
1

Smartphone/tablet CPUs

iPad 1 (2010) was the

first popular tablet:

more than 15 million sold.

iPad 1 contains 45nm

Apple A4 system-on-chip.

Apple A4 contains

1GHz ARM Cortex-A8 CPU core

+ PowerVR SGX 535 GPU.

Cortex-A8 CPU core (2005)

supports ARMv7-A insn set,

including NEON vector insns.



2

Apple A4 also appeared

in iPhone 4 (2010).

45nm 1GHz Samsung Exynos

3110 in Samsung Galaxy S (2010)

contains Cortex-A8 CPU core.

45nm 1GHz TI OMAP3630 in

Motorola Droid X (2010)

contains Cortex-A8 CPU core.

65nm 800MHz Freescale i.MX50

in Amazon Kindle 4 (2011)

contains Cortex-A8 CPU core.



3

ARM designed more cores

supporting same ARMv7-A insns:

Cortex-A9 (2007),

Cortex-A5 (2009),

Cortex-A15 (2010),

Cortex-A7 (2011),

Cortex-A17 (2014), etc.

Also some larger 64-bit cores.

A9, A15, A17, and some 64-bit

cores are “out of order”: CPU

tries to reorder instructions to

compensate for dumb compilers.



4

A5, A7, original A8 are in-order,

fewer insns at once.



4

A5, A7, original A8 are in-order,

fewer insns at once. ⇒ Simpler,

cheaper, more energy-efficient.



4

A5, A7, original A8 are in-order,

fewer insns at once. ⇒ Simpler,

cheaper, more energy-efficient.

More than one billion Cortex-A7

devices have been sold.

Popular in low-cost and mid-range

smartphones: Mobiistar Buddy,

Mobiistar Kool, Mobiistar LAI Z1,

Samsung Galaxy J1 Ace Neo, etc.

Also used in typical TV boxes,

Sony SmartWatch 3, Samsung

Gear S2, Raspberry Pi 2, etc.



5

NEON crypto

Basic ARM insn set uses

16 32-bit registers: 512 bits.

Optional NEON extension uses

16 128-bit registers: 2048 bits.

Cortex-A7 and Cortex-A8

(and Cortex-A15 and Cortex-A17

and Qualcomm Scorpion

and Qualcomm Krait)

always have NEON insns.

Cortex-A5 and Cortex-A9

sometimes have NEON insns.



6

2012 Bernstein–Schwabe

“NEON crypto” software:

new Cortex-A8 speed records

for various crypto primitives.

e.g. Curve25519 ECDH:

460200 cycles on Cortex-A8-fast,

498284 cycles on Cortex-A8-slow.

Compare to OpenSSL

cycles on Cortex-A8-slow

for NIST P-256 ECDH:

9 million for OpenSSL 0.9.8k.

4.8 million for OpenSSL 1.0.1c.

3.9 million for OpenSSL 1.0.2j.



7

NEON instructions

4x a = b + c

is a vector of 4 32-bit additions:

a[0] = b[0] + c[0];

a[1] = b[1] + c[1];

a[2] = b[2] + c[2];

a[3] = b[3] + c[3].



7

NEON instructions

4x a = b + c

is a vector of 4 32-bit additions:

a[0] = b[0] + c[0];

a[1] = b[1] + c[1];

a[2] = b[2] + c[2];

a[3] = b[3] + c[3].

Cortex-A8 NEON arithmetic unit

can do this every cycle.



7

NEON instructions

4x a = b + c

is a vector of 4 32-bit additions:

a[0] = b[0] + c[0];

a[1] = b[1] + c[1];

a[2] = b[2] + c[2];

a[3] = b[3] + c[3].

Cortex-A8 NEON arithmetic unit

can do this every cycle.

Stage N2: reads b and c.

Stage N3: performs addition.

Stage N4: a is ready.

ADD
2 cycles // ADD

2 cycles // ADD



8

4x a = b - c

is a vector of 4 32-bit subtractions:

a[0] = b[0] - c[0];

a[1] = b[1] - c[1];

a[2] = b[2] - c[2];

a[3] = b[3] - c[3].

Stage N1: reads c.

Stage N2: reads b, negates c.

Stage N3: performs addition.

Stage N4: a is ready.

ADD
2 or 3 cycles // SUB

Also logic insns, shifts, etc.



9

Multiplication insn:

c[0,1] = a[0] signed* b[0];

c[2,3] = a[1] signed* b[1]

Two cycles on Cortex-A8.

Multiply-accumulate insn:

c[0,1] += a[0] signed* b[0];

c[2,3] += a[1] signed* b[1]

Also two cycles on Cortex-A8.

Stage N1: reads b.

Stage N2: reads a.

Stage N3: reads c if accumulate.
...

Stage N8: c is ready.



10

Typical sequence of three insns:

c[0,1] = a[0] signed* b[0];

c[2,3] = a[1] signed* b[1]

c[0,1] += e[2] signed* f[2];

c[2,3] += e[3] signed* f[3]

c[0,1] += g[0] signed* h[2];

c[2,3] += g[1] signed* h[3]

Cortex-A8 recognizes this pattern.

Reads c in N6 instead of N3.



11
Time N1 N2 N3 N4 N5 N6 N7 N8

1 b
2 a
3 f ×
4 e ×
5 h × ×
6 g × ×
7 × ×
8 × × c
9 × +

10 × c
11 +
12 c



12

NEON also has load/store insns

and permutation insns: e.g.,

r = s[1] t[2] r[2,3]

Cortex-A8 has a separate

NEON load/store unit

that runs in parallel with

NEON arithmetic unit.

Arithmetic is typically

most important bottleneck:

can often schedule insns

to hide loads/stores/perms.

Cortex-A7 is different: one unit

handling all NEON insns.



13

Curve25519 on NEON

Radix 225:5: Use small integers

(f0; f1; f2; f3; f4; f5; f6; f7; f8; f9)

to represent the integer

f = f0 + 226f1 + 251f2 + 277f3 +

2102f4 + 2128f5 + 2153f6 + 2179f7 +

2204f8 + 2230f9 modulo 2255 − 19.

Unscaled polynomial view:

f is value at 225:5 of the poly

f0t
0 + 20:5f1t

1 + f2t
2 + 20:5f3t

3 +

f4t
4 + 20:5f5t

5 + f6t
6 + 20:5f7t

7 +

f8t
8 + 20:5f9t

9.



14

h ≡ f g (mod 2255 − 19) where

h0 = f0g0 +38f1g9 +19f2g8 +38f3g7 +19f4g6 +

h1 = f0g1 + f1g0 +19f2g9 +19f3g8 +19f4g7 +

h2 = f0g2 + 2f1g1 + f2g0 +38f3g9 +19f4g8 +

h3 = f0g3 + f1g2 + f2g1 + f3g0 +19f4g9 +

h4 = f0g4 + 2f1g3 + f2g2 + 2f3g1 + f4g0 +

h5 = f0g5 + f1g4 + f2g3 + f3g2 + f4g1 +

h6 = f0g6 + 2f1g5 + f2g4 + 2f3g3 + f4g2 +

h7 = f0g7 + f1g6 + f2g5 + f3g4 + f4g3 +

h8 = f0g8 + 2f1g7 + f2g6 + 2f3g5 + f4g4 +

h9 = f0g9 + f1g8 + f2g7 + f3g6 + f4g5 +

Proof: multiply polys mod t10 − 19.



15

38f5g5 +19f6g4 +38f7g3 +19f8g2 +38f9g1;

19f5g6 +19f6g5 +19f7g4 +19f8g3 +19f9g2;

38f5g7 +19f6g6 +38f7g5 +19f8g4 +38f9g3;

19f5g8 +19f6g7 +19f7g6 +19f8g5 +19f9g4;

38f5g9 +19f6g8 +38f7g7 +19f8g6 +38f9g5;

f5g0 +19f6g9 +19f7g8 +19f8g7 +19f9g6;

2f5g1 + f6g0 +38f7g9 +19f8g8 +38f9g7;

f5g2 + f6g1 + f7g0 +19f8g9 +19f9g8;

2f5g3 + f6g2 + 2f7g1 + f8g0 +38f9g9;

f5g4 + f6g3 + f7g2 + f8g1 + f9g0:



16

Each hi is a sum of ten

products after precomputation

of 2f1; 2f3; 2f5; 2f7; 2f9;

19g1; 19g2; : : : ; 19g9.

Each hi fits into 64 bits

under reasonable limits on

sizes of f1; g1; : : : ; f9; g9.

(Analyze this very carefully:

bugs can slip past most tests!

See 2011 Brumley–Page–

Barbosa–Vercauteren and

several recent OpenSSL bugs.)

h0; h1; : : : are too large

for subsequent multiplication.



17

Carry h0 → h1: i.e.,

replace (h0; h1) with

(h0 mod 226; h1 +
¨
h0=226

˝
).

This makes h0 small.

Similarly for other hi .

Eventually all hi are small enough.

We actually use signed coeffs.

Slightly more expensive carries

(given details of insn set)

but more room for ab + c2 etc.

Some things we haven’t tried yet:

• Mix signed, unsigned carries.

• Interleave reduction, carrying.



18

Minor challenge: pipelining.

Result of each insn cannot be

used until a few cycles later.

Find an independent insn

for the CPU to start working on

while the first insn is in progress.

Sometimes helps to adjust

higher-level computations.

Example: carries h0 → h1 →
h2 → h3 → h4 → h5 → h6 →
h7 → h8 → h9 → h0 → h1

have long chain of dependencies.



19

Alternative: carry

h0 → h1 and h5 → h6;

h1 → h2 and h6 → h7;

h2 → h3 and h7 → h8;

h3 → h4 and h8 → h9;

h4 → h5 and h9 → h0;

h5 → h6 and h0 → h1.

12 carries instead of 11,

but latency is much smaller.

Now much easier

to find independent insns

for CPU to handle in parallel.



20

Major challenge: vectorization.

e.g. 4x a = b + c

does 4 additions at once,

but needs particular arrangement

of inputs and outputs.

On Cortex-A8,

occasional permutations

run in parallel with arithmetic,

but frequent permutations

would be a bottleneck.

On Cortex-A7,

every operation costs cycles.



21

Often higher-level operations

do a pair of mults in parallel:

h = f g ; h′ = f ′g ′.

Vectorize across those mults.

Merge f0; f1; : : : ; f9
and f ′0; f

′
1; : : : ; f

′
9

into vectors (fi ; f
′
i ).

Similarly (gi ; g
′
i ).

Then compute (hi ; h
′
i ).

Computation fits naturally

into NEON insns: e.g.,

c[0,1] = a[0] signed* b[0];

c[2,3] = a[1] signed* b[1]



22

Example: Recall

C = X1 · X2; D = Y1 · Y2

inside point-addition formulas

for Edwards curves.



22

Example: Recall

C = X1 · X2; D = Y1 · Y2

inside point-addition formulas

for Edwards curves.

Example: Can compute

2P; 3P; 4P; 5P; 6P; 7P as

2P = P + P ;

3P = 2P + P and 4P = 2P + 2P ;

5P = 4P + P and 6P = 3P + 3P

and 7P = 4P + 3P .



22

Example: Recall

C = X1 · X2; D = Y1 · Y2

inside point-addition formulas

for Edwards curves.

Example: Can compute

2P; 3P; 4P; 5P; 6P; 7P as

2P = P + P ;

3P = 2P + P and 4P = 2P + 2P ;

5P = 4P + P and 6P = 3P + 3P

and 7P = 4P + 3P .

Example: Typical algorithms

for fixed-base scalarmult

have many parallel point adds.



23

Example: A busy server

with a backlog of scalarmults

can vectorize across them.



23

Example: A busy server

with a backlog of scalarmults

can vectorize across them.

Beware a disadvantage of

vectorizing across two mults:

256-bit f ; f ′; g ; g ′; h; h′

occupy at least 1536 bits,

leaving very little room

for temporary registers.

We use some loads and stores

inside vectorized mulmul.

Mostly invisible on Cortex-A8,

but bigger issue on Cortex-A7.



24

Some field ops are hard to pair

inside a single scalarmult.

Example: At end of ECDH,

convert fraction (X : Z) into

Z−1X ∈ {0; 1; : : : ; p − 1}.

Easy, constant time: Z−1 = Zp−2.

11M + 254S for p = 2255 − 19:

z2 = z1^2^1

z8 = z2^2^2

z9 = z1*z8

z11 = z2*z9

z22 = z11^2^1

z_5_0 = z9*z22

z_10_5 = z_5_0^2^5



25

z_10_0 = z_10_5*z_5_0

z_20_10 = z_10_0^2^10

z_20_0 = z_20_10*z_10_0

z_40_20 = z_20_0^2^20

z_40_0 = z_40_20*z_20_0

z_50_10 = z_40_0^2^10

z_50_0 = z_50_10*z_10_0

z_100_50 = z_50_0^2^50

z_100_0 = z_100_50*z_50_0

z_200_100 = z_100_0^2^100

z_200_0 = z_200_100*z_100_0

z_250_50 = z_200_0^2^50

z_250_0 = z_250_50*z_50_0

z_255_5 = z_250_0^2^5

z_255_21 = z_255_5*z11



26

Can still vectorize

inside a single field op.

Strategy in our software:

50 mul insns starting from

(f0;2f1);(f2;2f3);(f4;2f5);(f6;2f7);(f8;2f9);

(f1;f8);(f3;f0);(f5;f2);(f7;f4);(f9;f6);

(g0;g1);(g2;g3);(g4;g5);(g6;g7);

(g0;19g1);(g2;19g3);(g4;19g5);(g6;19g7);(g8;19g9);

(19g2;19g3);(19g4;19g5);(19g6;19g7);(19g8;19g9);

(19g2;g3);(19g4;g5);(19g6;g7);(19g8;g9).

Change carry pattern to vectorize,

e.g., (h0; h4)→ (h1; h5).



27

Core arithmetic: 100 cycles

on mul insns for each field mul.

Squarings are somewhat faster.

Some loss for carries etc.

ECDH: ≈10 field muls · 255 bits.

More detailed analysis:

356019 cycles on arithmetic;

≈78% of software’s total

Cortex-A8-fast cycles for ECDH.

Still some room for improvement.



27

Core arithmetic: 100 cycles

on mul insns for each field mul.

Squarings are somewhat faster.

Some loss for carries etc.

ECDH: ≈10 field muls · 255 bits.

More detailed analysis:

356019 cycles on arithmetic;

≈78% of software’s total

Cortex-A8-fast cycles for ECDH.

Still some room for improvement.

Each CPU is a new adventure.

e.g. Could it be better to use

Cortex-A7 FPU with radix 221:25?



28

Much more work to do

https://bench.cr.yp.to:

benchmarks for (currently)

2137 public implementations of

hundreds of crypto primitives—

39 DH primitives,

56 signature primitives,

304 authenticated ciphers, etc.

https://bench.cr.yp.to


28

Much more work to do

https://bench.cr.yp.to:

benchmarks for (currently)

2137 public implementations of

hundreds of crypto primitives—

39 DH primitives,

56 signature primitives,

304 authenticated ciphers, etc.

Many interesting primitives

are far slower than necessary

on many important CPUs.

https://bench.cr.yp.to


28

Much more work to do

https://bench.cr.yp.to:

benchmarks for (currently)

2137 public implementations of

hundreds of crypto primitives—

39 DH primitives,

56 signature primitives,

304 authenticated ciphers, etc.

Many interesting primitives

are far slower than necessary

on many important CPUs.

Exercise: Make them faster!

https://bench.cr.yp.to

