also consider possible impact
of users wanting to stick to RSA?

2017 Bernstein—Heninger—Lou—
Valenta “Post-quantum RSA"
(PgRSA): Generated 1-terabyte
RSA key; 2000000 core-hours.

2100

Shor’s algorithm: > gates.

Bernstein—Fried—Heninger—Lou—
Valenta: Draft NIST submission
proposing 1-gigabyte RSA keys.
Much faster to generate.

12

The secret primes are small:
4096 bits in terabyte key;
1024 bits in gigabyte key.

Important time-saver In

keygen, signing, decryption.

Is this a weakness?

ECM finds any prime <y
using [V2+o(1) mulmods,

where log L = (log y
Beats Shor for log y

og log |

helow

(log log modulus)2to(1),

Public ECM record:

274-bit factor of 7337 + 1.

We consider possible impact of
quantum computers. Shouldn't

we also consider possible impact
of users wanting to stick to RSA?

2017 Bernstein—Heninger—Lou—
Valenta “Post-quantum RSA”
(PqRSA): Generated 1-terabyte
RSA key; 2000000 core-hours.

2100

Shor’s algorithm: > gates.

Bernstein—Fried—Heninger—Lou—
Valenta: Draft NIST submission
proposing 1-gigabyte RSA keys.
Much faster to generate.

12

The secret primes are small:

4096
1024

nits In terabyte key;

oits In gigabyte key.

Important time-saver in

keygen, signing, decryption.

Is this a weakness?

ECM finds any prime <y
using LV2+°(1) mulmods,

where log L = (log y log log y)
Beats Shor for log y below

(log log modulus)2to(1).

Public ECM record:
274-bit factor of 7337 + 1.

1/2

13

ider possible impact of
' computers. Shouldn't

consider possible impact
wanting to stick to RSA?

rnstein—Heninger—Lou—
"Post-quantum RSA”

): Generated 1-terabyte

- 2000000 core-hours.

2100

lgorithm: > gates.

n—Fried—Heninger—Lou—

Draft NIST submission
g 1-gigabyte RSA keys.
ster to generate.

12

The secret primes are small:
4096 bits in terabyte key;
1024 bits in gigabyte key.

Important time-saver in

keygen, signing, decryption.

Is this a weakness?

ECM finds any prime <y
using [V2+o(1) mulmods,

where log L = (log y
Beats Shor for log y

og Iogy)1/2.

helow

(log log modulus)2to(1),

Public ECM record:

274-bit factor of 7337 + 1.

13

Analysis

>2125 1y
233_

223 targ
finding |

ble impact of
rs. Shouldn't

ossible impact
o0 stick to RSA?

eninger—Lou—
ntum RSA”
ed 1-terabyte
 core-hours.
>2100 oates.

leninger—Lou—
ST submission

/te RSA keys.
nerate.

12

The secret primes are small:
4096 bits in terabyte key;
1024 bits in gigabyte key.

Important time-saver in

keygen, signing, decryption.

Is this a weakness?

ECM finds any prime <y
using [V2+o(1) mulmods,

where log L = (log y
Beats Shor for log y
(log log modulus)

Public ECM record:

og Iogy)l/z.

helow

2+40(1)

274-bit factor of 7337 + 1.

13

Analysis for y ~ 2
~2125 mulmods, I

233

and -bit mulmc

223 target primes,
finding just one isi

- of
In't
pact
RSA?

dJU—
\"
yte
S.
€S.

Sion
eys.

12

The secret primes are small:
4096 bits in terabyte key;
1024 bits in gigabyte key.

Important time-saver in
keygen, signing, decryption.

Is this a weakness?

ECM finds any prime <y
using [V2+o(1) mulmods,

where log L = (log y log Iogy)1/2.

Beats Shor for log y below
(log log modulus)2+o(1).

Public ECM record:
274-bit factor of 7337 + 1.

13

Analysis for y a 21024

>2125 mulmods, huge deptt

233

and -bit mulmod is slow.

223 target primes, but
finding just one isn't enougt

The secret primes are small:
4096 bits in terabyte key;
1024 bits in gigabyte key.

Important time-saver in
keygen, signing, decryption.

Is this a weakness?

ECM finds any prime <y
using [V2+o(1) mulmods.

where log L = (log y log log y)1/2.

Beats Shor for log y below

(log log modulus)2to(1).

Public ECM record:
274-bit factor of 7337 + 1.

13

Analysis for y a 21024,

~2125 mulmods, huge depth;

233

and -bit mulmod is slow.

223 target primes, but

finding just one isn't enough.

14

The secret primes are small:
4096 bits in terabyte key;
1024 bits in gigabyte key.

Important time-saver in

keygen, signing, decryption.

Is this a weakness?

ECM finds any prime <y
using [V2+o(1) mulmods.

where log L = (log y
Beats Shor for log y
(log log modulus)

Public ECM record:

og Iogy)l/z.

helow

2+40(1)

274-bit factor of 7337 + 1.

13

14

Analysis for y a 21024,

~2125 mulmods, huge depth;

233

and -bit mulmod is slow.

223 target primes, but
finding just one isn't enough.

2017 Bernstein—Heninger—Lou—
Valenta: Grover+ECM
finds any prime <y

using L117°(1) mulmods.

The secret primes are small:
4096 bits in terabyte key;
1024 bits in gigabyte key.

Important time-saver in
keygen, signing, decryption.

Is this a weakness?

ECM finds any prime <y
using [V2+o(1) mulmods.

where log L = (log y log log y)1/2.

Beats Shor for log y below

(log log modulus)2to(1).

Public ECM record:
274-bit factor of 7337 + 1.

13

14

Analysis for y a 21024,

~2125 mulmods, huge depth;

233

and -bit mulmod is slow.

223 target primes, but
finding just one isn't enough.

2017 Bernstein—Heninger—Lou—
ECM
finds any prime <y

Valenta: Grover

using L117°(1) mulmods.
Seems swamped by overhead.

Open: Better ways for quantum
algorithms to find small factors?

et primes are small:
s In terabyte key;

s In gigabyte key.
1t time-saver In
signing, decryption.

weakness?

ds any prime <y
/2+0(1)

mulmods,

gL = (logy loglog y)/2.

or for log y below
nodulus)?to(1).

CM record:
factor of 7337 1+ 1.

13

Analysis for y a 21024

>2125 mulmods, huge depth:
and 233_bit mulmod is slow.

223 target primes, but
finding just one isn't enough.

2017 Bernstein—Heninger—Lou—
Valenta: Grover4+ECM
finds any prime <y

using L17°(1) mulmods.
Seems swamped by overhead.

Open: Better ways for quantum
algorithms to find small factors?

14

Minimur
NIST all
submissi
search f

Is a giga
Shor's a

are small:
te key;
vte key.
Ver In

ecryption.

?

me <y
1Imods,

'y log log y)1/2.

y below

13

Analysis for y =
~2125 mulmods. huge depth;

21024.

and 233-bit mulmod is slow.

223 target primes, but

finding just one isn't enough.

2017 Bernstein—Heninger—Lou—

Valenta: Grover

ECM

finds any prime <y

using L117°(1) mulmods.

Seems swamped by overhead.

Open: Better ways for quantum
algorithms to find small factors?

14

Minimum security
NIST allows for pc
submissions: brute
search for a 128-b

Is a gigabyte key ¢
Shor's algorithm t

13

Analysis for y a 21024

>2125 mulmods, huge depth:

233

and -bit mulmod is slow.

223 target primes, but
finding just one isn't enough.

2017 Bernstein—Heninger—Lou—
Valenta: Grover+ECM
finds any prime <y

using L17°(1) mulmods.
Seems swamped by overhead.

Open: Better ways for quantum
algorithms to find small factors?

14

Minimum security level that
NIST allows for post-quantt

submissions: brute-force/Gr
search for a 128-bit AES ke

Is a gigabyte key so difficult
Shor’s algorithm to break?

14 15

Analysis for y a 21024, Minimum security level that
>2125> mulmods, huge depth:; NIST allows for post-quantum
and 233-bit mulmod is slow. submissions: brute-force/Grover

223 target primes, but search for a 128-bit AES key.

finding just one isn't enough. Is a gigabyte key so difficult for

! = 7
2017 Bernstein—Heninger—Lou— Shor’s algorithm to break:

Valenta: Grover+ECM
finds any prime <y

using L17°(1) mulmods.
Seems swamped by overhead.

Open: Better ways for quantum
algorithms to find small factors?

Analysis for y a 21024,

~2125 mulmods, huge depth;

233

and -bit mulmod is slow.

223 target primes, but
finding just one isn't enough.

2017 Bernstein—Heninger—Lou—
ECM
finds any prime <y

Valenta: Grover

using L17°(1) mulmods.
Seems swamped by overhead.

Open: Better ways for quantum
algorithms to find small factors?

14

15
Minimum security level that

NIST allows for post-quantum

submissions: brute-force/Grover
search for a 128-bit AES key.

Is a gigabyte key so difficult for
Shor’s algorithm to break?

6463 Ig b ~ 2110 for p = 233

Not totally implausible to argue

that Grover's algorithm could
break AES-128 faster than this.

Analysis for y a 21024,

~2125 mulmods, huge depth;

233

and -bit mulmod is slow.

223 target primes, but
finding just one isn't enough.

2017 Bernstein—Heninger—Lou—
Valenta: Grover+ECM
finds any prime <y

using L17°(1) mulmods.
Seems swamped by overhead.

Open: Better ways for quantum
algorithms to find small factors?

14

15
Minimum security level that

NIST allows for post-quantum

submissions: brute-force/Grover
search for a 128-bit AES key.

Is a gigabyte key so difficult for
Shor’s algorithm to break?

6463 Ig b ~ 2110 for p = 233

Not totally implausible to argue

that Grover's algorithm could
break AES-128 faster than this.

But Shor's algorithm can (with
more qubits) use faster mulmods.

for y ~ 21024

wulmods, huge depth;
bit mulmod is slow.

et primes, but
ust one isn't enough.

rnstein—Heninger—Lou—
Grover+ECM

y prime <y

+0(1) mulmods.

wamped by overhead.

Setter ways for quantum
ns to find small factors?

14

Minimum security level that
NIST allows for post-quantum
submissions: brute-force/Grover

search for a 128-bit AES key.

Is a gigabyte key so difficult for
Shor’s algorithm to break?

6453 g b ~ 2110 for p = 233

Not totally implausible to argue

that Grover's algorithm could
break AES-128 faster than this.

But Shor’s algorithm can (with

more qubits) use faster mulmods.

15

NIST all
assume

"Plausib

range fr
approxin
present|y
computi
expectec
a year) 1
(the apr
that cur
architect
in a dec.
logical g

1024.

uge depth;
d Is slow.

but
't enough.

eninger—Lou—
FCM

y

mods.

y overhead.

s for quantum
small factors?

14

Minimum security level that
NIST allows for post-quantum

submissions: brute-force/Grover
search for a 128-bit AES key.

Is a gigabyte key so difficult for
Shor’s algorithm to break?

6463 g b ~ 2110 for p = 233

Not totally implausible to argue

that Grover's algorithm could
break AES-128 faster than this.

But Shor's algorithm can (with

more qubits) use faster mulmods.

15

NIST allows subm
assume reasonable

"Plausible values 1
range from 240 |og
approximate numt
presently envisione
computing archite
expected to seriall
a year) through 2°
(the approximate
that current classi
architectures can |
in a decade), to n
logical gates ..."

DU—

tum

ors”?

14

Minimum security level that
NIST allows for post-quantum

submissions: brute-force/Grover
search for a 128-bit AES key.

Is a gigabyte key so difficult for
Shor’s algorithm to break?

6453 g b ~ 2110 for p = 233

Not totally implausible to argue
that Grover's algorithm could

break AES-128 faster than this.

But Shor’s algorithm can (with
more qubits) use faster mulmods.

15

NIST allows submissions to
assume reasonable time [imi

"Plausible values for MAXD
range from 29 logical gates
approximate number of gate
presently envisioned quantur
computing architectures are
expected to serially perform
a year) through 2°* logical ¢
(the approximate number of
that current classical compu
architectures can perform se
in a decade), to no more th:
logical gates ..."

Minimum security level that
NIST allows for post-quantum

submissions: brute-force/Grover
search for a 128-bit AES key.

Is a gigabyte key so difficult for
Shor’s algorithm to break?

6463 g b ~ 2110 for p = 233

Not totally implausible to argue
that Grover's algorithm could

break AES-128 faster than this.

But Shor's algorithm can (with

more qubits) use faster mulmods.

15

16
NIST allows submissions to

assume reasonable time limits:

“Plausible values for MAXDEPTH

range from 2% logical gates (the
approximate number of gates that
presently envisioned quantum
computing architectures are
expected to serially perform in

a year) through 2°* logical gates
(the approximate number of gates
that current classical computing
architectures can perform serially
in a decade), to no more than 2%°
logical gates ..."

n security level that
ows for post-quantum

ons: brute-force/Grover
or a 128-bit AES key.

byte key so difficult for
lgorithm to break?

) s 2110 for p = 233,

lly implausible to argue

ver's algorithm could
=5-128 faster than this.

r's algorithm can (with

bits) use faster mulmods.

15

16
NIST allows submissions to

assume reasonable time limits:

“Plausible values for MAXDEPTH

range from 240 logical gates (the
approximate number of gates that
presently envisioned quantum
computing architectures are
expected to serially perform in

a year) through 2°* logical gates
(the approximate number of gates
that current classical computing
architectures can perform serially
in a decade), to no more than 27°
logical gates ..."

What is
for b-bit

Light ta
to cross

1981 Br
AT > sr
even If v

(Work a
faster-th
through
Haven't
even if r
avoids F

level that
)St-quantum
-force / Grover

it AES key.

0 difficult for
0 break?

v b = 233

sible to argue
rithm could
ster than this.

1m can (with

aster mulmods.

15

NIST allows submissions to
assume reasonable time limits:

“Plausible values for MAXDEPTH

range from 2% logical gates (the
approximate number of gates that
presently envisioned quantum
computing architectures are
expected to serially perform in

a year) through 2°* logical gates
(the approximate number of gates
that current classical computing
architectures can perform serially
in a decade), to no more than 2%°
logical gates ..."

What is the minin
for b-bit integer n

Light takes time
to cross a b1/2 x

1981 Brent—Kung
AT > small const:
even if wire latenc

(Work around obs
faster-than-light c
through long-dista
Haven't seen plau:
even if reversible c
avoids FTL impos:

QVEer

for

gue

his.

nth
mods.

15

NIST allows submissions to
assume reasonable time limits:

“Plausible values for MAXDEPTH

range from 240 logical gates (the
approximate number of gates that
presently envisioned quantum
computing architectures are
expected to serially perform in

a year) through 2°* logical gates
(the approximate number of gates
that current classical computing
architectures can perform serially
in a decade), to no more than 27°
logical gates ..."

16

What 1s the minimum time
for b-bit integer multiplicati

Light takes time Q(b!/?)
to cross a b1/2 x pl/? chip.

1981 Brent—Kung AT theor:
AT > small constant - b3/2,
even if wire latency is O.

(Work around obstacles usir
faster-than-light communica
through long-distance EPR |
Haven't seen plausible desig
even if reversible computatic
avolds FTL impossibility prc

NIST allows submissions to
assume reasonable time limits:

“Plausible values for MAXDEPTH

range from 2% logical gates (the
approximate number of gates that
presently envisioned quantum
computing architectures are
expected to serially perform in

a year) through 2°* logical gates
(the approximate number of gates
that current classical computing
architectures can perform serially
in a decade), to no more than 2%°
logical gates ..."

16

17
What is the minimum time

for b-bit integer multiplication?

Light takes time Q(b'/2)
to cross a bl/2 x pl/2 chip.

1981 Brent—Kung AT theorem:
AT > small constant - b3/2,
even if wire latency is O.

(Work around obstacles using
faster-than-light communication
through long-distance EPR pairs?
Haven't seen plausible designs,
even if reversible computation
avoids FTL impossibility proofs.)

ows submissions to
reasonable time limits:

le values for MAXDEPTH

om 240 logical gates (the
1ate number of gates that
/ envisioned quantum

ng architectures are

] to serially perform in
hrough 2% logical gates
roximate number of gates
rent classical computing
ures can perform serially

ade), to no more than 2%°

ates ...

16

What is the minimum time
for b-bit integer multiplication?

Light takes time Q(b'/2)
to cross a bl/2 x pl/2 chip.

1981 Brent—Kung AT theorem:
AT > small constant - b3/2,
even if wire latency is O.

(Work around obstacles using
faster-than-light communication
through long-distance EPR pairs?
Haven't seen plausible designs,
even if reversible computation
avoids FTL impossibility proofs.)

17

What is
for Shor

Main bo
for 2b-b

Traditiol
controlle

a and 1,

32 MOQ

34 MOC

Can mul
using m.
but hara
compute

ISsions to
' time limits:

or MAXDEPTH

rical gates (the
er of gates that
d quantum
ctures are

y perform in

4 Jogical gates
number of gates
cal computing
serform serially
5> more than 22°

16

What 1s the minimum time
for b-bit integer multiplication?

Light takes time Q(b'/2)
to cross a b1/2 x pl/? chip.

1981 Brent—Kung AT theorem:
AT > small constant - b3/2,

even if wire latency is O.

(Work around obstacles using
faster-than-light communication
through long-distance EPR pairs?
Haven't seen plausible designs,
even if reversible computation
avoids FTL impossibility proofs.)

17

What is the minin
for Shor's algorith

Main bottleneck:
for 2b-bit superpo

Traditional approa
controlled multipli

a and 1/a mod N,;

a’> mod N and 1/

a* mod N and 1/:

Can multiply these
using many more
but hard to paralle

computation of a2

ts:

EPTH
(the
s that

In
rates
gates
ting
rially
n 296

16

What i1s the minimum time

for b-bit integer multiplication?

Light takes time Q(b!/?)
to cross a b1/2 x pl/? chip.

1981 Brent—Kung AT theorem:
AT > small constant - b3/2,

even if wire latency is O.

(Work around obstacles using
faster-than-light communication
through long-distance EPR pairs?
Haven't seen plausible designs,
even if reversible computation
avoids FTL impossibility proofs.)

17

What i1s the minimum time

for Shor's algorithm?

Main bottleneck: a® mod N
for 2b-bit superposition e.

Traditional approach: series

controlled multiplications by
a and 1/a mod N;

2
4

Can

a’> mod N and 1/a® mod N;

a* mod N and 1/a* mod N;

multiply these In parall

using many more qubits;

but
com

nard to parallelize initial

sutation of a2 mod N.

What 1s the minimum time
for b-bit integer multiplication?

Light takes time Q(b'/2)
to cross a b1/2 x pl/? chip.

1981 Brent—Kung AT theorem:
AT > small constant - b3/2,
even if wire latency is O.

(Work around obstacles using
faster-than-light communication
through long-distance EPR pairs?
Haven't seen plausible designs,
even if reversible computation
avoids FTL impossibility proofs.)

17

What i1s the minimum time

for Shor’s algorithm?

Main bottleneck: a® mod N
for 2b-bit superposition e.

Traditional approach: series of

controlled multiplications by
a and 1/a mod N,

2
4

Can

a’> mod N and 1/a° mod N;

at mod N anc 1/5)4 mod N: etc.

multiply these in parallel,

using many more qubits;

but
com

nard to parallelize initial

sutation of a2 mod N.

18

the minimum time

integer multiplication?

kes time Q(b1/2)
a bl/2 x p1/2 chip.

ent—Kung AT theorem:
nall constant - b3/2,
vire latency is 0.

round obstacles using
an-light communication
long-distance EPR pairs?
seen plausible designs,
eversible computation
TL impossibility proofs.)

17

What 1s the minimum time
for Shor's algorithm?

Main bottleneck: a® mod N
for 2b-bit superposition e.

Traditional approach: series of

controlled multiplications by

a and 1/a mod N;

a’> mod N and 1/a® mod N;

4

Can multiply these in parallel,
using many more qubits;
but hard to parallelize initial

computation of a2 mod M.

at mod N and 1/a4 mod N: etc.

18

Why gig

DIg enoL

beyond
under re

Gigabyte
millions
than 20«

These al

billions «¢
More co

\um time

wultiplication?

2(b1/2)
h1/2 chip.

AT theorem:
Nt - b3/2,
y is 0.

tacles using
ommunication
nce EPR pairs?
sible designs,
omputation
sibility proofs.)

17

What 1s the minimum time
for Shor’s algorithm?

Main bottleneck: a® mod N
for 2b-bit superposition e.

Traditional approach: series of

controlled multiplications by

a and 1/a mod N,;

a’> mod N and 1/a®° mod N;

4

Can multiply these in parallel,
using many more qubits;
but hard to parallelize initial

computation of a2 mod N.

a* mod N anc 1/5)4 mod N: etc.

18

Why gigabyte key:
nig enough to pus
beyond the 2% lin
under reasonable :

Gigabyte inputs ar
millions of times I

than 2048-bit Inpt
These algorithms

billions of times lo
More cost to find

on?

tion
DaIrs?

N

ofs.)

17

What i1s the minimum time

for Shor's algorithm?

Main bottleneck: a® mod N
for 2b-bit superposition e.

Traditional approach: series of

controlled multiplications by
a and 1/a mod N;

2
4

Can

a’> mod N and 1/a® mod N;

at mod N and 1/a4 mod N: etc.

multiply these in parallel,

using many more qubits;

but
com

nard to parallelize initial

sutation of a2 mod N.

18

Why gigabyte keys are reasc
vig enough to push latency
beyond the 2°4 limit,

under reasonable assumptiot

Gigabyte inputs are
millions of times larger
than 2048-bit inputs.
These algorithms will take

billions of times longer.
More cost to find all primes

What 1s the minimum time
for Shor’s algorithm?

Main bottleneck: a® mod N
for 2b-bit superposition e.

Traditional approach: series of

controlled multiplications by

a and 1/a mod N,;

a° mod N and 1/a®° mod N;

4

Can multiply these in parallel,
using many more qubits;
but hard to parallelize initial

computation of a2 mod N.

a* mod N anc 1/5)4 mod N: etc.

18

Why gigabyte keys are reasonable:

nig enough to push latency
heyond the 294 limit,
under reasonable assumptions.

Gigabyte inputs are
millions of times larger

than 2048-bit inputs.
These algorithms will take

billions of times longer.
More cost to find all primes.

19

What 1s the minimum time
for Shor’s algorithm?

Main bottleneck: a® mod N
for 2b-bit superposition e.

Traditional approach: series of

controlled multiplications by
a and 1/a mod N,;

2% mod 1/a2 mod N:

34 MOC

N anc

N and 1/a* moc

Can multiply these in parallel,
using many more qubits;

but .
computation of a2 mod N.

nard to parallelize initial

N: etc.

18

Why gigabyte keys are reasonable:

nig enough to push latency
beyond the 204 limit,

under reasonable assumptions.

Gigabyte inputs are

millions of times larger
than 2048-bit inputs.

T
bi

nese algorithms will take

lions of times longer.

More cost to find all primes.

O

pen: What is minimum time

for integer factorization?

19

the minimum time

's algorithm?

ttleneck: a® mod N

't superposition e.

al approach: series of
d multiplications by
'a mod N:

N anc 1/a2 mod N:

N and 1/a* mod N; etc.

tiply these in parallel,
any more qubits;

| to parallelize initial
tion of a2 mod M.

18

Why gigabyte keys are reasonable:

vig enough to push latency
beyond the 2°4 limit,
under reasonable assumptions.

Gigabyte inputs are
millions of times larger
than 2048-bit inputs.
These algorithms will take

billions of times longer.
More cost to find all primes.

Open: What is minimum time
for integer factorization?

19

NIST s 1
Is define

\um time

m?

a® mod N

sition e.

ch: series of
cations by

* mod N:

¥ moa N: etc.

> In parallel,
qubits;
lize Inttial

/

mod .

18

Why gigabyte keys are reasonable:

nig enough to push latency
heyond the 204 limit,

under reasonable assumptions.

Gigabyte inputs are

millions of times larger
than 2048-bit Inputs.

T
bi

nese algorithms will take

lions of times longer.

More cost to find all primes.

O

pen: What is minimum time

for integer factorization?

19

NIST's middle sec
is defined by an A

of

etc.

18

Why gigabyte keys are reasonable:

vig enough to push latency
beyond the 2°4 limit,
under reasonable assumptions.

Gigabyte inputs are
millions of times larger
than 2048-bit Iinputs.
These algorithms will take

billions of times longer.
More cost to find all primes.

Open: What is minimum time
for integer factorization?

19

NIST's middle security level
is defined by an AES-192 ke

Why gigabyte keys are reasonable:

nig enough to push latency
beyond the 204 limit,

under reasonable assumptions.

Gigabyte inputs are

millions of times larger
than 2048-bit Inputs.

T
bi

nese algorithms will take

lions of times longer.

More cost to find all primes.

O

pen: What is minimum time

for integer factorization?

19

NIST's middle security level
is defined by an AES-192 key.

20

Why gigabyte keys are reasonable:

nig enough to push latency
heyond the 294 limit,
under reasonable assumptions.

Gigabyte inputs are
millions of times larger
than 2048-bit Inputs.
These algorithms will take

billions of times longer.
More cost to find all primes.

Open: What is minimum time
for integer factorization?

19

NIST's middle security level

is defined by an AES-192 key.

With maximum depth 24,

finding an AES-192 key

2144

requires ~ cores.

20

Why gigabyte keys are reasonable:

nig enough to push latency
heyond the 294 limit,
under reasonable assumptions.

Gigabyte inputs are
millions of times larger
than 2048-bit Inputs.
These algorithms will take

billions of times longer.
More cost to find all primes.

Open: What is minimum time
for integer factorization?

19

20
NIST's middle security level

is defined by an AES-192 key.

With maximum depth 24,

finding an AES-192 key

2144

requires ~ cores.

This Is nonsense! There Is
not enough time to broadcast

2144 Harallel

the input to
computations, and not enough

time to collect the results.

Why gigabyte keys are reasonable:

nig enough to push latency
heyond the 294 limit,
under reasonable assumptions.

Gigabyte inputs are
millions of times larger

than 2048-bit Inputs.
These algorithms will take

billions of times longer.
More cost to find all primes.

Open: What is minimum time
for integer factorization?

19

20
NIST's middle security level

is defined by an AES-192 key.

With maximum depth 24,
finding an AES-192 key

2144

requires ~ cores.

This Is nonsense! There Is
not enough time to broadcast

2144 Harallel

the input to
computations, and not enough

time to collect the results.

Is NIST implicitly assuming
a higher latency limit?

abyte keys are reasonable;

gh to push latency
he 294 limit,
asonable assumptions.

> Inputs are

of times larger
18-bit Inputs.
gorithms will take
f times longer.

st to find all primes.

Vhat 1s minimum time

er factorization?

19

NIST's middle security level
is defined by an AES-192 key.

With maximum depth 2°4,

finding an AES-192 key
requires ~21% cores.

This I1s nonsense! There is
not enough time to broadcast

2144 Harallel

the input to
computations, and not enough

time to collect the results.

Is NIST implicitly assuming
a higher latency limit?

20

Some in

(2017 B

Considet
factoring

(pj — 1)

Unit gro
Z /2" x

5 are reasonable:

h latency
11t,
Issumptions.

(s

arger

ItS.

will take
nger.

all primes.

nimum time

ation”?

19

NIST's middle security level
is defined by an AES-192 key.

With maximum depth 24,
finding an AES-192 key

2144

requires ~ cores.

This Is nonsense! There Is
not enough time to broadcast

2144 Harallel

the input to
computations, and not enough

time to collect the results.

Is NIST implicitly assuming
a higher latency limit?

20

Some improvemen

(2017 Bernstein—E

Consider Shor's al
factoring N = p;’

ei—1 .
(p;—1)p " as 2
Unit group is isorr
Z/21 x ... x Z)2

nable:

1S.

ne

19

NIST's middle security level
is defined by an AES-192 key.

With maximum depth 264,

finding an AES-192 key
requires ~21% cores.

This I1s nonsense! There Is
not enough time to broadcast

the input to 2144

parallel
computations, and not enough

time to collect the results.

Is NIST implicitly assuming
a higher latency limit?

20

Some improvements to Shor

(2017 Bernstein—Biasse—Mo:

Consider Shor's algorithm

factoring N = p;* - -- pff. V

(pj — 1)pr as 2% u; with

Unit group Is isomorphic to
Z/2% x ... x Z/2Y x Z /iy

NIST's middle security level
is defined by an AES-192 key.

With maximum depth 24,
finding an AES-192 key

2144

requires ~ cores.

This Is nonsense! There Is
not enough time to broadcast

2144 Harallel

the input to
computations, and not enough

time to collect the results.

Is NIST implicitly assuming
a higher latency limit?

20

Some improvements to Shor

(2017 Bernstein—Biasse—Mosca)

Consider Shor'’s algorithm

factoring N = p;* - -- plff. Write
ei—1

(pj — 1)ij as 2U uj with u; odd.

Unit group Is iIsomorphic to

Z/2M x .. X Z/2Y X Z/ug X - -.

21

NIST's middle security level
is defined by an AES-192 key.

With maximum depth 24,

finding an AES-192 key

2144

requires ~ cores.

This Is nonsense! There Is
not enough time to broadcast

2144 Harallel

the input to
computations, and not enough

time to collect the results.

Is NIST implicitly assuming
a higher latency limit?

20

Some improvements to Shor

(2017 Bernstein—Biasse—Mosca)

Consider Shor'’s algorithm

factoring N = p;* - -- plff. Write
ei—1

(Pj — 1)ij

Unit group Is iIsomorphic to

Z/2M x .. X Z/2Y X Z/ug X - -.

Shor's algorithm (hopefully)
computes order r of random unit.
Order 29 in Z/25 is

2% with probability 1/2;

241 with probability 1/4; etc.

as 2Y uj with u; odd.

21

niddle security level
d by an AES-192 key.

ximum depth 204,
n AES-192 key
~21%% cores.

onsense! There Is
1gh time to broadcast
t to 2144 parallel
itions, and not enough
collect the results.

implicitly assuming
latency limit?

20

Some improvements to Shor

(2017 Bernstein—Biasse—Mosca)

Consider Shor's algorithm

factoring N = p;* - -- pff. Write
ei—1

(Pj — 1)ij

Unit group Is isomorphic to

Z/2% x .o X Z/2Y X Z/ug X - -

Shor's algorithm (hopefully)
computes order r of random unit.
Order 25 in Z/2Y is

2% with probability 1/2;

241 with probability 1/4; etc.

as 2Y uj with u; odd.

21

Shor cor
Divisible
o < ma
Factoriz
equal. C

urity level
ES-192 key.

pth 204
2 key
€s.

There is

o broadcast
varallel

| not enough
' results.

assuming
mit?

20

Some improvements to Shor

(2017 Bernstein—Biasse—Mosca)

Consider Shor's algorithm

factoring N = p;* - -- plff. Write
ei—1

(pj — 1)ij as 2U uj with u; odd.

Unit group Is isomorphic to

Z/2M x .o X Z/2Y X Z/ug X - -.

Shor's algorithm (hopefully)
computes order r of random unit.
Order 29 in Z/25 is

2% with probability 1/2;

241 with probability 1/4; etc.

21

Shor computes gc
Divisible by p; exa
¢; < max{cy,...,

Factorization fails
equal. Chance <1

ST

20

Some improvements to Shor

(2017 Bernstein—Biasse—Mosca)

Consider Shor’s algorithm

factoring N = p;* - -- pff. Write
ei—1

(pj — 1)ij as 2U uj with u; odd.

Unit group Is isomorphic to

Z/2% x ..o X Z/2Y X Z/ug X - -

Shor's algorithm (hopefully)
computes order r of random unit.
Order 25 in Z/2Y is

2% with probability 1/2;

241 with probability 1/4; etc.

21

Shor computes ged{N, a"/?
Divisible by p; exactly when
¢; < max{ci, ..., Cf}.

Factorization fails iff all Cj a
equal. Chance <1/27~1

Some improvements to Shor

(2017 Bernstein—Biasse—Mosca)

Consider Shor's algorithm

factoring N = p;* - -- plff. Write
ei—1

(pj — 1)ij as 2U uj with u; odd.
Unit group is iIsomorphic to
Z/2M x .. X Z/2Y X Z/ug X - -.

Shor's algorithm (hopefully)
computes order r of random unit.
Order 29 in Z/25 is

2% with probability 1/2;

241 with probability 1/4; etc.

21

Shor computes ged{N, a"/2 — 1}.

Divisible by p; exactly when
¢j < max{cy, ..., cr}.

Factorization fails iff all cj are
equal. Chance <1/2"-1

22

Some improvements to Shor

(2017 Bernstein—Biasse—Mosca)

Consider Shor's algorithm

factoring N = p;* - -- plff. Write
ei—1

(Pj — 1)ij

Unit group Is isomorphic to

Z/2M x .. X Z/2Y X Z/ug X - -.

Shor's algorithm (hopefully)
computes order r of random unit.
Order 29 in Z/25 is

2% with probability 1/2;

241 with probability 1/4; etc.

as 2Y uj with u; odd.

21

Shor computes ged{N, a"/2 — 1}.
Divisible by p; exactly when
¢j < max{cy,..., Cr}.

Factorization fails iff all cj are
equal. Chance <1/2"-1

More subtle problem:
Factorization is likely to
split off some of the

primes with maximum ¢;.

Can iterate Shor’s algorithm
enough times to completely
factor. Many full-size iterations;
many more for adversarial inputs.

22

\provements to Shor

ernstein—Biasse—Mosca)

- Shor's algorithm

;N:pfl---pff. Write
); as ZJuJ with u; odd.

up Is iIsomorphic to

X L2 X Z up X -

lgorithm (hopefully)

s order r of random unit.
Jin Z/2Y is

probability 1/2;

th probability 1/4; etc.

21

Shor computes ged{N, a"/2 — 1}.

Divisible by p; exactly when
¢j < max{ci,..., Cf }.

Factorization fails iff all cj are
equal. Chance <1/27~1

More subtle problem:
Factorization is likely to
split off some of the

primes with maximum ¢;.

Can iterate Shor’s algorithm
enough times to completely
factor. Many full-size iterations;

many more for adversarial inputs.

22

Better n
primality
with a"/

oad-

This spli
Any two
>1/2 of

Factors
Much le

Also “pq
Run sev
gIiving se
Then fa

ts to Shor

iasse—Mosca)

gorithm
X plff. Write

j

orphic to

o) Z/up X -

hopefully)

of random unit.
IS

y 1/2;

lity 1/4; etc.

uj with uj odd.

21

Shor computes ged{N, a"/2 — 1}.

Divisible by p; exactly when
¢j < max{ci,..., Cr}.

Factorization fails iff all cj are
equal. Chance <1/2"-1

More subtle problem:
Factorization is likely to
split off some of the

primes with maximum ¢;.

Can iterate Shor’s algorithm
enough times to completely
factor. Many full-size iterations;

many more for adversarial inputs.

22

Better method, in:
primality testing:
with a”/2 + 1, a'/’

a9+ 1, a9 —

This splits p; accc
Any two primes h:
>1/2 of being spl

Factors are arounc
Much less overhea

Also “parallel con:
Run several times
giving several fact
Then factor into c

5ca)

/rite

Ij odd.

unit.

tC.

21

Shor computes ged{N, a"/2 — 1}.
Divisible by p; exactly when
¢j < max{ci,..., Cf}.

Factorization fails iff all cj are
equal. Chance <1/27~1

More subtle problem:
Factorization is likely to
split off some of the

primes with maximum ¢;.

Can iterate Shor’s algorithm
enough times to completely
factor. Many full-size iterations;
many more for adversarial inputs.

22

Better method, inspired by

primality testing: compute g

with a”/2 + 1, a'/* + 1, a"/!
. ad—l—l, ad—l, with od

This splits p; according to ¢
Any two primes have chance
>1/2 of being split.

Factors are around half size.
Much less overhead for recu

Also “parallel construction™:
Run several times in parallel
giving several factorizations.
Then factor into coprimes.

Shor computes ged{N, a"/2 — 1}.

Divisible by p; exactly when
¢j < max{ci,..., Cr}.

Factorization fails iff all cj are
equal. Chance <1/2"-1

More subtle problem:
Factorization is likely to
split off some of the

primes with maximum ¢;.

Can iterate Shor’s algorithm
enough times to completely
factor. Many full-size iterations;

many more for adversarial inputs.

22

Better method, inspired by
primality testing: compute gcd

with a’/2 + 1, ar/4+1, ar/8—|—1,

..,ad—l—l, ad—l,withodd d.

This splits p; according to ;.
Any two primes have chance
>1/2 of being split.

Factors are around half size.

Much less overhead for recursion.

Also “parallel construction”:
Run several times in parallel,
giving several factorizations.
Then factor into coprimes.

23

nputes gcd{N, a"/2 — 1}.

by p; exactly when
x{C1,...,Cf}.

ation fails iff all cj are
hance <1/27—1,

btle problem:
ation s likely to
some of the

/ith maximum t;.

ate Shor's algorithm
times to completely
Vlany full-size iterations;

ore for adversarial inputs.

22

Better method, inspired by

primality testing: compute gcd

with a”/2 +1, a"/* + 1, a"/8 + 1,
a9 +1, a9 — 1, with odd d.

This splits p; according to ¢;.
Any two primes have chance
>1/2 of being split.

Factors are around half size.
Much less overhead for recursion.

Also “parallel construction”:
Run several times in parallel,
giving several factorizations.
Then factor into coprimes.

23

These nr
Didn't w

We actu
to searcl

numbers

Oracle fi
factor tf
to recog

We twes
work in
with qul
fractions

I{N,a"’? -1}

ctly when
Cf}.

iff all cj are
/2f—1-

m:
ely to
ne

1um tj.

algorithm
ompletely
Size 1terations;

versarial inputs.

22

Better method, inspired by
primality testing: compute gcd

with a/2 + 1, a"/* +1, a"/8 + 1,
.oa9 11, 39 — 1 with odd d.

This splits p; according to ;.
Any two primes have chance
>1/2 of being split.

Factors are around half size.
Much less overhead for recursion.

Also “parallel construction”:
Run several times in parallel,
giving several factorizations.
Then factor into coprimes.

23

These methods us
Didn't we claim b

We actually use G

to search for smoc
numbers in NFS.

Oracle for Grover’
factor thoroughly

to recognize smoo

We tweak (improv
work In superposit
with qubit budget
fractions, power d

re

ons;

puts.

22

Better method, inspired by
primality testing: compute gcd

with a’/2 + 1, all* 4 1, a8 4 1,
a9+ 1, a9 — 1, with odd d.

This splits p; according to ¢;.
Any two primes have chance
>1/2 of being split.

Factors are around half size.
Much less overhead for recursion.

Also “parallel construction”:
Run several times in parallel,
giving several factorizations.
Then factor into coprimes.

23

These methods use >b qubi
Didn't we claim b2/3+0(1) 4

We actually use Grover's me
to search for smooth p2/3+¢
numbers in NFS.

Oracle for Grover's method:
factor thoroughly enough
to recognize smooth Inputs.

We tweak (improved) Shor
work in superposition. Care

with qubit budget for contin
fractions, power detection, €

Better method, inspired by
primality testing: compute gcd

with a’/2 + 1, all* 4 1 a8 4 1,
ad—l—l, ad—l, with odd d.

This splits p; according to ;.
Any two primes have chance
>1/2 of being split.

Factors are around half size.
Much less overhead for recursion.

Also “parallel construction”:
Run several times in parallel,
giving several factorizations.
Then factor into coprimes.

23

These methods use >b qubits.
Didn't we claim b2/37°(1) qubits?

We actually use Grover’'s method
to search for smooth h2/3+0(1)_pit

numbers in NFS.

Oracle for Grover's method:
factor thoroughly enough
to recognize smooth inputs.

We tweak (improved) Shor to
work in superposition. Careful
with qubit budget for continued
fractions, power detection, etc.

24

1ethod, inspired by

/ testing: compute gcd

2 +1 ar/4_|_ 1 ar/8_|_ 1
1, a% — 1, with odd d.

ts p; according to ¢;.
“primes have chance
‘being split.

are around half size.
ss overhead for recursion.

rallel construction”
oral times in parallel,
veral factorizations.
_tor Into coprimes.

23

24
These methods use >b qubits.

Didn't we claim b%/31°(1) qubits?

We actually use Grover's method
to search for smooth b2/3+0(1) it

numbers in NFS.

Oracle for Grover's method:
factor thoroughly enough
to recognize smooth Inputs.

We tweak (improved) Shor to
work in superposition. Careful
with qubit budget for continued
fractions, power detection, etc.

A differe

randomr
Shor's a
(Z/N)
for a rar

spired by
compute gcd
b1, a8 1,
1, with odd d.

rding to ¢;.

ywve chance

t.

| half size.

d for recursion.

struction’ :
in parallel,
orizations.
oprimes.

These methods use >b qubits.
Didn't we claim b%/31°(1) qubits?

We actually use Grover's method

to search for smooth b2/3To(1) _pit
numbers in NFS.

Oracle for Grover's method:
factor thoroughly enough
to recognize smooth Inputs.

We tweak (improved) Shor to
work in superposition. Careful
with qubit budget for continued
fractions, power detection, etc.

24

A different way to
randomness of fac
Shor’s algorithm:

(Z/N)* with E(Z,
for a random ellip

rsion.

These methods use >b qubits.
Didn't we claim b2/3T°(1) qubits?

We actually use Grover's method
to search for smooth b2/3+0(1) it

numbers in NFS.

Oracle for Grover's method:
factor thoroughly enough
to recognize smooth inputs.

We tweak (improved) Shor to
work in superposition. Careful
with qubit budget for continued
fractions, power detection, etc.

24

A different way to improve
randomness of factorization:
Shor's algorithm: replace gr
(Z/N)* with E(Z/N)

for a random elliptic curve £

These methods use >b qubits.
Didn't we claim b%/31°(1) qubits?

We actually use Grover's method

to search for smooth b2/3To(1)_pit
numbers in NFS.

Oracle for Grover's method:
factor thoroughly enough
to recognize smooth inputs.

We tweak (improved) Shor to
work in superposition. Careful
with qubit budget for continued
fractions, power detection, etc.

24

25
A different way to improve

randomness of factorizations in
Shor’s algorithm: replace group
(Z/N)* with E(Z/N)

for a random elliptic curve E.

These methods use >b qubits.
Didn't we claim b%/31°(1) qubits?

We actually use Grover's method

to search for smooth b2/3To(1)_pit
numbers in NFS.

Oracle for Grover's method:
factor thoroughly enough
to recognize smooth inputs.

We tweak (improved) Shor to
work in superposition. Careful
with qubit budget for continued
fractions, power detection, etc.

24

25
A different way to improve

randomness of factorizations in
Shor’s algorithm: replace group
(Z/N)* with E(Z/N)

for a random elliptic curve E.

Gal Dor suggests unifying
Grover+ECM with Shor: e.g.,
compute esP on E(Z/N) where
e Is superposition of scalars,

s Is smooth scalar,

E is superposition of curves.

These methods use >b qubits.
Didn't we claim b%/31°(1) qubits?

We actually use Grover's method
to search for smooth h2/3+0(1)_pit

numbers in NFS.

Oracle for Grover's method:
factor thoroughly enough
to recognize smooth inputs.

We tweak (improved) Shor to
work in superposition. Careful
with qubit budget for continued
fractions, power detection, etc.

24

A different way to improve
randomness of factorizations in
Shor’s algorithm: replace group
(Z/N)* with E(Z/N)

for a random elliptic curve E.

Gal Dor suggests unifying
Grover+ECM with Shor: e.g.,
compute esP on E(Z/N) where
e Is superposition of scalars,

s Is smooth scalar,

E is superposition of curves.

Open: What are minimum costs
for this unification?

25

