How to multiply big integers

Standard idea: Use polynomial
with coefficients in {0,1,...,9}
to represent integer in radix 10.

Example of representation:

839 =8-10°+3-10' +9-10Y =
value (at t = 10) of polynomial
8t% + 3t1 + 9t0.

Convenient to express polynomial
inside computer as array 9, 3, 8

(or 9,3,8,00r9,3,8,0,00r...):
"p[0] =9; p[1] = 3; p[2] = 8"

Multiply two integers
by multiplying polynomials
that represent the integers.

Polynomial multiplication
involves small integer coefficients.
Have split one big multiplication
Into many small operations.

Example, squaring 839:
(8t% + 3t! +9tY)? =

8t%(8t% + 3t! +9tY) +
3t1(8t% + 3t 4+ 9t9) +
9t0(8t2 + 3t! 4 9t0) =
64t* +48t3 4+ 153t + 54t! 48110,

multiply big integers

] iIdea: Use polynomial
fficients in {0,1,...,9}
sent integer in radix 10.

 of representation:

102 +3-101 49100 =
t t = 10) of polynomial
14949,

ent to express polynomial

ymputer as array 9, 3, 3
8,00r9,3,80,00r...):
9; pll] =3; pl[2] =8

Multiply two integers
by multiplying polynomials
that represent the integers.

Polynomial multiplication
involves small integer coetficients.
Have split one big multiplication
into many small operations.

Example, squaring 839:
(8t% + 3t! +9tY)? =
8t%(8t% 4 3t! + 9tY) +

3t1(8t% + 3t 4+ 9¢9) +

9t0(8t2 + 3t! 4 9t0) =

64t* +48t3 + 1532 + 54t! +81t0.

Oops, pi
usually t
So “carr
ct/ — |

Example
64t* 4 4
64t* + ¢
64t* + £
64t + €
70t% 4 -
7t + 0t

In other

1g Integers

e polynomial
1 {0,1,...,9}
r in radix 10.

antation:

10! -

. 9.109 =

of po

ynomial

ress polynomial

5 array 9, 3,3
,8,0,00r ...):
=3; pl2] = 8"

Multiply two integers

by multiplying polynomials

that represent the integers.

Polynomial multiplication

involves small integer coefficients.

Have split one big multiplication

Into many small operations.

Example, squaring 839:
(8t% + 3t! +9tY)? =

8t2(8t + 3t 4 9tV

3t1(8t° -

—3t1—

9t0(8t2 -

64t% + 48¢3 +153t2 +54¢1 1814V,

) +
-9t9) +

—3t1—

-9t0) =

Oops, product pol
usually has coeffic

So “carry” extra ¢
ct/ — |c/10| /1

Example, squaring
64t* + 48t3 + 153
64t* + 4813 + 153
64t% + 4813 4 15C
64t* + 6313 + 9t2
70t* 4+ 313 4+ 912 -
7t> + 0t 4+ 313 +

In other words, 83

Multiply two integers
by multiplying polynomials
that represent the integers.

Polynomial multiplication
involves small integer coetficients.
Have split one big multiplication
into many small operations.

Example, squaring 839:

(8t% + 3t! 4 9tY)* =

8t%(8t% 4 3t! + 9tY) +

3t1(8t% + 3t 4 9¢9) +

0t%(8t% + 3t! + 9tY) =

64t* +48t3 + 153t + 54t! +81t0.

Oops, product polynomial

usually has coefficients > 9.

So “carry” extra digits:
ct/ — |c/10| /1 +(c mod

Example, squaring 839:
64t% + 4813 + 15312 + 54! -
64t* + 4813 + 15312 + 62t}

641* -

- 4813 -

64t% -

- 1502 + 2t -

_63¢3 -

-0t +2¢1 47

70t% + 313 + 9¢2 + 2t + 11
7t 4+ 0t + 313 + 982 4+ 2¢l

In other words, 8392 = 703¢

Multiply two integers Oops, product polynomial
by multiplying polynomials usually has coefficients > 9.

that represent the integers. So “carry’ extra digits:

J J+1 J
Polynomial multiplication ct/ — [¢/10] 7"+ (c mod 10)¢/.

involves small integer coefficients. Example, squaring 839:

Have split one big multiplication 64t* + 4813 4+ 1532 + 54! + 81¢Y;

into many small operations. 64t + 4813 + 153t° + 62t + 110,
64t* + 48t3 + 159t% + 2t! + 1tY;

Example, squaring 839:
(8t% + 3t! +9tY)? =
8t%(8t% + 3t! +9tY) +
3t1(8t° + 3t + 9tY) +
0t0(8t° + 3t +9tY) = In other words, 839° = 703921.
64t% 4 48t3 4+ 153t% 4 54t1 4810,

64t% + 63t3 + 912 + 21 1 14V
70¢% + 313 +9¢2 + 2¢1 + 149
7t° 4+ 0t* + 313 +9¢2 + 2t + 140,

two Integers
plying polynomials
resent the integers.

Mal multiplication

small integer coetficients.

It one big multiplication
1y small operations.

, squaring 839:
t1 +9t0)2 =

+ 3t +9t0) +
+ 3t +9t0) +
+3tt 4 9tY) =

8t3 + 15312 + 5411 +81+Y.

Oops, product polynomial
usually has coefficients > 9.

So “carry” extra digits:
ct/ — |c/10| #T1 4+ (c mod 10)¢

Example, squaring 839:

64t% + 48¢3 + 15312 +54¢1 1+ 814

64t% + 483 1+ 15382 + 62t 1+ 14

64t% 1+ 4813 + 15912 + 2¢1 1+ 140
64t% + 63t3 + 912 + 21 1+ 14V
70t% + 313 4+ 9¢2 + 2¢1 4+ 140:

7t2 4+ 0t* + 383 +9t2 + 21 + 140,

In other words, 8392 = 703921

What of

divide L

ers
ynomials
Integers.

lication

ger coefficients.
multiplication

perations.

- 339:

2 P
tY) +
tY) +
tV) =

2 15411 18149

Oops, product polynomial
usually has coefficients > 9.
So “carry’ extra digits:

ct/ — |c/10] Tt 4 (c mod 10)¢.

Example, squaring 839:

64t% + 483 1 153t2 + 54t 181+
64t% 1+ 4813 + 15312 + 62¢1 + 1Y

64t% 1+ 4813 + 15912 + 2¢1 4+ 149
64t% + 63t3 + 912 + 21 1+ 14V
70t% + 313 4+ 9¢2 + 2¢1 1+ 140

7t° 4+ 0t* + 313 +9¢2 + 2t + 140,

In other words, 8392 = 703921.

What operations v

Y
15¢

divide byy l
|

15 9

“lents.
ytion

- 81tV

Oops, product polynomial

usually has coefficients > 9.

So “carry” extra digits:

ct/ — |c/10] 1+ (c mod 10)¢/.

Exam

64t% + 483 11532 + 54t 181V
4813 + 15312 + 621 + 149

641" -

ole, squaring 839:

64t% -

- 4813 -

641* -

- 159¢2 + 2¢1 + 149

_63¢3 -

02 2l 4 140

70% + 313 4+ 9¢2 + 2¢1 4+ 140:

7t2 + 0t* + 3t3 +9¢2 + 21 + 140,

In other words, 8392 = 703921

What operations were used

vAjd

159

divide by 10
/ lmod 10

15 9

Oops,

product polynomial

usually has coefficients > 9.

So “carry’ extra digits:

ct/ — |c/10] Tt 4 (c mod 10)¢.

Exam

64t% + 483 1 153t2 - 54t 181+
4813 + 15312 + 62 + 149

64t* -

ole, squaring 839:

64t% -

- 4813 + 159t + 2t1 + 1tY;

64t% -

- 6313 + 912 + 2t + 110;

70t% + 313 4+ 9¢2 + 2¢1 1+ 140

7t +

In oth

0t* +3t3 + 90t +2¢1 + 149,

er words, 8392 = 703921.

What operations were used here?

3 3 9
i >< imultiply
(2 9

(2

AN

153

s

6

VAId

159

divide by 10
/ lmod 10

15 9

-oduct polynomial
1as coefficients > 9.
y' extra digits:

c/10| ™1 +(c mod 10)¢/.

, squaring 839:

8t3 + 15312 + 541! +81+Y:
8t3 + 15312 + 62t + 119

8t3 + 1592 + 21 + 149
3t3 + 912 + 2¢1 + 149
3 1 012 4+ 2¢1 1 140;

41313 102 1ol 1140,

words, 8392 = 703921

What operations were used here?

vAjd

159

divide by 10
/ lmod 10

15 9

64 24 7

P

ynomial
lents > 9.
Igits:

+(c mod 10)¥.

- 339:

2 15411 1819
2 162t o+ 140

t2 + 2t + 149
+2t1 -+ 1t0;
Lol o 1t0;

0t2 + 2t + 14V,

02 = 703921.

What operations were used here?

3 3 9
i >< imultiply
(2 9

(2

N

153

i

6

VAId

159

divide by 10
/ lmod 10

15 9

64 24 72 \

~ &~

48
L.

64 63

v

l 6 3

4

70
W 4
7 0

What operations were used here?

vAjd

159

divide by 10
/ lmod 10

15 9

s 72 7 D7
\\
64 24 72 \\\\\\ﬂ
153
v
6
/
48 159
v
|
%
64 63
yao
~l 6 3
v
70
s
70

~ &~

What operations were used here?

3 3 9
i >< imultiply
(2 9

72
NS
153 C
6
|
o 159
divide by 10
/ lmod 10
15 9

3

64 24 (2

~ &~

\ /\72 27 81

27

\\

yerations were used here?

3

\ /\472 07 81

64 24 72
48
l 15
e
64 63
v 4
l 6 3
'l
70
v 4
7 0
4

\\

T he scal

839 = 8
value (a
800t +

Squaring
640000t
540t
Carrying
640000t
540t! +
640000t
620t! +
700000t
20t + 1

vere used here?

9
)< imultiply

(2

/

6

Ajd

)
mod 10

8 3

\‘ // *72 27 81
2
AN
64 24 72 \\\\\\g
81
K/~$
1
/
153 62
yau
6 2
~ /
48 159
Y
| o
Y
64 63
yao
~l 6 3
v
70
a
770
v

T he scaled variatic

839 — 800 -+ 30 -
value (at t=1) o
800t2 + 30t! + 9t

Squaring: (800t -
640000t* 4 48000
540t + 81¢Y.
Carrying:
640000t* + 48000
54Ot14-81t0;
640000t* 4 48000
620t + 140,
700000t° + 0t* +-
20t + 1Y,

here?

1ltiply

8 3

\‘ // \L72 27 81
\
64 24 72 \\\\\\ﬂ
81
z/~$
1
1/
153 62
yao
6 2
/
48 159
Y
| o
Y%
64 63
o
~l 6 3
v
70
s
70
v

The scaled variation

339 = 800+ 30 4+ 9 =
value (at t = 1) of polynom
800t% + 30t! + 9¢tV.

Squaring: (800t°+430t! 491
640000t* + 48000t3 + 1530
540t + 81¢Y.

Carrying:
640000t* + 48000t3 + 1530
54Ot14-81t0;
640000t* + 48000t3 + 1530
620t + 19 L
700000 + 0% 4+3000%3 49
20t + 1¢Y.

64 24 (2

3

\

/ *72 27 81

\\

The scaled variation

839 =800+ 3049 =
value (at t = 1) of polynomial
800t + 30t* + 9t".

Squaring: (800t%+30t!+9tY)? =
640000t* + 48000t3 + 15300t2 +
540t + 81¢Y.

Carrying:
640000t* + 48000t3 + 153002 +
540t + 81t0;
640000t* + 48000¢3 + 153002 +
620t + 1¢0; o
700000%° 4 0t* + 30003 + 9002 +
20t + 1¢Y.

I\
»72 727 81
/

\\\fii

The scaled variation

839 =800+ 3049 =
value (at t = 1) of polynomial
800t + 30t* + 9tV.

Squaring: (800t% 430t +9tY)? =
640000t* + 48000t3 + 15300t2 +
540t + 81¢Y.

Carrying:
640000t* + 48000¢3 + 15300t2 +
540t + 81t0;
640000t* + 48000¢3 + 15300t2 +
620t + 19 L
700000%° 4 0t* + 30003 + 9002 +
20t + 1¢Y.

What of

800 —

L
7200

subtra

e
15000

%72 27 81
D[
.
\ 81
< 1
N z/

5 9

The scaled variation

839 =800+ 3049 =
value (at t = 1) of polynomial
800t + 30t* + 9t".

Squaring: (800t% 430t +9tY)? =
640000t* + 48000t3 + 15300t2 +
540t + 81¢Y.

Carrying:
640000t* + 48000t3 + 153002 +
540t + 81t0;
640000t* + 48000t3 + 153002 +
620t + 1¢0; o
700000%° 4 0t* + 30003 + 9002 +
20t + 1¢Y.

What operations v

800 30

=t

7200 900

Nt

15300

Y £
15900

SUbV l
1qfe

15000 900

The scaled variation

839 =800+ 3049 =
value (at t = 1) of polynomial
800t + 30t* + 9tV.

Squaring: (800t% 430t +9tY)? =
640000t* + 48000t3 + 15300t2 +
540t + 81¢Y.

Carrying:

640000t* + 48000¢3 + 15300t2 +
540t + 81 tO;

640000t* + 48000¢3 + 15300t2 +
620t + 19 L

700000%° 4 0t* + 30003 + 9002 +
20t + 1¢Y.

What operations were used

300 30 9
\L \Lml
7200 900 7200
N /dd
15300
%
600
41

Y

15900

Suéiff;//,ljnod 1000

15000

900

The scaled variation

839 =800+ 3049 =
value (at t = 1) of polynomial
800t + 30t* + 9t".

Squaring: (800t% 430t +9tY)? =
640000t* + 48000t3 + 15300t2 +
540t + 81¢Y.

Carrying:
640000t* + 48000t3 + 153002 +
540t + 81t0;
640000t* + 48000t3 + 153002 +
620t + 1¢0; o
700000%° 4 0t* + 30003 + 9002 +
20t + 1¢Y.

What operations were used here?

800 30 0
¢ imultiply
7200 900 7200
N |
15300 .
600
b
15900
SUPLEE;///ljnod 1000
15000 900

ed variation

004+30+9 =
t t = 1) of polynomial
30t + 9",

- (800t2+30t1 4+9tY)% =
4 1 48000¢3 + 15300t2 +
31tV

4 1+ 48000t3 + 15300t2 +
81t0;

4 1+ 48000t3 + 15300t% +
1t0;

5 1 0t* +3000t3 +900t2 +
I

What operations were used here?

800 30 0
i imultiply
7200 900 7200
N |
15300 .
600
et
15900
Suéiff;//,ljnod 1000
15000 900

Speedug

(. 4 f2
has coef
fafg + 3
5 mults,

0 =
f polynomial
0

-30tt +9tY)% =
+3 1+ 15300¢2 +
+3 14 15300t2 +
+3 14 15300t2 +

0003 +900t2 +

What operations were used here?

300 30 9
¢ imultiply
7200 900 7200
N
15300

600

L

15900

S“by lmod 1000

15000 900

Speedup: double i

a

(- + f2t2 + fltl'
has coefficients su
fafo + f3f1 + fofy -
5 mults, 4 adds.

1al

0t? +

0t? +
0t? +

00t2 +

What operations were used here?

300 30 9
i imultiply
7200 900 7200
N
15300

600

VL

15900

S‘”’V lmod 1000

15000 900

Speedup: double inside squz

a

(- R f2t2 -+ fltl -+ fot0)2
has coefficients such as

fafo + f3fy + o + f1f3 + 1y
5 mults, 4 adds.

What operations were used here?

300 30 9
¢ imultiply
7200 900 7200
N
15300

600

L

15900

S“by lmod 1000

15000 900

a

Speedup: double inside squaring

(- R f2t2 -+ fltl -+ f0t0)2

has coefficients such as

fafo + f3f1 + fofy + f1f3 + fofs.
5 mults, 4 adds.

What operations were used here?

300 30 9
¢ imultiply
7200 900 7200
N
15300

600

L

15900

S“by lmod 1000

15000 900

a

Speedup: double inside squaring

(- R f2t2 -+ fltl -+ f0t0)2

has coefficients such as

fafo + f3f1 + fofy + f1f3 + fofs.
5 mults, 4 adds.

Compute more efficiently as
2fafo + 21f3f1 + .
3 mults, 2 adds, 2 doublings.

Save =~ 1/2 of the mults
if there are many coetfficients.

yerations were used here?

30 9
imultiply
900 7200
N l Aj
15300

600

VL

15900

L~ lmod 1000

900

Speedup: double inside squaring

a

(- R f2t2 -+ fltl -+ f0t0)2

has coefficients such as

fafo + f3f1 + fofr + f1f3 + fofa.
5 mults, 4 adds.

Compute more efficiently as
2fatfo + 2f3f1 + fr>.
3 mults, 2 adds, 2 doublings.

Save &~ 1/2 of the mults
if there are many coetficients.

Faster a
2(f4f0 +
3 mults,

Save ~
If there .

vere used here?

9
imultiply
7200

1\

Q)
oN
ol

a

600

e

" ad

o

d 1000

Speedup: double inside squaring

(- R f2t2 -+ fltl -+ f0t0)2

has coefficients such as

fafo + 3f1 + fofy + f1f3 + fofs.
5 mults, 4 adds.

Compute more efficiently as
2fafo + 21f3f1 + .
3 mults, 2 adds, 2 doublings.

Save =~ 1/2 of the mults
if there are many coetfficients.

Faster alternative:
2(fafy + 311) +
3 mults, 2 adds, 1

Save &~ 1/2 of the
if there are many

here?

1tiply

Speedup: double inside squaring

(- R f2t2 -+ fltl -+ f0t0)2

has coefficients such as

fafo + f3f1 + fofo + f1f3 + fofa.
5 mults, 4 adds.

Compute more efficiently as

26 fo

2hh

fofo.

3 mults, 2 adds, 2 doublings.

Save &~ 1/2 of the mults
if there are many coetfficients.

Faster alternative:
2(f4f0 -+ fgfl) + fofo.
3 mults, 2 adds, 1 doubling.

Save ~~ 1/2 of the adds
if there are many coefficient

Speedup: double inside squaring Faster alternative:
2(f4fg + 3f1) + Hb.
3 mults, 2 adds, 1 doubling.

(- I f2t2 + fltl -+ f0t0)2
has coefficients such as

fafo + f3f1 + fofr + f1f3 + fofs. Save = 1/2 of the adds
5 mults, 4 adds. if there are many coetfficients.

Compute more efficiently as
2fafo + 2f3f1 + o>,
3 mults, 2 adds, 2 doublings.

Save =~ 1/2 of the mults
if there are many coetfficients.

Speedup: double inside squaring

(- R f2t2 -+ fltl -+ f0t0)2

has coefficients such as

fafo + f3f1 + fofr + f1f3 + fofs.
5 mults, 4 adds.

Compute more efficiently as
2fafo + 2f3f1 + o>,
3 mults, 2 adds, 2 doublings.

Save =~ 1/2 of the mults
if there are many coetfficients.

Faster alternative:
2(f4f0 -+ fgfl) + frofy.
3 mults, 2 adds, 1 doubling.

Save = 1/2 of the adds
if there are many coetfficients.

Even faster alternative:
(2fg)fa + (21)F3 + oty
after precomputing 21y, 2f1,

3 mults, 2 adds, 0 doublings.
Precomputation =~ 0.5 doublings.

. double Inside squaring

t° + fit! + fytY)?
ficients such as

fi1 +fhfh+ f1f3+ fofa.
4 adds.

e more efficiently as
)f3f1 + frfr.
2 adds, 2 doublings.

1/2 of the mults
are many coefficients.

Faster alternative:
2(f4f0 -4 fgfl) + fofo.

3 mults, 2 adds, 1 doubling.

Save ~~ 1/2 of the adds

if there are many coetfficients.

Even faster alternative:
(2fg)fa + (21) 3 + oty

after precomputing 21y, 2f1,

3 mults, 2 adds, 0 doub

Precomputation = 0.5 ¢

Ings.

oublings.

Speedug

Recall 1
Scaled:

Alternat
Scaled:

Use digi
Instead ¢
Small di
Several
easily he

easily he
reduce

nside squaring

-+ f0t0)2
ch as
- fl f3 -+ f0f4.

iciently as
).
doublings.

mults

coefficients.

Faster alternative:
2(f4f0 4 fgfl) + frfy.

3 mults, 2 adds, 1 doubling.

Save =~ 1/2 of the adds

if there are many coetfficients.

Even faster alternative:
(2f0)fa + (2f1) 3 + fofo,

after precomputing 21y, 2f1,

3 mults, 2 adds, 0 doub

Precomputation = 0.5 ¢

Ings.

oublings.

Speedup: allow ne

Recall 159 — 15, ¢
Scaled: 15900 —

Alternative: 159 ~
Scaled: 15900 —

Use digits {—5, —
instead of {0, 1, ..
Small disadvantag

Several small adve

easlly

easlly

Nanad

Nanad

e nega
e subti

reduce products a

ring

Faster alternative:
2(f4f0 -+ fgfl) + fofo.
3 mults, 2 adds, 1 doubling.

Save =~ 1/2 of the adds
if there are many coetfficients.

Even faster alternative:
(2fg)fa + (21) 3 + oty
after precomputing 21y, 2f1,

3 mults, 2 adds, 0 doublings.

Precomputation =~ 0.5 doublings.

Speedup: allow negative cot

Recall 159 — 15, 9.
Scaled: 15900 — 15000, 90(

Alternative: 159 — 16, —1.
Scaled: 15900 — 16000, —1

Use digits {—5, —4, ..., 4,5
instead of {0,1, ..., 9}.
Small disadvantage: need —
Several small advantages:
easily handle negative intege

easily handle subtraction:;
reduce products a bit.

Faster alternative:
2(f4f0 -+ fgfl) + frofy.
3 mults, 2 adds, 1 doubling.

Save =~ 1/2 of the adds
if there are many coetfficients.

Even faster alternative:
(2fg)fa + (21)F3 + oty
after precomputing 2fy, 2f1,

3 mults, 2 adds, 0 doublings.

Precomputation =~ 0.5 doublings.

10
Speedup: allow negative coeffs

Recall 159 — 15, 9.
Scaled: 15900 — 15000, 900.

Alternative: 159 — 16, —1.
Scaled: 15900 — 16000, —100.

Use digits {—5, —4, ..., 4,5}
instead of {0,1, ..., 9}.

Small disadvantage: need —.
Several small advantages:
easily handle negative integers;

easily handle subtraction:;
reduce products a bit.

lternative:

f3f1) —+ fgfg.

2 adds, 1 doubling.

1/2 of the adds

are many coefficients.

ter alternative:

- (2f1) R + b,

computing 21y, 2f1,

2 adds, 0 doub

yutation =~ 0.5 d

Ings.

oublings.

Speedup: allow negative coeffs

Recall 159 — 15, 9.
Scaled: 15900 — 15000, 900.

Alternative: 159 — 16, —1.

Scaled: 15900 — 16000, —100.

Use digits {—5, —4, ..., 4,5}
instead of {0,1, ..., 9}.

Small disadvantage: need —.
Several small advantages:
easily handle negative integers;

easily handle subtraction:;
reduce products a bit.

10

Speedug

Comput
multiply
square ¢

e.g. a=
(3t%+1t
6t* 4 2-
carry: 8

As befor
64t* + 4
7t° + Ot

1 704
7t° + 8t

f.
doubling.

:adcs

coefficients.

tive:
- fofy,
> 2fg, 211,

doublings.

2 0.5 doublings.

Speedup: allow negative coeffs

Recall 159 — 15, 9.
Scaled: 15900 — 15000, 900.

Alternative: 159 — 16, —1.
Scaled: 15900 — 16000, —100.

Use digits {—5, —4, ..., 4,5}
instead of {0,1, ..., 9}.

Small disadvantage: need —.
Several small advantages:
easily handle negative integers;

easily handle subtraction:;
reduce products a bit.

10

Speedup: delay ca

Computing (e.g.)
multiply a, b polyr
square ¢ poly, cart

e.g. a=314, b=
(3t2+1tt+4tY%)(2
6t* + 2313 + 18¢2
carry: 8t*+ 583 +

As before (8t + -
64t 1+ 4813 + 153
7t +0t* + 313 +

4 T2 4+8t4+813-
7t L 8t% 103 &

lings.

Speedup: allow negative coeffs

Recall 159 — 15, 9.
Scaled: 15900 — 15000, 900.

Alternative: 159 — 16, —1.

Scaled: 15900 — 16000, —100.

Use digits {—5, —4, ..., 4,5}
instead of {0,1,..., 9}.

Small disadvantage: need —.
Several small advantages:
easily handle negative integers;

easily handle subtraction:;
reduce products a bit.

10

Speedup: delay carries

Computing (e.g.) big ab + «
multiply a, b polynomials, c:
square ¢ poly, carry, add, ca

eg. a=314, b=271, c =
(3t24+1t1+4t0)(2t2+7¢1 41
6t* 4+ 2313 + 1812 4 20¢!
carry: 8t +5¢3 + 0t + 9t!

L
‘

As before (8t% 4 3t! + 9tY)
64t% + 48¢3 + 15312 1+ 54¢1 -
7t + 0t + 313 + 912 1+ ¢l

4 T8t 8134912 +11¢
72 £ 8t4 + 03 + 012 + 1t

Speedup: allow negative coeffs

Recall 159 — 15, 9.
Scaled: 15900 — 15000, 900.

Alternative: 159 — 16, —1.
Scaled: 15900 — 16000, —100.

Use digits {—5, —4, ..., 4,5}
instead of {0,1, ..., 9}.

Small disadvantage: need —.
Several small advantages:
easily handle negative integers;

easily handle subtraction:;
reduce products a bit.

10

Speedup: delay carries

Computing (e.g.) big ab + c*:
multiply a, b polynomials, carry,
square ¢ poly, carry, add, carry.

e.g. a=314, b= 271, c = 8309:
(3t24+1t1+4t0)(2t2+7¢1 +11Y) =
6t* + 2313 + 18t2 + 29t + 440
carry: 8t* +5t3 +0t% +9t! 419,

As before (8t% + 3t1 + 9tY)? =
64t% + 483 +-153t2 + 5411 181+
7t° + 0t* + 313 + 912 + 2t + 149,

1 7048t 18134921111 4540
7t° + 8t* + 913 + 0t2 + 1t + 549,

11

: allow negative coeffs

HhO — 15, 9.
15900 — 15000, 900.

ive: 159 — 16, —1.

15900 — 16000, —100.

sadvantage: need —.
small advantages:
ndle negative integers;

ndle subtraction:
roducts a bit.

10

Speedup: delay carries

Computing (e.g.) big ab + c?:
multiply a, b polynomials, carry,
square ¢ poly, carry, add, carry.

e.g. a=314, b= 271, ¢ = 8309:
(3t2+1t1+4t0)(2t2+7¢1 +11Y) =
6t% 4+ 23¢3 + 18¢2 + 20¢! 1 440-

carry: 8t* +5t3 +0t% +9t! 4+ 410,

As before (8t% + 3t1 + 9tY)? =

64t% + 4813 1 153t2 + 54t 181V
7t2 + 0t* + 383 +9¢2 + 21 + 140,
1 7048t 18134921111 4540
7t + 8t* +9t3 + 012 + 1t + 540,

11

Faster:
square ¢

(6t*+2
(64t*+
— 70t%
7t° + 8t

Eliminat
Outweig
slightly |

Importal
multiplic
to reduc
out carr

hefore a

gative coeffs

).
15000, 900.

» 16, —1.
16000, —100.

..., 4,5)
., 9}

e: need —.
ntages:

tive Integers;
-action;

bit.

10

Speedup: delay carries

Computing (e.g.) big ab + c?:
multiply a, b polynomials, carry,
square ¢ poly, carry, add, carry.

e.g. a=314, b= 271, c = 8309:
(3t24+1t1+4t0)(2t2+7¢1 +11Y) =
6t* + 2313 + 18t2 + 29t + 440
carry: 8t* +5t3 +0t% +9t! + 419,

As before (8t% + 3t1 + 9tY)? =
64t% + 483 +153t2 + 54t 181V
7t° + 0t* + 313 + 912 + 2t + 149,

1 7048t 18134921111 4540
7t° + 8t* + 913 + 0t2 + 1t + 549,

11

Faster: multiply a
square ¢ polynomi

(6t* 42313 4 18¢t°
(64t*+48t3+153
= 70t*+71t3417
7t 4+ 8t* + 913 +

Eliminate interme
Outweighs cost of
slightly larger coef

Important to carry
multiplications (ar
to reduce coefficie
out carries are usu

hefore additions, s

ffs

IS,

10

11
Speedup: delay carries

Computing (e.g.) big ab + c?:
multiply a, b polynomials, carry,
square ¢ poly, carry, add, carry.

e.g. a=314, b= 271, ¢ = 8309:
(3t2+1t1+4t0)(2t2+7¢1 +11Y) =
6t* + 2313 + 18t2 + 29t + 440
carry: 8t* +5t3 +0t% +9t! + 410,

As before (8t% + 3t1 + 9tY)? =
64t% + 483 1 153t2 - 54t 181V
7t° 4+ 0t* + 313 + 912 + 2t + 149

1 708t 18134921111 4540
7t° +8t* + 913 + 0t2 + 1t + 549,

Faster: multiply a, b polyno

square ¢ polynomia

|, add, c:

(6t* +23t3 +18t° +29¢t! +.
(64t* +48t3 +153t% +54t! -
= 70t*+71t34+171t%4+83t!-
7t 4+ 8t% + 913 4+ 02 + 1t

Eliminate intermediate carric

Outweighs cost of handling

slightly larger coefficients.

Important to carry

petween

multiplications (and squarin,

to reduce coefficient size:

out carries are usua

hefore additions, su

ly a bad

btractior

Speedup: delay carries

Computing (e.g.) big ab + c?:
multiply a, b polynomials, carry,
square ¢ poly, carry, add, carry.

e.g. a=314, b= 271, c = 8309:
(3t24+1t1+4t0)(2t2+7¢1 +11Y) =
6t* + 2313 + 18t2 + 29t + 440
carry: 8t* +5t3 +0t% +9t! + 419,

As before (8t% + 3t! 4 9t0)% =
64t% + 483 +153t2 + 54t 181+
7t° + 0t* + 313 + 912 + 2t + 149,

4+ TO+8t7 8134912 +11¢1 +5¢Y.
7t2 +8t* + 913 + 012 + 1t + 540,

11

12

Faster: multiply a, b polynomials,

square ¢ polynomia

|, add, carry.

(6t* +23t3 +18t° + 29t +410) +
(64t*+48t34153t%+54t1 4+81tY)
= 70t*+71t3+171t°+83¢1 4+-85¢9;
7t> + 8t* 4+ 913 + 0t + 1t! + 5¢0.

Eliminate intermed

ate carries.

Outweighs cost of handling

slightly larger coeffi

Important to carry

clents.

petween

multiplications (and squarings)

to reduce coefficient size:

out carries are usua

hefore additions, su

ly a bad idea

otractions, etc.

. delay carries

ng (e.g.) big ab + c*:
a, b polynomials, carry,
poly, carry, add, carry.

314, b= 271, c = 839:
1 +419) (26247t +140) =
3 + 18t° 4 29t! + 419,
t* 4+ 53 4 0t 4 9t + 4¢°.

e (8t 4+ 3t! +9tY)? =
8t3 + 15312 + 541! +81+Y:
41313 1012 1241 1140,

8t* 18134921111 4540
4+ 983 4+ 0t2 + 1t! + 5¢0.

11

Faster: multiply a, b polynomials,
square ¢ polynomial, add, carry.

(6t +23t3 + 1812 +29t! +4t9) +
(64t*+48t3+153t° 454t +81t0)
— 70t*+71t3+171t2+83¢1 4+-85¢0;
7t> + 8t* 4+ 913 + 0t° + 1t! + 5¢Y.

Eliminate intermediate carries.
Outweighs cost of handling
slightly larger coefficients.

Important to carry between

multiplications (and squarings)
to reduce coefficient size:
out carries are usually a bad idea

hefore additions, subtractions, etc.

12

Speedug

How mu
f = f() —+
8 = 80 -
Using th
400 coef

\

Faster:

Similarly

Then fg
+ (FoGc

rries

big ab + ¢*:
'omials, carry,
y, add, carry.

271, ¢ = 839:
24+ 7t 4+ 110) =
20t + 449
0t% + 9t! + 4t0.

1+ 0tY)? =
2 1 541 1819
ot + 2t1 + 14V,

10t24-11¢14-5¢0;
0t2 4+ 1¢1 + 5¢0.

11

Faster: multiply a, b polynomials,

square ¢ polynomial, add, carry.

(6% +23t3 + 1812 +29t! +4t9) +
(64t*+48t3+153t° 454t +81t0)
= 70t +71t3+171¢2+83t1+85¢9;

7t2 4+ 8t* + 913 + 0

t2 + 1t + 540,

Eliminate intermediate carries.

Outweighs cost of handling

slightly larger coefficients.

Important to carry

petween

multiplications (anc

squarings)

to reduce coefficient size:

out carries are usua

hefore additions, su

ly a bad idea

otractions, etc.

12

Speedup: polynon

How much work t
f="fo+ 1t +---
g =80+ 8&it+ -

Using the obvious
400 coeff mults, 3

Faster: Write f as
Fo = fo + f1t + -
F1 = fo + fi1t +
Similarly write g ¢

Then fg = (Fg +
+ (F()Go — F1G1t]

rry,

rry.
339:

- 81tV

11

Faster: multiply a, b polynomials,
square ¢ polynomial, add, carry.

(6% +23t3 + 1812 + 29t +4t9) +
(64t*+48t3+153t° 454t +81t0)
— 70t*+7183+171t2+83t1 +-85¢0;
7t° + 8t* 4 93 + 0t2 + 1t! + 5¢0.

Eliminate intermediate carries.
Outweighs cost of handling
slightly larger coefficients.

Important to carry between

multiplications (and squarings)
to reduce coefficient size:
out carries are usually a bad idea

hefore additions, subtractions, etc.

12

Speedup: polynomial Karats

How much work to multiply
f=fy+ fit+- -+ fott?,
g =go+git+- -+ guot"

Using the obvious method:
400 coeff mults, 361 coeff a

Faster: Write f as Fop + Fqt
F():fo—l—flt—l—---—l—fgtg;

F1 = fio+ A1t + - + fiot
Similarly write g as Gg + Gj

Then fg = (Fg+ F1)(Go +
+ (F()GO — F1G1t10)(1 _ 1

Faster: multiply a, b polynomials,
square ¢ polynomial, add, carry.

(6t* +23t3 +18t° + 29t +410) +
(64t*+48t34153t%+54t1 4+81tY)
= 70t*+71t3+171t°+83¢1 4+-85¢9;
7t> + 8t* 4+ 913 + 0t + 1t! + 5¢0.

Eliminate intermediate carries.
Outweighs cost of handling
slightly larger coefficients.

Important to carry between

multiplications (and squarings)
to reduce coefficient size:

out carries are usually a bad idea

before additions, subtractions, etc.

12

13
Speedup: polynomial Karatsuba

How much work to multiply polys
f = fo—l—flt—l—---—l—flgtlg,
g =go+git+ -+ guot”?

Using the obvious method:
400 coeff mults, 361 coeff adds.

Faster: Write f as Fy + Fyt19;
Fo=fo+ fit+ -+ fot°;

Fi = fio + fiit + - - + figt®.
Similarly write g as Gg + Gy t10.

Then fg = (Fg+ F1)(Ggo + Gl)tlo
+ (F()Go — F1G1t10)(1 — th)_

multiply a, b polynomials,
- polynomial, add, carry.

3t3 +18t° + 29t +410) +
183 +153t% + 54t +81¢Y)
71t34+171¢24-83t1 +85¢9;
44 0t3 402 4 1t 4 519,

e Intermediate carries.
hs cost of handling
arger coefficients.

1t to carry between

ations (and squarings)
e coefficient size:
es are usually a bad idea

dditions, subtractions, etc.

12

13
Speedup: polynomial Karatsuba

How much work to multiply polys
f=fy+ fit+---+ fott?,
g =go+git+ -+ gioto?

Using the obvious method:
400 coeff mults, 361 coeff adds.

Faster: Write f as Fy + Fyt19;
Fo=fo+ fit+ -+ fot°;

Fi1 = fio + it + - + figt”.
Similarly write g as Gg + G t10.

Then fg = (Fg+ F1)(Go + Gl)tlo
+ (F()G() — F1G1t10)(1 — th)_

20 adds
300 mul
FoGo, F
243 add
O adds f

with sukb

and witl
19 adds

19 adds

Total 30

Larger c
still save

Can app
as poly «

, b polynomials,

al, add, carry.

+29t1 4+ 4¢0) +
t2+54t1 4-81tY)
1t24-83t1 +85t;

0

t2 + 1t + 540,

lilate carries.

handling

ficients.

/

petween

1C

squarings)

nt size;

d

u

ly a bad idea

otractions, etc.

12

Speedup: polynomial Karatsuba

How much work to multiply polys
f = fo—l—flt—l—---—l—flgtlg,
g =go+git+ -+ guot”?

Using the obvious method:
400 coeff mults, 361 coeff adds.

Faster: Write f as Fy + Fyt19;
Fo=fo+ fit+--+ fot?;

Fi = fip + fi1t+--- + flgtg.
Similarly write g as Gg + G t10.

Then fg = (Fg+ F1)(Ggo + Gl)tlo
+ (F()Go — F1G1t10)(1 — th)_

20 adds for Fog + f
300 mults for thre

FoGo, F1

G1, (Fo +

243 adds for those

O adds for FpGg —
with subs counted

and with

delayed 1

19 adds for --- (1
19 adds to finish.

Total 300 mults, -
Larger coefficients

still saves time.

Can app

y idea rec

as poly ¢

egree gro

mials,

rry.

4£0) +-
-81tY)
+85t9;
+ 5t0.

Idea
S, etc.

12

Speedup: polynomial Karatsuba

How much work to multiply polys
f=fy+ fit+---+ fott?,
g =go+git+ -+ guoto?

Using the obvious method:
400 coeff mults, 361 coeff adds.

Faster: Write f as Fy + F;t19;
Fo=fo+ fit+--+ fot?;

Fi = fip + fi1t+--- + f19t9.
Similarly write g as Gg + G t10.

Then fg = (Fg+ F1)(Ggo + Gl)th
+ (F()G() — F1G1t10)(1 — th)_

20 adds for Fo + F1, Gg + G
300 mults for three product:
FoGo, F1G1, (Fo + F1)(Go +
243 adds for those products
9 adds for FyGg — F1Gqt1Y
with subs counted as adds

and with

delayed negations.

19 adds for - -- (1 — t19).
19 adds to finish.

Total 300 mults, 310 adds.
Larger coefficients, slight ex

still saves time.

Can app

y Idea recursively

as poly ¢

egree grows.

Speedup: polynomial Karatsuba

How much work to multiply polys
f = fo—l—flt—l—---—l—flgtlg,
g =go+git+ -+ guot”?

Using the obvious method:
400 coeff mults, 361 coeff adds.

Faster: Write f as Fy + Fyt19;
Fo=fo+ fit+--+ fot?;

Fi = fip + fi1t+--- + flgtg.
Similarly write g as Gg + G t10.

Then fg =
-+ (F()Go — F1G1t10)(1 — th)_

(Fo + F1)(Gg + G1)t'0

13

20 adds for Fo + F1, Gg + G7.
300 mults for three products
FoGo, F1G1, (Fo + F1)(Go + G1).
243 adds for those products.

9 adds for FyGg — F1Gqt1Y

with subs counted as adds

and with delayed negations.

(1 —t19).
19 adds to finish.

19 adds for - -

Total 300 mults, 310 adds.

Larger coefficients, slight expense;

still saves time.

Can apply idea recursively

as poly degree grows.

14

. _polynomial Karatsuba

ch work to multiply polys
At -+ fott?
Fgit+ o+ g1ot!?

e obvious method:
f mults, 361 coeff adds.

Write f as Fy + Fpt19;
+ At + -+ ot

+ fi1t+ -+ f19t9.
write g as Gg + Gyt1Y.

= (Fo+ F1)(Ggo + Gl)th
— F1G1t10)(1 — th)_

13

20 adds for Fg + F1, Gg + G7.
300 mults for three products

FoGo, F1

G1, (Fo + F1)(Go + G1).

243 adds for those products.
9 adds for FyGg — F1Gqt1Y
with subs counted as adds

and with

19 adds for - -

delayed negations.
(1 —t19).

19 adds to finish.

Total 300 mults, 310 adds.

Larger coefficients, slight expense;

still saves time.

Can app

y Idea recursively

as poly ¢

egree grows.

14

Many ot
in polyn
“Toom,

Increasir
polynom
O(nlgn
to comp

Useful fe
that occ

In some
But Kar
for prim
on most

11al Karatsuba

o multiply polys
+ figt1?,
-+ glgtlg?

method:
61 coeff adds.

. Fo + Ft19;
- fyt?;

- flgtg.
s Gg + Gltlo.

Fl)(Go -+ Gl)tlo
'O)(l o th)_

13

20 adds for Fo + F1, Gg + G7.
300 mults for three products
FoGo, F1G1, (Fo + F1)(Go + G1).
243 adds for those products.

9 adds for FyGg — F1Gqt1Y

with subs counted as adds

and with delayed negations.
19 adds for - -- (1 — t19).
19 adds to finish.

Total 300 mults, 310 adds.

Larger coefficients, slight expense;

still saves time.

Can apply idea recursively

as poly degree grows.

14

Many other algebr

in polynomial mul
lchom,ll llFFT,11 ‘

Increasingly impor
polynomial degree
O(nlgnlglgn) co
to compute n-coef

Useful for sizes of

that occur In cryp
In some cases, yes
But Karatsuba is 1
for prime-field ECH
on most current C

suba

polys

13

20 adds for Fog + F1, Gg + G7.
300 mults for three products
FoGo, F1G1, (Fo + F1)(Go + G1).
243 adds for those products.

9 adds for FyGg — F{Gqt1Y

with subs counted as adds

and with delayed negations.
19 adds for - -- (1 — t19).
19 adds to finish.

Total 300 mults, 310 adds.

Larger coefficients, slight expense;

still saves time.

Can apply idea recursively

as poly degree grows.

14

Many other algebraic speedut
in polynomial multiplication
“Toom,” "FFT," etc

Increasingly important as
polynomial degree grows.
O(nlg nlglg n) coeff operati
to compute n-coeff product.

Useful for sizes of n

that occur in cryptography?
In some cases, yes!

But Karatsuba is the limit
for prime-field ECC/ECDLP

on most current CPUs.

20 adds for Fo + F1, Gg + G7.
300 mults for three products
FoGo, F1G1, (Fo + F1)(Go + G1).
243 adds for those products.

9 adds for FyGg — F1Gqt1Y

with subs counted as adds

with delayed negations.
(1 —t19).
19 adds to finish.

ano
19 adds for - -

Total 300 mults, 310 adds.

Larger coefficients, slight expense;

still saves time.

Can apply idea recursively

as poly degree grows.

14

15
Many other algebraic speedups

in polynomial multiplication:
“Toom,” “FFT," etc

Increasingly important as
polynomial degree grows.
O(nlg nlglg n) coeff operations
to compute n-coeff product.

Useful for sizes of n

that occur in cryptography?
In some cases, yes!
But Karatsuba is the limit

for prime-field ECC/ECDLP
on most current CPUs.

for Fo + F1, Go + G7.

ts for three products
1G1, (Fo + F1)(Go + G1).
s for those products.

or FoGg — F1 Gy t10

s counted as adds

1 delayed negations.

for --- (1 — t1Y).

to finish.

0 mults, 310 adds.
oefficients, slight expense;
s time.

ly idea recursively

legree grows.

14

Many other algebraic speedups
in polynomial multiplication:
“Toom,” "FFT,” etc.

Increasingly important as
polynomial degree grows.
O(nlg nlglg n) coeff operations
to compute n-coeff product.

Useful for sizes of n

that occur in cryptography?
In some cases, yes!

But Karatsuba is the limit
for prime-field ECC/ECDLP

on most current CPUs.

15

Modular

How to

Can use
f mod p
Can mul
precomg
easily ac

Slight s
“Montg:

-1, Gog + G7.

e products
- F1)(Go + G1).
 products.
F1G1 +10

as adds

1egations.
- th)_

10 adds.
, slight expense;

ursively

WS.

14

Many other algebraic speedups
in polynomial multiplication:
“Toom,” "FFT," etc.

Increasingly important as
polynomial degree grows.
O(nlg nlglg n) coeff operations
to compute n-coeff product.

Useful for sizes of n

that occur in cryptography?
In some cases, yes!

But Karatsuba is the limit
for prime-field ECC/ECDLP

on most current CPUs.

15

Modular reduction

How to compute 1

Can use definition
fmodp=1Ff—p|
Can multiply f by
precomputed 1/p
easily adjust to ob

bilr

Slight speedup:
“Montgomery red

DENSE;

14

Many other algebraic speedups
in polynomial multiplication:
“Toom,” "FFT,” etc.

Increasingly important as
polynomial degree grows.
O(nlg nlglg n) coeff operations
to compute n-coeff product.

Useful for sizes of n

that occur in cryptography?
In some cases, yes!

But Karatsuba is the limit
for prime-field ECC/ECDLP

on most current CPUs.

15

Modular reduction

How to compute f mod p?

Can use definition:
fmodp="f—p|f/p]|.
Can multiply f by a
precomputed 1/p approxime
easily adjust to obtain |f/p

Slight speedup: “2-adic inve
“Montgomery reduction.”

Many other algebraic speedups

in polynomial multiplication:
“Toom,” “FFT," etc.

Increasingly important as

polynomial degree grows.

O(nlg nlglg n) coeff operations

to compute n-coeff product.

L

seful for sizes of n

that occur in cryptography?

In some cases, yes!
But Karatsuba is the limit
for prime-field ECC/ECDLP

O

n most current CPUs.

15

16
Modular reduction

How to compute f mod p?

Can use definition:
fmodp="f—p|f/p]|.

Can multiply f by a
precomputed 1/p approximation;
easily adjust to obtain |f/p].

Slight speedup: “2-adic inverse”;
“Montgomery reduction.”

her algebraic speedups

omial multiplication:
- "FFT,” etc.

1gly important as

1al degree grows.

lg lg n) coeff operations
ute n-coeff product.

or sizes of n

ur in cryptography?
cases, yes!

atsuba iIs the limit
e-field ECC/ECDLP
current CPUs.

15

Modular reduction

How to compute f mod p?

Can use definition:

fmodp="f—p|f/p]|.
Can multiply f by a

precomputed 1/p approximation;

easily adjust to obtain |f/p].

Slight speedup: “2-adic inverse”;

“Montgomery reduction.”

16

e.g. 314

Precomy

1100000
— 36787

Comput

314159 -
= 11557

Comput
3141592
= 57827
Oops, tc
578230 -
306402 -

alc speedups
tiplication:
otc.

tant as
grows.

eff operations
f product.

n
tography?
|

he limit
C/ECDLP
PUs.

15

Modular reduction

How to compute f mod p?

Can use definition:

fmodp="f—p|f/p]|.
Can multiply f by a

precomputed 1/p approximation;

easily adjust to obtain |f/p].

Slight speedup: “2-adic inverse”;

“Montgomery reduction.”

16

e.g. 31415926535

Precompute

1 1000000000000/
= 3678796.

Compute

314159 - 3678796
= 1155726872564

Compute

314159265358 — 1
= 578230.

Oops, too big:
578230 — 271828
306402 — 271828

1pS

ons

15

Modular reduction

How to compute f mod p?

Can use definition:

fmodp="f—p|f/p]|.
Can multiply f by a

precomputed 1/p approximation;

easily adjust to obtain |f/p].

Slight speedup: “2-adic inverse”;

“Montgomery reduction.”

16

e.g. 314159265358 mod 271

Precompute

11000000000000/271828 |
= 3678796.

Compute
314159 - 3678796
— 1155726872564.

Compute

314159265358 — 1155726 - -
= 578230.

Oops, too big:

578230 — 271828 = 306402.
306402 — 271828 = 34574

Modular reduction

How to compute f mod p?

Can use definition:

fmodp="f—p|f/p]|.
Can multiply f by a

precomputed 1/p approximation;

easily adjust to obtain |f/p].

Slight speedup: “2-adic inverse”;

“Montgomery reduction.”

16

17
e.g. 314159265358 mod 271328:

Precompute

11000000000000/271828
= 3678796.

Compute

314159 - 3678796
— 11557263872564.

Compute

314159265358 — 1155726 - 271828
= 578230.

Oops, too big:

578230 — 271828 = 306402.
306402 — 271828 = 34574

reduction

compute f mod p?

definition:

=f—plf/p]
tiply f by a

uted 1/p approximation;

just to obtain |f/p].

yeedup: “2-adic inverse”;

omery reduction.”

16

e.g. 314159265358 mod 271828:

Precompute

11000000000000/271828 |
= 3678796.

Compute

314159 - 3673796
= 11557263872564.

Compute

314159265358 — 1155726 - 271828
= 578230.

Oops, too big:

578230 — 271828 = 306402.
306402 — 271828 = 34574

17

We can
p Is cho
to make

Special |
for Fl";, (
but not

Curve25b
NIST P-

secpll2
Divides

gls1271:
degree-2

~mod p?

:f/pJ-

d

approximation;

tain |f/p].

2-adic inverse’ ;

iction.”

16

e.g. 314159265358 mod 271328:

Precompute
11000000000000/271828
= 3673796.

Compute

314159 - 3678796
— 11557263872564.

Compute

314159265358 — 1155726 - 271828
= 578230.

Oops, too big:

578230 — 271828 = 306402.
306402 — 271828 = 34574

17

We can do better:
p Is chosen with a
to make f mod p

Special primes hut
for F,, Clock(Fp).
but not for elliptic

Curve25519: p =
NIST P-224: p =

secpl12rl: p = (2
Divides special for

gls1271: p = 2127
degree-2 extensior

tion;

rse’ ;

16

e.g. 314159265358 mod 271828:

Precompute
11000000000000/271828
= 3673796.

Compute
314159 - 3678796
— 1155726872564.

Compute

314159265358 — 1155726 - 271828
= 578230.

Oops, too big:

578230 — 271828 = 306402.
306402 — 271828 = 34574.

17

We can do better: normally
p is chosen with a special fc
to make f mod p much fast

Special primes hurt security
for Fl";, Clock(Fp), etc.,
but not for elliptic curves!

Curve25519: p = 22°° — 19
NIST P-224: p = 2224 _ 29

secpl12rl: p = (2128 — 3)/
Divides special form.

gls1271: p =227 — 1, with
degree-2 extension (a bit sc:

e.g. 314159265358 mod 271328:

Precompute
11000000000000/271828
= 3673796.

Compute

314159 - 3678796
— 11557263872564.

Compute

314159265358 — 1155726 - 271828
= 578230.

Oops, too big:

578230 — 271828 = 306402.
306402 — 271828 = 34574

17

We can do better: normally
p is chosen with a special form
to make f mod p much faster.

Special primes hurt security
for F;;, Clock(Fp), etc.,
but not for elliptic curves!

Curve25519: p = 22°° — 19,
NIST P-224: p = 2224 _ 2% 4 1

secpl12rl: p = (2128 — 3)/76439.

Divides special form.

gls1271: p = 2127 — 1, with
degree-2 extension (a bit scary).

18

159265358 mod 271828:

yute
0000000/271828 |
90.

s
3673796
263872564.

o

65358 — 1155726 - 271828
0.

0 big:

— 271828 = 306402.

— 271828 = 34574.

17

We can do better: normally
p is chosen with a special form
to make f mod p much faster.

Special primes hurt security
for Fl";, Clock(Fp), etc.,
but not for elliptic curves!

Curve25519: p = 22°° — 19,
NIST P-224: p = 2224 _ 2% 4 1

secpl12rl: p = (2128 — 3)/76439.

Divides special form.

gls1271: p = 2127 — 1, with
degree-2 extension (a bit scary).

18

Small ex
Then 10

e.g. 314
314159 -
314159(
—04247
—6/7711

Easily ac
to the r:
by addir
e.g. —67

3 mod 2/71828:

271828

155726 - 271323

— 306402.
— 34574.

17

We can do better: normally
p is chosen with a special form
to make f mod p much faster.

Special primes hurt security
for F;;, Clock(Fp), etc.,
but not for elliptic curves!

Curve25519: p = 22°° — 19,
NIST P-224: p = 2224 _ 2% 4 1

secpl12rl: p = (2128 — 3)/76439.

Divides special form.

gls1271: p = 2127 — 1, with
degree-2 extension (a bit scary).

18

Small example: p
Then 10000004 +

e.g. 31415926535¢
314159 - 1000000
314159(—3) + 26°
— 942477 + 26535
—677119.

Easily adjust b —
to the range {0, 1,
by adding/subtrac
e.g. —6/7119 =3

828:

(1323

17

We can do better: normally
p is chosen with a special form
to make f mod p much faster.

Special primes hurt security
for Fl";, Clock(Fp), etc.,
but not for elliptic curves!

Curve25519: p = 22°° — 19,
NIST P-224: p = 2224 _ 2% 4 1

secpl12rl: p = (2128 — 3)/76439.

Divides special form.

gls1271: p = 2127 — 1, with
degree-2 extension (a bit scary).

18

Small example: p = 100000
Then 10000002+ b= b — 3

e.g. 314159265358 =
314159 - 1000000 + 265358
314159(—3) + 265358 =

— 042477 + 265358 =
—677119.

Easily adjust b — 3a

to the range {0, 1, ..., p— 1
by adding/subtracting a few
e.g. —6/7119 = 322884.

We can do better: normally
p is chosen with a special form
to make f mod p much faster.

Special primes hurt security
for F;;, Clock(Fp), etc.,
but not for elliptic curves!

Curve25519: p = 22°° — 19,
NIST P-224: p = 2224 _ 2% 4 1

secpl12rl: p = (2128 — 3)/76439.

Divides special form.

gls1271: p = 2127 — 1, with
degree-2 extension (a bit scary).

18

19
Small example: p = 1000003.

Then 1000000a + b= b — 3a.

e.g. 314159265358 =

314159 - 1000000 + 265358 =
314159(—3) + 265358 =

— 942477 + 265358 =
—677119.

Easily adjust b — 3a

to the range {0,1, ..., p—1}
by adding/subtracting a few p's:
e.g. —6/7119 = 322884.

do better: normally
sen with a special form
f mod p much faster.

orimes hurt security
_lock(Fp), etc.,
for elliptic curves!

519: p = 22°° — 19
224: p=2224 _ 2% 4 1

1: p = (2128 — 3)/76439.

special form.

p =227 _ 1 with
extension (a bit scary).

18

Small example: p = 1000003.
Then 1000000a + b = b — 3a.

e.g. 314159265358 =
314159 - 1000000 + 265358 =
314159(—3) + 265358 =

— 042477 + 265358 =
—677119.

Easily adjust b — 3a

to the range {0, 1, ..., p—1}
by adding/subtracting a few p's:
e.g. —6/7119 = 322884.

19

Hmmm,

Conditic
and leak

Can e

1

but ac

ju

Speedufp

for inter

“Lazy

re

Adjust c

b—3ai

to con

tI

normally
special form
much faster.

t security
etc.,
curves!

2295 _ 10,
2224 290 4 1

128 _ 3) /76439.

m.

— 1, with
 (a bit scary).

18

Small example: p = 1000003.
Then 10000002 + b = b — 3a.

e.g. 314159265358 =
314159 - 1000000 + 265358 =
314159(—3) + 265358 =

— 942477 + 265358 =
—677119.

Easily adjust b — 3a

to the range {0,1, ..., p—1}
by adding/subtracting a few p's:
e.g. —6/7119 = 322884.

19

Hmmm, Is adjustn

Conditional brancl
and leak secrets t

Can e

D—

Iminate the

but ac

justment isr

Speedup: Skip the
for intermediate re

“Lazy

reduction.”

Adjust only for ou

b — 3a i1s small en

to con

tinue compt

rm

cr.

16439.

ry).

18

Small example: p = 1000003.
Then 10000002 + b = b — 3a.

e.g. 314159265358 =
314159 - 1000000 + 265358 =
314159(—3) + 265358 =

— 042477 + 265358 =
—677119.

Easily adjust b — 3a

to the range {0, 1, ..., p—1}
by adding/subtracting a few p's:
e.g. —6/7119 = 322884.

19

Hmmm, Is adjustment so ea

Conditional branches are slo

and leak secrets through tin

Can e

Iminate the branches,

but ac

justment isn't free.

Speedup: Skip the adjustme

for iIntermediate results.

“Lazy

reduction.”

Adjust only for output.

b — 3a is small enough

to con

tinue computations.

Small example: p = 1000003.
Then 10000002 + b = b — 3a.

e.g. 314159265358 =
314159 - 1000000 + 265358 =
314159(—3) + 265358 =

— 942477 + 265358 =
—677119.

Easily adjust b — 3a

to the range {0, 1, ..., p—1}
by adding/subtracting a few p's:
e.g. —6/7119 = 322884.

19

20

Hmmm, is adjustment so easy?

Conditional branches are slow

and leak secrets through timing.

Can e

iIminate the branches,

but ac

justment isn't free.

Speedup: Skip the adjustment

for iIntermediate results.

“Lazy

reduction.”

Adjust only for output.

b — 3a is small enough

to con

tinue computations.

ample: p = 1000003.
00000a+ b= b — 3a.

159265358 =
1000000 + 265358 =
—3) + 265358 =

7 + 265358 =

).

ljust b — 3a

inge {0,1, ..., p—1}
g /subtracting a few p's:

7119 = 322884,

19

Hmmm, is adjustment so easy?

Conditional branches are slow

and leak secrets through timing.

Can eliminate the branches,

but adjustment isn't free.

Speedup: Skip the adjustment
for intermediate results.

“Lazy reduction.”

Adjust only for output.

b — 3a is small enough
to continue computations.

20

Can del:
multiplic

e.g. To:
in Z/10(
3t + 1t
obtainin
14t" + £
823 + £

Reduce:
(—3ci)t
64t — :

Carry: 8
1£3 + 2t

= 1000003.
b= b— 3a.

} —

+ 2653538 =
3538 =

8 —

3a

.., p—1}
ting a few p's:
22884 .

19

Hmmm, is adjustment so easy?

Conditional branches are slow

and leak secrets through timing.

Can eliminate the branches,

but adjustment isn't free.

Speedup: Skip the adjustment
for intermediate results.

“Lazy reduction.”

Adjust only for output.

b — 3a is small enough
to continue computations.

20

Can delay carries
multiplication by :

e.g. To square 314
in Z/1000003: Sq
3t° + 1t* + 413 +
obtaining 9t10 + €
14t + 48t% 4 72t
82t3 + 43t 4 90t

Reduce: replace (.
(—3¢;)t', obtainin
6413 — 32t% + 48t

Carry: 8t% — 4 -
113 + 212 4+ 21! —

19

Hmmm, is adjustment so easy?

Conditional branches are slow

and leak secrets through timing.

Can eliminate the branches,

but adjustment isn't free.

Speedup: Skip the adjustment
for intermediate results.

“Lazy reduction.”

Adjust only for output.

b — 3a is small enough
to continue computations.

20

Can delay carries until after
multiplication by 3.

e.g. To square 314159

in Z/1000003: Square poly
3t> + 1t* + 4¢3 + 1t2 + 5¢
obtaining 0t10 4+ 6¢2 + 25¢8
14t" + 48t° 4+ 72 + 5014 -
82t3 + 43t% + 90t + 81V,

Reduce: replace (¢;)t®"' by
(—3c;)t', obtaining 72t° +
6413 — 32t% + 48t1 — 63tV

Carry: 8t% — 41> — 2% +
183 + 212 + 2t — 3¢9,

Hmmm, is adjustment so easy?

Conditional branches are slow

and leak secrets through timing.

Can eliminate the branches,

but adjustment isn't free.

Speedup: Skip the adjustment
for intermediate results.

“Lazy reduction.”

Adjust only for output.

b — 3a is small enough
to continue computations.

20

Can delay carries until after
multiplication by 3.

e.g. To square 314159

in Z/1000003: Square poly

3t° 4 1t* + 413 + 1% + 5t 4+ 9¢0,
obtaining 0t10 + 617 + 2518 +
147 + 48t° 4 72¢° + 59t* +

82t3 4 43t2 + 90t! + 81¢0.

Reduce: replace (¢;)t®"' by
(—3¢;)t', obtaining 72t° + 32t* +
6413 — 32t% + 48t1 — 63tV

Carry: 8t% — 41> — 2% +
183 + 212 + 2t — 3¢9,

21

is adjustment so easy?

nal branches are slow

~secrets through timing.

1inate the branches,
stment isn't free.

: Skip the adjustment
mediate results.
duction.”

nly for output.

s small enough
1ue computations.

20

Can delay carries until after
multiplication by 3.

e.g. To square 314159

in Z/1000003: Square poly

3t° 4+ 1t* + 413 + 1t% + 51 4+ 9¢Y,
obtaining 0t10 + 617 + 2518 +
147 + 48t° 4 72¢° + 59t* +

82t3 4 43t2 4 90t! + 81¢0.

Reduce: replace (¢;)t®"' by
(—3¢;)t', obtaining 72t° + 32t* +
6413 — 32t% + 48t1 — 63tV

Carry: 8t% — 41> — 2% +
183 + 212 + 2t — 3¢9,

21

To mini
mix redt

carrying

e.g. Star
258 4+ 1
823 + £

Reduce
> — ¢
5610 — °

00t + ¢

Finish re

64> — -
t — ¢l

—At> —

nent so easy”?

1es are slow

irough timing.

branches,
't free.

> adjustment
sults.

tput.

ough
1tations.

20

14¢7 -

- 48t0 -

8013 -

multiplication by 3.

700 -

- 43t2 -

Can delay carries until after

e.g. To square 314159

in Z/1000003: Square poly

3t° 4 1t* + 413 + 12 + 5¢1 +9¢Y,
obtaining 0t10 + 617 + 2518 +

- 59t% +

- 00t -

81tV

Reduce: replace (¢;)t®"' by
(—3¢;)t', obtaining 72t° + 32t* +
6413 — 32t% + 48t1 — 63tV

Carry: 8t% — 41> — 2% +
183 + 212 + 2t — 3¢9,

21

To minimize poly
mix reduction and
carrying the top s

e.g. Start from sq!
2548 1 1417 4+ 48¢E
823 1+ 43t2 4 90t

Reduce t10 — ¢*
> — t9: 617 + 2
56t% — 5> 4 2t4 -
90t! + 81V,

Finish reduction:

6413 — 3212 + 48t
0 5 ¢l 5 2

412 2t 11434

Nt

20

21
Can delay carries until after

multiplication by 3.

e.g. To square 314159

in Z/1000003: Square poly

3t° 4+ 1t* + 413 + 1t% + 51 4+ 9¢Y,
obtaining 0t10 + 617 + 2518 +
147 + 48t° 4 72¢° + 59t* +

82t3 4 43t2 + 90t! + 81¢0.

Reduce: replace (¢;)t®"' by
(—3¢;)t', obtaining 72t° + 32t* +
6413 — 32t% + 48t1 — 63tV

Carry: 8t% — 41> — 2% +
183 + 212 + 2t — 3¢9,

To minimize poly degree,
mix reduction and carrying,
carrying the top sooner.

e.g. Start from square 9t19-

25¢8 14t 1+ 48t0 17240 1
8213 + 43t2 + 90t + 81+¢Y.

Reduce t19 — t* and carry
> — % 6t7 + 25t° + 14t
56t° — 51> + 2t* 4 8213 + ¢
90t! + 81¢tY.

Finish reduction: —5t> + 21
6413 — 32t% + 48t — 87tV
t0 5t 5 2 5 3 5 7.
A2 2t 13 4 262 — 1)

Can delay carries until after
multiplication by 3.

e.g. To square 314159

in Z/1000003: Square poly

3t° 4 1t* + 413 + 1% + 5t 4+ 9¢°,
obtaining 0t10 + 617 + 2518 +
147 + 48t° 4 72¢° + 59t* +

82t3 4 43t2 + 90t! + 81¢0.

Reduce: replace (¢;)t®"' by
(—3¢;)t', obtaining 72t° + 32t* +
6413 — 32t% + 48t1 — 63tV

Carry: 8t% — 41> — 2% +
183 + 212 + 2t — 3¢9,

21

22
To minimize poly degree,

mix reduction and carrying,
carrying the top sooner.

e.g. Start from square 9t0 4617 +
2518 + 14¢7 4+ 480 +72¢° + 50t +
82t + 43t% + 90t! 4 81¢Y.

Reduce t19 — % and carry t* —
t° — t0: 6t7 + 2518 + 14" +
56t° — 5t° 4+ 2t* + 8213 + 43t% +
90t! + 81V,

Finish reduction: —5t2 + 2t% +

6413 — 32t° + 48t — 87t0. Carry
t0 5t 5 2 5 3 5 t* - 12
A2 2t 13+ 282 — 1t 4+ 340,

)y carries until after
ation by 3.

square 314159

)0003: Square poly
Y443 + 1% + 511 +9¢0,
g 9t10 4 619 4 25¢8 +
8t0 4+ 72t° + 59¢% +

3t% + 90t + 81t0.

replace (¢;)t®t' by
| obtaining 72t° + 32t* +
2¢2 + 48t1 — 630

10 — 41> — 2% +
2 421l — 340

21

22
To minimize poly degree,

mix reduction and carrying,
carrying the top sooner.

e.g. Start from square 9t0 617 +
2518 + 14¢7 4+ 480 + 72¢% + 50t +
82t3 + 43t% + 90t! + 81V,

Reduce t19 — % and carry t* —
t° — t9: 617 + 2515 + 14¢7 +
56t° — 5t° 4 2t* 4+ 8213 + 43t° +
90t! + 81¢Y.

Finish reduction: —5¢2 + 2t% +

6413 — 32t° + 48t — 87t0. Carry
t0 5t 5 2 5 3 5 t* - 12
A2 — 2t + 113+ 282 — 1t 43¢0,

Speedug

P:261

Five coe
fath + f:
Most co

Square -
Coeff of

Reduce:

4 (25
Coeff co
Very litt
addition
on 32-bi

intil after
.

1159

uare poly

1t2 + 5¢1 + 949,
) 4+ 2518 +

0 4 50¢%
148140

g 72t° + 32t* +
1 _ 6340,

-2t +
3¢V,

21

22
To minimize poly degree,

mix reduction and carrying,
carrying the top sooner.

e.g. Start from square 9t0 4617 +
2518 + 14¢7 4+ 480 +72¢° + 50t +
82t3 + 43t% +90t! 4 81¢Y.

Reduce t19 — % and carry t* —
t° — t0: 6t7 + 2518 + 14" +
56t° — 5t° 4+ 2t* + 8213 + 43t% +
00t! + 81V,

Finish reduction: —5t> + 2t% +

6413 — 32t° + 48t — 87t0. Carry
t0 5t 5 2 5 3 5 t* - 12
A2 — 2t 13+ 282 — 1t +- 340,

Speedup: non-inte

p=2%_-1

Five coeffs in radi;
f4t4 + f3t3 —+ f2t2
Most coeffs could

Square - -+ 2(fy f
Coeff of 2 could |

Reduce: 20° = 24
o (2(fa + £
Coeff could be >
Very little room fc
additions, delayed
on 32-bit platform

+9¢0,

3D % +

21

22
To minimize poly degree,

mix reduction and carrying,
carrying the top sooner.

e.g. Start from square 9t0 617 +
2518 + 14¢7 4+ 480 + 72¢% + 50t +
82t3 + 43t% +90t! 4 81V,

Reduce t19 — % and carry t* —
t° — t9: 617 + 2515 + 14¢7 +
56t° — 5t° 4 2t* 4+ 8213 + 43t° +
90t! + 81¢Y.

Finish reduction: —5t° + 2t% +

6413 — 32t° + 48t — 87t0. Carry
t0 5t 5 2 5 3 5 t* - 12
—A? 2t + 113+ 282 — 1t 43¢0,

Speedup: non-integer radix

p=201_1

Five coeffs in radix 2137
At + KBt + Ht? + At +
Most coeffs could be 212

Square - - - + 2(f4f1 + f3f2)t5
Coeff of t° could be > 22°.

Reduce: 2% = 2%in Z/(2°
S (25(f4f1 + f3f) + foz)t
Coeff could be > 227,

Very little room for
additions, delayed carries, et
on 32-bit platforms.

To minimize poly degree,
mix reduction and carrying,
carrying the top sooner.

e.g. Start from square 9t0 461”7 +
2518 + 14¢7 4+ 480 + 72¢° + 50t +
82t3 + 43t% +90t! 4 81¢Y.

Reduce t19 — % and carry t* —
t° — t0: 617 + 25¢° + 14" +
56t° — 5t° 4+ 2t* + 8213 + 43t% +
00t! + 81V,

Finish reduction: —5t> + 2t% +

6413 — 32t° + 48t — 87t0. Carry
t0 5t 5 2 5 3 5 t* - 12
A2 2t 13+ 282 — 1t 4+ 340,

22

Speedup: non-integer radix

p=201_1

Five coeffs in radix 2137
at* + Kt3 + Ht? + [t + Y.
Most coeffs could be 212

Square - -+ 2(fa i + f3f2)t5 + e
Coeff of t° could be > 22°.

Reduce: 2% =2%in Z/(2°! —1);
S (25(f4f1 + f3f) + foz)to.
Coeff could be > 227,

Very little room for

additions, delayed carries, etc.

on 32-bit platforms.

23

nize poly degree,

Iction and carrying,

the top sooner.

t from square 9t10+6¢7 +
4t7 + 48t +72¢° +50t* +

3t2 4+ 90t + 8140,

th

— t* and carry t* —

- 6t 4+ 25¢8 o+ 14¢7 4+
2 - 2¢% 1 8243 1+ 4342 1+

149,

duction: —5t° + 2t% +
2t2 + 48t — 87tY. Carry
— 2 =t o th -

) ¢4

1¢3

212 _ 1t}

3tV

22

23
Speedup: non-integer radix

p=201_1

Five coeffs in radix 2137
att + Kt3 + Ht? + 1t + [t
Most coeffs could be 212

Square - -+ 2(fa 1 + f3f2)t5 + e
Coeff of t° could be > 22°.

Reduce: 2% =2%in Z/(2°! —1);
S (25(f4f1 + f3f) + f02)t0_
Coeff could be > 227,

Very little room for

additions, delayed carries, etc.

on 32-bit platforms.

Scaled:
f4 IS mu
f3 1Is mu
f2 IS mu
fl IS mu

f() IS mu
-+ (2

Better:

fa IS mu
f3 Is mu
fr IS mu
f1 Is mu
fo IS mu
Saves a

degree,
carrying,
oner.

jare 9t10 1649 +
- 72t° 45014 +

148140,

and carry t* —
5t + 14¢7 +
- 8213 + 4312 +

5 42t 1
1 _87t%. Carry

3
22 1t

st 0

3tV

22

23
Speedup: non-integer radix

p=201_1

Five coeffs in radix 2137

at* + Kt3 + Ht? + [t + Y.
Most coeffs could be 212

Square - -+ 2(faf + f3f2)t5 + -
Coeff of t2 could be > 2%°.

Reduce: 2% =2%in Z/(2°! —1);
S (25(f4f1 + f3f) + f02)t0.
Coeff could be > 227,

Very little room for

additions, delayed carries, etc.

on 32-bit platforms.

Scaled:
f4 IS mu
f3 1Is mu
f2 IS mu
fl IS mu
f() IS mu

Evaluate :
tiple of 2

tiple of 2-
tiple of 2
D

tiple of 2

tiple of 2

L (270(ffy +

Better:

fa 1S mu
f3 Is mu
f> IS mu
f1 IS mu
f() IS mu
Saves a

Non-integ

tiple of 2°

tiple of 2:
tiple of 2
tiple of 2-

tiple of 2
few bits 1r

22

Speedup: non-integer radix

p=201_1

Five coeffs in radix 2137
att + Kt3 + Ht? + [t + [t
Most coeffs could be 212

Square - - 4+ 2(fa 1 + fgfz)t5 + -

Coeff of t° could be > 22°.

Reduce: 2% = 2% in Z/(2%% — 1);

S (25(f4f1 + f3fh) + f02)t0_
Coeff could be > 227,

Very little room for

additions, delayed carries, etc.
on 32-bit platforms.

23

Scaled: Evaluate at t = 1.

f4 IS mu
f3 1Is mu
f2 IS mu
fl IS mu
fo IS mu

Better:

fa IS mu
f3 Is mu
f> IS mu
f1 Is mu
fo IS mu

Saves a few bits in coeffs.

ti

ti
ti
ti

ti

ti

ti
ti
ti

ti

D
0
D
0
D

D
D
D
D

D

e of 222

e of 239;

e of 226;

e of 213;

e of 2V, Reduce
-+ (270(hh + BR) +

Non-integer radix 2

e of 249.
e of 237
e of 22°;
e of 213.

e of 2U.

Speedup: non-integer radix

p=201_1

Five coeffs in radix 2137
at* + Kt3 + Ht? + [t + Y.
Most coeffs could be 212

Square - - - +2(fafy + BH)> + - - -

Coeff of t° could be > 22°.

Reduce: 29° = 2% in Z/(2%1 — 1);

S (25(f4f1 + f3f) + f02)t0.
Coeff could be > 227,

Very little room for

additions, delayed carries, etc.
on 32-bit platforms.

23

Scaled: Evaluate at t = 1.

f4 IS mu
f3 1Is mu
f2 IS mu
fl IS mu
f() IS mu

Better:

fa 1S mu
f3 Is mu
f> Is mu
f1 IS mu
f() IS mu

ti

ti
ti
ti

ti

ti

ti
ti
ti

ti

D
D
D
D

D

D
D
D
D

D

€ O
€ O
€ O
€ O

€ O

e O.f
e O.T
e O.'.'
e O.'.'

e O.'.'

- 552,
e
o
b
20 Reduce:
4 (270(f A + BhH) + £2)E0.

Non-integer radix 2122

Saves a few bits in coeffs.

24

. _non-integer radix

— 1.

ffs in radix 2137
;t3 —+ f2t2 —+ fltl —+ foto.
effs could be 212

4+ 2(faf1 + f3f2)t5 + -

2 could be > 2%°.

205 = 2% in Z/(2% —1);

(fafi +) + f7) 0.
uld be > 227,

le room for

s, delayed carries, etc.
t platforms.

23

Scaled: Evaluate at t = 1.

fa is multiple of 202.

f3 is multiple of 232

f> is multiple of 22°:

f1 is multiple of 213;

fo 1s multiple of 20 Reduce:
o+ (279(hBA +) + 7).

Better: Non-integer radix 2122,

f4 is multiple of 249:
237.

f3 is multiple of
f> is multiple of 22°:
f; is multiple of 213:

fy is multiple of 29
Saves a few bits in coeffs.

24

More ba

NIST P-
2256 _ 9

e t0 —
evaluate

ger radix

¢ 2137
-+ fltl + foto.
be 212,

1+ f3f2)t5 + -

e > 229,

in Z/(2°1 —1);
fg) -+ f02)t0.
229,

¢

carries, etc.

S,

23

Scaled: Evaluate at t = 1.

f4 IS mu
f3 1Is mu
f2 IS mu
fl IS mu
f() IS mu

Better:

fa 1S mu
f3 Is mu
f> IS mu
f1 1S mu
f() IS mu

ti

ti
ti
ti

ti

ti

ti
ti
ti

ti

D

D
D
D

D

D
D
D
D

D

€ O
€ O

e O.'.'
e O.'.'

€ O

e O.f
e O.T
e O.'.'
e O.'.'

e O.'.'

- 252.
- 239.

- 20 Reduce:
o+ (279(BA +) + 7).

Non-integer radix 2122

Saves a few bits in coeffs.

24

More bad choices

NIST P-256 prime
2256 o 2224 4 2192

e t0 — t7+t6+
evaluated at t = ~

23

Scaled: Evaluate at t = 1.

f4 IS mu
f3 1Is mu
f2 IS mu
fl IS mu
fo IS mu

o+ (279(hBA +) + 7).

Better:

fa 1S mu
f3 Is mu
f> IS mu
f1 Is mu
fo IS mu

ti

ti
ti
ti

ti

D
0
D
0
D

e of 222

e of 239;

e of 226;

e of 213;

e of 2V, Reduce:

Non-integer radix 2122

ti

ti
ti
ti

ti

D
D
D
D

D

e of 249
e of 237
e of 22°:
e of 213

e of 2U.

Saves a few bits in coeffs.

24

More bad choices from NIS

NIST P-256 prime:

2256 o 2224 4 2192 4+ 296 _
e t8—t! + 0+ 3 -1
evaluated at t = 23°.

Scaled: Evaluate at t = 1.

f4 IS mu
f3 1Is mu
f2 IS mu
fl IS mu
f() IS mu

Better:

fa 1S mu
f3 Is mu
f> IS mu
f1 1S mu
f() IS mu

ti

ti
ti
ti

ti

ti

ti
ti
ti

ti

D

D
D
D

D

D
D
D
D

D

€ O
€ O

e O.'.'
e O.'.'

€ O

e O.f
e O.T
e O.'.'
e O.'.'

e O.'.'

- 252.
- 239.

- 20 Reduce:
o+ (279(BA +) + 7).

Non-integer radix 2122

Saves a few bits in coeffs.

More bad choices from NIST

NIST P-256 prime:

2256 o 2224 4 2192 4 296 1
e S —tl + 0431
evaluated at t = 232

Scaled: Evaluate at t = 1.

f4 IS mu
f3 1Is mu
f2 IS mu
fl IS mu
f() IS mu

Better:

fa 1S mu
f3 Is mu
f> IS mu
f1 1S mu
f() IS mu

ti

ti
ti
ti

ti

ti

ti
ti
ti

ti

D

D
D
D

D

D
D
D
D

D

€ O
€ O
€ O
€ O

- 252.

- 239.
- 226.
- 213.

€ O

€ O
€ O
€ O
€ O

- 237.
- 225.
- 213.

€ O

- 20 Reduce:
o+ (279(BA +) + 7).

Non-integer radix 2122
. 249.

- 20

Saves a few bits in coeffs.

24

25
More bad choices from NIST

NIST P-256 prime:

2256 o 2224 4 2192 4 296 1
e S —tl + 0431
evaluated at t = 232

Reduction: replace ¢;t31 with

it — ot 3 4 it

Minor problem: often slower than
small const mult and one add.

Scaled: Evaluate at t = 1.

f4 IS mu
f3 1Is mu
f2 IS mu
fl IS mu
f() IS mu

Better:

fa 1S mu
f3 Is mu
f> IS mu
f1 1S mu
f() IS mu

ti

ti
ti
ti

ti

ti

ti
ti
ti

ti

D

D
D
D

D

D
D
D
D

D

€ O
€ O
€ O
€ O

€ O

€ O
€ O
€ O
€ O

€ O

c 092,
£ 039,
£ 026.
e 013.

20,
o+ (279(BA +) + 7).

- 237.
- 225.
- 213.

- 20

Reduce:

Non-integer radix 2122
. 249.

Saves a few bits in coeffs.

24

25
More bad choices from NIST

NIST P-256 prime:

2256 o 2224 4 2192 4 296 1
e S —tl + 0431
evaluated at t = 232

Reduction: replace ¢;t31 with

it — ot 3 4 it

Minor problem: often slower than
small const mult and one add.

Major problem: With radix 232,
oroducts are almost 2°4.
Sums are slightly above 2°%:

vad for every common CPU.

Need very frequent carries.

