How cryptographic benchmarking
goes wrong

Daniel J. Bernstein

Thanks to NIST 60NANB12D261
for funding this work, and for not
reviewing these slides in advance.

PRESERVE, ending 2015.06.30,
was a European project
“Preparing Secure Vehicle-to-X
Communication Systems” .

Project cost: 5383431 EUR,

including 3850000 EUR from
the European Commission.

http://cordis.europa.eu/project/rcn/97466_en.html

“About PRESERVE": “The
mission of PRESERVE is,

to design, implement, and

test a secure and scalable

V2X Security Subsystem for
realistic deployment scenarios.
... |Expected Results:] 1.
Harmonized V2X Security
Architecture. 2. Implementation
of V2X Security Subsystem. 3.
Cheap and scalable security ASIC
for V2X. 4. Testing results VSS
under realistic conditions. 5.
Research results for deployment
challenges.”

https://web.archive.org/web/20160915075611/https://preserve-project.eu/about

Cars already include many CPUs.
Why build an ASIC?

PRESERVE deliverable 1.1,
“Security Requirements of Vehicle
Security Architecture”, 2011
"Processing 1,000 packets per
second and processing each in 1
ms can hardly be met by current

hardware. As discussed in [32],
a Pentium D 3.4 GHz processor
needs about 5 times as long for
a verification ... a dedicated
cryptographic co-processor Is
likely to be necessary.”

PRESERVE deliverable 5.4,
"Deployment Issues Report

V4" 2016: “the number of

ECC signature verifications per
second is the key performance
factor for ASICs in a C2C
environment ... [On a

4mm x4mm chip| the 180nm
technology may only yield enough
space for one ECC core, whereas
90nm will allow for up to ten ECC
cores and 55nm will allow for even

more.” For 180nm core says
max 100MHz, 100 verif/second.

Compare to, e.g.,

IAIK NIST P-256 ECC Module:
858 scalarmult/second

in 111620 GE at 192 MHz

at 180nm (“UMC L180GlI
technology using Faraday 180
standard cell library (FSAOA_C),
9.3744 um?/GE; worst case
conditions (temperature 125°C,
core voltage 1.62V)").

Signature verification will be

somewhat slower than scalarmult.

Still close to 100 x more efficient
than the PRESERVE estimates.

https://jce.iaik.tugraz.at/sic/Products/IP_Modules/ECC_Modules/NIST_P-256_P-384

Let's go back to PRESERVE's
core argument for an ASIC.

Central claim: “As discussed
in [32], a Pentium D 3.4 GHz
processor needs about” bms

(i.e., 17 million CPU cycles)

for signature verification.

[32] is “Petit, J., Mammeri,
/., "Analysis of authentication

overhead in vehicular networks',
Third Joint IFIP Wireless and
Mobile Networking Conference
(WMNC), 2010."

[32] says “1. Introduction. Due
to the huge life losses and the
economic impacts resulting

from vehicular collisions, many
governments, automotive
companies, and industry consortia
have made the reduction of
vehicular fatalities a top priority

[1]. On average, vehicular
collisions cause 102 deaths
and 7900 injuries daily in the
United States, leaving an

economic impact of $230 billion

2]. ... [Similar story for EU:]
costing €160 billion annually [3].”

Vehicles will communicate safety
information. “All implementations
of IEEE1609.2 standard [7] shall
support the Elliptic Curve Digital
Signature Algorithm (ECDSA)

[8] over the two NIST curves
P-224 and P-256. ... In this

paper, we assess the processing

and communication overhead of
the authentication mechanism
provided by ECDSA. ... Table
Il. Signature generation and
verification times on a Pentium

D 3.4Ghz workstation [10]"

[10] (in [32]) is “Petit

J., "Analysis of ECDSA
Authentication Processing In
VANETSs', 3rd IFIP International
Conference on New Technologies,
Mobility and Security (NTMS),
Cairo, December 2009."

[10] says “ECDSA was
implemented using MIRACL
and following the Fig.1."
For NIST P-224/P-256 on
“"Pentium D 3.4GHz workstation™:
2.50ms/3.33ms to sign,
4.97ms/6.63ms to verify.

10
Compare to, e.g., Ed25519

speeds reported for single core
of 14nm 3.31GHz Skylake
(“2015 Intel Core i5-6600") on
https://bench.cr.yp.to:

0.015ms to sign (49840 cycles),
0.049ms to verify (163206 cycles).

https://bench.cr.yp.to

10
Compare to, e.g., Ed25519

speeds reported for single core
of 14nm 3.31GHz Skylake

(“2015 Intel Core i5-6600") on
https://bench.cr.yp.to:

0.015ms to sign (49840 cycles),
0.049ms to verify (163206 cycles).

This chip didn't exist in 2009.
Compare instead to single core
of 65nm 2.4GHz Core 2 (“2007
Intel Core 2 Quad Q6600").

0.065ms to sign (156843 cycles),
0.232ms to verify (557082 cycles).

https://bench.cr.yp.to

11
2012 Bernstein—Schwabe

on 720MHz ARM Cortex-AS:
0.9ms to verify (650102 cycles).

ARM Cortex-A8 cores were in
1000MHz Apple A4

in iPad 1, iPhone 4 (2010);
1000MHz Samsung Exynos 3110
in Samsung Galaxy S (2010);
1000MHz TI OMAP3630 in
Motorola Droid X (2010);
800MHz Freescale i.MX50 in
Amazon Kindle 4 (2011); ...

Today: in CPUs costing ~2 EUR.
Cortex-A7 is even more popular.

180nm 32-bit 2GHz Willamette
(“2001 Intel Pentium 4"):

0.46ms (0.9 million cycles)

for Curve25519 scalarmult

using floating-point multiplier.
Integer multiplier i1s much slower!

Nobody has ever bothered
adapting this to signatures.
Would be =~0.6ms for verity.

3.4GHz Pentium D (dual core):
same basic microarchitecture,
more instructions, faster clock.

Ed25519 would be >10x faster

on one core than Petit's software.

12

13
Bad ECDSA-NIST-P-256 design

certainly has some impact:

e can't use fastest mulmods;

e can't use fastest curve formulas;
e need an annoying inversion;

etc. Typical estimate: 2x slower.

2000 Brown—Hankerson—Lopez-
Menezes on 400MHz Pentium 1I:
4.0ms/6.4ms (1.6/2.6 million
cycles) for double scalarmult
inside NIST P-224/P-256 verif.

2001 Bernstein, ~1.6x faster:

0.7 million cycles on Pentium Il
for NIST P-224 scalarmult.

14

2000 Brown—Hankerson—Lopez-

Menezes software uses many more

cycles on P4 than on PII.

e.g., P-224 scalarmult:

1.2 million cyc

2.7 million cyc

es on Pentium Il.
es on Pentium 4.

2001 Bernstein P-224 scalarmult:
0.7 million cycles on Pentium II.

0.8 million cyc

0.9 million cyc

es on Pentium 4.
es on Pentium 4

using compressed keys.

OpenSSL 1.0.1, P-224 verif:
2.0 million cycles on Pentium D.

How did Petit manage to use
17 million cycles for P-224 verif,

22 million cycles for P-256 verif?

Presumably some combination of
bad mulmod and bad curve ops.

Why did Petit reimplement
ECDSA, using MIRACL for the

underlying arithmetic?

Why did Petit not simply cite
previous speed literature?

Why did Petit choose Pentium D?

Why did BHLM choose PlI?

15

16
Petit: “There are three main

cryptographic libraries: MIRACL,
OpenSSL and Crypto++.
Authors in [21] proposed a
comparison and concluded

that MIRACL has the best
performance for operations on
elliptic curves over binary fields.”

Petit: “There are three main
cryptographic libraries: MIRACL,
OpenSSL and Crypto++.
Authors in [21] proposed a
comparison and concluded

that MIRACL has the best
performance for operations on
elliptic curves over binary fields.”

But NIST P-224 and NIST P-256
are defined over prime fields!

[21] says “For elliptic curves
over prime fields, OpenSSL has
the best performance under all
platforms.”

16

17
More general situation:

Paper analyzes impact of
crypto upon an application.

If the crypto sounds fast:
Why is the paper interesting?
Why should it be published?

If the crypto sounds slower:
Paper I1s more interesting.
Look, here's a speed problem!
More likely to be published.

More likely to motivate
funding to fix the problem.

Obvious question whenever an

daPp
dep

ication considers crypto
oyment: “ls it fast enough?”

Many random methodologies for

answering this question. Which
CPU to test? What to take from
literature and libraries? Reuse

mulmod, or curve ops, or more?

Slowest, least competent answers

are most likely to be published.

Situation is fully explainable by

randomness + natural selection.

There's no evidence that Petit

deliberately slowed down crypto.

18

Paper introducing new crypto
software or hardware has same
incentive to report older crypto as
slow, and analogous incentive to
report its own crypto as fast.

Paper will naturally select
functions, parameters, input
lengths, platforms, |/O format,
timing mechanism, etc. that
maximize reported improvement
from old to new.

This Is not the same as selecting

what matters most for the users.

20

Bit operations per bit of plaintext

(assuming precomputed subkeys),

as listed in recent Skinny paper:

key | ops/bit | cipher

128 | 88 Simon: 60 ops broken
128|100 NOEKEON

128 | 117 Skinny

256 | 144 Simon: 106 ops broken
128 |147.2 | PRESENT

256 | 156 Skinny

128 |162.75 | Piccolo

1281202.5 | AES

256 (283.5 | AES

20

Bit operations per bit of plaintext

(assuming precomputed subkeys),

not entirely listed in Skinny paper:

key | ops/bit | cipher

256 | 54 Salsa20/8

256 | 78 Salsa20/12

128 | 88 Simon: 60 ops broken
128 | 100 NOEKEON

128 | 117 Skinny

256 | 126 Salsa20

256 | 144 Simon: 106 ops broken
128 |147.2 |PRESENT

256 | 156 Skinny

128 |162.75 | Piccolo

128 202.5 | AES

256 (283.5 | AES

Many bad examples to imitate,

backed by tons of misinformation.

e.g. Do we bother searching for
optimized implementations of
the older crypto? Take any code!
Rely on “optimizing” compiler!

“We come so close to optimal on
most architectures that we can't
do much more without using NP
complete algorithms instead of
heuristics. We can only try to
get little niggles here and there
where the heuristics get

slightly wrong answers.”

21

22

Reality i1s more complicated:

crypto_stream e/ amd&4-xmme afamd&d-3 xB6_xmmE e/xB6-pm afxBS—mmxhttpS ://bench.cr. yp-to
- amdSd _xmm e/amdsd— e/regs &/amdBd-1 efx86-2 efxB6-1

salsa20 dﬂlhaauf&mdﬁﬂl-:u}imﬁ&t armneons e/merg A afref e.FI‘_{SG-aT.h].o:“_ ! 2[}1610 lo

. . - 8/ By dEd-xmb? .~ armnecnZ ,'| [e/zB6-3 {

m plem entations E_.-'ar:}ﬂft;\}_ "Ex / j ref |III |IIII I|' BFmAe |

armeabi Cortex-A9

l““";.

rmnecn /E‘,d
e fapd —il d
- S— 9---""“‘?_:_
\\\

armeabi Armada

Time 4096

8192

16384

32768 65536

SUPERCOP benchmarking toolkit
includes 2155 implementations

of 595 cryptographic primitives.
>20 implementations of Salsa20.

Haswell: Reasonably simple ref
implementation compiled with
gcc —03 -fomit-frame-pointer
is 6.15x slower than fastest
Salsa20 implementation.

merged implementation

with “machine-independent”
optimizations and best of 121
compiler options: 4.52x slower.

23

24
Another interesting example:

lattice-based signing typically
means generating a huge number
of random Gaussian samples.

2017.03 Brannigan—Smyth—Oder—
Valencia—O'Sullivan—Guneysu—
Regazzoni “An investigation of
sources of randomness within
discrete Gaussian sampling’:
benchmarks for RNGs, samplers.

Qualitatively large impacts:
choice of RNG = cost of
sampling = cost of signing.

Two examples of speed reported
in this 2017 paper for a 3.4GHz
Skylake (Intel Core i7-6700):

383.69 MByte/sec (8.86
cycles/byte) for AES CTR-DRBG
using AES-NI; 106.07 MByte/sec
(32 cycles/byte) for ChaCha20.

25

Two examples of speed reported

In t

Sky
383

nis 2017 paper for a 3.4GHz
ake (Intel Core i7-6700):

.69 MByte/sec (8.86

cycles/byte) for AES CTR-DRBG
using AES-NI; 106.07 MByte/sec

(32
But

0.92 cycles/byte for AES-256-CTR,

cycles/byte) for ChaCha20.

wait. eBACS reports

1.18 cycles/byte for ChaCha20.

Aut

hor non-response: “essential

for us to examine standard open

Imp

lementations”’. Slow ones?

25

_J: 5] Google Online Securi... \+

26

(® @ | https://security.googleblog.com/2014/04/speeding-up-anc EJ | ¢ | »

Most Visitedv @ Fedora Documentation [[]Fedora Projectv [[JRed HatVv

»

Speeding up and strengthening HTTPS

connections for Chrome on Android
April 24, 2014

Posted by Elie Bursztein, Anti-Abuse Research Lead

Earlier this year, we deployed a new TLS cipher suite in Chrome that
operates three times faster than AES-GCM on devices that don't have
AES hardware acceleration, including most Android phones, wearable
devices such as Google Glass and older computers. This improves user
experience, reducing latency and saving battery life by cutting down the

amount of time spent encrypting and decrypting data.

To make this happen, Adam Langley, Wan-Teh Chang, Ben Laurie and |
began implementing new algorithms - ChaCha 20 for symmetric
encryption and Poly1305 for authentication - in OpenSSL and NSS in
March 2013. It was a complex effort that required implementing a new

abstraction layer in OpenSSL in order to support the Authenticated

j: . Do the ChaCha: bett... %

L+

27

= | (O @ | https://blog.cloudflare.com/do-the-chacha-better-mobile-p« EJ G‘l »

Most Visitedv @ Fedora Documentation [[]Fedora Projectv [[JRed HatVv

»

Today we are adding a new feature — actually a new
form of encryption — that improves mobile
performance: ChaCha20-Poly1305 cipher suites. Until
today, Google services were the only major sites on
the Internet that supported this new algorithm. Now
all sites on CloudFlare support it, too. This means
mobile browsers get a better experience when
visiting sites using CloudFlare.

As of the launch today (February 23, 2015), nearly
10% of https connections to CloudFlare use the new
ciphersuites. The following graph shows the uptick
when we turned ChaCha20/Poly1305 on globally:

CloudFlare ciphersuite chosen by percentage

February 23, 2015
ChaCha20-Poly1305 launched

28

ImperialViolet - Maybe S... x | +
@ | https://www.imperialviolet.org/2017/05/31/skipsha3.html »

Most Visitedv @ Fedora Documentation [[]Fedora Projectv [[JRed HatVv

Maybe Skip SHA-3 (31 May 2017)

In 2005 and 2006, a series of significant results were published against SHA-1
[11[2][3]. These repeated break-throughs caused something of a crisis of faith
as cryptographers questioned whether we knew how to build hash functions
at all. After all, many hash functions from the 1990's had not aged well [1][2].

In the wake of this, NIST announced (PDF) a competition to develop SHA-3 in
order to hedge the risk of SHA-2 falling. In 2012, Keccak (pronounced
“ket-chak”, I believe) won (PDF) and became SHA-3. But the competition itself
proved that we do know how to build hash functions: the series of results in
2005 didn't extend to SHA-2 and the SHA-3 process produced a number of
hash functions, all of which are secure as far as we can tell. Thus, by the time
it existed, it was no longer clear that SHA-3 was needed. Yet there is a natural
tendency to assume that SHA-3 must be better than SHA-2 because the num-
ber is bigger.

As I've mentioned before, diversity of cryptographic primitives is expensive.
It contributes to the exponential number of combinations that need to be
tested and hardened; it draws on limited developer resources as multiple
platforms typically need separate, optimised code; and it contributes to
code-size, which is a worry again in the mobile age. SHA-3 is also slow, and is
even slower than SHA-2 which is already a comparative laggard amongst

rrvntn nrimitiviac

»

