Lattice-based cryptography:
Episode V:
the ring strikes back

Daniel J. Bernstein
University of lllinois at Chicago

Crypto 1999 Nguyen: “At Crypto
'07, Goldreich, Goldwasser and
Halevi proposed a public-key
cryptosystem based on the closest
vector problem in a lattice, which
Is known to be NP-hard. We

show that ... the problem of

decrypting ciphertexts can be

reduced to a special closest vector

problem which Is much easier
than the general problem. As an
application, we solved four out

of the five numerical challenges

proposed on the Internet by the
authors of the cryptosystem.

At least two of those four
challenges were conjectured to
be intractable. We discuss ways
to prevent the flaw, but conclude
that, even modified, the scheme
cannot provide sufficient security
without being impractical.”

based cryptography:
V:
strikes back

. Bernstein
ty of lllinois at Chicago

1999 Nguyen: “At Crypto
dreich, Goldwasser and
roposed a public-key
stem based on the closest
roblem in a lattice, which
) to be NP-hard. We

at ... the problem of

ng ciphertexts can be

reduced to a special c
problem which Is muc

osest vector

N easler

than the general problem. As an

application, we solved

four out

of the five numerical challenges

proposed on the Internet by the

authors of the cryptosystem.

At least two of those four

challenges were conjectured to

be intractable. We discuss ways

to prevent the flaw, but conclude

that, even modified, the scheme

cannot provide sufficient security

without being impractical.”

Fix woul

dimensic
“Public

Crypto]
"Provab
system |

tography:

ck

N

is at Chicago

en: At Crypto
ldwasser and
public-key

d on the closest
a lattice, which
’-hard. We
problem of
exts can be

reduced to a special closest vector

problem which Is much easier
than the general problem. As an
application, we solved four out

of the five numerical challenges

proposed on the Internet by the
authors of the cryptosystem.

At least two of those four
challenges were conjectured to
be intractable. We discuss ways
to prevent the flaw, but conclude
that, even modified, the scheme
cannot provide sufficient security
without being impractical.”

Fix would “probat
dimension > 400"
“"Public key =~ 1.8

Crypto 1998 Nguy
"Provably secure”
system breakable \

g0

rypto
nd

losest
wvhich

f

reduced to a special c
problem which Is muc

osest vector

N easler

than the general problem. As an

application, we solved

four out

of the five numerical challenges

proposed on the Internet by the

authors of the cryptosystem.

At least two of those four

challenges were conjectured to

be intractable. We discuss ways

to prevent the flaw, but conclude

that, even modified, the scheme

cannot provide sufficient security

without being impractical.”

Fix would “probably need

dimension > 400" for securi
“Public key ~ 1.8 Mbytes" .

Crypto 1998 Nguyen—Stern:
"Provably secure” Ajtai—Dw
system breakable with 20ME

reduced to a special closest vector

problem which Is much easier
than the general problem. As an
application, we solved four out

of the five numerical challenges

proposed on the Internet by the
authors of the cryptosystem.

At least two of those four
challenges were conjectured to
be intractable. We discuss ways
to prevent the flaw, but conclude
that, even modified, the scheme
cannot provide sufficient security
without being impractical.”

Fix would “probably need

dimension > 400" for security:
“Public key ~ 1.8 Mbytes" .

Crypto 1998 Nguyen—Stern:
“Provably secure” Ajtai—Dwork
system breakable with 20MB keys.

reduced to a special closest vector

problem which Is much easier
than the general problem. As an
application, we solved four out

of the five numerical challenges

proposed on the Internet by the
authors of the cryptosystem.

At least two of those four
challenges were conjectured to
be intractable. We discuss ways
to prevent the flaw, but conclude
that, even modified, the scheme
cannot provide sufficient security
without being impractical.”

Fix would “probably need

dimension > 400" for security:
“Public key ~ 1.8 Mbytes" .

Crypto 1998 Nguyen—Stern:
“Provably secure” Ajtai—Dwork
system breakable with 20MB keys.

Compare to 1978 McEliece
code-based cryptosystem:

much more stable security story
through dozens of attack papers.

Typical parameters: 1MB key for
>2128 post-quantum security.

to a special closest vector

which I1s much easier
 general problem. As an
on, we solved four out
ve numerical challenges

1 on the Internet by the
of the cryptosystem.

two of those four

es were conjectured to
“table. We discuss ways
nt the flaw, but conclude
n modified, the scheme
yrovide sufficient security
being impractical.”

Fix would “probably need
dimension > 400" for security:
“Public key ~ 1.8 Mbytes" .

Crypto 1998 Nguyen—Stern:
"Provably secure” Ajtai—-Dwork
system breakable with 20MB keys.

Compare to 1978 McEliece
code-based cryptosystem:

much more stable security story
through dozens of attack papers.

Typical parameters: 1MB key for
>0128 post-quantum security.

2017.05
following
“Lattice
“Lattice
currenth
for post-

al closest vector Fix would “probably need 2017.05: Lattice s
nuch easier dimension > 400" for security: following text to V
roblem. As an “Public key ~ 1.8 Mbytes" . “Lattice-based cry
ved four out “Lattice-based cor

Crypto 1998 Nguyen—Stern:
“Provably secure” Ajtai—Dwork
system breakable with 20MB keys.

~al challenges currently the prim

iternet by the for post-quantum

Dtosystem.

yse four Compare to 1978 McEliece
njectured to code-based cryptosystem:

> discuss ways much more stable security story
v. but conclude through dozens of attack papers.
d. the scheme Typical parameters: 1MB key for
ficient security >2128 post-quantum security.

ractical.”

vector
r

\S an
ut
ges
the

to
vays
clude
eme

urity

Fix would “probably need
dimension > 400" for security:

“Public key ~ 1.8 Mbytes" .

Crypto 1998 Nguyen—Stern:
"Provably secure” Ajtai—-Dwork

system breakable with 20MB keys.

Compare to 1978 McEliece
code-based cryptosystem:

much more stable security story
through dozens of attack papers.

Typical parameters: 1MB key for
>2128 host-quantum security.

2017.05: Lattice student ad
following text to Wikipedia

“Lattice-based cryptography
“Lattice-based constructions
currently the primary candid
for post-quantum cryptograj

Fix would “probably need 2017.05: Lattice student adds the
dimension > 400" for security: following text to Wikipedia page
“Public key ~ 1.8 Mbytes" . “Lattice-based cryptography’:

Crypto 1998 Nguyen—Stern: Lattice-based constructions are

“Provably secure” Ajtai—-Dwork
system breakable with 20MB keys.

currently the primary candidates
for post-quantum cryptography.”

Compare to 1978 McEliece
code-based cryptosystem:

much more stable security story
through dozens of attack papers.

Typical parameters: 1MB key for
>2128 post-quantum security.

Fix would “probably need 2017.05: Lattice student adds the
dimension > 400" for security: following text to Wikipedia page
“Public key ~ 1.8 Mbytes" . “Lattice-based cryptography’:

Crypto 1998 Nguyen—Stern: Lattice-based constructions are

“Provably secure” Ajtai—-Dwork
system breakable with 20MB keys.

currently the primary candidates
for post-quantum cryptography.”

Compare to 1978 McEliece — [citation needed]

code-based cryptosystem:
much more stable security story
through dozens of attack papers.

Typical parameters: 1MB key for
>2128 post-quantum security.

Fix would “probably need

dimension > 400" for security:
“Public key ~ 1.8 Mbytes" .

Crypto 1998 Nguyen—Stern:
“Provably secure” Ajtai—-Dwork

system breakable with 20MB keys.

Compare to 1978 McEliece
code-based cryptosystem:

much more stable security story
through dozens of attack papers.

Typical parameters: 1MB key for
>2128 post-quantum security.

2017.05: Lattice student adds the
following text to Wikipedia page
“Lattice-based cryptography’:
“Lattice-based constructions are
currently the primary candidates
for post-quantum cryptography.”

— |citation needed]

2016.07: Google rolls out
large-scale experiment with
post-quantum crypto between
Chrome and some Google sites.
Uses lattice-based crypto.

d “probably need

n > 400" for security:
key ~ 1.8 Mbytes" .

1998 Nguyen—Stern:
y secure” Ajtai—Dwork

reakable with 20MB keys.

> to 1978 McEliece

sed cryptosystem:

ore stable security story
dozens of attack papers.
parameters: 1MB key for
ost-quantum security.

2017.05: Lattice student adds the
following text to Wikipedia page
“Lattice-based cryptography':
“Lattice-based constructions are
currently the primary candidates
for post-quantum cryptography.”

— |citation needed]

2016.07: Google rolls out
large-scale experiment with
post-quantum crypto between
Chrome and some Google sites.
Uses lattice-based crypto.

Google s
for publi

How car
work wit

Combine

1. Do n
large en

connect
See, e.g.
Koblitz-

ly need
for security:
Mbytes" .

en—-Stern:
Ajtai—Dwork

vith 20MB keys.

McEliece

system:
security story
attack papers.
s: 1IMB key for

Im security.

2017.05: Lattice student adds the
following text to Wikipedia page
“Lattice-based cryptography:
“Lattice-based constructions are
currently the primary candidates
for post-quantum cryptography.”

— |citation needed]

2016.07: Google rolls out
large-scale experiment with
post-quantum crypto between
Chrome and some Google sites.
Uses lattice-based crypto.

Google sent only :
for public keys, cij

How can lattice-b:
work within a few
Combine two ingre

1. Do not take ke
large enough for t
connect to “well-s

See, e.g., 2016 Ch
Koblitz—Menezes—

ork

3 keys.

Lory
pers.
2y for

2017.05: Lattice student adds the
following text to Wikipedia page
“Lattice-based cryptography’:
“Lattice-based constructions are
currently the primary candidates
for post-quantum cryptography.”

— [citation needed|]

2016.07: Google rolls out
large-scale experiment with
post-quantum crypto between
Chrome and some Google sites.
Uses lattice-based crypto.

Google sent only a few KB
for public keys, ciphertexts.

How can lattice-based crypt
work within a few KB?
Combine two ingredients:

1. Do not take key sizes
large enough for theorems t«
connect to “well-studied” S!
See, e.g., 2016 Chatterjee—
Koblitz—Menezes—Sarkar.

2017.05: Lattice student adds the
following text to Wikipedia page
“Lattice-based cryptography:
“Lattice-based constructions are
currently the primary candidates
for post-quantum cryptography.”

— [citation needed]

2016.07: Google rolls out
large-scale experiment with
post-quantum crypto between
Chrome and some Google sites.
Uses lattice-based crypto.

Google sent only a few KB
for public keys, ciphertexts.

How can lattice-based crypto
work within a few KB?
Combine two ingredients:

1. Do not take key sizes
large enough for theorems to
connect to “well-studied” SVP,.
See, e.g., 2016 Chatterjee—
Koblitz—Menezes—Sarkar.

2017.05: Lattice student adds the
following text to Wikipedia page
“Lattice-based cryptography:
“Lattice-based constructions are
currently the primary candidates
for post-quantum cryptography.”

— |citation needed]

2016.07: Google rolls out
large-scale experiment with
post-quantum crypto between
Chrome and some Google sites.
Uses lattice-based crypto.

Google sent only a few KB
for public keys, ciphertexts.

How can lattice-based crypto
work within a few KB?
Combine two ingredients:

1. Do not take key sizes
large enough for theorems to
connect to “well-studied” SVP,.
See, e.g., 2016 Chatterjee—
Koblitz—Menezes—Sarkar.

2. Use ideal lattices.
Hope that the extra structure
doesn’'t damage security.

~ Lattice student adds the
r text to Wikipedia page
-based cryptography":
-based constructions are

/ the primary candidates
quantum cryptography.”

ion needed|]

- Google rolls out

le experiment with
ntum crypto between
and some Google sites.
tice-based crypto.

Google sent only a few KB
for public keys, ciphertexts.

How can lattice-based crypto
work within a few KB?
Combine two ingredients:

1. Do not take key sizes
large enough for theorems to

connect to “well-studied” SVP,.

See, e.g., 2016 Chatterjee—
Koblitz—Menezes—Sarkar.

2. Use ideal lattices.
Hope that the extra structure
doesn’'t damage security.

1996—19
Silverma

Define F
Z[x]/(x
Element

Co + C1X
with 1nte

To mult

multiply

replace .

replace .

e.g.: (x
_ 300 _

_ 7X197

tudent adds the
Vikipedia page
ptography":
1structions are
ary candidates

cryptography.”
d]

olls out

1ent with

bto between
Google sites.
d crypto.

Google sent only a few KB
for public keys, ciphertexts.

How can lattice-based crypto
work within a few KB?
Combine two ingredients:

1. Do not take key sizes
large enough for theorems to

connect to “well-studied” SVP,.

See, e.g., 2016 Chatterjee—
Koblitz—Menezes—Sarkar.

2. Use ideal lattices.
Hope that the extra structure
doesn’'t damage security.

1996-1998 Hoffste
Silverman “NTRU

Define R as the ri
Z[x]/(x*% —1).

Elements of R are
Co + C1X + C2X2 +
with integer coefh

To multiply in R:

multiply polynomi.

replace x°%% with

e.g.: (X100 + XBOO:

_ 4300 4 8,500 |

_ 7,197 | 300

replace X N

ds the
page

, are
ates

ohy.

2N

tes.

Google sent only a few KB
for public keys, ciphertexts.

How can lattice-based crypto
work within a few KB?
Combine two ingredients:

1. Do not take key sizes
large enough for theorems to

connect to “well-studied” SVP,.

See, e.g., 2016 Chatterjee—
Koblitz—Menezes—Sarkar.

2. Use ideal lattices.
Hope that the extra structure
doesn’'t damage security.

1996—-1998 Hoffstein—Pipher
Silverman “NTRU":

Define R as the ring
Z[x]/(x*%3 —1).

Elements of R are polynomi
CO—I—C1X—|—C2X2—|—---—|—C50;
with integer coefficients ¢;.

To mu

mu

re
re

D
D

tip

tiply in R:

y polynomials;

ace x93 with 1;

dCE X

504 \vith X: etc.

e.g. (XlOO—I—X3OO)(X200—|—7

— 4300 + 8200 4 7,700

_ 7X197 300 8X5OO in F

X

Google sent only a few KB
for public keys, ciphertexts.

How can lattice-based crypto
work within a few KB?
Combine two ingredients:

1. Do not take key sizes
large enough for theorems to

connect to “well-studied” SVP,.

See, e.g., 2016 Chatterjee—
Koblitz—Menezes—Sarkar.

2. Use ideal lattices.
Hope that the extra structure
doesn’'t damage security.

1996—-1998 Hoffstein—Pipher—
Silverman “NTRU":

Define R as the ring
Z[x]/(x*% —1).

Elements of R are polynomials

Co + C1X + C2X2 + -+ Cy02X

502

with integer coefficients ¢;.

To mu

mu

re
re

D
D

tip

tiply in R:

y polynomials;

ace x93 with 1:

dCE X

504 \vith X: etc.

e.g. (XlOO +X300)(X200—|—7X400)

— 4300 4+ 85200 4 7,700

= 7x197 4 x300 4 8x°00 in R.

ent only a few KB
c keys, ciphertexts.

| lattice-based crypto
hin a few KB?
> two Ingredients:

ot take key sizes
bugh for theorems to

to “well-studied” SVP,.

, 2016 Chatterjee—
Menezes—Sarkar.

deal lattices.
at the extra structure
damage security.

1996—-1998 Hoffstein—Pipher—
Silverman “NTRU":

Define R as the ring

Z[x]/(x*%3 —1).

Elements of R are polynomials

Co + C1X + C2X2 + -+ C502X

502

with integer coefficients ¢;.

To mu

tiply in R:

multiply polynomials;

re
re

DIACE X

DIACE X

503
504

wit

wit

n 1;

N X, etc.

e.g. (XlOO—I—X3OO)(X200—|—7X4OO)

_ 7X197

X

300

— 4300 + 83200 4 7,700

8x°%0 in R.

Define g

Alice's
coefficie
Thisis F

)y few KB
yhertexts.

1sed crypto
KB?
2dients:

y SIZ€es
heorems to

tudied” SVP,,.

atterjee—
Sarkar.

ces.
ra structure
curity.

1996—-1998 Hoffstein—Pipher—
Silverman “NTRU":

Define R as the ring
Z[x]/(x*% —1).

Elements of R are polynomials

Co + C1X + C2X2 + -+ Cy02X

502

with integer coefficients ¢;.

To mu

mu

re
re

D

D

tip

tiply in R:

y polynomials;

ace x93 with 1:

dCE X

504

with x; etc.

e.g. (XlOO _I_XBOO)(XZOO 4+ 7X4OO)
_ X3OO 4+ 8X5OO N 7X7OO
_ 7X197 300 8X5OO in R

X

Define g = 2048.

Alice’'s public key:
coefficients in {0,
Thisis b03 - 11 =

/P,

S

1996—-1998 Hoffstein—Pipher—

Silverman “NTR

U":

Define R as the ring

Z[X]/(X503 —1).

Elements of R are polynomials

Co + C1X + C2X2 + -+ C502X

502

with integer coefficients ¢;.

To multiply iIn R

multiply polynomials;

504

replace X

replace x°Y3 with 1;
with x: etc.

e.g. (XlOO—I—X3OO)(X200—|—7X4OO)

_ 4300 4 8,500 _

B 7X700

_ 7,197 | 300

8x°%0 in R.

Define g = 2048.

Alice’'s public key: A € R wi
coefficients in {0,1, ..., q —
This is 503 - 11 = 5533 bits.

1996—-1998 Hoffstein—Pipher—
Silverman “NTRU":

Define R as the ring

Z[x]/(x*" —1).

Elements of R are polynomials

Co + C1X + C2X2 + -+ Cy02X

with integer coefficients ¢;.

To mu

mu

re
re

D

D

tip

dCE X
dCE X

tiply in R:

503
504

wit

wit

y polynomials;

n 1:

N X; etc.

502

e.g. (XlOO 4+ XBOO)(X2OO 4+ 7X4OO)
— 4300 4+ 85200 4 7,700

_ 7X197

X

300

8x°%0 in R.

Define g = 2048.

Alice’'s public key: A € R with
coefficients in {0,1, ..., qg—1}.
This is 503 - 11 = 5533 bits.

1996—-1998 Hoffstein—Pipher—
Silverman “NTRU":

Define

R as the ring

Z[x]/(x*" —1).

Elements of R are polynomials

Co + C1X + C2X2 + -+ Cy02X

502

with integer coefficients ¢;.

To mu

multip

replace X

tiply in R:

y polynomials;

replace x°Y3 with 1:

504

with x; etc.

e.g. (XlOO 4+ XBOO)(X2OO 4+ 7X4OO)
— 4300 4+ 85200 4 7,700

_ 7X197 300 8X5OO in R

X

Define g = 2048.

Alice’'s public key: A € R with
coefficients in {0,1, ..., qg—1}.
This is 503 - 11 = 5533 bits.

Bob generates random b,c € R
with small coefficients:
e.g., all coefficients in {—1,0, 1}.

1996—-1998 Hoffstein—Pipher—
Silverman “NTRU":

Define R as the ring
Z[x]/(x*" —1).

Elements of R are polynomials
Co + C1X + C2X2 + -+ C502X502
with integer coefficients ¢;.

To multiply in R:

multiply polynomials;

replace x°Y3 with 1:
504

replace x with x: etc.

e.g. (XlOO 4+ XBOO)(X2OO 4+ 7X4OO)
— 4300 4+ 85200 4 7,700

= 7x197 4 x300 4 8x°00 in R.

Define g = 2048.

Alice’'s public key: A € R with
coefficients in {0,1, ..., qg—1}.
This is 503 - 11 = 5533 bits.

Bob generates random b,c € R
with small coefficients:
e.g., all coefficients in {—1,0, 1}.

Bob computes Ab + ¢ mod qg:
multiply A by b in R; add c;
reduce each coefficient modulo g
to the range {0,1, ..., qg—1}.

1996—-1998 Hoffstein—Pipher—
Silverman “NTRU":

Define R as the ring
Z[x]/(x*" —1).

Elements of R are polynomials

Co + C1X + C2X2 + -+ C502X502

with integer coefficients ¢;.

To multiply in R:

multiply polynomials;

replace x°Y3 with 1:
504

replace x with x: etc.

e.g. (XlOO 4+ XBOO)(X2OO 4+ 7X4OO)
— 4300 4+ 85200 4 7,700

= 7x197 4 x300 4 8x°00 in R.

Define g = 2048.

Alice’'s public key: A € R with
coefficients in {0,1, ..., qg—1}.
This is 503 - 11 = 5533 bits.

Bob generates random b,c € R
with small coefficients:
e.g., all coefficients in {—1,0, 1}.

Bob computes Ab + ¢ mod qg:
multiply A by b in R; add c;
reduce each coefficient modulo g
to the range {0,1, ..., qg—1}.

Bob sends Ab + ¢ mod q.
This Is also 5533 bits.

98 Hoffstein—Pipher—
n “NTRU":

¢ as the ring
03 1)

s of R are polynomials
e C2X2 + C5()2X5O2
ger coefficients ¢;.

ply In R:
polynomials;
203 \with 1;

204 \with x: etc.

00 | ,300)(,,200 | 7,400y
g 500 | 7,700
x300 4 8x°90 inh R.

Define g = 2048.

Alice’'s public key: A € R with
coefficients in {0,1, ..., qg—1}.
This is 503 - 11 = 5533 bits.

Bob generates random b,c € R
with small coefficients:

e.g., all coefficients in {—1,0, 1}.

Bob computes Ab + ¢ mod qg:
multiply A by b in R; add c;
reduce each coefficient modulo g
to the range {0,1, ..., qg—1}.

Bob sends Ab 4+ ¢ mod q.
This Is also 5533 bits.

“Quotiel
used In «

Alice ge
for smal
(with su
l.e., dA

In—Pipher—

ng

polynomials

cients Cj.

als;
1,
X: etc.

200 400
) (XY + 7x*Y)
7X700

8x°%0 in R.

Define g = 2048.

Alice’'s public key: A € R with
coefficients in {0,1, ..., qg—1}.
This is 503 - 11 = 5533 bits.

Bob generates random b,c € R
with small coefficients:
e.g., all coefficients in {—1,0, 1}.

Bob computes Ab + ¢ mod qg:
multiply A by b in R; add c;
reduce each coefficient modulo g
to the range {0,1, ..., qg—1}.

Bob sends Ab + ¢ mod q.
This Is also 5533 bits.

“Quotient NTRU”
used in original N

Alice generated A
for small random .

(with suitable inve
l.e., dA — 3a mod

als
2X502

' X4OO)

Define g = 2048.

Alice’'s public key: A € R with
coefficients in {0,1, ..., qg—1}.
This is 503 - 11 = 5533 bits.

Bob generates random b,c € R
with small coefficients:
e.g., all coefficients in {—1,0, 1}.

Bob computes Ab + ¢ mod qg:
multiply A by b in R; add c;
reduce each coefficient modulo g
to the range {0,1, ..., qg—1}.

Bob sends Ab + ¢ mod q.
This Is also 5533 bits.

“Quotient NTRU" (new nar
used in original NTRU desig

Alice generated A = 3a/d ir
for small random a, d

(with suitable invertibility):
l.e., dA —3amod g =0.

Define g = 2048. “Quotient NTRU" (new name),

Alice’s public key: A € R with used in original NTRU design:

coefficients in {0, 1, ..., qg—1}. Alice generated A =3a/d in R/q
This is 503 - 11 = 5533 bits. for small random a, d

(with suitable invertibility):
l.e., dA—3amod qg=0.

Bob generates random b,c € R
with small coefficients:

e.g., all coefficients in {—1,0,1}.

Bob computes Ab + ¢ mod qg:
multiply A by b in R; add c;
reduce each coefficient modulo g
to the range {0,1, ..., qg—1}.

Bob sends Ab + ¢ mod q.
This Is also 5533 bits.

Define g = 2048. “Quotient NTRU" (new name),

Alice’s public key: A € R with used in original NTRU design:

coefficients in {0, 1, ..., qg—1}. Alice generated A =3a/d in R/q
This 1s 503 - 11 = 5533 bits. for small random a, d
(with suitable invertibility):

Bob generates random b,c € R |
l.e., dA — 3a mod g = 0.

with small coefficients:

e.g., all coefficients in {—1,0,1}. Alice receives C = Ab+ ¢ mod q.

Alice computes dC mod g,

Bob computes Ab + ¢ mod g: |
l.e., 3ab+ dc mod g.

multiply A by b in R; add c;
reduce each coefficient modulo g
to the range {0,1, ..., qg—1}.

Bob sends Ab + ¢ mod q.
This Is also 5533 bits.

Define g = 2048.

Alice’'s public key: A € R with
coefficients in {0,1, ..., qg—1}.
This is 503 - 11 = 5533 bits.

Bob generates random b,c € R
with small coefficients:
e.g., all coefficients in {—1,0,1}.

Bob computes Ab + ¢ mod qg:
multiply A by b in R; add c;
reduce each coefficient modulo g
to the range {0,1, ..., qg—1}.

Bob sends Ab + ¢ mod q.
This Is also 5533 bits.

"Quotient NTRU"” (new name),
used in original NTRU design:

Alice generated A= 3a/d in R/q

for small random a, d
(with suitable invertibility):

l.e., dA—3amod qg=0.

A
A

Ice receives C = Ab

c mod q.

ice computes dC mod g,
l.e., 3ab+ dc mod g.

Alice reconstructs 3ab + dc,

using smallness of a, b, d, c.

Alice computes dc,

deduces ¢, deduces b.

= 2048.

ublic key: A € R with
nts in {0, 1, ..., qg—1}.
03 - 11 = 5533 bits.

erates random b,c € R
all coefficients:

coefficients in {—1,0, 1}.

1putes Ab + ¢ mod q:
A by bin R; add c;
ach coefficient modulo g

inge {0, 1, ..., qg—1}.

ds Ab+ ¢ mod g.
Iso 5533 bits.

"Quotient NTRU"” (new name),
used in original NTRU design:

Alice generated A =3a/d in R/q
for small random a, d

(with suitable invertibility):

l.e., dA —3amod g =0.

Alice receives C = Ab+ ¢ mod q.

Alice computes dC mod g,
l.e., 3ab+ dc mod g.

Alice reconstructs 3ab + dc,
using smallness of a, b, d, c.
Alice computes dc,

deduces ¢, deduces b.

“Produc
2010 Ly

Everyon
Alice ge
for smal

A € R with

5533 bits.

dom b,c € R
ents:

sin{—1,0,1}.

+ ¢ mod g:
R; add c;
clent modulo g

mod q.
Its.

"Quotient NTRU"” (new name),
used in original NTRU design:

Alice generated A =3a/d in R/q
for small random a, d

(with suitable invertibility):

l.e., dA—3amod g =0.

Alice receives C = Ab+ ¢ mod q.

Alice computes dC mod g,
l.e., 3ab+ dc mod g.

Alice reconstructs 3ab + dc,
using smallness of a, b, d, c.
Alice computes dc,

deduces ¢, deduces b.

“"Product NTRU"
2010 Lyubashevsk

Everyone knows rz
Alice generated A
for small random .

"Quotient NTRU"” (new name),
used in original NTRU design:

Alice generated A =3a/d in R/q
for small random a, d

(with suitable invertibility):

l.e., dA —3amod g =0.

Alice receives C = Ab + ¢ mod q.

Alice computes dC mod g,
l.e., 3ab+ dc mod g.

Alice reconstructs 3ab + dc,
using smallness of a, b, d, c.
Alice computes dc,

deduces ¢, deduces b.

“Product NTRU" (new nan
2010 Lyubashevsky—Peikert-

Everyone knows random G ¢
Alice generated A = aG+d
for small random a, d.

"Quotient NTRU"” (new name),
used in original NTRU design:

Alice generated A =3a/d in R/q
for small random a, d

(with suitable invertibility):

l.e., dA—3amod qg=0.

Alice receives C = Ab+ ¢ mod q.

Alice computes dC mod g,
l.e., 3ab+ dc mod g.

Alice reconstructs 3ab + dc,
using smallness of a, b, d, c.
Alice computes dc,

deduces ¢, deduces b.

“Product NTRU” (new name),
2010 Lyubashevsky—Peikert—Regev:

Everyone knows random G € R.
Alice generated A = aG+d mod g
for small random a, d.

“Quotient NTRU” (new name), “Product NTRU" (new name),

used in original NTRU design: 2010 Lyubashevsky—Peikert—Regev:
Alice generated A =3a/d in R/q Everyone knows random G € R.
for small random a, d Alice generated A = aG+d mod g
(with suitable invertibility): for small random a, d.

.e., dA—3amod g = 0. Bob sends B = Gb + e mod g

Alice receives C = Ab+ ¢ mod q. and C = m+ Ab+ cmod g
Alice computes dC mod g, where b, ¢, e are small and each
i.e., 3ab+ dc mod gq. coefficient of mis 0 or q/2.

Alice reconstructs 3ab + dc,
using smallness of a, b, d, c.
Alice computes dc,

deduces ¢, deduces b.

"Quotient NTRU"” (new name),
used in original NTRU design:

Alice generated A =3a/d in R/q
for small random a, d

(with suitable invertibility):

l.e., dA—3amod qg=0.

Alice receives C = Ab+ ¢ mod q.

Alice computes dC mod g,
l.e., 3ab+ dc mod g.

Alice reconstructs 3ab + dc,
using smallness of a, b, d, c.
Alice computes dc,

deduces ¢, deduces b.

“Product NTRU” (new name),
2010 Lyubashevsky—Peikert—Regev:

Everyone knows random G € R.
Alice generated A = aG+d mod g
for small random a, d.

Bob sends B = Gb+ e mod ¢
and C = m+ Ab+ cmod g

where b, ¢, e are small and each

coefficient of mis 0 or q/2.

Alice computes C — aB mod g,
l.e., m+ db+ ¢ — ae mod q.
Alice reconstructs m,

using smallness of d, b, c, a, e.

nt NTRU” (new name),
original NTRU design:

nerated A =3a/d in R/q

| random a, d
itable invertibility):
— 3amod g = 0.

eives C = Ab+ ¢ mod q.
mputes dC mod g,
+ dc mod q.

onstructs 3ab + dc,
1allness of a, b, d, c.
mputes dc,

c, deduces b.

“Product NTRU” (new name),

2010 Lyubashevsky—Peikert—Regev:

Everyone knows random G € R.
Alice generated A = aG+d mod g
for small random a, d.

Bob sends B = Gb+ e mod ¢
and C = m+ Ab+ cmod g
where b, ¢, e are small and each

coefficient of mis 0 or q/2.

Alice computes C — aB mod g,
l.e., m+ db+ ¢ — ae mod q.
Alice reconstructs m,

using smallness of d, b, c, a, e.

| attice
the set ¢
such tha

(new name),
I RU design:

= 3a/d in R/q
3, d

rtibility):
qg=0.

"Ab + c mod q.
_ mod g,

1 g.

3ab + dc,

a, b, d,c.

S b

“Product NTRU" (new name),

2010 Lyubashevsky—Peikert—Regev:

Everyone knows random G € R.
Alice generated A = aG+d mod g
for small random a, d.

Bob sends B = Gb+ e mod ¢
and C = m+ Ab+ cmod g
where b, ¢, e are small and each

coefficient of mis 0 or q/2.

Alice computes C — aB mod g,
l.e., m+ db+ ¢ — ae mod q.
Alice reconstructs m,

using smallness of d, b, c, a, e.

| attice view: Defi
the set of pairs (v
such that vG — w

1od q.

“Product NTRU"” (new name),

2010 Lyubashevsky—Peikert—Regev:

Everyone knows random G € R.
Alice generated A = aG+d mod g
for small random a, d.

Bob sends B = Gb+ e mod ¢
and C = m+ Ab+ cmod g
where b, ¢, e are small and each

coefficient of mis 0 or q/2.

Alice computes C — aB mod g,
l.e., m+ db+ ¢ — ae mod q.
Alice reconstructs m,

using smallness of d, b, ¢, a, e.

Lattice view: Define L as
the set of pairs (v, w) € R>
such that vG — w mod g =

“Product NTRU” (new name),
2010 Lyubashevsky—Peikert—Regev:

Everyone knows random G € R.
Alice generated A = aG+d mod g
for small random a, d.

Bob sends B = Gb+ e mod ¢

and C = m+ Ab+ cmod g
where b, ¢, e are small and each

coefficient of mis 0 or q/2.

Alice computes C — aB mod g,
l.e., m+ db+ ¢ — ae mod q.
Alice reconstructs m,

using smallness of d, b, ¢, a, e.

Lattice view: Define L as
the set of pairs (v, w) € R x R
such that vG — w mod g = 0.

10

“Product NTRU" (new name), Lattice view: Define L as
2010 Lyubashevsky—Peikert—Regev: the set of pairs (v, w) € R x R

Everyone knows random G € R. such that vG — w mod g = 0.

Alice generated A = aG+d mod g eg. (a,A—d) e L.

for small random a, d. (0, A) is close to a lattice point.
Bob sends B = Gb+ e mod ¢ Try to find close lattice point.
and C = m+ Ab+ cmod g Breaks both Product NTRU
where b, ¢, e are small and each and Quotient NTRU.

coefficient of mis 0 or q/2.

Alice computes C — aB mod g,
l.e., m+ db+ ¢ — ae mod q.
Alice reconstructs m,

using smallness of d, b, ¢, a, e.

“Product NTRU" (new name), Lattice view: Define L as
2010 Lyubashevsky—Peikert—Regev: the set of pairs (v, w) € R x R

Everyone knows random G € R. such that vG — w mod g = 0.

Alice generated A = aG+d mod g eg. (a,A—d) e L.

for small random a, d. (0, A) is close to a lattice point.
Bob sends B = Gb+ e mod ¢ Try to find close lattice point.
and C = m+ Ab+ cmod g Breaks both Product NTRU
where b, ¢, e are small and each and Quotient NTRU.

coefficient of mis 0 or q/2. Try to exploit reuse of b

Alice computes C — aB mod g, for taster Product NTRU attack.
i.e., m+ db+ c — ae mod q. (“Ring-LWE": arbitrary reuse.)

Alice reconstructs m, .
Try to exploit A = 3a/d structure

using smallness of d, b, ¢, a, e. for faster Quotient NTRU attack.

t NTRU” (new name),
ubashevsky—Peikert—Regev:

> knows random G € R.
nerated A = aG+d mod ¢
| random a, d.

ds B=Gb+ emod ¢
- m + Ab
c, e are small and each

c mod g

nt of mis 0 or q/2.

mputes C — aB mod g,
-db+ ¢ — ae mod q.
onstructs m,

1allness of d, b, c, a, e.

Lattice view: Define L as
the set of pairs (v, w) € R X R
such that vG — w mod g = 0.

eg. (a,A—d) e L.
(0, A) is close to a lattice point.

Try to find close lattice point.

Breaks both Product NTRU
and Quotient NTRU.

Try to exploit reuse of b
for faster Product NTRU attack.
(“Ring-LWE": arbitrary reuse.)

Try to exploit A = 3a/d structure
for faster Quotient NTRU attack.

10

2013 Ly
Regev:

and algc
quantun
employ .
to bear .
problem
despite «
significa
these pri
The bes
ideal lat
no bette
countery
In practi

(new name),

y—Peikert—Regev:

indom G € R.
— aG+d mod ¢
2, d.

b+ e mod ¢
+ c mod g
mall and each

0 or q/2.

— aB mod g,
- ae mod q.
m,

d, b, c,a,e.

Lattice view: Define L as
the set of pairs (v, w) € R X R
such that vG — w mod g = 0.

eg. (a,A—d) e L.
(0, A) is close to a lattice point.

Try to find close lattice point.
Breaks both Product NTRU

and Quotient NTRU.

Try to exploit reuse of b
for faster Product NTRU attack.

(“Ring-LWE": arbitrary reuse.)

Try to exploit A = 3a/d structure
for faster Quotient NTRU attack.

10

2013 Lyubashevsk
Regev: “All of the
and algorithmic tc

quantum computa
employ ... can al:
to bear against S\
problems on idea

despite considerab
significant progres
these problems ha
The best-known a
ideal lattices perfc
no better than the
counterparts, both
In practice.”

Lattice view: Define L as
the set of pairs (v, w) € R X R
such that vG — w mod g = 0.

eg. (a,A—d) e L.
(0, A) is close to a lattice point.

Try to find close lattice point.
Breaks both Product NTRU

and Quotient NTRU.

Try to exploit reuse of b
for faster Product NTRU attack.
(“Ring-LWE" : arbitrary reuse.)

Try to exploit A = 3a/d structure
for faster Quotient NTRU attack.

10

2013 Lyubashevsky—Pelikert-
Regev: “All of the algebraic

and algorithmic tools (incluc
quantum computation) that
employ ... can also be brou
to bear against SVP and otl
problems on ideal lattices.

despite considerable effort, r
significant progress in attach
these problems has been ma
The best-known algorithms
ideal lattices perform essent
no better than their generic
counterparts, both in theory
in practice.”

Lattice view: Define L as
the set of pairs (v, w) € R x R
such that vG — w mod g = 0.

eg. (a,A—d) e L.
(0, A) is close to a lattice point.

Try to find close lattice point.
Breaks both Product NTRU

and Quotient NTRU.

Try to exploit reuse of b
for faster Product NTRU attack.
(“Ring-LWE": arbitrary reuse.)

Try to exploit A = 3a/d structure
for faster Quotient NTRU attack.

10

11
2013 Lyubashevsky—Pelkert—

Regev: “All of the algebraic

and algorithmic tools (including
quantum computation) that we
employ ... can also be brought
to bear against SVP and other
attices. Yet

despite considerable effort, no

problems on idea

significant progress in attacking
these problems has been made.
The best-known algorithms for
ideal lattices perform essentially
no better than their generic
counterparts, both in theory and
In practice.”

siew: Define L as
f pairs (v, w) € R X R
t vG — w mod g = 0.

A—d)e L
close to a lattice point.

nd close

yoth Proc

attice point.
uct NTRU

tient NTRU.

xploit reuse of b
r Product NTRU attack.
WE": arbitrary reuse.)

xploit A = 3a/d structure
r Quotient NTRU attack.

10

2013 Lyubashevsky—Peikert—
Regev: “All of the algebraic

and algorithmic tools (including
quantum computation) that we
employ ... can also be brought
to bear against SVP and other
attices. Yet

despite considerable effort, no

problems on idea

significant progress in attacking
these problems has been made.
The best-known algorithms for
ideal lattices perform essentially
no better than their generic
counterparts, both In theory and
In practice.”

11

Many m
(often n

Fully ho
STOC 2
“Fully h
using ide
PKC 20.
Eurocryj
etc.

Multiline
Eurocryj
Halevi “
maps frc

ne L as
W) €ERXR
mod g = 0.

 lattice point.

attice point.
ict NTRU

RU.

e of b
NTRU attack.

itrary reuse.)

- 3a/d structure
= NTRU attack.

10

2013 Lyubashevsky—Pelkert—
Regev: “All of the algebraic

and algorithmic tools (including
quantum computation) that we
employ ... can also be brought
to bear against SVP and other
attices. Yet

despite considerable effort, no

problems on idea

significant progress in attacking
these problems has been made.
The best-known algorithms for
ideal lattices perform essentially
no better than their generic
counterparts, both in theory and
In practice.”

11

Many more NTRL
(often not creditin

Fully homomorphi
STOC 2009 Gentr
“Fully homomorpt

using ideal lattices
PKC 2010 Smart-

Eurocrypt 2011 G
etc.

Multilinear maps:

Eurocrypt 2013 G
“Candidate

maps from ideal |z

Halevi

< R

int.

tack.

e.)

Icture
ttack.

10

2013 Lyubashevsky—Peikert—
Regev: “All of the algebraic

and algorithmic tools (including
quantum computation) that we
employ ... can also be brought
to bear against SVP and other
problems on ideal lattices. Yet

despite considerable effort, no
significant progress in attacking
these problems has been made.
The best-known algorithms for
ideal lattices perform essentially
no better than their generic
counterparts, both In theory and
In practice.”

11

Many more NTRU variants
(often not crediting NTRU)

Fully homomorphic encrypti
STOC 2009 Gentry

“Fully homomorphic encrypt
using ideal lattices" .

PKC 2010 Smart—Vercauter
Eurocrypt 2011 Gentry—Hale
etc.

Multilinear maps: e.g.,
Eurocrypt 2013 Garg—Gentn
Halevi “Candidate multiline:

maps from ideal lattices" .

2013 Lyubashevsky—Pelkert—
Regev: “All of the algebraic

and algorithmic tools (including
quantum computation) that we
employ ... can also be brought
to bear against SVP and other
problems on ideal lattices. Yet

despite considerable effort, no
significant progress in attacking
these problems has been made.
The best-known algorithms for
ideal lattices perform essentially
no better than their generic
counterparts, both in theory and
In practice.”

11

12
Many more NTRU variants

(often not crediting NTRU).

Fully homomorphic encryption:
STOC 2009 Gentry

“Fully homomorphic encryption
using ideal lattices" .

PKC 2010 Smart—Vercauteren.
Eurocrypt 2011 Gentry—Haleuvi.
etc.

Multilinear maps: e.g.,
Eurocrypt 2013 Garg—Gentry—
Halevi “Candidate multilinear

maps from ideal lattices" .

ubashevsky—Peikert—

“A

it

| of the algebraic

nmic tools (including

1 computation) that we

. can also be brought
gainst SVP and other
s on Ideal lattices. Yet

~onsiderable effort, no

Nt

progress In attacking

oblems has been made.

-known algorithms for
ices perform essentially

r than their generic

arts, both in theory and

CE.

11

Many more NTRU variants
(often not crediting NTRU).

Fully homomorphic encryption:
STOC 2009 Gentry

“"Fully homomorphic encryption
using ideal lattices" .

PKC 2010 Smart—Vercauteren.
Eurocrypt 2011 Gentry—Haleuvi.
etc.

Multilinear maps: e.g.,
Eurocrypt 2013 Garg—Gentry—
Halevi “Candidate multilinear

maps from ideal lattices" .

12

STOC 2
broken
for typic

y—Peikert—
 algebraic
ols (including
tion) that we
50 be brought
/P and other
attices. Yet
le effort, no

s In attacking
s been made.
lgorithms for
rm essentially
Ir generic

In theory and

11

12
Many more NTRU variants

(often not crediting NTRU).

Fully homomorphic encryption:
STOC 2009 Gentry

“Fully homomorphic encryption
using ideal lattices".

PKC 2010 Smart—Vercauteren.
Eurocrypt 2011 Gentry—Haleuvi.
etc.

Multilinear maps: e.g.,
Eurocrypt 2013 Garg—Gentry—
Halevi “Candidate multilinear

maps from ideal lattices" .

STOC 2009 Gentr
broken by quantu
for typical “cyclot

11 12

Many more NTRU variants STOC 2009 Gentry system i
(often not crediting NTRU). broken by quantum algorith
ling Fully homomorphic encryption: for typical “cyclotomic rings
e STOC 2009 Gentry
ght “Fully homomorphic encryption
e using ideal lattices" .
et PKC 2010 Smart—Vercauteren.
]_O Eurocrypt 2011 Gentry—Haleuvi.
e etc.
de.
for Multilinear maps: e.g.,
ally Eurocrypt 2013 Garg—Gentry—

Halevi “Candidate multilinear

and maps from ideal lattices" .

Many more NTRU variants
(often not crediting NTRU).

Fully homomorphic encryption:
STOC 2009 Gentry

“Fully homomorphic encryption
using ideal lattices" .

PKC 2010 Smart—Vercauteren.
Eurocrypt 2011 Gentry—Haleuvi.
etc.

Multilinear maps: e.g.,
Eurocrypt 2013 Garg—Gentry—
Halevi “Candidate multilinear

maps from ideal lattices" .

12

STOC 2009 Gentry system is
broken by quantum algorithms
for typical “cyclotomic rings”.

13

Many more NTRU variants
(often not crediting NTRU).

Fully homomorphic encryption:
STOC 2009 Gentry

“Fully homomorphic encryption
using ideal lattices" .

PKC 2010 Smart—Vercauteren.
Eurocrypt 2011 Gentry—Haleuvi.
etc.

Multilinear maps: e.g.,
Eurocrypt 2013 Garg—Gentry—
Halevi “Candidate multilinear

maps from ideal lattices" .

12

STOC 2009 Gentry system is
broken by quantum algorithms
for typical “cyclotomic rings”.

First stage In attack:

SODA 2016 Biasse—Song

fast quantum algorithm to
compute gR — ug with u € R*.

Builds upon STOC 2014
Eisentrager—Hallgren—Kitaev—-Song
quantum R +— R* algorithm.

13

Many more NTRU variants
(often not crediting NTRU).

Fully homomorphic encryption:
STOC 2009 Gentry

“Fully homomorphic encryption
using ideal lattices" .

PKC 2010 Smart—Vercauteren.
Eurocrypt 2011 Gentry—Haleuvi.
etc.

Multilinear maps: e.g.,
Eurocrypt 2013 Garg—Gentry—
Halevi “Candidate multilinear

maps from ideal lattices" .

12

13
STOC 2009 Gentry system is

broken by quantum algorithms
for typical “cyclotomic rings”.

First stage In attack:

SODA 2016 Biasse—Song

fast quantum algorithm to
compute gR — ug with u € R*.

Builds upon STOC 2014

Eisentrager—Hallgren—Kitaev—-Song
quantum R +— R* algorithm.

Older pre-quantum algorithms

take subexponential time.

ore NTRU variants
ot crediting NTRU).

momorphic encryption:
009 Gentry
omomorphic encryption
al lattices” .
10 Smart—Vercauteren.

ot 2011 Gentry—Halevi.

2ar maps: e.g.,
ot 2013 Garg—Gentry—
Candidate multilinear

ym 1deal lattices’ .

12

13
STOC 2009 Gentry system is

broken by quantum algorithms
for typical “cyclotomic rings”.

First stage in attack:

SODA 2016 Biasse—Song

fast quantum algorithm to
compute gR — ug with u € R*.

Builds upon STOC 2014
Eisentrager—Hallgren—Kitaev—Song
quantum R +— R* algorithm.

Older pre-quantum algorithms

take subexponential time.

Second

Cam
fast

bbe

Dre-

for typic

to comp

| variants

C encryption:
Yy
1IC encryption

n
’ L}

Vercauteren.
antry—Haleuvi.

e.g.,
rg—Gentry—
multilinear

‘ttices' .

12

STOC 2009 Gentry system is

broken by
for typical

First stage

quantum algorithms
“cyclotomic rings” .

In attack:

SODA 2016 Biasse—Song
fast quantum algorithm to

compute g

R — ug with u € R*.

Builds upon STOC 2014
Eisentrager—Hallgren—Kitaev—Song

quantum R +— R* algorithm.

Older pre-c

uantum algorithms

take subex

yonential time.

Second stage of af

Cam
fast

bell-Groves-

pre-quantum

for typical cyclotol

to compute ug —

on:

10N

CNn.

V1.

16

12

STOC 2009 Gentry system is

broken by
for typical

First stage

quantum algorithms
“cyclotomic rings” .

In attack:

SODA 2016 Biasse—Song
fast quantum algorithm to

compute gR — ug with u € R*.

Builds upon STOC 2014
Eisentrager—Hallgren—Kitaev—Song

quantum R +— R* algorithm.

Older pre-c

uantum algorithms

take subexponential time.

Second stage of attack: 201
Campbell-Groves—Shepherd

fast pre-quantum algorithm
for typical cyclotomic ring
to compute ug — short g.

STOC 2009 Gentry system is
broken by quantum algorithms
for typical “cyclotomic rings”.

First stage in attack:

SODA 2016 Biasse—Song

fast quantum algorithm to
compute gR — ug with u € R*.

Builds upon STOC 2014
Eisentrager—Hallgren—Kitaev—Song
quantum R +— R* algorithm.

Older pre-quantum algorithms

take subexponential time.

13

Second stage of attack: 2014.10
Campbell-Groves—Shepherd

fast pre-quantum algorithm
for typical cyclotomic ring
to compute ug — short g.

14

STOC 2009 Gentry system is
broken by quantum algorithms
for typical “cyclotomic rings”.

First stage in attack:

SODA 2016 Biasse—Song

fast quantum algorithm to
compute gR — ug with u € R*.

Builds upon STOC 2014

Eisentrager—Hallgren—Kitaev—Song
quantum R +— R* algorithm.

Older pre-quantum algorithms

take subexponential time.

13

Second stage of attack: 2014.10
Campbell-Groves—Shepherd

fast pre-quantum algorithm
for typical cyclotomic ring
to compute ug — short g.

Eurocrypt 2017 Cramer—Ducas—
Wesolowski extension of CGS:
for typical cyclotomic ring, find
fairly short element of any ideal.

14

STOC 2009 Gentry system is

broken by
for typical

First stage

quantum algorithms
“cyclotomic rings” .

In attack:

SODA 2016 Biasse—Song
fast quantum algorithm to

compute g

R — ug with u € R*.

Builds upon STOC 2014
Eisentrager—Hallgren—Kitaev—Song

quantum R +— R* algorithm.

Older pre-c

uantum algorithms

take subex

yonential time.

13

Second stage of attack: 2014.10
Campbell-Groves—Shepherd

fast pre-quantum algorithm
for typical cyclotomic ring
to compute ug — short g.

Eurocrypt 2017 Cramer—Ducas—
Wesolowski extension of CGS:
for typical cyclotomic ring, find
fairly short element of any ideal.

These attacks exploit structure of
cyclotomic rings. Rescue system
by switching to another ring?

14

009 Gentry system is

by
al

g€

quantum algorithms
“cyclotomic rings” .

In attack:

016 Biasse—Song
ntum algorithm to

- 8

R — ug with u € R*.

pon STOC 2014
cer—Hallgren—Kitaev—Song
1 R — R* algorithm.

e€-C

uantum algorithms

€X

yonential time.

13

Second stage of attack: 2014.10
Campbell-Groves—Shepherd

fast pre-quantum algorithm
for typical cyclotomic ring
to compute ug — short g.

Eurocrypt 2017 Cramer—Ducas—
Wesolowski extension of CGS:
for typical cyclotomic ring, find
fairly short element of any ideal.

These attacks exploit structure of
cyclotomic rings. Rescue system
by switching to another ring?

14

2014.02
attack s
time for

Eurocryj
Bernstel
Vredend
time pre

"multiqt

2016 Be
Lange—v
Prime"
Galois g
reduce a

y system Is
m algorithms
omic rings’ .

ck:

e—Song

rithm to

r with v € R*.

_ 2014
en—Kitaev—Song
algorithm.

1 algorithms
al time.

13

Second stage of attack: 2014.10
Campbell-Groves—Shepherd

fast
for typical cyclotomic ring

ore-quantum algorithm

to compute ug — short g.

Eurocrypt 2017 Cramer—Ducas—
Wesolowski extension of CGS:
for typical cyclotomic ring, find
fairly short element of any ideal.

These attacks exploit structure of
cyclotomic rings. Rescue system
by switching to another ring?

14

2014.02 Bernstein

attack strategy; st
time for many chc

Eurocrypt 2017 B
Bernstein—de Vale
Vredendaal: quasi
time pre-quantum
“multiquadratic ri

2016 Bernstein—Cl|
Lange—van Vreden
Prime": use prime
Galois group, inert
reduce attack surf

13

mS

- R*.

—Song

ns

Second stage of attack: 2014.10
Campbell-Groves—Shepherd

fast pre-quantum algorithm
for typical cyclotomic ring
to compute ug — short g.

Eurocrypt 2017 Cramer—Ducas—
Wesolowski extension of CGS:
for typical cyclotomic ring, find
fairly short element of any ideal.

These attacks exploit structure of
cyclotomic rings. Rescue system
by switching to another ring?

14

2014.02 Bernstein: pre-quar
attack strategy; subexponen
time for many choices of rin

Eurocrypt 2017 Bauch-
Bernstein—de Valence—Lange
Vredendaal: quasipolynomia
time pre-quantum attack foi
"multiquadratic rings’ .

2016 Bernstein—Chuengsatia
Lange—van Vredendaal "N T
Prime”: use prime degree, |.
Galois group, inert modulus;

reduce attack surface at low

Second stage of attack: 2014.10
Campbell-Groves—Shepherd

fast
for typical cyclotomic ring

ore-quantum algorithm

to compute ug — short g.

Eurocrypt 2017 Cramer—Ducas—
Wesolowski extension of CGS:
for typical cyclotomic ring, find
fairly short element of any ideal.

These attacks exploit structure of
cyclotomic rings. Rescue system
by switching to another ring?

14

15
2014.02 Bernstein: pre-quantum

attack strategy; subexponential
time for many choices of ring.

Eurocrypt 2017 Bauch-
Bernstein—de Valence—Lange—van
Vredendaal: quasipolynomial-
time pre-quantum attack for
"multiquadratic rings’ .

2016 Bernstein—Chuengsatiansup—
Lange—van Vredendaal "NTRU
Prime”: use prime degree, large

Galois group, inert modulus;

reduce attack surface at low cost.

