
1

How cryptographic benchmarking

goes wrong

Daniel J. Bernstein

Thanks to NIST 60NANB12D261

for funding this work, and for not

reviewing these slides in advance.

PRESERVE, ending 2015.06.30,

was a European project

“Preparing Secure Vehicle-to-X

Communication Systems”.

Project cost: 5383431 EUR,

including 3850000 EUR from

the European Commission.

http://cordis.europa.eu/project/rcn/97466_en.html


2

“About PRESERVE”: “The

mission of PRESERVE is,

to design, implement, and

test a secure and scalable

V2X Security Subsystem for

realistic deployment scenarios.

: : : [Expected Results:] 1.

Harmonized V2X Security

Architecture. 2. Implementation

of V2X Security Subsystem. 3.

Cheap and scalable security ASIC

for V2X. 4. Testing results VSS

under realistic conditions. 5.

Research results for deployment

challenges.”

https://web.archive.org/web/20160915075611/https://preserve-project.eu/about


3

Cars already include many CPUs.

Why build an ASIC?

PRESERVE deliverable 1.1,

“Security Requirements of Vehicle

Security Architecture”, 2011:

“Processing 1,000 packets per

second and processing each in 1

ms can hardly be met by current

hardware. As discussed in [32],

a Pentium D 3.4 GHz processor

needs about 5 times as long for

a verification : : : a dedicated

cryptographic co-processor is

likely to be necessary.”



4

PRESERVE deliverable 5.4,

“Deployment Issues Report

V4”, 2016: “the number of

ECC signature verifications per

second is the key performance

factor for ASICs in a C2C

environment : : : [On a

4mm×4mm chip] the 180nm

technology may only yield enough

space for one ECC core, whereas

90nm will allow for up to ten ECC

cores and 55nm will allow for even

more.” For 180nm core says

max 100MHz, 100 verif/second.



5

Compare to, e.g.,

IAIK NIST P-256 ECC Module:

858 scalarmult/second

in 111620 GE at 192 MHz

at 180nm (“UMC L180GII

technology using Faraday f180

standard cell library (FSA0A C),

9.3744 —m2/GE; worst case

conditions (temperature 125◦C,

core voltage 1.62V)”).

Signature verification will be

somewhat slower than scalarmult.

Still close to 100× more efficient

than the PRESERVE estimates.

https://jce.iaik.tugraz.at/sic/Products/IP_Modules/ECC_Modules/NIST_P-256_P-384


6

Let’s go back to PRESERVE’s

core argument for an ASIC.

Central claim: “As discussed

in [32], a Pentium D 3.4 GHz

processor needs about” 5ms

(i.e., 17 million CPU cycles)

for signature verification.

[32] is “Petit, J., Mammeri,

Z., ‘Analysis of authentication

overhead in vehicular networks’,

Third Joint IFIP Wireless and

Mobile Networking Conference

(WMNC), 2010.”



7

[32] says “1. Introduction. Due

to the huge life losses and the

economic impacts resulting

from vehicular collisions, many

governments, automotive

companies, and industry consortia

have made the reduction of

vehicular fatalities a top priority

[1]. On average, vehicular

collisions cause 102 deaths

and 7900 injuries daily in the

United States, leaving an

economic impact of $230 billion

[2]. : : : [Similar story for EU:]

costing e160 billion annually [3].”



8

Vehicles will communicate safety

information. “All implementations

of IEEE1609.2 standard [7] shall

support the Elliptic Curve Digital

Signature Algorithm (ECDSA)

[8] over the two NIST curves

P-224 and P-256. : : : In this

paper, we assess the processing

and communication overhead of

the authentication mechanism

provided by ECDSA. : : : Table

II. Signature generation and

verification times on a Pentium

D 3.4Ghz workstation [10]”



9

[10] (in [32]) is “Petit

J., ‘Analysis of ECDSA

Authentication Processing in

VANETs’, 3rd IFIP International

Conference on New Technologies,

Mobility and Security (NTMS),

Cairo, December 2009.”

[10] says “ECDSA was

implemented using MIRACL

and following the Fig.1.”

For NIST P-224/P-256 on

“Pentium D 3.4GHz workstation”:

2.50ms/3.33ms to sign,

4.97ms/6.63ms to verify.



10

Compare to, e.g., Ed25519

speeds reported for single core

of 14nm 3.31GHz Skylake

(“2015 Intel Core i5-6600”) on

https://bench.cr.yp.to:

0.015ms to sign (49840 cycles),

0.049ms to verify (163206 cycles).

https://bench.cr.yp.to


10

Compare to, e.g., Ed25519

speeds reported for single core

of 14nm 3.31GHz Skylake

(“2015 Intel Core i5-6600”) on

https://bench.cr.yp.to:

0.015ms to sign (49840 cycles),

0.049ms to verify (163206 cycles).

This chip didn’t exist in 2009.

Compare instead to single core

of 65nm 2.4GHz Core 2 (“2007

Intel Core 2 Quad Q6600”).

0.065ms to sign (156843 cycles),

0.232ms to verify (557082 cycles).

https://bench.cr.yp.to


11

2012 Bernstein–Schwabe

on 720MHz ARM Cortex-A8:

0.9ms to verify (650102 cycles).

ARM Cortex-A8 cores were in

1000MHz Apple A4

in iPad 1, iPhone 4 (2010);

1000MHz Samsung Exynos 3110

in Samsung Galaxy S (2010);

1000MHz TI OMAP3630 in

Motorola Droid X (2010);

800MHz Freescale i.MX50 in

Amazon Kindle 4 (2011); : : :

Today: in CPUs costing ≈2 EUR.

Cortex-A7 is even more popular.



12

180nm 32-bit 2GHz Willamette

(“2001 Intel Pentium 4”):

0.46ms (0.9 million cycles)

for Curve25519 scalarmult

using floating-point multiplier.

Integer multiplier is much slower!

Nobody has ever bothered

adapting this to signatures.

Would be ≈0:6ms for verify.

3.4GHz Pentium D (dual core):

same basic microarchitecture,

more instructions, faster clock.

Ed25519 would be >10× faster

on one core than Petit’s software.



13

Bad ECDSA-NIST-P-256 design

certainly has some impact:

• can’t use fastest mulmods;

• can’t use fastest curve formulas;

• need an annoying inversion;

etc. Typical estimate: 2× slower.

2000 Brown–Hankerson–López–

Menezes on 400MHz Pentium II:

4.0ms/6.4ms (1.6/2.6 million

cycles) for double scalarmult

inside NIST P-224/P-256 verif.

2001 Bernstein, ≈1:6× faster:

0.7 million cycles on Pentium II

for NIST P-224 scalarmult.



14

2000 Brown–Hankerson–López–

Menezes software uses many more

cycles on P4 than on PII.

e.g., P-224 scalarmult:

1.2 million cycles on Pentium II.

2.7 million cycles on Pentium 4.

2001 Bernstein P-224 scalarmult:

0.7 million cycles on Pentium II.

0.8 million cycles on Pentium 4.

0.9 million cycles on Pentium 4

using compressed keys.

OpenSSL 1.0.1, P-224 verif:

2.0 million cycles on Pentium D.



15

How did Petit manage to use

17 million cycles for P-224 verif,

22 million cycles for P-256 verif?

Presumably some combination of

bad mulmod and bad curve ops.

Why did Petit reimplement

ECDSA, using MIRACL for the

underlying arithmetic?

Why did Petit not simply cite

previous speed literature?

Why did Petit choose Pentium D?

Why did BHLM choose PII?



16

Petit: “There are three main

cryptographic libraries: MIRACL,

OpenSSL and Crypto++.

Authors in [21] proposed a

comparison and concluded

that MIRACL has the best

performance for operations on

elliptic curves over binary fields.”



16

Petit: “There are three main

cryptographic libraries: MIRACL,

OpenSSL and Crypto++.

Authors in [21] proposed a

comparison and concluded

that MIRACL has the best

performance for operations on

elliptic curves over binary fields.”

But NIST P-224 and NIST P-256

are defined over prime fields!

[21] says “For elliptic curves

over prime fields, OpenSSL has

the best performance under all

platforms.”



17

More general situation:

Paper analyzes impact of

crypto upon an application.

If the crypto sounds fast:

Why is the paper interesting?

Why should it be published?

If the crypto sounds slower:

Paper is more interesting.

Look, here’s a speed problem!

More likely to be published.

More likely to motivate

funding to fix the problem.



18

Obvious question whenever an

application considers crypto

deployment: “Is it fast enough?”

Many random methodologies for

answering this question. Which

CPU to test? What to take from

literature and libraries? Reuse

mulmod, or curve ops, or more?

Slowest, least competent answers

are most likely to be published.

Situation is fully explainable by

randomness + natural selection.

There’s no evidence that Petit

deliberately slowed down crypto.



19

Paper introducing new crypto

software or hardware has same

incentive to report older crypto as

slow, and analogous incentive to

report its own crypto as fast.

Paper will naturally select

functions, parameters, input

lengths, platforms, I/O format,

timing mechanism, etc. that

maximize reported improvement

from old to new.

This is not the same as selecting

what matters most for the users.



20

Bit operations per bit of plaintext

(assuming precomputed subkeys),

as listed in recent Skinny paper:

key ops/bit cipher

128 88 Simon: 60 ops broken
128 100 NOEKEON
128 117 Skinny

256 144 Simon: 106 ops broken
128 147.2 PRESENT
256 156 Skinny
128 162.75 Piccolo
128 202.5 AES
256 283.5 AES



20

Bit operations per bit of plaintext

(assuming precomputed subkeys),

not entirely listed in Skinny paper:

key ops/bit cipher
256 54 Salsa20/8
256 78 Salsa20/12
128 88 Simon: 60 ops broken
128 100 NOEKEON
128 117 Skinny
256 126 Salsa20
256 144 Simon: 106 ops broken
128 147.2 PRESENT
256 156 Skinny
128 162.75 Piccolo
128 202.5 AES
256 283.5 AES



21

Many bad examples to imitate,

backed by tons of misinformation.

e.g. Do we bother searching for

optimized implementations of

the older crypto? Take any code!

Rely on “optimizing” compiler!

“We come so close to optimal on

most architectures that we can’t

do much more without using NP

complete algorithms instead of

heuristics. We can only try to

get little niggles here and there

where the heuristics get

slightly wrong answers.”



22

Reality is more complicated:



23

SUPERCOP benchmarking toolkit

includes 2155 implementations

of 595 cryptographic primitives.

>20 implementations of Salsa20.

Haswell: Reasonably simple ref

implementation compiled with

gcc -O3 -fomit-frame-pointer

is 6:15× slower than fastest

Salsa20 implementation.

merged implementation

with “machine-independent”

optimizations and best of 121

compiler options: 4:52× slower.



24

Another interesting example:

lattice-based signing typically

means generating a huge number

of random Gaussian samples.

2017.03 Brannigan–Smyth–Oder–

Valencia–O’Sullivan–Güneysu–

Regazzoni “An investigation of

sources of randomness within

discrete Gaussian sampling”:

benchmarks for RNGs, samplers.

Qualitatively large impacts:

choice of RNG ⇒ cost of

sampling ⇒ cost of signing.



25

Two examples of speed reported

in this 2017 paper for a 3.4GHz

Skylake (Intel Core i7-6700):

383.69 MByte/sec (8.86

cycles/byte) for AES CTR-DRBG

using AES-NI; 106.07 MByte/sec

(32 cycles/byte) for ChaCha20.



25

Two examples of speed reported

in this 2017 paper for a 3.4GHz

Skylake (Intel Core i7-6700):

383.69 MByte/sec (8.86

cycles/byte) for AES CTR-DRBG

using AES-NI; 106.07 MByte/sec

(32 cycles/byte) for ChaCha20.

But wait. eBACS reports

0.92 cycles/byte for AES-256-CTR,

1.18 cycles/byte for ChaCha20.

Author non-response: “essential

for us to examine standard open

implementations”. Slow ones?



26



27



28


