How to multiply big integers

Standard idea: Use polynomial
with coefficients in {0,1,...,9}
to represent integer in radix 10.

Example of representation:

839 =8-10°+3-10' +9-10Y =
value (at t = 10) of polynomial
8t% + 3t1 + 9t0.

Convenient to express polynomial
inside computer as array 9, 3, 8

(or 9,3,8,00r9,3,8,0,00r...):
"p[0] =9; p[1] = 3; p[2] = 8"

Multiply two integers
by multiplying polynomials
that represent the integers.

Polynomial multiplication
involves small integer coefficients.
Have split one big multiplication
Into many small operations.

Example, squaring 839:
(8t% + 3t! +9tY)? =

8t%(8t% + 3t! +9tY) +
3t1(8t% + 3t 4+ 9t9) +
9t0(8t2 + 3t! 4 9t0) =
64t* +48t3 4+ 153t + 54t! 48110,
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Multiply two integers
by multiplying polynomials
that represent the integers.

Polynomial multiplication
involves small integer coetficients.
Have split one big multiplication
into many small operations.

Example, squaring 839:

(8t% + 3t! 4 9tY)* =

8t%(8t% 4 3t! + 9tY) +

3t1(8t% + 3t 4 9¢9) +

0t%(8t% + 3t! + 9tY) =

64t* +48t3 + 153t + 54t! +81t0.

Oops, product polynomial

usually has coefficients > 9.

So “carry” extra digits:
ct/ — |c/10| /1 +(c mod

Example, squaring 839:
64t% + 4813 + 15312 + 54! -
64t* + 4813 + 15312 + 62t}

641* -
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64t% -

- 1502 + 2t -

_63¢3 -

-0t +2¢1 47

70t% + 313 + 9¢2 + 2t + 11
7t 4+ 0t + 313 + 982 4+ 2¢l

In other words, 8392 = 703¢
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involves small integer coefficients. Example, squaring 839:

Have split one big multiplication 64t* + 4813 4+ 1532 + 54! + 81¢Y;

into many small operations. 64t + 4813 + 153t° + 62t + 110,
64t* + 48t3 + 159t% + 2t! + 1tY;

Example, squaring 839:
(8t% + 3t! +9tY)? =
8t%(8t% + 3t! +9tY) +
3t1(8t° + 3t + 9tY) +
0t0(8t° + 3t +9tY) = In other words, 839° = 703921.
64t% 4 48t3 4+ 153t% 4 54t1 4810,

64t% + 63t3 + 912 + 21 1 14V
70¢% + 313 +9¢2 + 2¢1 + 149
7t° 4+ 0t* + 313 +9¢2 + 2t + 140,
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The scaled variation

339 = 800+ 30 4+ 9 =
value (at t = 1) of polynom
800t% + 30t! + 9¢tV.

Squaring: (800t°+430t! 491
640000t* + 48000t3 + 1530
540t + 81¢Y.

Carrying:
640000t* + 48000t3 + 1530
54Ot14-81t0;
640000t* + 48000t3 + 1530
620t + 19 L
700000 + 0% 4+3000%3 49
20t + 1¢Y.
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The scaled variation

839 =800+ 3049 =
value (at t = 1) of polynomial
800t + 30t* + 9t".

Squaring: (800t%+30t!+9tY)? =
640000t* + 48000t3 + 15300t2 +
540t + 81¢Y.

Carrying:
640000t* + 48000t3 + 153002 +
540t + 81t0;
640000t* + 48000¢3 + 153002 +
620t + 1¢0; o
700000%° 4 0t* + 30003 + 9002 +
20t + 1¢Y.
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The scaled variation

839 =800+ 3049 =
value (at t = 1) of polynomial
800t + 30t* + 9tV.

Squaring: (800t% 430t +9tY)? =
640000t* + 48000t3 + 15300t2 +
540t + 81¢Y.
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20t + 1¢Y.
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839 =800+ 3049 =
value (at t = 1) of polynomial
800t + 30t* + 9t".

Squaring: (800t% 430t +9tY)? =
640000t* + 48000t3 + 15300t2 +
540t + 81¢Y.
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20t + 1¢Y.

What operations v

800 30

=t

7200 900

Nt

15300

Y £
15900

SUbV l
1qfe

15000 900



The scaled variation

839 =800+ 3049 =
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839 =800+ 3049 =
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800t + 30t* + 9t".
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N
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Speedup: double inside squaring

(- R f2t2 -+ fltl -+ f0t0)2

has coefficients such as

fafo + f3f1 + fofy + f1f3 + fofs.
5 mults, 4 adds.



What operations were used here?

300 30 9
¢ imultiply
7200 900 7200
N
15300
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a

Speedup: double inside squaring

(- R f2t2 -+ fltl -+ f0t0)2

has coefficients such as

fafo + f3f1 + fofy + f1f3 + fofs.
5 mults, 4 adds.

Compute more efficiently as
2fafo + 21f3f1 + .
3 mults, 2 adds, 2 doublings.

Save =~ 1/2 of the mults
if there are many coetfficients.
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a

(- R f2t2 -+ fltl -+ f0t0)2

has coefficients such as

fafo + f3f1 + fofr + f1f3 + fofa.
5 mults, 4 adds.

Compute more efficiently as
2fatfo + 2f3f1 + fr>.
3 mults, 2 adds, 2 doublings.

Save &~ 1/2 of the mults
if there are many coetficients.

Faster a
2(f4f0 +
3 mults,

Save ~
If there .
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Speedup: double inside squaring

(- R f2t2 -+ fltl -+ f0t0)2

has coefficients such as

fafo + 3f1 + fofy + f1f3 + fofs.
5 mults, 4 adds.

Compute more efficiently as
2fafo + 21f3f1 + .
3 mults, 2 adds, 2 doublings.

Save =~ 1/2 of the mults
if there are many coetfficients.

Faster alternative:
2(fafy + 311) +
3 mults, 2 adds, 1

Save &~ 1/2 of the
if there are many
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Speedup: double inside squaring

(- R f2t2 -+ fltl -+ f0t0)2

has coefficients such as

fafo + f3f1 + fofo + f1f3 + fofa.
5 mults, 4 adds.

Compute more efficiently as

26 fo

2hh

fofo.

3 mults, 2 adds, 2 doublings.

Save &~ 1/2 of the mults
if there are many coetfficients.

Faster alternative:
2(f4f0 -+ fgfl) + fofo.
3 mults, 2 adds, 1 doubling.

Save ~~ 1/2 of the adds
if there are many coefficient



Speedup: double inside squaring Faster alternative:
2(f4fg + 3f1) + Hb.
3 mults, 2 adds, 1 doubling.

(- I f2t2 + fltl -+ f0t0)2
has coefficients such as

fafo + f3f1 + fofr + f1f3 + fofs. Save = 1/2 of the adds
5 mults, 4 adds. if there are many coetfficients.

Compute more efficiently as
2fafo + 2f3f1 + o>,
3 mults, 2 adds, 2 doublings.

Save =~ 1/2 of the mults
if there are many coetfficients.




Speedup: double inside squaring

(- R f2t2 -+ fltl -+ f0t0)2

has coefficients such as

fafo + f3f1 + fofr + f1f3 + fofs.
5 mults, 4 adds.

Compute more efficiently as
2fafo + 2f3f1 + o>,
3 mults, 2 adds, 2 doublings.

Save =~ 1/2 of the mults
if there are many coetfficients.

Faster alternative:
2(f4f0 -+ fgfl) + frofy.
3 mults, 2 adds, 1 doubling.

Save = 1/2 of the adds
if there are many coetfficients.

Even faster alternative:
(2fg)fa + (21)F3 + oty
after precomputing 21y, 2f1, . . ..

3 mults, 2 adds, 0 doublings.
Precomputation =~ 0.5 doublings.
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t° + fit! + fytY)?
ficients such as

fi1 +fhfh+ f1f3+ fofa.
4 adds.

e more efficiently as
)f3f1 + frfr.
2 adds, 2 doublings.

1/2 of the mults
are many coefficients.

Faster alternative:
2(f4f0 -4 fgfl) + fofo.

3 mults, 2 adds, 1 doubling.

Save ~~ 1/2 of the adds

if there are many coetfficients.

Even faster alternative:
(2fg)fa + (21) 3 + oty

after precomputing 21y, 2f1, . . ..

3 mults, 2 adds, 0 doub

Precomputation = 0.5 ¢
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Faster alternative:
2(f4f0 4 fgfl) + frfy.

3 mults, 2 adds, 1 doubling.

Save =~ 1/2 of the adds

if there are many coetfficients.

Even faster alternative:
(2f0)fa + (2f1) 3 + fofo,

after precomputing 21y, 2f1, . . ..

3 mults, 2 adds, 0 doub

Precomputation = 0.5 ¢

Ings.

oublings.

Speedup: allow ne

Recall 159 — 15, ¢
Scaled: 15900 —

Alternative: 159 ~
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Use digits {—5, —
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Faster alternative:
2(f4f0 -+ fgfl) + fofo.
3 mults, 2 adds, 1 doubling.

Save =~ 1/2 of the adds
if there are many coetfficients.

Even faster alternative:
(2fg)fa + (21) 3 + oty
after precomputing 21y, 2f1, . . ..

3 mults, 2 adds, 0 doublings.

Precomputation =~ 0.5 doublings.

Speedup: allow negative cot

Recall 159 — 15, 9.
Scaled: 15900 — 15000, 90(

Alternative: 159 — 16, —1.
Scaled: 15900 — 16000, —1

Use digits {—5, —4, ..., 4,5
instead of {0,1, ..., 9}.
Small disadvantage: need —
Several small advantages:
easily handle negative intege

easily handle subtraction:;
reduce products a bit.



Faster alternative:
2(f4f0 -+ fgfl) + frofy.
3 mults, 2 adds, 1 doubling.

Save =~ 1/2 of the adds
if there are many coetfficients.

Even faster alternative:
(2fg)fa + (21)F3 + oty
after precomputing 2fy, 2f1, . . ..

3 mults, 2 adds, 0 doublings.

Precomputation =~ 0.5 doublings.

10
Speedup: allow negative coeffs

Recall 159 — 15, 9.
Scaled: 15900 — 15000, 900.

Alternative: 159 — 16, —1.
Scaled: 15900 — 16000, —100.

Use digits {—5, —4, ..., 4,5}
instead of {0,1, ..., 9}.

Small disadvantage: need —.
Several small advantages:
easily handle negative integers;

easily handle subtraction:;
reduce products a bit.



lternative:

f3f1) —+ fgfg.

2 adds, 1 doubling.

1/2 of the adds

are many coefficients.

ter alternative:

- (2f1) R + b,

computing 21y, 2f1, . . ..

2 adds, 0 doub

yutation =~ 0.5 d

Ings.

oublings.

Speedup: allow negative coeffs

Recall 159 — 15, 9.
Scaled: 15900 — 15000, 900.

Alternative: 159 — 16, —1.

Scaled: 15900 — 16000, —100.

Use digits {—5, —4, ..., 4,5}
instead of {0,1, ..., 9}.

Small disadvantage: need —.
Several small advantages:
easily handle negative integers;

easily handle subtraction:;
reduce products a bit.
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Speedug

Comput
multiply
square ¢

e.g. a=
(3t%+1t
6t* 4 2-
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64t* + 4
7t° + Ot
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Speedup: allow negative coeffs

Recall 159 — 15, 9.
Scaled: 15900 — 15000, 900.

Alternative: 159 — 16, —1.
Scaled: 15900 — 16000, —100.

Use digits {—5, —4, ..., 4,5}
instead of {0,1, ..., 9}.

Small disadvantage: need —.
Several small advantages:
easily handle negative integers;

easily handle subtraction:;
reduce products a bit.
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Speedup: delay ca

Computing (e.g.)
multiply a, b polyr
square ¢ poly, cart

e.g. a=314, b=
(3t2+1tt+4tY%)(2
6t* + 2313 + 18¢2
carry: 8t*+ 583 +

As before (8t + -
64t 1+ 4813 + 153
7t +0t* + 313 +

4 T2 4+8t4+813-
7t L 8t% 103 &
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Speedup: allow negative coeffs

Recall 159 — 15, 9.
Scaled: 15900 — 15000, 900.

Alternative: 159 — 16, —1.

Scaled: 15900 — 16000, —100.

Use digits {—5, —4, ..., 4,5}
instead of {0,1,..., 9}.

Small disadvantage: need —.
Several small advantages:
easily handle negative integers;

easily handle subtraction:;
reduce products a bit.

10

Speedup: delay carries

Computing (e.g.) big ab + «
multiply a, b polynomials, c:
square ¢ poly, carry, add, ca

eg. a=314, b=271, c =
(3t24+1t1+4t0)(2t2+7¢1 41
6t* 4+ 2313 + 1812 4 20¢!
carry: 8t +5¢3 + 0t + 9t!

L
‘

As before (8t% 4 3t! + 9tY)
64t% + 48¢3 + 15312 1+ 54¢1 -
7t + 0t + 313 + 912 1+ ¢l

4 T8t 8134912 +11¢
72 £ 8t4 + 03 + 012 + 1t



Speedup: allow negative coeffs

Recall 159 — 15, 9.
Scaled: 15900 — 15000, 900.

Alternative: 159 — 16, —1.
Scaled: 15900 — 16000, —100.

Use digits {—5, —4, ..., 4,5}
instead of {0,1, ..., 9}.

Small disadvantage: need —.
Several small advantages:
easily handle negative integers;

easily handle subtraction:;
reduce products a bit.

10

Speedup: delay carries

Computing (e.g.) big ab + c*:
multiply a, b polynomials, carry,
square ¢ poly, carry, add, carry.

e.g. a=314, b= 271, c = 8309:
(3t24+1t1+4t0)(2t2+7¢1 +11Y) =
6t* + 2313 + 18t2 + 29t + 440
carry: 8t* +5t3 +0t% +9t! 419,

As before (8t% + 3t1 + 9tY)? =
64t% + 483 +-153t2 + 5411 181+
7t° + 0t* + 313 + 912 + 2t + 149,

1 7048t 18134921111 4540
7t° + 8t* + 913 + 0t2 + 1t + 549,

11



: allow negative coeffs

HhO — 15, 9.
15900 — 15000, 900.

ive: 159 — 16, —1.

15900 — 16000, —100.

sadvantage: need —.
small advantages:
ndle negative integers;

ndle subtraction:
roducts a bit.

10

Speedup: delay carries

Computing (e.g.) big ab + c?:
multiply a, b polynomials, carry,
square ¢ poly, carry, add, carry.

e.g. a=314, b= 271, ¢ = 8309:
(3t2+1t1+4t0)(2t2+7¢1 +11Y) =
6t% 4+ 23¢3 + 18¢2 + 20¢! 1 440-

carry: 8t* +5t3 +0t% +9t! 4+ 410,

As before (8t% + 3t1 + 9tY)? =

64t% + 4813 1 153t2 + 54t 181V
7t2 + 0t* + 383 +9¢2 + 21 + 140,
1 7048t 18134921111 4540
7t + 8t* +9t3 + 012 + 1t + 540,

11

Faster:
square ¢

(6t*+2
(64t*+
— 70t%
7t° + 8t

Eliminat
Outweig
slightly |

Importal
multiplic
to reduc
out carr
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Speedup: delay carries

Computing (e.g.) big ab + c?:
multiply a, b polynomials, carry,
square ¢ poly, carry, add, carry.

e.g. a=314, b= 271, c = 8309:
(3t24+1t1+4t0)(2t2+7¢1 +11Y) =
6t* + 2313 + 18t2 + 29t + 440
carry: 8t* +5t3 +0t% +9t! + 419,

As before (8t% + 3t1 + 9tY)? =
64t% + 483 +153t2 + 54t 181V
7t° + 0t* + 313 + 912 + 2t + 149,

1 7048t 18134921111 4540
7t° + 8t* + 913 + 0t2 + 1t + 549,

11

Faster: multiply a
square ¢ polynomi

(6t* 42313 4 18¢t°
(64t*+48t3+153
= 70t*+71t3417
7t 4+ 8t* + 913 +

Eliminate interme
Outweighs cost of
slightly larger coef

Important to carry
multiplications (ar
to reduce coefficie
out carries are usu

hefore additions, s
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Speedup: delay carries

Computing (e.g.) big ab + c?:
multiply a, b polynomials, carry,
square ¢ poly, carry, add, carry.

e.g. a=314, b= 271, ¢ = 8309:
(3t2+1t1+4t0)(2t2+7¢1 +11Y) =
6t* + 2313 + 18t2 + 29t + 440
carry: 8t* +5t3 +0t% +9t! + 410,

As before (8t% + 3t1 + 9tY)? =
64t% + 483 1 153t2 - 54t 181V
7t° 4+ 0t* + 313 + 912 + 2t + 149

1 708t 18134921111 4540
7t° +8t* + 913 + 0t2 + 1t + 549,

Faster: multiply a, b polyno

square ¢ polynomia

|, add, c:

(6t* +23t3 +18t° +29¢t! +.
(64t* +48t3 +153t% +54t! -
= 70t*+71t34+171t%4+83t!-
7t 4+ 8t% + 913 4+ 02 + 1t

Eliminate intermediate carric

Outweighs cost of handling

slightly larger coefficients.

Important to carry

petween

multiplications (and squarin,

to reduce coefficient size:

out carries are usua

hefore additions, su
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Speedup: delay carries

Computing (e.g.) big ab + c?:
multiply a, b polynomials, carry,
square ¢ poly, carry, add, carry.

e.g. a=314, b= 271, c = 8309:
(3t24+1t1+4t0)(2t2+7¢1 +11Y) =
6t* + 2313 + 18t2 + 29t + 440
carry: 8t* +5t3 +0t% +9t! + 419,

As before (8t% + 3t! 4 9t0)% =
64t% + 483 +153t2 + 54t 181+
7t° + 0t* + 313 + 912 + 2t + 149,

4+ TO+8t7 8134912 +11¢1 +5¢Y.
7t2 +8t* + 913 + 012 + 1t + 540,

11

12

Faster: multiply a, b polynomials,

square ¢ polynomia

|, add, carry.

(6t* +23t3 +18t° + 29t +410) +
(64t*+48t34153t%+54t1 4+81tY)
= 70t*+71t3+171t°+83¢1 4+-85¢9;
7t> + 8t* 4+ 913 + 0t + 1t! + 5¢0.

Eliminate intermed

ate carries.

Outweighs cost of handling

slightly larger coeffi

Important to carry

clents.

petween

multiplications (and squarings)

to reduce coefficient size:

out carries are usua

hefore additions, su

ly a bad idea

otractions, etc.



. delay carries

ng (e.g.) big ab + c*:
a, b polynomials, carry,
poly, carry, add, carry.

314, b= 271, c = 839:
1 +419) (26247t +140) =
3 + 18t° 4 29t! + 419,
t* 4+ 53 4 0t 4 9t + 4¢°.

e (8t 4+ 3t! +9tY)? =
8t3 + 15312 + 541! +81+Y:
41313 1012 1241 1140,

8t* 18134921111 4540
4+ 983 4+ 0t2 + 1t! + 5¢0.

11

Faster: multiply a, b polynomials,
square ¢ polynomial, add, carry.

(6t +23t3 + 1812 +29t! +4t9) +
(64t*+48t3+153t° 454t +81t0)
— 70t*+71t3+171t2+83¢1 4+-85¢0;
7t> + 8t* 4+ 913 + 0t° + 1t! + 5¢Y.

Eliminate intermediate carries.
Outweighs cost of handling
slightly larger coefficients.

Important to carry between

multiplications (and squarings)
to reduce coefficient size:
out carries are usually a bad idea

hefore additions, subtractions, etc.

12

Speedug
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8 = 80 -
Using th
400 coef

\

Faster:

Similarly

Then fg
+ (FoGc



rries

big ab + ¢*:
'omials, carry,
y, add, carry.

271, ¢ = 839:
24+ 7t 4+ 110) =
20t + 449
0t% + 9t! + 4t0.

1+ 0tY)? =
2 1 541 1819
ot + 2t1 + 14V,

10t24-11¢14-5¢0;
0t2 4+ 1¢1 + 5¢0.

11

Faster: multiply a, b polynomials,

square ¢ polynomial, add, carry.

(6% +23t3 + 1812 +29t! +4t9) +
(64t*+48t3+153t° 454t +81t0)
= 70t +71t3+171¢2+83t1+85¢9;

7t2 4+ 8t* + 913 + 0

t2 + 1t + 540,

Eliminate intermediate carries.

Outweighs cost of handling

slightly larger coefficients.

Important to carry

petween

multiplications (anc

squarings)

to reduce coefficient size:

out carries are usua

hefore additions, su

ly a bad idea

otractions, etc.
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Speedup: polynon

How much work t
f="fo+ 1t +---
g =80+ 8&it+ -

Using the obvious
400 coeff mults, 3

Faster: Write f as
Fo = fo + f1t + -
F1 = fo + fi1t +
Similarly write g ¢

Then fg = (Fg +
+ (F()Go — F1G1t]



rry,

rry.
339:

- 81tV

11

Faster: multiply a, b polynomials,
square ¢ polynomial, add, carry.

(6% +23t3 + 1812 + 29t +4t9) +
(64t*+48t3+153t° 454t +81t0)
— 70t*+7183+171t2+83t1 +-85¢0;
7t° + 8t* 4 93 + 0t2 + 1t! + 5¢0.

Eliminate intermediate carries.
Outweighs cost of handling
slightly larger coefficients.

Important to carry between

multiplications (and squarings)
to reduce coefficient size:
out carries are usually a bad idea

hefore additions, subtractions, etc.

12

Speedup: polynomial Karats

How much work to multiply
f=fy+ fit+- -+ fott?,
g =go+git+- -+ guot"

Using the obvious method:
400 coeff mults, 361 coeff a

Faster: Write f as Fop + Fqt
F():fo—l—flt—l—---—l—fgtg;

F1 = fio+ A1t + - + fiot
Similarly write g as Gg + Gj

Then fg = (Fg+ F1)(Go +
+ (F()GO — F1G1t10)(1 _ 1



Faster: multiply a, b polynomials,
square ¢ polynomial, add, carry.

(6t* +23t3 +18t° + 29t +410) +
(64t*+48t34153t%+54t1 4+81tY)
= 70t*+71t3+171t°+83¢1 4+-85¢9;
7t> + 8t* 4+ 913 + 0t + 1t! + 5¢0.

Eliminate intermediate carries.
Outweighs cost of handling
slightly larger coefficients.

Important to carry between

multiplications (and squarings)
to reduce coefficient size:

out carries are usually a bad idea

before additions, subtractions, etc.

12

13
Speedup: polynomial Karatsuba

How much work to multiply polys
f = fo—l—flt—l—---—l—flgtlg,
g =go+git+ -+ guot”?

Using the obvious method:
400 coeff mults, 361 coeff adds.

Faster: Write f as Fy + Fyt19;
Fo=fo+ fit+ -+ fot°;

Fi = fio + fiit + - - + figt®.
Similarly write g as Gg + Gy t10.

Then fg = (Fg+ F1)(Ggo + Gl)tlo
+ (F()Go — F1G1t10)(1 — th)_



multiply a, b polynomials,
- polynomial, add, carry.

3t3 +18t° + 29t +410) +
183 +153t% + 54t +81¢Y)
71t34+171¢24-83t1 +85¢9;
44 0t3 402 4 1t 4 519,

e Intermediate carries.
hs cost of handling
arger coefficients.

1t to carry between

ations (and squarings)
e coefficient size:
es are usually a bad idea

dditions, subtractions, etc.

12

13
Speedup: polynomial Karatsuba

How much work to multiply polys
f=fy+ fit+---+ fott?,
g =go+git+ -+ gioto?

Using the obvious method:
400 coeff mults, 361 coeff adds.

Faster: Write f as Fy + Fyt19;
Fo=fo+ fit+ -+ fot°;

Fi1 = fio + it + - + figt”.
Similarly write g as Gg + G t10.

Then fg = (Fg+ F1)(Go + Gl)tlo
+ (F()G() — F1G1t10)(1 — th)_

20 adds
300 mul
FoGo, F
243 add
O adds f

with sukb
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19 adds

19 adds

Total 30

Larger c
still save

Can app
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Speedup: polynomial Karatsuba

How much work to multiply polys
f = fo—l—flt—l—---—l—flgtlg,
g =go+git+ -+ guot”?

Using the obvious method:
400 coeff mults, 361 coeff adds.

Faster: Write f as Fy + Fyt19;
Fo=fo+ fit+--+ fot?;

Fi = fip + fi1t+--- + flgtg.
Similarly write g as Gg + G t10.

Then fg = (Fg+ F1)(Ggo + Gl)tlo
+ (F()Go — F1G1t10)(1 — th)_

20 adds for Fog + f
300 mults for thre

FoGo, F1

G1, (Fo +

243 adds for those

O adds for FpGg —
with subs counted

and with

delayed 1

19 adds for --- (1
19 adds to finish.

Total 300 mults, -
Larger coefficients

still saves time.

Can app

y idea rec
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Speedup: polynomial Karatsuba

How much work to multiply polys
f=fy+ fit+---+ fott?,
g =go+git+ -+ guoto?

Using the obvious method:
400 coeff mults, 361 coeff adds.

Faster: Write f as Fy + F;t19;
Fo=fo+ fit+--+ fot?;

Fi = fip + fi1t+--- + f19t9.
Similarly write g as Gg + G t10.

Then fg = (Fg+ F1)(Ggo + Gl)th
+ (F()G() — F1G1t10)(1 — th)_

20 adds for Fo + F1, Gg + G
300 mults for three product:
FoGo, F1G1, (Fo + F1)(Go +
243 adds for those products
9 adds for FyGg — F1Gqt1Y
with subs counted as adds

and with

delayed negations.

19 adds for - -- (1 — t19).
19 adds to finish.

Total 300 mults, 310 adds.
Larger coefficients, slight ex

still saves time.

Can app

y Idea recursively

as poly ¢

egree grows.



Speedup: polynomial Karatsuba

How much work to multiply polys
f = fo—l—flt—l—---—l—flgtlg,
g =go+git+ -+ guot”?

Using the obvious method:
400 coeff mults, 361 coeff adds.

Faster: Write f as Fy + Fyt19;
Fo=fo+ fit+--+ fot?;

Fi = fip + fi1t+--- + flgtg.
Similarly write g as Gg + G t10.

Then fg =
-+ (F()Go — F1G1t10)(1 — th)_

(Fo + F1)(Gg + G1)t'0

13

20 adds for Fo + F1, Gg + G7.
300 mults for three products
FoGo, F1G1, (Fo + F1)(Go + G1).
243 adds for those products.

9 adds for FyGg — F1Gqt1Y

with subs counted as adds

and with delayed negations.

(1 —t19).
19 adds to finish.

19 adds for - -

Total 300 mults, 310 adds.

Larger coefficients, slight expense;

still saves time.

Can apply idea recursively

as poly degree grows.

14



. _polynomial Karatsuba

ch work to multiply polys
At -+ fott?
Fgit+ o+ g1ot!?

e obvious method:
f mults, 361 coeff adds.

Write f as Fy + Fpt19;
+ At + -+ ot

+ fi1t+ -+ f19t9.
write g as Gg + Gyt1Y.

= (Fo+ F1)(Ggo + Gl)th
— F1G1t10)(1 — th)_

13

20 adds for Fg + F1, Gg + G7.
300 mults for three products

FoGo, F1

G1, (Fo + F1)(Go + G1).

243 adds for those products.
9 adds for FyGg — F1Gqt1Y
with subs counted as adds

and with

19 adds for - -

delayed negations.
(1 —t19).

19 adds to finish.

Total 300 mults, 310 adds.

Larger coefficients, slight expense;

still saves time.

Can app

y Idea recursively

as poly ¢

egree grows.
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11al Karatsuba

o multiply polys
+ figt1?,
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method:
61 coeff adds.

. Fo + Ft19;
- fyt?;

- flgtg.
s Gg + Gltlo.

Fl)(Go -+ Gl)tlo
'O)(l o th)_

13

20 adds for Fo + F1, Gg + G7.
300 mults for three products
FoGo, F1G1, (Fo + F1)(Go + G1).
243 adds for those products.

9 adds for FyGg — F1Gqt1Y

with subs counted as adds

and with delayed negations.
19 adds for - -- (1 — t19).
19 adds to finish.

Total 300 mults, 310 adds.

Larger coefficients, slight expense;

still saves time.

Can apply idea recursively

as poly degree grows.
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20 adds for Fog + F1, Gg + G7.
300 mults for three products
FoGo, F1G1, (Fo + F1)(Go + G1).
243 adds for those products.

9 adds for FyGg — F{Gqt1Y

with subs counted as adds

and with delayed negations.
19 adds for - -- (1 — t19).
19 adds to finish.

Total 300 mults, 310 adds.

Larger coefficients, slight expense;

still saves time.

Can apply idea recursively

as poly degree grows.

14

Many other algebraic speedut
in polynomial multiplication
“Toom,” "FFT," etc

Increasingly important as
polynomial degree grows.
O(nlg nlglg n) coeff operati
to compute n-coeff product.

Useful for sizes of n

that occur in cryptography?
In some cases, yes!

But Karatsuba is the limit
for prime-field ECC/ECDLP

on most current CPUs.



20 adds for Fo + F1, Gg + G7.
300 mults for three products
FoGo, F1G1, (Fo + F1)(Go + G1).
243 adds for those products.

9 adds for FyGg — F1Gqt1Y

with subs counted as adds

with delayed negations.
(1 —t19).
19 adds to finish.

ano
19 adds for - -

Total 300 mults, 310 adds.

Larger coefficients, slight expense;

still saves time.

Can apply idea recursively

as poly degree grows.

14

15
Many other algebraic speedups

in polynomial multiplication:
“Toom,” “FFT," etc

Increasingly important as
polynomial degree grows.
O(nlg nlglg n) coeff operations
to compute n-coeff product.

Useful for sizes of n

that occur in cryptography?
In some cases, yes!
But Karatsuba is the limit

for prime-field ECC/ECDLP
on most current CPUs.
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Many other algebraic speedups
in polynomial multiplication:
“Toom,” "FFT,” etc.

Increasingly important as
polynomial degree grows.
O(nlg nlglg n) coeff operations
to compute n-coeff product.

Useful for sizes of n

that occur in cryptography?
In some cases, yes!

But Karatsuba is the limit
for prime-field ECC/ECDLP

on most current CPUs.

15

Modular

How to

Can use
f mod p
Can mul
precomg
easily ac

Slight s
“Montg:
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Many other algebraic speedups
in polynomial multiplication:
“Toom,” "FFT," etc.

Increasingly important as
polynomial degree grows.
O(nlg nlglg n) coeff operations
to compute n-coeff product.

Useful for sizes of n

that occur in cryptography?
In some cases, yes!

But Karatsuba is the limit
for prime-field ECC/ECDLP

on most current CPUs.

15

Modular reduction

How to compute 1

Can use definition
fmodp=1Ff—p|
Can multiply f by
precomputed 1/p
easily adjust to ob

bilr

Slight speedup:
“Montgomery red
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Many other algebraic speedups
in polynomial multiplication:
“Toom,” "FFT,” etc.

Increasingly important as
polynomial degree grows.
O(nlg nlglg n) coeff operations
to compute n-coeff product.

Useful for sizes of n

that occur in cryptography?
In some cases, yes!

But Karatsuba is the limit
for prime-field ECC/ECDLP

on most current CPUs.

15

Modular reduction

How to compute f mod p?

Can use definition:
fmodp="f—p|f/p]|.
Can multiply f by a
precomputed 1/p approxime
easily adjust to obtain |f/p

Slight speedup: “2-adic inve
“Montgomery reduction.”



Many other algebraic speedups

in polynomial multiplication:
“Toom,” “FFT," etc.

Increasingly important as

polynomial degree grows.

O(nlg nlglg n) coeff operations

to compute n-coeff product.

L

seful for sizes of n

that occur in cryptography?

In some cases, yes!
But Karatsuba is the limit
for prime-field ECC/ECDLP

O

n most current CPUs.

15

16
Modular reduction

How to compute f mod p?

Can use definition:
fmodp="f—p|f/p]|.

Can multiply f by a
precomputed 1/p approximation;
easily adjust to obtain |f/p].

Slight speedup: “2-adic inverse”;
“Montgomery reduction.”
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Modular reduction

How to compute f mod p?

Can use definition:

fmodp="f—p|f/p]|.
Can multiply f by a

precomputed 1/p approximation;

easily adjust to obtain |f/p].

Slight speedup: “2-adic inverse”;

“Montgomery reduction.”

16

e.g. 314

Precomy

1100000
— 36787

Comput

314159 -
= 11557

Comput
3141592
= 57827
Oops, tc
578230 -
306402 -
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Modular reduction

How to compute f mod p?

Can use definition:

fmodp="f—p|f/p]|.
Can multiply f by a

precomputed 1/p approximation;

easily adjust to obtain |f/p].

Slight speedup: “2-adic inverse”;

“Montgomery reduction.”

16

e.g. 31415926535

Precompute

1 1000000000000/
= 3678796.

Compute

314159 - 3678796
= 1155726872564

Compute

314159265358 — 1
= 578230.

Oops, too big:
578230 — 271828
306402 — 271828
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Modular reduction

How to compute f mod p?

Can use definition:

fmodp="f—p|f/p]|.
Can multiply f by a

precomputed 1/p approximation;

easily adjust to obtain |f/p].

Slight speedup: “2-adic inverse”;

“Montgomery reduction.”

16

e.g. 314159265358 mod 271

Precompute

11000000000000/271828 |
= 3678796.

Compute
314159 - 3678796
— 1155726872564.

Compute

314159265358 — 1155726 - -
= 578230.

Oops, too big:

578230 — 271828 = 306402.
306402 — 271828 = 34574



Modular reduction

How to compute f mod p?

Can use definition:

fmodp="f—p|f/p]|.
Can multiply f by a

precomputed 1/p approximation;

easily adjust to obtain |f/p].

Slight speedup: “2-adic inverse”;

“Montgomery reduction.”

16

17
e.g. 314159265358 mod 271328:

Precompute

11000000000000/271828
= 3678796.

Compute

314159 - 3678796
— 11557263872564.

Compute

314159265358 — 1155726 - 271828
= 578230.

Oops, too big:

578230 — 271828 = 306402.
306402 — 271828 = 34574
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e.g. 314159265358 mod 271828:

Precompute

11000000000000/271828 |
= 3678796.

Compute

314159 - 3673796
= 11557263872564.

Compute

314159265358 — 1155726 - 271828
= 578230.

Oops, too big:

578230 — 271828 = 306402.
306402 — 271828 = 34574
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e.g. 314159265358 mod 271328:

Precompute
11000000000000/271828
= 3673796.

Compute

314159 - 3678796
— 11557263872564.

Compute

314159265358 — 1155726 - 271828
= 578230.

Oops, too big:

578230 — 271828 = 306402.
306402 — 271828 = 34574
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NIST P-224: p =

secpl12rl: p = (2
Divides special for
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e.g. 314159265358 mod 271828:

Precompute
11000000000000/271828
= 3673796.

Compute
314159 - 3678796
— 1155726872564.

Compute

314159265358 — 1155726 - 271828
= 578230.

Oops, too big:

578230 — 271828 = 306402.
306402 — 271828 = 34574.

17

We can do better: normally
p is chosen with a special fc
to make f mod p much fast

Special primes hurt security
for Fl";, Clock(Fp), etc.,
but not for elliptic curves!

Curve25519: p = 22°° — 19
NIST P-224: p = 2224 _ 29

secpl12rl: p = (2128 — 3)/
Divides special form.

gls1271: p =227 — 1, with
degree-2 extension (a bit sc:



e.g. 314159265358 mod 271328:

Precompute
11000000000000/271828
= 3673796.

Compute

314159 - 3678796
— 11557263872564.

Compute

314159265358 — 1155726 - 271828
= 578230.

Oops, too big:

578230 — 271828 = 306402.
306402 — 271828 = 34574

17

We can do better: normally
p is chosen with a special form
to make f mod p much faster.

Special primes hurt security
for F;;, Clock(Fp), etc.,
but not for elliptic curves!

Curve25519: p = 22°° — 19,
NIST P-224: p = 2224 _ 2% 4 1

secpl12rl: p = (2128 — 3)/76439.

Divides special form.

gls1271: p = 2127 — 1, with
degree-2 extension (a bit scary).

18



159265358 mod 271828:

yute
0000000/271828 |
90.

s
3673796
263872564.

o

65358 — 1155726 - 271828
0.

0 big:

— 271828 = 306402.

— 271828 = 34574.

17

We can do better: normally
p is chosen with a special form
to make f mod p much faster.

Special primes hurt security
for Fl";, Clock(Fp), etc.,
but not for elliptic curves!

Curve25519: p = 22°° — 19,
NIST P-224: p = 2224 _ 2% 4 1

secpl12rl: p = (2128 — 3)/76439.

Divides special form.

gls1271: p = 2127 — 1, with
degree-2 extension (a bit scary).

18
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—6/7711
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3 mod 2/71828:

271828

155726 - 271323

— 306402.
— 34574.
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We can do better: normally
p is chosen with a special form
to make f mod p much faster.

Special primes hurt security
for F;;, Clock(Fp), etc.,
but not for elliptic curves!

Curve25519: p = 22°° — 19,
NIST P-224: p = 2224 _ 2% 4 1

secpl12rl: p = (2128 — 3)/76439.

Divides special form.

gls1271: p = 2127 — 1, with
degree-2 extension (a bit scary).

18

Small example: p
Then 10000004 +

e.g. 31415926535¢
314159 - 1000000
314159(—3) + 26°
— 942477 + 26535
—677119.

Easily adjust b —
to the range {0, 1,
by adding/subtrac
e.g. —6/7119 =3
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We can do better: normally
p is chosen with a special form
to make f mod p much faster.

Special primes hurt security
for Fl";, Clock(Fp), etc.,
but not for elliptic curves!

Curve25519: p = 22°° — 19,
NIST P-224: p = 2224 _ 2% 4 1

secpl12rl: p = (2128 — 3)/76439.

Divides special form.

gls1271: p = 2127 — 1, with
degree-2 extension (a bit scary).

18

Small example: p = 100000
Then 10000002+ b= b — 3

e.g. 314159265358 =
314159 - 1000000 + 265358
314159(—3) + 265358 =

— 042477 + 265358 =
—677119.

Easily adjust b — 3a

to the range {0, 1, ..., p— 1
by adding/subtracting a few
e.g. —6/7119 = 322884.



We can do better: normally
p is chosen with a special form
to make f mod p much faster.

Special primes hurt security
for F;;, Clock(Fp), etc.,
but not for elliptic curves!

Curve25519: p = 22°° — 19,
NIST P-224: p = 2224 _ 2% 4 1

secpl12rl: p = (2128 — 3)/76439.

Divides special form.

gls1271: p = 2127 — 1, with
degree-2 extension (a bit scary).

18

19
Small example: p = 1000003.

Then 1000000a + b= b — 3a.

e.g. 314159265358 =

314159 - 1000000 + 265358 =
314159(—3) + 265358 =

— 942477 + 265358 =
—677119.

Easily adjust b — 3a

to the range {0,1, ..., p—1}
by adding/subtracting a few p's:
e.g. —6/7119 = 322884.
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Then 1000000a + b = b — 3a.
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314159 - 1000000 + 265358 =
314159(—3) + 265358 =
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314159(—3) + 265358 =

— 942477 + 265358 =
—677119.

Easily adjust b — 3a
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e.g. —6/7119 = 322884.
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Small example: p = 1000003.
Then 10000002 + b = b — 3a.

e.g. 314159265358 =
314159 - 1000000 + 265358 =
314159(—3) + 265358 =

— 042477 + 265358 =
—677119.

Easily adjust b — 3a

to the range {0, 1, ..., p—1}
by adding/subtracting a few p's:
e.g. —6/7119 = 322884.
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Small example: p = 1000003.
Then 10000002 + b = b — 3a.

e.g. 314159265358 =
314159 - 1000000 + 265358 =
314159(—3) + 265358 =

— 942477 + 265358 =
—677119.

Easily adjust b — 3a

to the range {0, 1, ..., p—1}
by adding/subtracting a few p's:
e.g. —6/7119 = 322884.
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Hmmm, is adjustment so easy?

Conditional branches are slow

and leak secrets through timing.

Can e

iIminate the branches,

but ac

justment isn't free.

Speedup: Skip the adjustment

for iIntermediate results.

“Lazy

reduction.”

Adjust only for output.

b — 3a is small enough

to con

tinue computations.
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7119 = 322884,
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Hmmm, is adjustment so easy?

Conditional branches are slow

and leak secrets through timing.

Can eliminate the branches,

but adjustment isn't free.

Speedup: Skip the adjustment
for intermediate results.

“Lazy reduction.”

Adjust only for output.

b — 3a is small enough
to continue computations.

20

Can del:
multiplic

e.g. To:
in Z/10(
3t + 1t
obtainin
14t" + £
823 + £

Reduce:
(—3ci)t
64t — :

Carry: 8
1£3 + 2t
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Hmmm, is adjustment so easy?

Conditional branches are slow

and leak secrets through timing.

Can eliminate the branches,

but adjustment isn't free.

Speedup: Skip the adjustment
for intermediate results.

“Lazy reduction.”

Adjust only for output.

b — 3a is small enough
to continue computations.

20

Can delay carries
multiplication by :

e.g. To square 314
in Z/1000003: Sq
3t° + 1t* + 413 +
obtaining 9t10 + €
14t + 48t% 4 72t
82t3 + 43t 4 90t

Reduce: replace (.
(—3¢;)t', obtainin
6413 — 32t% + 48t

Carry: 8t% — 4 -
113 + 212 4+ 21! —
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Hmmm, is adjustment so easy?

Conditional branches are slow

and leak secrets through timing.

Can eliminate the branches,

but adjustment isn't free.

Speedup: Skip the adjustment
for intermediate results.

“Lazy reduction.”

Adjust only for output.

b — 3a is small enough
to continue computations.

20

Can delay carries until after
multiplication by 3.

e.g. To square 314159

in Z/1000003: Square poly
3t> + 1t* + 4¢3 + 1t2 + 5¢
obtaining 0t10 4+ 6¢2 + 25¢8
14t" + 48t° 4+ 72 + 5014 -
82t3 + 43t% + 90t + 81V,

Reduce: replace (¢;)t®"' by
(—3c;)t', obtaining 72t° +
6413 — 32t% + 48t1 — 63tV

Carry: 8t% — 41> — 2% +
183 + 212 + 2t — 3¢9,



Hmmm, is adjustment so easy?

Conditional branches are slow

and leak secrets through timing.

Can eliminate the branches,

but adjustment isn't free.

Speedup: Skip the adjustment
for intermediate results.

“Lazy reduction.”

Adjust only for output.

b — 3a is small enough
to continue computations.

20

Can delay carries until after
multiplication by 3.

e.g. To square 314159

in Z/1000003: Square poly

3t° 4 1t* + 413 + 1% + 5t 4+ 9¢0,
obtaining 0t10 + 617 + 2518 +
147 + 48t° 4 72¢° + 59t* +

82t3 4 43t2 + 90t! + 81¢0.

Reduce: replace (¢;)t®"' by
(—3¢;)t', obtaining 72t° + 32t* +
6413 — 32t% + 48t1 — 63tV

Carry: 8t% — 41> — 2% +
183 + 212 + 2t — 3¢9,

21
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Can delay carries until after
multiplication by 3.

e.g. To square 314159

in Z/1000003: Square poly

3t° 4+ 1t* + 413 + 1t% + 51 4+ 9¢Y,
obtaining 0t10 + 617 + 2518 +
147 + 48t° 4 72¢° + 59t* +

82t3 4 43t2 4 90t! + 81¢0.

Reduce: replace (¢;)t®"' by
(—3¢;)t', obtaining 72t° + 32t* +
6413 — 32t% + 48t1 — 63tV

Carry: 8t% — 41> — 2% +
183 + 212 + 2t — 3¢9,
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14¢7 -

- 48t0 -

8013 -

multiplication by 3.

700 -

- 43t2 -

Can delay carries until after

e.g. To square 314159

in Z/1000003: Square poly

3t° 4 1t* + 413 + 12 + 5¢1 +9¢Y,
obtaining 0t10 + 617 + 2518 +

- 59t% +

- 00t -

81tV

Reduce: replace (¢;)t®"' by
(—3¢;)t', obtaining 72t° + 32t* +
6413 — 32t% + 48t1 — 63tV

Carry: 8t% — 41> — 2% +
183 + 212 + 2t — 3¢9,

21

To minimize poly
mix reduction and
carrying the top s

e.g. Start from sq!
2548 1 1417 4+ 48¢E
823 1+ 43t2 4 90t

Reduce t10 — ¢*
> — t9: 617 + 2
56t% — 5> 4 2t4 -
90t! + 81V,

Finish reduction:

6413 — 3212 + 48t
0 5 ¢l 5 2

412 2t 11434




Nt

20

21
Can delay carries until after

multiplication by 3.

e.g. To square 314159

in Z/1000003: Square poly

3t° 4+ 1t* + 413 + 1t% + 51 4+ 9¢Y,
obtaining 0t10 + 617 + 2518 +
147 + 48t° 4 72¢° + 59t* +

82t3 4 43t2 + 90t! + 81¢0.

Reduce: replace (¢;)t®"' by
(—3¢;)t', obtaining 72t° + 32t* +
6413 — 32t% + 48t1 — 63tV

Carry: 8t% — 41> — 2% +
183 + 212 + 2t — 3¢9,

To minimize poly degree,
mix reduction and carrying,
carrying the top sooner.

e.g. Start from square 9t19-

25¢8 14t 1+ 48t0 17240 1
8213 + 43t2 + 90t + 81+¢Y.

Reduce t19 — t* and carry
> — % 6t7 + 25t° + 14t
56t° — 51> + 2t* 4 8213 + ¢
90t! + 81¢tY.

Finish reduction: —5t> + 21
6413 — 32t% + 48t — 87tV
t0 5t 5 2 5 3 5 7.
A2 2t 13 4 262 — 1)




Can delay carries until after
multiplication by 3.

e.g. To square 314159

in Z/1000003: Square poly

3t° 4 1t* + 413 + 1% + 5t 4+ 9¢°,
obtaining 0t10 + 617 + 2518 +
147 + 48t° 4 72¢° + 59t* +

82t3 4 43t2 + 90t! + 81¢0.

Reduce: replace (¢;)t®"' by
(—3¢;)t', obtaining 72t° + 32t* +
6413 — 32t% + 48t1 — 63tV

Carry: 8t% — 41> — 2% +
183 + 212 + 2t — 3¢9,

21

22
To minimize poly degree,

mix reduction and carrying,
carrying the top sooner.

e.g. Start from square 9t0 4617 +
2518 + 14¢7 4+ 480 +72¢° + 50t +
82t + 43t% + 90t! 4 81¢Y.

Reduce t19 — % and carry t* —
t° — t0: 6t7 + 2518 + 14" +
56t° — 5t° 4+ 2t* + 8213 + 43t% +
90t! + 81V,

Finish reduction: —5t2 + 2t% +

6413 — 32t° + 48t — 87t0. Carry
t0 5t 5 2 5 3 5 t* - 12
A2 2t 13+ 282 — 1t 4+ 340,




)y carries until after
ation by 3.

square 314159

)0003: Square poly
Y443 + 1% + 511 +9¢0,
g 9t10 4 619 4 25¢8 +
8t0 4+ 72t° + 59¢% +

3t% + 90t + 81t0.

replace (¢;)t®t' by
| obtaining 72t° + 32t* +
2¢2 + 48t1 — 630

10 — 41> — 2% +
2 421l — 340

21

22
To minimize poly degree,

mix reduction and carrying,
carrying the top sooner.

e.g. Start from square 9t0 617 +
2518 + 14¢7 4+ 480 + 72¢% + 50t +
82t3 + 43t% + 90t! + 81V,

Reduce t19 — % and carry t* —
t° — t9: 617 + 2515 + 14¢7 +
56t° — 5t° 4 2t* 4+ 8213 + 43t° +
90t! + 81¢Y.

Finish reduction: —5¢2 + 2t% +

6413 — 32t° + 48t — 87t0. Carry
t0 5t 5 2 5 3 5 t* - 12
A2 — 2t + 113+ 282 — 1t 43¢0,

Speedug

P:261
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fath + f:
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4 (25
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intil after
.

1159

uare poly

1t2 + 5¢1 + 949,
) 4+ 2518 +

0 4 50¢%
148140

g 72t° + 32t* +
1 _ 6340,

-2t +
3¢V,

21

22
To minimize poly degree,

mix reduction and carrying,
carrying the top sooner.

e.g. Start from square 9t0 4617 +
2518 + 14¢7 4+ 480 +72¢° + 50t +
82t3 + 43t% +90t! 4 81¢Y.

Reduce t19 — % and carry t* —
t° — t0: 6t7 + 2518 + 14" +
56t° — 5t° 4+ 2t* + 8213 + 43t% +
00t! + 81V,

Finish reduction: —5t> + 2t% +

6413 — 32t° + 48t — 87t0. Carry
t0 5t 5 2 5 3 5 t* - 12
A2 — 2t 13+ 282 — 1t +- 340,

Speedup: non-inte

p=2%_-1

Five coeffs in radi;
f4t4 + f3t3 —+ f2t2
Most coeffs could

Square - -+ 2(fy f
Coeff of 2 could |

Reduce: 20° = 24
o (2(fa + £
Coeff could be >
Very little room fc
additions, delayed
on 32-bit platform



+9¢0,

3D % +

21

22
To minimize poly degree,

mix reduction and carrying,
carrying the top sooner.

e.g. Start from square 9t0 617 +
2518 + 14¢7 4+ 480 + 72¢% + 50t +
82t3 + 43t% +90t! 4 81V,

Reduce t19 — % and carry t* —
t° — t9: 617 + 2515 + 14¢7 +
56t° — 5t° 4 2t* 4+ 8213 + 43t° +
90t! + 81¢Y.

Finish reduction: —5t° + 2t% +

6413 — 32t° + 48t — 87t0. Carry
t0 5t 5 2 5 3 5 t* - 12
—A? 2t + 113+ 282 — 1t 43¢0,

Speedup: non-integer radix

p=201_1

Five coeffs in radix 2137
At + KBt + Ht? + At +
Most coeffs could be 212

Square - - - + 2(f4f1 + f3f2)t5
Coeff of t° could be > 22°.

Reduce: 2% = 2%in Z/(2°
S (25(f4f1 + f3f) + foz)t
Coeff could be > 227,

Very little room for
additions, delayed carries, et
on 32-bit platforms.



To minimize poly degree,
mix reduction and carrying,
carrying the top sooner.

e.g. Start from square 9t0 461”7 +
2518 + 14¢7 4+ 480 + 72¢° + 50t +
82t3 + 43t% +90t! 4 81¢Y.

Reduce t19 — % and carry t* —
t° — t0: 617 + 25¢° + 14" +
56t° — 5t° 4+ 2t* + 8213 + 43t% +
00t! + 81V,

Finish reduction: —5t> + 2t% +

6413 — 32t° + 48t — 87t0. Carry
t0 5t 5 2 5 3 5 t* - 12
A2 2t 13+ 282 — 1t 4+ 340,

22

Speedup: non-integer radix

p=201_1

Five coeffs in radix 2137
at* + Kt3 + Ht? + [t + Y.
Most coeffs could be 212

Square - -+ 2(fa i + f3f2)t5 + e
Coeff of t° could be > 22°.

Reduce: 2% =2%in Z/(2°! —1);
S (25(f4f1 + f3f) + foz)to.
Coeff could be > 227,

Very little room for

additions, delayed carries, etc.

on 32-bit platforms.

23



nize poly degree,

Iction and carrying,

the top sooner.

t from square 9t10+6¢7 +
4t7 + 48t +72¢° +50t* +

3t2 4+ 90t + 8140,

th

— t* and carry t* —

- 6t 4+ 25¢8 o+ 14¢7 4+
2 - 2¢% 1 8243 1+ 4342 1+

149,

duction: —5t° + 2t% +
2t2 + 48t — 87tY. Carry
— 2 =t o th -

) ¢4

1¢3

212 _ 1t}

3tV

22
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Speedup: non-integer radix

p=201_1

Five coeffs in radix 2137
att + Kt3 + Ht? + 1t + [t
Most coeffs could be 212

Square - -+ 2(fa 1 + f3f2)t5 + e
Coeff of t° could be > 22°.

Reduce: 2% =2%in Z/(2°! —1);
S (25(f4f1 + f3f) + f02)t0_
Coeff could be > 227,

Very little room for

additions, delayed carries, etc.

on 32-bit platforms.

Scaled:
f4 IS mu
f3 1Is mu
f2 IS mu
fl IS mu

f() IS mu
-+ (2

Better:

fa IS mu
f3 Is mu
fr IS mu
f1 Is mu
fo IS mu
Saves a



degree,
carrying,
oner.

jare 9t10 1649 +
- 72t° 45014 +

148140,

and carry t* —
5t + 14¢7 +
- 8213 + 4312 +

5 42t 1
1 _87t%. Carry

3
22 1t

st 0

3tV

22
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Speedup: non-integer radix

p=201_1

Five coeffs in radix 2137

at* + Kt3 + Ht? + [t + Y.
Most coeffs could be 212

Square - -+ 2(faf + f3f2)t5 + -
Coeff of t2 could be > 2%°.

Reduce: 2% =2%in Z/(2°! —1);
S (25(f4f1 + f3f) + f02)t0.
Coeff could be > 227,

Very little room for

additions, delayed carries, etc.

on 32-bit platforms.

Scaled:
f4 IS mu
f3 1Is mu
f2 IS mu
fl IS mu
f() IS mu

Evaluate :
tiple of 2

tiple of 2-
tiple of 2
D

tiple of 2

tiple of 2

L (270(ffy +

Better:

fa 1S mu
f3 Is mu
f> IS mu
f1 IS mu
f() IS mu
Saves a

Non-integ

tiple of 2°

tiple of 2:
tiple of 2
tiple of 2-

tiple of 2
few bits 1r
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Speedup: non-integer radix

p=201_1

Five coeffs in radix 2137
att + Kt3 + Ht? + [t + [t
Most coeffs could be 212

Square - - 4+ 2(fa 1 + fgfz)t5 + -

Coeff of t° could be > 22°.

Reduce: 2% = 2% in Z/(2%% — 1);

S (25(f4f1 + f3fh) + f02)t0_
Coeff could be > 227,

Very little room for

additions, delayed carries, etc.
on 32-bit platforms.

23

Scaled: Evaluate at t = 1.

f4 IS mu
f3 1Is mu
f2 IS mu
fl IS mu
fo IS mu

Better:

fa IS mu
f3 Is mu
f> IS mu
f1 Is mu
fo IS mu

Saves a few bits in coeffs.

ti

ti
ti
ti

ti

ti

ti
ti
ti

ti

D
0
D
0
D

D
D
D
D

D

e of 222

e of 239;

e of 226;

e of 213;

e of 2V, Reduce
-+ (270(hh + BR) +

Non-integer radix 2

e of 249.
e of 237
e of 22°;
e of 213.

e of 2U.



Speedup: non-integer radix

p=201_1

Five coeffs in radix 2137
at* + Kt3 + Ht? + [t + Y.
Most coeffs could be 212

Square - - - +2(fafy + BH)> + - - -

Coeff of t° could be > 22°.

Reduce: 29° = 2% in Z/(2%1 — 1);

S (25(f4f1 + f3f) + f02)t0.
Coeff could be > 227,

Very little room for

additions, delayed carries, etc.
on 32-bit platforms.

23

Scaled: Evaluate at t = 1.

f4 IS mu
f3 1Is mu
f2 IS mu
fl IS mu
f() IS mu

Better:

fa 1S mu
f3 Is mu
f> Is mu
f1 IS mu
f() IS mu

ti

ti
ti
ti

ti

ti

ti
ti
ti

ti

D
D
D
D

D

D
D
D
D

D

€ O
€ O
€ O
€ O

€ O

e O.f
e O.T
e O.'.'
e O.'.'

e O.'.'

- 552,
e
o
b
20 Reduce:
4 (270(f A + BhH) + £2)E0.

Non-integer radix 2122

Saves a few bits in coeffs.

24



. _non-integer radix

— 1.

ffs in radix 2137
;t3 —+ f2t2 —+ fltl —+ foto.
effs could be 212

4+ 2(faf1 + f3f2)t5 + -

2 could be > 2%°.

205 = 2% in Z/(2% —1);

(fafi + ) + f7) 0.
uld be > 227,

le room for

s, delayed carries, etc.
t platforms.

23

Scaled: Evaluate at t = 1.

fa is multiple of 202.

f3 is multiple of 232

f> is multiple of 22°:

f1 is multiple of 213;

fo 1s multiple of 20 Reduce:
o+ (279(hBA + ) + 7).

Better: Non-integer radix 2122,

f4 is multiple of 249:
237.

f3 is multiple of
f> is multiple of 22°:
f; is multiple of 213:

fy is multiple of 29
Saves a few bits in coeffs.

24

More ba

NIST P-
2256 _ 9

e t0 —
evaluate



ger radix

¢ 2137
-+ fltl + foto.
be 212,

1+ f3f2)t5 + -

e > 229,

in Z/(2°1 —1);
fg) -+ f02)t0.
229,

¢

carries, etc.

S,

23

Scaled: Evaluate at t = 1.

f4 IS mu
f3 1Is mu
f2 IS mu
fl IS mu
f() IS mu

Better:

fa 1S mu
f3 Is mu
f> IS mu
f1 1S mu
f() IS mu

ti

ti
ti
ti

ti

ti

ti
ti
ti

ti

D

D
D
D

D

D
D
D
D

D

€ O
€ O

e O.'.'
e O.'.'

€ O

e O.f
e O.T
e O.'.'
e O.'.'

e O.'.'

- 252.
- 239.

- 20 Reduce:
o+ (279(BA + ) + 7).

Non-integer radix 2122

Saves a few bits in coeffs.

24

More bad choices

NIST P-256 prime
2256 o 2224 4 2192

e t0 — t7+t6+
evaluated at t = ~



23

Scaled: Evaluate at t = 1.

f4 IS mu
f3 1Is mu
f2 IS mu
fl IS mu
fo IS mu

o+ (279(hBA + ) + 7).

Better:

fa 1S mu
f3 Is mu
f> IS mu
f1 Is mu
fo IS mu

ti

ti
ti
ti

ti

D
0
D
0
D

e of 222

e of 239;

e of 226;

e of 213;

e of 2V, Reduce:

Non-integer radix 2122

ti

ti
ti
ti

ti

D
D
D
D

D

e of 249
e of 237
e of 22°:
e of 213

e of 2U.

Saves a few bits in coeffs.

24

More bad choices from NIS

NIST P-256 prime:

2256 o 2224 4 2192 4+ 296 _
e t8—t! + 0+ 3 -1
evaluated at t = 23°.



Scaled: Evaluate at t = 1.

f4 IS mu
f3 1Is mu
f2 IS mu
fl IS mu
f() IS mu

Better:

fa 1S mu
f3 Is mu
f> IS mu
f1 1S mu
f() IS mu

ti

ti
ti
ti

ti

ti

ti
ti
ti

ti

D

D
D
D

D

D
D
D
D

D

€ O
€ O

e O.'.'
e O.'.'

€ O

e O.f
e O.T
e O.'.'
e O.'.'

e O.'.'

- 252.
- 239.

- 20 Reduce:
o+ (279(BA + ) + 7).

Non-integer radix 2122

Saves a few bits in coeffs.

More bad choices from NIST

NIST P-256 prime:

2256 o 2224 4 2192 4 296 1
e S —tl + 0431
evaluated at t = 232



Scaled: Evaluate at t = 1.

f4 IS mu
f3 1Is mu
f2 IS mu
fl IS mu
f() IS mu

Better:

fa 1S mu
f3 Is mu
f> IS mu
f1 1S mu
f() IS mu

ti

ti
ti
ti

ti

ti

ti
ti
ti

ti

D

D
D
D

D

D
D
D
D

D

€ O
€ O
€ O
€ O

- 252.

- 239.
- 226.
- 213.

€ O

€ O
€ O
€ O
€ O

- 237.
- 225.
- 213.

€ O

- 20 Reduce:
o+ (279(BA + ) + 7).

Non-integer radix 2122
. 249.

- 20

Saves a few bits in coeffs.

24

25
More bad choices from NIST

NIST P-256 prime:

2256 o 2224 4 2192 4 296 1
e S —tl + 0431
evaluated at t = 232

Reduction: replace ¢;t31 with

it — ot 3 4 it

Minor problem: often slower than
small const mult and one add.



Scaled: Evaluate at t = 1.

f4 IS mu
f3 1Is mu
f2 IS mu
fl IS mu
f() IS mu

Better:

fa 1S mu
f3 Is mu
f> IS mu
f1 1S mu
f() IS mu

ti

ti
ti
ti

ti

ti

ti
ti
ti

ti

D

D
D
D

D

D
D
D
D

D

€ O
€ O
€ O
€ O

€ O

€ O
€ O
€ O
€ O

€ O

c 092,
£ 039,
£ 026.
e 013.

20,
o+ (279(BA + ) + 7).

- 237.
- 225.
- 213.

- 20

Reduce:

Non-integer radix 2122
. 249.

Saves a few bits in coeffs.

24

25
More bad choices from NIST

NIST P-256 prime:

2256 o 2224 4 2192 4 296 1
e S —tl + 0431
evaluated at t = 232

Reduction: replace ¢;t31 with

it — ot 3 4 it

Minor problem: often slower than
small const mult and one add.

Major problem: With radix 232,
oroducts are almost 2°4.
Sums are slightly above 2°%:

vad for every common CPU.

Need very frequent carries.



