How to multiply big integers

Standard idea: Use polynomial with coefficients in $\{0, 1, ..., 9\}$ to represent integer in radix 10.

Example of representation:

$$839 = 8 \cdot 10^2 + 3 \cdot 10^1 + 9 \cdot 10^0 =$$
value (at $t = 10$) of polynomial $8t^2 + 3t^1 + 9t^0$.

Convenient to express polynomial inside computer as array 9, 3, 8 (or 9, 3, 8, 0 or 9, 3, 8, 0, 0 or 1 - 2): "p[0] = 9; p[1] = 3; p[2] = 8"

Multiply two integers by multiplying polynomials that represent the integers.

Polynomial multiplication involves *small* integer coefficients. Have split one big multiplication into many small operations.

Example, squaring 839:

$$(8t^{2} + 3t^{1} + 9t^{0})^{2} =$$

$$8t^{2}(8t^{2} + 3t^{1} + 9t^{0}) +$$

$$3t^{1}(8t^{2} + 3t^{1} + 9t^{0}) +$$

$$9t^{0}(8t^{2} + 3t^{1} + 9t^{0}) =$$

$$64t^{4} + 48t^{3} + 153t^{2} + 54t^{1} + 81t^{0}.$$

multiply big integers

d idea: Use polynomial efficients in $\{0, 1, \ldots, 9\}$ sent integer in radix 10.

of representation:

$$\cdot 10^2 + 3 \cdot 10^1 + 9 \cdot 10^0 =$$
t $t = 10$) of polynomial $t^1 + 9t^0$.

ent to express polynomial emputer as array 9, 3, 8, 8, 0 or 9, 3, 8, 0, 0 or . . .):

9; p[1] = 3; p[2] = 8"

Multiply two integers by multiplying polynomials that represent the integers.

Polynomial multiplication involves *small* integer coefficients. Have split one big multiplication into many small operations.

Example, squaring 839:

$$(8t^{2} + 3t^{1} + 9t^{0})^{2} =$$

$$8t^{2}(8t^{2} + 3t^{1} + 9t^{0}) +$$

$$3t^{1}(8t^{2} + 3t^{1} + 9t^{0}) +$$

$$9t^{0}(8t^{2} + 3t^{1} + 9t^{0}) =$$

$$64t^{4} + 48t^{3} + 153t^{2} + 54t^{1} + 81t^{0}.$$

Oops, properties of the contract of the contr

Example $64t^4 + 4$ $64t^4 + 4$ $64t^4 + 4$

 $64t^4 + 6$ $70t^4 + 3$

 $7t^5 + 0t$

In other

ig integers

e polynomial $\{0, 1, \ldots, 9\}$ er in radix 10.

entation:

$$10^1 + 9 \cdot 10^0 =$$
 of polynomial

ress polynomial array 9, 3, 8, 8, 0, 0 or . . .):

$$= 3; p[2] = 8"$$

Multiply two integers by multiplying polynomials that represent the integers.

Polynomial multiplication involves *small* integer coefficients. Have split one big multiplication into many small operations.

Example, squaring 839:

$$(8t^{2} + 3t^{1} + 9t^{0})^{2} =$$

$$8t^{2}(8t^{2} + 3t^{1} + 9t^{0}) +$$

$$3t^{1}(8t^{2} + 3t^{1} + 9t^{0}) +$$

$$9t^{0}(8t^{2} + 3t^{1} + 9t^{0}) =$$

$$64t^{4} + 48t^{3} + 153t^{2} + 54t^{1} + 81t^{0}.$$

Oops, product polusually has coeffice So "carry" extra divide $ct^j \rightarrow |c/10| t^{j+1}$

Example, squaring $64t^4 + 48t^3 + 153t^4 + 48t^3 + 153t^4 + 48t^3 + 153t^4 + 48t^4 + 48t^3 + 159t^4 + 63t^3 + 9t^2 + 70t^4 + 3t^3 + 9t^2 + 7t^5 + 0t^4 + 3t^3 + 150t^4 + 150$

In other words, 83

Multiply two integers by multiplying polynomials that represent the integers.

Polynomial multiplication involves *small* integer coefficients. Have split one big multiplication into many small operations.

Example, squaring 839:

$$(8t^{2} + 3t^{1} + 9t^{0})^{2} =$$

$$8t^{2}(8t^{2} + 3t^{1} + 9t^{0}) +$$

$$3t^{1}(8t^{2} + 3t^{1} + 9t^{0}) +$$

$$9t^{0}(8t^{2} + 3t^{1} + 9t^{0}) =$$

$$64t^{4} + 48t^{3} + 153t^{2} + 54t^{1} + 81t^{0}.$$

Oops, product polynomial usually has coefficients > 9. So "carry" extra digits: $ct^j \rightarrow \lfloor c/10 \rfloor t^{j+1} + (c \mod ct^j)$

Example, squaring 839: $64t^4 + 48t^3 + 153t^2 + 54t^1 - 48t^3 + 153t^2 + 54t^4 - 48t^4 + 153t^2 + 154t^4 + 154$

$$64t^4 + 48t^3 + 153t^2 + 62t^1$$

$$64t^4 + 48t^3 + 159t^2 + 2t^1 -$$

$$64t^4 + 63t^3 + 9t^2 + 2t^1 + 1$$

$$70t^4 + 3t^3 + 9t^2 + 2t^1 + 1t$$

$$7t^5 + 0t^4 + 3t^3 + 9t^2 + 2t^1$$

In other words, $839^2 = 7039$

Multiply two integers by multiplying polynomials that represent the integers.

Polynomial multiplication involves *small* integer coefficients. Have split one big multiplication into many small operations.

Example, squaring 839:

$$(8t^{2} + 3t^{1} + 9t^{0})^{2} =$$

$$8t^{2}(8t^{2} + 3t^{1} + 9t^{0}) +$$

$$3t^{1}(8t^{2} + 3t^{1} + 9t^{0}) +$$

$$9t^{0}(8t^{2} + 3t^{1} + 9t^{0}) =$$

$$64t^{4} + 48t^{3} + 153t^{2} + 54t^{1} + 81t^{0}.$$

Oops, product polynomial usually has coefficients > 9. So "carry" extra digits: $ct^j \rightarrow |c/10| \ t^{j+1} + (c \mod 10) t^j$.

Example, squaring 839:

$$64t^4 + 48t^3 + 153t^2 + 54t^1 + 81t^0$$
;
 $64t^4 + 48t^3 + 153t^2 + 62t^1 + 1t^0$;
 $64t^4 + 48t^3 + 159t^2 + 2t^1 + 1t^0$;
 $64t^4 + 63t^3 + 9t^2 + 2t^1 + 1t^0$;
 $70t^4 + 3t^3 + 9t^2 + 2t^1 + 1t^0$;
 $7t^5 + 0t^4 + 3t^3 + 9t^2 + 2t^1 + 1t^0$.

In other words, $839^2 = 703921$.

3

two integers
plying polynomials
resent the integers.

small integer coefficients. lit one big multiplication by small operations.

e, squaring 839:

$$(t^{1} + 9t^{0})^{2} =$$
 $(t^{1} + 9t^{0})^{2} + 3t^{1} + 9t^{0}) +$
 $(t^{1} + 9t^{0})^{2} + 3t^{1} + 9t^{0}) +$
 $(t^{1} + 9t^{0})^{2} + 3t^{1} + 9t^{0}) =$
 $(t^{1} + 9t^{0})^{2} =$
 $(t^{1} + 9t^{0}) +$
 $(t^{1} + 9t^{0}) =$
 $(t^{1} + 9t^{0})$

Oops, product polynomial usually has coefficients > 9.

So "carry" extra digits:

$$ct^j \rightarrow \lfloor c/10 \rfloor t^{j+1} + (c \mod 10)t^j$$
.

Example, squaring 839:

$$64t^4 + 48t^3 + 153t^2 + 54t^1 + 81t^0$$
;
 $64t^4 + 48t^3 + 153t^2 + 62t^1 + 1t^0$;
 $64t^4 + 48t^3 + 159t^2 + 2t^1 + 1t^0$;
 $64t^4 + 63t^3 + 9t^2 + 2t^1 + 1t^0$;
 $70t^4 + 3t^3 + 9t^2 + 2t^1 + 1t^0$;
 $7t^5 + 0t^4 + 3t^3 + 9t^2 + 2t^1 + 1t^0$.

In other words, $839^2 = 703921$.

What op

divide b

.

ers ynomials integers.

lication eger coefficients. multiplication perations.

$$t^{2} = t^{0} + t^{0} + t^{0} + t^{0} = t^{2} + 54t^{1} + 81t^{0}$$

Oops, product polynomial usually has coefficients > 9.

So "carry" extra digits:

$$ct^j o \lfloor c/10 \rfloor t^{j+1} + (c \mod 10)t^j$$
.

Example, squaring 839:

$$64t^{4} + 48t^{3} + 153t^{2} + 54t^{1} + 81t^{0};$$

$$64t^{4} + 48t^{3} + 153t^{2} + 62t^{1} + 1t^{0};$$

$$64t^{4} + 48t^{3} + 159t^{2} + 2t^{1} + 1t^{0};$$

$$64t^{4} + 48t^{3} + 9t^{2} + 2t^{1} + 1t^{0};$$

$$64t^{4} + 63t^{3} + 9t^{2} + 2t^{1} + 1t^{0};$$

$$70t^{4} + 3t^{3} + 9t^{2} + 2t^{1} + 1t^{0};$$

$$7t^{5} + 0t^{4} + 3t^{3} + 9t^{2} + 2t^{1} + 1t^{0}.$$

In other words, $839^2 = 703921$.

What operations w

Oops, product polynomial usually has coefficients > 9.

So "carry" extra digits:

$$ct^{j} \to |c/10| t^{j+1} + (c \mod 10)t^{j}$$
.

Example, squaring 839:

$$64t^4 + 48t^3 + 153t^2 + 54t^1 + 81t^0$$
;
 $64t^4 + 48t^3 + 153t^2 + 62t^1 + 1t^0$;
 $64t^4 + 48t^3 + 159t^2 + 2t^1 + 1t^0$;
 $64t^4 + 63t^3 + 9t^2 + 2t^1 + 1t^0$;
 $70t^4 + 3t^3 + 9t^2 + 2t^1 + 1t^0$;
 $7t^5 + 0t^4 + 3t^3 + 9t^2 + 2t^1 + 1t^0$.

In other words, $839^2 = 703921$.

What operations were used

 $+81t^{0}$.

cients.

ation

Oops, product polynomial usually has coefficients > 9.

So "carry" extra digits: $ct^j \rightarrow |c/10| t^{j+1} + (c \mod 10) t^j$.

Example, squaring 839:

$$64t^4 + 48t^3 + 153t^2 + 54t^1 + 81t^0$$
;
 $64t^4 + 48t^3 + 153t^2 + 62t^1 + 1t^0$;
 $64t^4 + 48t^3 + 159t^2 + 2t^1 + 1t^0$;
 $64t^4 + 63t^3 + 9t^2 + 2t^1 + 1t^0$;
 $70t^4 + 3t^3 + 9t^2 + 2t^1 + 1t^0$;
 $7t^5 + 0t^4 + 3t^3 + 9t^2 + 2t^1 + 1t^0$.

In other words, $839^2 = 703921$.

What operations were used here?

y" extra digits:

$$c/10 \rfloor t^{j+1} + (c \mod 10) t^{j}$$
.

e, squaring 839:

$$8t^3 + 153t^2 + 54t^1 + 81t^0$$
;

$$+8t^3 + 153t^2 + 62t^1 + 1t^0$$
;

$$18t^3 + 159t^2 + 2t^1 + 1t^0$$
;

$$63t^3 + 9t^2 + 2t^1 + 1t^0$$
;

$$3t^3 + 9t^2 + 2t^1 + 1t^0$$
:

$$t^4 + 3t^3 + 9t^2 + 2t^1 + 1t^0$$
.

words,
$$839^2 = 703921$$
.

What operations were used here?

3

What operations were used here?

ynomial ients > 9.

ligits:

$$+(c \mod 10)t^j$$
.

839:

$$t^{2} + 54t^{1} + 81t^{0};$$

 $t^{2} + 62t^{1} + 1t^{0};$
 $t^{2} + 2t^{1} + 1t^{0};$

$$+2t^{1}+1t^{0};$$

$$+2t^{1}+1t^{0};$$

$$9t^2 + 2t^1 + 1t^0$$
.

$$9^2 = 703921.$$

21.

What operations were used here?

perations were used here?

The scaled variation

$$839 = 800 + 30 +$$
value (at $t = 1$) of $800t^2 + 30t^1 + 9t^2$

Squaring: $(800t^2 - 640000t^4 + 48000054^4 + 81t^0)$

Carrying:

$$640000t^4 + 48000$$

 $540t^1 + 81t^0$;

$$640000t^4 + 48000$$

$$620t^1 + 1t^0$$
;

$$700000t^5 + 0t^4 + 3$$

 $20t^1 + 1t^0$.

here? 27 ultiply 72 K 24 62 153 159 63

The scaled variation

$$839 = 800 + 30 + 9 =$$
value (at $t = 1$) of polynom
 $800t^2 + 30t^1 + 9t^0$.

Squaring:
$$(800t^2 + 30t^1 + 9t^4 + 48000t^3 + 15300t^4 + 48000t^3 + 15300t^4 + 81t^0$$
.

Carrying:

$$640000t^4 + 48000t^3 + 1530$$

 $540t^1 + 81t^0$;
 $640000t^4 + 48000t^3 + 1530$
 $620t^1 + 1t^0$; ...

$$700000t^5 + 0t^4 + 3000t^3 + 9$$

 $20t^1 + 1t^0$.

The scaled variation

839 = 800 + 30 + 9 =value (at t = 1) of polynomial $800t^2 + 30t^1 + 9t^0$.

Squaring: $(800t^2 + 30t^1 + 9t^0)^2 = 640000t^4 + 48000t^3 + 15300t^2 + 540t^1 + 81t^0$.

Carrying:

 $640000t^4 + 48000t^3 + 15300t^2 + 540t^1 + 81t^0;$ $640000t^4 + 48000t^3 + 15300t^2 + 620t^1 + 1t^0;$ $700000t^5 + 0t^4 + 3000t^3 + 900t^2 + 20t^1 + 1t^0.$

839 = 800 + 30 + 9 =value (at t = 1) of polynomial $800t^2 + 30t^1 + 9t^0$.

Squaring: $(800t^2 + 30t^1 + 9t^0)^2 =$ $640000t^4 + 48000t^3 + 15300t^2 +$ $540t^1 + 81t^0$.

Carrying:

$$640000t^4 + 48000t^3 + 15300t^2 + 540t^1 + 81t^0;$$

 $640000t^4 + 48000t^3 + 15300t^2 + 620t^1 + 1t^0;$
 $700000t^5 + 0t^4 + 3000t^3 + 900t^2 + 20t^1 + 1t^0.$

What or

subtra 15000

81 27 153 ↓ ∠159

The scaled variation

$$839 = 800 + 30 + 9 =$$
value (at $t = 1$) of polynomial $800t^2 + 30t^1 + 9t^0$.

Squaring:
$$(800t^2 + 30t^1 + 9t^0)^2 = 640000t^4 + 48000t^3 + 15300t^2 + 540t^1 + 81t^0$$
.

Carrying:

$$640000t^4 + 48000t^3 + 15300t^2 + 540t^1 + 81t^0;$$

 $640000t^4 + 48000t^3 + 15300t^2 + 620t^1 + 1t^0;$
 $700000t^5 + 0t^4 + 3000t^3 + 900t^2 + 20t^1 + 1t^0.$

What operations w

The scaled variation

$$839 = 800 + 30 + 9 =$$
value (at $t = 1$) of polynomial $800t^2 + 30t^1 + 9t^0$.

Squaring:
$$(800t^2 + 30t^1 + 9t^0)^2 = 640000t^4 + 48000t^3 + 15300t^2 + 540t^1 + 81t^0$$
.

Carrying:

$$640000t^4 + 48000t^3 + 15300t^2 + 540t^1 + 81t^0;$$

 $640000t^4 + 48000t^3 + 15300t^2 + 620t^1 + 1t^0;$
 $700000t^5 + 0t^4 + 3000t^3 + 900t^2 + 20t^1 + 1t^0.$

What operations were used

The scaled variation

$$839 = 800 + 30 + 9 =$$
value (at $t = 1$) of polynomial $800t^2 + 30t^1 + 9t^0$.

Squaring:
$$(800t^2 + 30t^1 + 9t^0)^2 = 640000t^4 + 48000t^3 + 15300t^2 + 540t^1 + 81t^0$$
.

Carrying:

Carrying.
$$640000t^4 + 48000t^3 + 15300t^2 + 540t^1 + 81t^0$$
; $640000t^4 + 48000t^3 + 15300t^2 + 620t^1 + 1t^0$; $700000t^5 + 0t^4 + 3000t^3 + 900t^2 + 20t^1 + 1t^0$.

What operations were used here?

$$00+30+9=$$
t $t=1$) of polynomial $30t^1+9t^0$.

g:
$$(800t^2 + 30t^1 + 9t^0)^2 = 4 + 48000t^3 + 15300t^2 + 81t^0$$
.

$$t^4 + 48000t^3 + 15300t^2 + 81t^0$$
:

$$^{4} + 48000t^{3} + 15300t^{2} +$$

$$1t^{0};$$
 ...

$$5 + 0t^4 + 3000t^3 + 900t^2 + t^0$$

What operations were used here?

Speedup

$$(\cdot \cdot \cdot + f_2)$$
has coeff
 $f_4 f_0 + f_3$
5 mults,

$$+30t^{1}+9t^{0})^{2} =$$

 $+t^{3}+15300t^{2}+$

$$t^3 + 15300t^2 +$$

$$t^3 + 15300t^2 +$$

 $3000t^3 + 900t^2 +$

What operations were used here?

Speedup: double i

$$(\cdots + f_2t^2 + f_1t^1)$$

has coefficients su
 $f_4f_0 + f_3f_1 + f_2f_2 -$
5 mults, 4 adds.

ial

$$(0)^2 = 0$$

$$0t^{2} +$$

$$0t^{2} +$$

$$00t^2 +$$

Speedup: double inside squa

$$(\cdots + f_2t^2 + f_1t^1 + f_0t^0)^2$$

has coefficients such as $f_4f_0 + f_3f_1 + f_2f_2 + f_1f_3 + f_0$
5 mults, 4 adds.

What operations were used here?

Speedup: double inside squaring

$$(\cdots + f_2t^2 + f_1t^1 + f_0t^0)^2$$

has coefficients such as $f_4f_0 + f_3f_1 + f_2f_2 + f_1f_3 + f_0f_4$.
5 mults, 4 adds.

What operations were used here?

Speedup: double inside squaring

 $(\cdots + f_2t^2 + f_1t^1 + f_0t^0)^2$ has coefficients such as $f_4f_0 + f_3f_1 + f_2f_2 + f_1f_3 + f_0f_4$.

Compute more efficiently as $2f_4f_0 + 2f_3f_1 + f_2f_2$. 3 mults, 2 adds, 2 doublings.

5 mults, 4 adds.

Save $\approx 1/2$ of the mults if there are many coefficients.

perations were used here?

Speedup: double inside squaring

$$(\cdots + f_2t^2 + f_1t^1 + f_0t^0)^2$$

has coefficients such as $f_4f_0 + f_3f_1 + f_2f_2 + f_1f_3 + f_0f_4$.
5 mults, 4 adds.

Compute more efficiently as $2f_4f_0 + 2f_3f_1 + f_2f_2$. 3 mults, 2 adds, 2 doublings.

Save $\approx 1/2$ of the mults if there are many coefficients. Faster a $2(f_4f_0 +$ 3 mults,

Save \approx if there vere used here?

d 1000

Speedup: double inside squaring

$$(\cdots + f_2t^2 + f_1t^1 + f_0t^0)^2$$

has coefficients such as $f_4f_0 + f_3f_1 + f_2f_2 + f_1f_3 + f_0f_4$.
5 mults, 4 adds.

Compute more efficiently as $2f_4f_0 + 2f_3f_1 + f_2f_2$. 3 mults, 2 adds, 2 doublings.

Save $\approx 1/2$ of the mults if there are many coefficients.

Faster alternative: $2(f_4f_0 + f_3f_1) + f_2$ 3 mults, 2 adds, 1

Save $\approx 1/2$ of the if there are many

Speedup: double inside squaring

ıltiply

$$(\cdots + f_2t^2 + f_1t^1 + f_0t^0)^2$$

has coefficients such as $f_4f_0 + f_3f_1 + f_2f_2 + f_1f_3 + f_0f_4$.
5 mults, 4 adds.

Compute more efficiently as $2f_4f_0 + 2f_3f_1 + f_2f_2$. 3 mults, 2 adds, 2 doublings.

Save $\approx 1/2$ of the mults if there are many coefficients.

Faster alternative:

$$2(f_4f_0+f_3f_1)+f_2f_2$$
.

3 mults, 2 adds, 1 doubling.

Save $\approx 1/2$ of the adds if there are many coefficient

 $2(f_4f_0+f_3f_1)+f_2f_2.$

has coefficients such as

3 mults, 2 adds, 1 doubling.

 $f_4f_0 + f_3f_1 + f_2f_2 + f_1f_3 + f_0f_4$

Save $\approx 1/2$ of the adds if there are many coefficients.

5 mults, 4 adds.

Compute more efficiently as

 $2f_4f_0 + 2f_3f_1 + f_2f_2$.

3 mults, 2 adds, 2 doublings.

Save $\approx 1/2$ of the mults if there are many coefficients.

 $(\cdots + f_2 t^2 + f_1 t^1 + f_0 t^0)^2$

has coefficients such as

 $f_4f_0 + f_3f_1 + f_2f_2 + f_1f_3 + f_0f_4$

5 mults, 4 adds.

Compute more efficiently as

 $2f_4f_0 + 2f_3f_1 + f_2f_2$.

3 mults, 2 adds, 2 doublings.

Save $\approx 1/2$ of the mults if there are many coefficients. Faster alternative:

 $2(f_4f_0+f_3f_1)+f_2f_2$.

3 mults, 2 adds, 1 doubling.

Save $\approx 1/2$ of the adds if there are many coefficients.

Even faster alternative:

 $(2f_0)f_4 + (2f_1)f_3 + f_2f_2$ after precomputing $2f_0, 2f_1, \ldots$

3 mults, 2 adds, 0 doublings.

Precomputation ≈ 0.5 doublings.

 $2(f_4f_0+f_3f_1)+f_2f_2$.

3 mults, 2 adds, 1 doubling.

if there are many coefficients.

Save $\approx 1/2$ of the adds

Even faster alternative:

 $(2f_0)f_4 + (2f_1)f_3 + f_2f_2$

Recall 1

ficients such as

Scaled:

 $f_1 + f_2 f_2 + f_1 f_3 + f_0 f_4$.

Alternat

4 adds.

Scaled:

e more efficiently as

 $2f_3f_1 + f_2f_2$.

instead of

2 adds, 2 doublings.

3 mults, 2 adds, 0 doublings.

after precomputing $2f_0, 2f_1, \ldots$

1/2 of the mults are many coefficients.

Precomputation ≈ 0.5 doublings.

Use digi

Small di

Several s easily ha

easily ha

reduce p

nside squaring

 $+ f_0 t^0)^2$

ch as

$$+ f_1 f_3 + f_0 f_4$$
.

iciently as

doublings.

mults coefficients.

Faster alternative:

$$2(f_4f_0+f_3f_1)+f_2f_2.$$

3 mults, 2 adds, 1 doubling.

Save $\approx 1/2$ of the adds if there are many coefficients.

Even faster alternative:

$$(2f_0)f_4 + (2f_1)f_3 + f_2f_2$$
,
after precomputing $2f_0, 2f_1, \dots$

3 mults, 2 adds, 0 doublings. Precomputation \approx 0.5 doublings.

Speedup: allow ne

Recall 159 \mapsto 15,

Scaled: $15900 \mapsto$

Alternative: 159 ⊢

Scaled: $15900 \mapsto$

Use digits $\{-5, -4\}$

instead of $\{0, 1, ...$

Small disadvantag Several small adva easily handle nega

easily handle subti

reduce products a

Faster alternative:

 $2(f_4f_0+f_3f_1)+f_2f_2$.

3 mults, 2 adds, 1 doubling.

Save $\approx 1/2$ of the adds if there are many coefficients.

Even faster alternative:

 $(2f_0)f_4 + (2f_1)f_3 + f_2f_2$ after precomputing $2f_0, 2f_1, \ldots$

3 mults, 2 adds, 0 doublings. Precomputation ≈ 0.5 doublings. Speedup: allow negative coe

Recall 159 \mapsto 15, 9.

Scaled: $15900 \mapsto 15000, 900$

Alternative: $159 \mapsto 16, -1$.

Scaled: $15900 \mapsto 16000, -1$

Use digits $\{-5, -4, ..., 4, 5\}$ instead of $\{0, 1, \ldots, 9\}$.

Small disadvantage: need — Several small advantages: easily handle negative integer easily handle subtraction;

reduce products a bit.

9

Faster alternative:

 $2(f_4f_0+f_3f_1)+f_2f_2$.

3 mults, 2 adds, 1 doubling.

Save $\approx 1/2$ of the adds if there are many coefficients.

Even faster alternative:

 $(2f_0)f_4 + (2f_1)f_3 + f_2f_2$, after precomputing $2f_0, 2f_1, \dots$

3 mults, 2 adds, 0 doublings. Precomputation \approx 0.5 doublings.

Speedup: allow negative coeffs

Recall 159 \mapsto 15, 9.

Scaled: $15900 \mapsto 15000, 900.$

Alternative: $159 \mapsto 16, -1$.

Scaled: $15900 \mapsto 16000, -100$.

Use digits $\{-5, -4, ..., 4, 5\}$

instead of $\{0, 1, ..., 9\}$.

Small disadvantage: need —.

Several small advantages:

easily handle negative integers;

easily handle subtraction;

reduce products a bit.

Iternative:

$$f_3f_1) + f_2f_2$$
.

2 adds, 1 doubling.

1/2 of the adds

are many coefficients.

ster alternative:

$$-(2f_1)f_3+f_2f_2$$
,

ecomputing $2f_0, 2f_1, \ldots$

2 adds, 0 doublings.

outation ≈ 0.5 doublings.

Speedup: allow negative coeffs

Recall $159 \mapsto 15, 9$.

Scaled: $15900 \mapsto 15000, 900.$

Alternative: $159 \mapsto 16, -1$.

Scaled: $15900 \mapsto 16000, -100$.

Use digits $\{-5, -4, ..., 4, 5\}$

instead of $\{0, 1, \ldots, 9\}$.

Small disadvantage: need —.

Several small advantages:

easily handle negative integers;

easily handle subtraction;

reduce products a bit.

Speedup

Computing multiply square c

e.g.
$$a = (3t^2 + 1t)$$

$$6t^4 + 23$$

carry: 8

As befor

$$64t^4 + 4$$

$$7t^5 + 0t$$

$$+: 7t^5 +$$

$$7t^5 + 8t$$

doubling.

adds coefficients.

ative:

 $-f_2f_2$,

 $g 2f_0, 2f_1, \dots$

doublings.

0.5 doublings.

Speedup: allow negative coeffs

Recall 159 \mapsto 15, 9.

Scaled: $15900 \mapsto 15000, 900.$

Alternative: $159 \mapsto 16, -1$.

Scaled: $15900 \mapsto 16000, -100.$

Use digits $\{-5, -4, ..., 4, 5\}$

instead of $\{0, 1, ..., 9\}$.

Small disadvantage: need —.

Several small advantages:

easily handle negative integers;

easily handle subtraction;

reduce products a bit.

Speedup: delay ca

Computing (e.g.) multiply a, b polyr square c poly, cari

e.g. a = 314, b = $(3t^2+1t^1+4t^0)(2$

 $6t^4 + 23t^3 + 18t^2$

carry: $8t^4 + 5t^3 +$

As before $(8t^2 + 3)$

 $64t^4 + 48t^3 + 153t$

 $7t^5 + 0t^4 + 3t^3 +$

 $+: 7t^5 + 8t^4 + 8t^3 -$

 $7t^5 + 8t^4 + 9t^3 +$

lings.

Speedup: allow negative coeffs

Recall $159 \mapsto 15, 9$.

Scaled: $15900 \mapsto 15000, 900.$

Alternative: $159 \mapsto 16, -1$.

Scaled: $15900 \mapsto 16000, -100$.

Use digits $\{-5, -4, ..., 4, 5\}$ instead of $\{0, 1, ..., 9\}$.

Small disadvantage: need —.

Several small advantages:

easily handle negative integers;

easily handle subtraction;

reduce products a bit.

Speedup: delay carries

Computing (e.g.) big ab + c multiply a, b polynomials, casquare c poly, carry, add, ca

e.g.
$$a = 314$$
, $b = 271$, $c = (3t^2 + 1t^1 + 4t^0)(2t^2 + 7t^1 + 16t^4 + 23t^3 + 18t^2 + 29t^1 + 20t^3 + 20t^3 + 20t^3 + 20t^3 + 20t^4 + 20t^3 + 20t^3 + 20t^4 + 20t^3 + 20t^3 + 20t^4 + 20t^3 + 20t^4 + 20t^4 + 20t^3 + 20t^4 + 20$

As before $(8t^2 + 3t^1 + 9t^0)^2$ $64t^4 + 48t^3 + 153t^2 + 54t^1 - 7t^5 + 0t^4 + 3t^3 + 9t^2 + 2t^1$

+:
$$7t^5 + 8t^4 + 8t^3 + 9t^2 + 11t$$

 $7t^5 + 8t^4 + 9t^3 + 0t^2 + 1t^1$

Recall 159 \mapsto 15, 9.

Scaled: $15900 \mapsto 15000, 900.$

Alternative: $159 \mapsto 16, -1$.

Scaled: $15900 \mapsto 16000, -100$.

Use digits $\{-5, -4, ..., 4, 5\}$ instead of $\{0, 1, ..., 9\}$.

Small disadvantage: need —.

Several small advantages:

easily handle negative integers;

easily handle subtraction;

reduce products a bit.

Speedup: delay carries

Computing (e.g.) big $ab + c^2$: multiply a, b polynomials, carry, square c poly, carry, add, carry.

e.g. a = 314, b = 271, c = 839: $(3t^2 + 1t^1 + 4t^0)(2t^2 + 7t^1 + 1t^0) = 6t^4 + 23t^3 + 18t^2 + 29t^1 + 4t^0$; carry: $8t^4 + 5t^3 + 0t^2 + 9t^1 + 4t^0$.

As before $(8t^2 + 3t^1 + 9t^0)^2 = 64t^4 + 48t^3 + 153t^2 + 54t^1 + 81t^0;$ $7t^5 + 0t^4 + 3t^3 + 9t^2 + 2t^1 + 1t^0.$

+:
$$7t^5 + 8t^4 + 8t^3 + 9t^2 + 11t^1 + 5t^0$$
;
 $7t^5 + 8t^4 + 9t^3 + 0t^2 + 1t^1 + 5t^0$.

 $59 \mapsto 15, 9.$

 $15900 \mapsto 15000, 900.$

ive: $159 \mapsto 16, -1$.

 $15900 \mapsto 16000, -100.$

ts $\{-5, -4, \dots, 4, 5\}$

of $\{0, 1, \dots, 9\}$.

sadvantage: need —.

small advantages:

indle negative integers;

indle subtraction;

roducts a bit.

Speedup: delay carries

Computing (e.g.) big $ab + c^2$: multiply a, b polynomials, carry, square c poly, carry, add, carry.

e.g. a = 314, b = 271, c = 839: $(3t^2+1t^1+4t^0)(2t^2+7t^1+1t^0) = 6t^4+23t^3+18t^2+29t^1+4t^0$; carry: $8t^4+5t^3+0t^2+9t^1+4t^0$.

As before $(8t^2 + 3t^1 + 9t^0)^2 = 64t^4 + 48t^3 + 153t^2 + 54t^1 + 81t^0;$ $7t^5 + 0t^4 + 3t^3 + 9t^2 + 2t^1 + 1t^0.$

+:
$$7t^5 + 8t^4 + 8t^3 + 9t^2 + 11t^1 + 5t^0$$
;
 $7t^5 + 8t^4 + 9t^3 + 0t^2 + 1t^1 + 5t^0$.

Faster: square c $(6t^4 + 2)$

$$(64t^4 + 4)$$
= $70t^4 + 4$

$$7t^5 + 8t$$

Eliminat Outweig slightly

Importar multiplic to reduc

but carribefore a

15000, <mark>900</mark>.

 \rightarrow 16, -1.

16000, -100.

4, . . . , 4, 5} . , 9}.

e: need -.

ntages:

tive integers;

raction;

bit.

Speedup: delay carries

Computing (e.g.) big $ab + c^2$: multiply a, b polynomials, carry, square c poly, carry, add, carry.

e.g. a = 314, b = 271, c = 839: $(3t^2 + 1t^1 + 4t^0)(2t^2 + 7t^1 + 1t^0) = 6t^4 + 23t^3 + 18t^2 + 29t^1 + 4t^0$; carry: $8t^4 + 5t^3 + 0t^2 + 9t^1 + 4t^0$.

As before $(8t^2 + 3t^1 + 9t^0)^2 = 64t^4 + 48t^3 + 153t^2 + 54t^1 + 81t^0;$ $7t^5 + 0t^4 + 3t^3 + 9t^2 + 2t^1 + 1t^0.$

+:
$$7t^5 + 8t^4 + 8t^3 + 9t^2 + 11t^1 + 5t^0$$
;
 $7t^5 + 8t^4 + 9t^3 + 0t^2 + 1t^1 + 5t^0$.

Faster: multiply *a* square *c* polynomi

$$(6t^{4} + 23t^{3} + 18t^{2})$$

$$(64t^{4} + 48t^{3} + 153)$$

$$= 70t^{4} + 71t^{3} + 175$$

$$7t^{5} + 8t^{4} + 9t^{3} + 175$$

Eliminate intermed Outweighs cost of slightly larger coef

Important to carry multiplications (ar to reduce coefficie but carries are usu before additions, s

effs

).

00. ເ

•

ers;

Speedup: delay carries

Computing (e.g.) big $ab + c^2$: multiply a, b polynomials, carry, square c poly, carry, add, carry.

e.g.
$$a = 314$$
, $b = 271$, $c = 839$:
 $(3t^2+1t^1+4t^0)(2t^2+7t^1+1t^0) = 6t^4+23t^3+18t^2+29t^1+4t^0$;
carry: $8t^4+5t^3+0t^2+9t^1+4t^0$.

As before $(8t^2 + 3t^1 + 9t^0)^2 = 64t^4 + 48t^3 + 153t^2 + 54t^1 + 81t^0;$ $7t^5 + 0t^4 + 3t^3 + 9t^2 + 2t^1 + 1t^0.$

+:
$$7t^5 + 8t^4 + 8t^3 + 9t^2 + 11t^1 + 5t^0$$
; $7t^5 + 8t^4 + 9t^3 + 0t^2 + 1t^1 + 5t^0$.

Faster: multiply a, b polyno square c polynomial, add, ca

$$(6t^{4} + 23t^{3} + 18t^{2} + 29t^{1} + 48t^{4} + 48t^{3} + 153t^{2} + 54t^{1} - 48t^{4} + 71t^{3} + 171t^{2} + 83t^{1} - 48t^{4} + 9t^{3} + 0t^{2} + 1t^{1}$$

Eliminate intermediate carried Outweighs cost of handling slightly larger coefficients.

Important to carry between multiplications (and squaring to reduce coefficient size; but carries are usually a bad before additions, subtraction

Speedup: delay carries

Computing (e.g.) big $ab + c^2$: multiply a, b polynomials, carry, square c poly, carry, add, carry.

e.g.
$$a = 314$$
, $b = 271$, $c = 839$:
 $(3t^2 + 1t^1 + 4t^0)(2t^2 + 7t^1 + 1t^0) = 6t^4 + 23t^3 + 18t^2 + 29t^1 + 4t^0$;
carry: $8t^4 + 5t^3 + 0t^2 + 9t^1 + 4t^0$.

As before $(8t^2 + 3t^1 + 9t^0)^2 = 64t^4 + 48t^3 + 153t^2 + 54t^1 + 81t^0$; $7t^5 + 0t^4 + 3t^3 + 9t^2 + 2t^1 + 1t^0$. +: $7t^5 + 8t^4 + 8t^3 + 9t^2 + 11t^1 + 5t^0$; $7t^5 + 8t^4 + 9t^3 + 0t^2 + 1t^1 + 5t^0$. Faster: multiply *a*, *b* polynomials, square *c* polynomial, add, carry.

$$(6t^{4} + 23t^{3} + 18t^{2} + 29t^{1} + 4t^{0}) + (64t^{4} + 48t^{3} + 153t^{2} + 54t^{1} + 81t^{0}) + (64t^{4} + 48t^{3} + 153t^{2} + 54t^{1} + 81t^{0}) = 70t^{4} + 71t^{3} + 171t^{2} + 83t^{1} + 85t^{0};$$

$$7t^{5} + 8t^{4} + 9t^{3} + 0t^{2} + 1t^{1} + 5t^{0}.$$

Eliminate intermediate carries.

Outweighs cost of handling slightly larger coefficients.

Important to carry between multiplications (and squarings) to reduce coefficient size; but carries are usually a bad idea before additions, subtractions, etc.

: delay carries

ing (e.g.) big $ab + c^2$:

a, b polynomials, carry, poly, carry, add, carry.

$$a^{2} 314, b = 271, c = 839;$$

 $a^{1} + 4t^{0})(2t^{2} + 7t^{1} + 1t^{0}) = 8t^{3} + 18t^{2} + 29t^{1} + 4t^{0};$
 $a^{2} t^{4} + 5t^{3} + 0t^{2} + 9t^{1} + 4t^{0}.$

 $(8t^2 + 3t^1 + 9t^0)^2 =$

$$8t^{3} + 153t^{2} + 54t^{1} + 81t^{0};$$

 $t^{4} + 3t^{3} + 9t^{2} + 2t^{1} + 1t^{0}.$
 $t^{4} + 8t^{3} + 9t^{2} + 11t^{1} + 5t^{0};$
 $t^{4} + 9t^{3} + 0t^{2} + 1t^{1} + 5t^{0}.$

Faster: multiply *a*, *b* polynomials, square *c* polynomial, add, carry.

$$(6t^{4} + 23t^{3} + 18t^{2} + 29t^{1} + 4t^{0}) + (64t^{4} + 48t^{3} + 153t^{2} + 54t^{1} + 81t^{0}) + (64t^{4} + 48t^{3} + 153t^{2} + 54t^{1} + 81t^{0}) = 70t^{4} + 71t^{3} + 171t^{2} + 83t^{1} + 85t^{0};$$

$$7t^{5} + 8t^{4} + 9t^{3} + 0t^{2} + 1t^{1} + 5t^{0}.$$

Eliminate intermediate carries.

Outweighs cost of handling slightly larger coefficients.

Important to carry between multiplications (and squarings) to reduce coefficient size; but carries are usually a bad idea before additions, subtractions, etc.

Speedup

How mu $f = f_0 + g = g_0 - g$ Using the 400 coef

Faster: $F_0 = f_0 \cdot F_1 = f_{10}$

Similarly

Then fg + $(F_0G_0$

rries

big $ab + c^2$:
nomials, carry,
ry, add, carry.

$$271, c = 839:$$

$$t^{2}+7t^{1}+1t^{0}) =$$

$$+29t^{1}+4t^{0};$$

$$0t^{2}+9t^{1}+4t^{0}.$$

$$3t^{1} + 9t^{0})^{2} =$$
 $t^{2} + 54t^{1} + 81t^{0};$
 $9t^{2} + 2t^{1} + 1t^{0}.$
 $+9t^{2} + 11t^{1} + 5t^{0};$

 $0t^2 + 1t^1 + 5t^0$.

Faster: multiply *a*, *b* polynomials, square *c* polynomial, add, carry.

$$(6t^{4} + 23t^{3} + 18t^{2} + 29t^{1} + 4t^{0}) + (64t^{4} + 48t^{3} + 153t^{2} + 54t^{1} + 81t^{0}) + (64t^{4} + 48t^{3} + 153t^{2} + 54t^{1} + 81t^{0}) = 70t^{4} + 71t^{3} + 171t^{2} + 83t^{1} + 85t^{0};$$

$$7t^{5} + 8t^{4} + 9t^{3} + 0t^{2} + 1t^{1} + 5t^{0}.$$

Eliminate intermediate carries.

Outweighs cost of handling slightly larger coefficients.

Important to carry between multiplications (and squarings) to reduce coefficient size; but carries are usually a bad idea before additions, subtractions, etc.

Speedup: polynom

How much work to $f = f_0 + f_1 t + \cdots$ $g = g_0 + g_1 t + \cdots$

Using the obvious 400 coeff mults, 3

Faster: Write f as $F_0 = f_0 + f_1 t + \cdots$ $F_1 = f_{10} + f_{11} t + \cdots$

Then $fg = (F_0 + F_0)^{-1}$ + $(F_0G_0 - F_1G_1t^{-1})^{-1}$

Similarly write g a

erry, rry.

839: t^{0}) = $4t^{0}$; $+4t^{0}$.

2 =

 $+81t^{0};$ $+1t^{0}.$

 $^{1}+5t^{0};$ $+5t^{0}.$

Faster: multiply *a*, *b* polynomials, square *c* polynomial, add, carry.

$$(6t^{4} + 23t^{3} + 18t^{2} + 29t^{1} + 4t^{0}) + (64t^{4} + 48t^{3} + 153t^{2} + 54t^{1} + 81t^{0}) + (64t^{4} + 48t^{3} + 153t^{2} + 54t^{1} + 81t^{0}) = 70t^{4} + 71t^{3} + 171t^{2} + 83t^{1} + 85t^{0};$$

$$7t^{5} + 8t^{4} + 9t^{3} + 0t^{2} + 1t^{1} + 5t^{0}.$$

Eliminate intermediate carries.

Outweighs cost of handling slightly larger coefficients.

Important to carry between multiplications (and squarings) to reduce coefficient size; but carries are usually a bad idea before additions, subtractions, etc.

Speedup: polynomial Karats

How much work to multiply $f = f_0 + f_1 t + \cdots + f_{19} t^{19}$, $g = g_0 + g_1 t + \cdots + g_{19} t^{19}$

Using the obvious method: 400 coeff mults, 361 coeff a

Faster: Write f as $F_0 + F_1 t$ $F_0 = f_0 + f_1 t + \cdots + f_9 t^9$; $F_1 = f_{10} + f_{11} t + \cdots + f_{19} t^9$ Similarly write g as $G_0 + G_1$

Then
$$fg = (F_0 + F_1)(G_0 + F_1)(F_0G_0 - F_1G_1t^{10})(1 - t^{10})$$

Faster: multiply *a*, *b* polynomials, square *c* polynomial, add, carry.

$$(6t^{4} + 23t^{3} + 18t^{2} + 29t^{1} + 4t^{0}) + (64t^{4} + 48t^{3} + 153t^{2} + 54t^{1} + 81t^{0}) + (64t^{4} + 48t^{3} + 153t^{2} + 54t^{1} + 81t^{0}) = 70t^{4} + 71t^{3} + 171t^{2} + 83t^{1} + 85t^{0};$$

$$7t^{5} + 8t^{4} + 9t^{3} + 0t^{2} + 1t^{1} + 5t^{0}.$$

Eliminate intermediate carries.

Outweighs cost of handling slightly larger coefficients.

Important to carry between multiplications (and squarings) to reduce coefficient size; but carries are usually a bad idea before additions, subtractions, etc.

Speedup: polynomial Karatsuba

How much work to multiply polys $f = f_0 + f_1 t + \cdots + f_{19} t^{19}$, $g = g_0 + g_1 t + \cdots + g_{19} t^{19}$?

Using the obvious method: 400 coeff mults, 361 coeff adds.

Faster: Write f as $F_0 + F_1 t^{10}$; $F_0 = f_0 + f_1 t + \cdots + f_9 t^9$; $F_1 = f_{10} + f_{11} t + \cdots + f_{19} t^9$. Similarly write g as $G_0 + G_1 t^{10}$.

Then
$$fg = (F_0 + F_1)(G_0 + G_1)t^{10} + (F_0G_0 - F_1G_1t^{10})(1 - t^{10}).$$

multiply a, b polynomials, polynomial, add, carry.

$$3t^{3} + 18t^{2} + 29t^{1} + 4t^{0}) + 48t^{3} + 153t^{2} + 54t^{1} + 81t^{0}) + 71t^{3} + 171t^{2} + 83t^{1} + 85t^{0};$$

 $t^{4} + 9t^{3} + 0t^{2} + 1t^{1} + 5t^{0}.$

e intermediate carries.

hs cost of handling arger coefficients.

nt to carry between cations (and squarings) e coefficient size; ies are usually a bad idea dditions, subtractions, etc.

Speedup: polynomial Karatsuba

How much work to multiply polys $f = f_0 + f_1 t + \cdots + f_{19} t^{19}$ $g = g_0 + g_1 t + \cdots + g_{19} t^{19}$?

Using the obvious method: 400 coeff mults, 361 coeff adds.

Faster: Write f as $F_0 + F_1 t^{10}$; $F_0 = f_0 + f_1 t + \cdots + f_0 t^9$: $F_1 = f_{10} + f_{11}t + \cdots + f_{19}t^9$. Similarly write g as $G_0 + G_1 t^{10}$.

Then
$$fg = (F_0 + F_1)(G_0 + G_1)t^{10} + (F_0G_0 - F_1G_1t^{10})(1 - t^{10}).$$

20 adds 300 mul F_0G_0 , F_1 243 add 9 adds f with sub and with 19 adds

Total 30 Larger c still save

19 adds

Can app as poly , b polynomials, al, add, carry.

$$+29t^{1}+4t^{0})+$$
 $t^{2}+54t^{1}+81t^{0})$
 $1t^{2}+83t^{1}+85t^{0};$
 $0t^{2}+1t^{1}+5t^{0}.$

diate carries.

handling ficients.

between

d squarings)

nt size;

ally a bad idea ubtractions, etc.

Speedup: polynomial Karatsuba

How much work to multiply polys $f = f_0 + f_1 t + \cdots + f_{19} t^{19}$, $g = g_0 + g_1 t + \cdots + g_{19} t^{19}$?

Using the obvious method: 400 coeff mults, 361 coeff adds.

Faster: Write f as $F_0 + F_1 t^{10}$; $F_0 = f_0 + f_1 t + \cdots + f_9 t^9$; $F_1 = f_{10} + f_{11} t + \cdots + f_{19} t^9$. Similarly write g as $G_0 + G_1 t^{10}$.

Then
$$fg = (F_0 + F_1)(G_0 + G_1)t^{10} + (F_0G_0 - F_1G_1t^{10})(1 - t^{10}).$$

20 adds for $F_0 + R$ 300 mults for thre F_0G_0 , F_1G_1 , $(F_0 +$ 243 adds for those 9 adds for F_0G_0 with subs counted and with delayed i 19 adds for \cdots (1 19 adds to finish.

Total 300 mults, 3 Larger coefficients still saves time.

Can apply idea red as poly degree gro

mials, arry.

 $4t^{0})+\ +81t^{0}) +\ +85t^{0};$

 $+5t^{0}$.

es.

gs)

idea s, etc.

Speedup: polynomial Karatsuba

How much work to multiply polys $f = f_0 + f_1 t + \cdots + f_{19} t^{19}$, $g = g_0 + g_1 t + \cdots + g_{19} t^{19}$?

Using the obvious method: 400 coeff mults, 361 coeff adds.

Faster: Write f as $F_0 + F_1 t^{10}$; $F_0 = f_0 + f_1 t + \cdots + f_9 t^9$; $F_1 = f_{10} + f_{11} t + \cdots + f_{19} t^9$. Similarly write g as $G_0 + G_1 t^{10}$.

Then
$$fg = (F_0 + F_1)(G_0 + G_1)t^{10} + (F_0G_0 - F_1G_1t^{10})(1 - t^{10}).$$

20 adds for $F_0 + F_1$, $G_0 + G_1$ 300 mults for three products F_0G_0 , F_1G_1 , $(F_0 + F_1)(G_0 + G_1)$ 243 adds for those products 9 adds for $F_0G_0 - F_1G_1t^{10}$ with subs counted as adds and with delayed negations. 19 adds for $\cdots (1 - t^{10})$. 19 adds to finish.

Total 300 mults, 310 adds. Larger coefficients, slight ex still saves time.

Can apply idea recursively as poly degree grows.

Speedup: polynomial Karatsuba

How much work to multiply polys $f = f_0 + f_1 t + \cdots + f_{19} t^{19}$, $g = g_0 + g_1 t + \cdots + g_{19} t^{19}$?

Using the obvious method: 400 coeff mults, 361 coeff adds.

Faster: Write f as $F_0 + F_1 t^{10}$; $F_0 = f_0 + f_1 t + \cdots + f_9 t^9$; $F_1 = f_{10} + f_{11} t + \cdots + f_{19} t^9$. Similarly write g as $G_0 + G_1 t^{10}$.

Then
$$fg = (F_0 + F_1)(G_0 + G_1)t^{10} + (F_0G_0 - F_1G_1t^{10})(1 - t^{10}).$$

20 adds for $F_0 + F_1$, $G_0 + G_1$. 300 mults for three products F_0G_0 , F_1G_1 , $(F_0 + F_1)(G_0 + G_1)$. 243 adds for those products. 9 adds for $F_0G_0 - F_1G_1t^{10}$ with subs counted as adds and with delayed negations. 19 adds for $\cdots (1 - t^{10})$. 19 adds to finish.

Total 300 mults, 310 adds. Larger coefficients, slight expense; still saves time.

Can apply idea recursively as poly degree grows.

: polynomial Karatsuba

ch work to multiply polys $f_1t + \cdots + f_{19}t^{19}$,

$$+g_1t+\cdots+g_{19}t^{19}$$
?

e obvious method:

f mults, 361 coeff adds.

Write f as $F_0 + F_1 t^{10}$;

$$+ f_1 t + \cdots + f_9 t^9;$$

$$+ f_{11}t + \cdots + f_{19}t^9$$
.

write g as $G_0+G_1t^{10}$.

$$f = (F_0 + F_1)(G_0 + G_1)t^{10}$$

$$(1 - F_1G_1t^{10})(1 - t^{10}).$$

20 adds for $F_0 + F_1$, $G_0 + G_1$. 300 mults for three products F_0G_0 , F_1G_1 , $(F_0 + F_1)(G_0 + G_1)$.

243 adds for those products.

9 adds for $F_0G_0 - F_1G_1t^{10}$ with subs counted as adds and with delayed negations.

19 adds for $\cdots (1 - t^{10})$.

19 adds to finish.

Total 300 mults, 310 adds. Larger coefficients, slight expense; still saves time.

Can apply idea recursively as poly degree grows.

Many ot in polyn "Toom,"
Increasing

polynom $O(n \lg n)$ to comp

Useful for that occurs In some But Kar

for prime on most

nial Karatsuba

o multiply polys $+f_{19}t^{19}$, $+g_{19}t^{19}$?

method:

61 coeff adds.

$$F_0 + F_1 t^{10};$$

 $+ f_9 t^9;$
 $+ + f_{19} t^9.$
 $+ G_1 t^{10}.$

$$F_1)(G_0+G_1)t^{10}$$

 $f^{(0)}(1-t^{10}).$

20 adds for $F_0 + F_1$, $G_0 + G_1$. 300 mults for three products F_0G_0 , F_1G_1 , $(F_0 + F_1)(G_0 + G_1)$. 243 adds for those products. 9 adds for $F_0G_0 - F_1G_1t^{10}$ with subs counted as adds and with delayed negations. 19 adds for $\cdots (1 - t^{10})$. 19 adds to finish.

Total 300 mults, 310 adds. Larger coefficients, slight expense; still saves time.

Can apply idea recursively as poly degree grows.

Many other algebrance in polynomial multiful "Toom," "FFT,"

Increasingly imporpolynomial degree $O(n \lg n \lg \lg n)$ coefto compute n-coef

Useful for sizes of that occur in crypton In some cases, yes But Karatsuba is to for prime-field ECO on most current Control of the control o

<u>suba</u>

polys

?

dds.

10;

 t^{10}

 $G_1)t^{10}$

20 adds for $F_0 + F_1$, $G_0 + G_1$.

300 mults for three products

 F_0G_0 , F_1G_1 , $(F_0+F_1)(G_0+G_1)$.

243 adds for those products.

9 adds for $F_0G_0 - F_1G_1t^{10}$

with subs counted as adds and with delayed negations.

19 adds for $\cdots (1 - t^{10})$.

19 adds to finish.

Total 300 mults, 310 adds.

Larger coefficients, slight expense; still saves time.

Can apply idea recursively as poly degree grows.

Many other algebraic speeduin polynomial multiplication: "Toom," "FFT," etc.

Increasingly important as polynomial degree grows. $O(n \lg n \lg \lg n)$ coeff operation to compute n-coeff product.

Useful for sizes of *n* that occur in cryptography? In some cases, yes!
But Karatsuba is the limit for prime-field ECC/ECDLP on most current CPUs.

20 adds for $F_0 + F_1$, $G_0 + G_1$. 300 mults for three products F_0G_0 , F_1G_1 , $(F_0 + F_1)(G_0 + G_1)$. 243 adds for those products. 9 adds for $F_0G_0 - F_1G_1t^{10}$ with subs counted as adds and with delayed negations. 19 adds for $\cdots (1 - t^{10})$. 19 adds to finish.

Total 300 mults, 310 adds. Larger coefficients, slight expense; still saves time.

Can apply idea recursively as poly degree grows.

Many other algebraic speedups in polynomial multiplication: "Toom," "FFT," etc.

Increasingly important as polynomial degree grows. $O(n \lg n \lg \lg n)$ coeff operations to compute n-coeff product.

Useful for sizes of *n* that occur in cryptography? In some cases, yes!
But Karatsuba is the limit for prime-field ECC/ECDLP on most current CPUs.

14

for $F_0 + F_1$, $G_0 + G_1$. ts for three products $(G_1, (F_0 + F_1)(G_0 + G_1))$. Is for those products. or $F_0G_0 - F_1G_1t^{10}$

is counted as adds delayed negations. for $\cdots (1 - t^{10})$.

to finish.

0 mults, 310 adds. oefficients, slight expense; es time.

ly idea recursively degree grows.

Many other algebraic speedups in polynomial multiplication: "Toom," "FFT," etc.

Increasingly important as polynomial degree grows. $O(n \lg n \lg \lg n)$ coeff operations to compute n-coeff product.

Useful for sizes of *n* that occur in cryptography? In some cases, yes!
But Karatsuba is the limit for prime-field ECC/ECDLP on most current CPUs.

<u>Modular</u>

How to

Can use f mod p
Can mul

easily ad Slight sp

"Montgo

$$F_1$$
, $G_0 + G_1$.
e products

$$-F_1)(G_0+G_1).$$

products.

$$F_1G_1t^{10}$$

as adds

negations.

$$-t^{10}).$$

310 adds.

, slight expense;

cursively

WS.

Many other algebraic speedups in polynomial multiplication: "Toom," "FFT," etc.

Increasingly important as polynomial degree grows. $O(n \lg n \lg \lg n)$ coeff operations to compute n-coeff product.

Useful for sizes of *n* that occur in cryptography? In some cases, yes!
But Karatsuba is the limit for prime-field ECC/ECDLP on most current CPUs.

Modular reduction

How to compute fCan use definition $f \mod p = f - p$ Can multiply f by precomputed 1/peasily adjust to ob-

Slight speedup: "Z"
"Montgomery red

 G_1 .

Many other algebraic speedups in polynomial multiplication: "Toom," "FFT," etc.

Increasingly important as polynomial degree grows. $O(n \lg n \lg \lg n)$ coeff operations to compute n-coeff product.

Useful for sizes of *n* that occur in cryptography? In some cases, yes!
But Karatsuba is the limit for prime-field ECC/ECDLP on most current CPUs.

pense;

Modular reduction

How to compute $f \mod p$?

Can use definition: $f \mod p = f - p \lfloor f/p \rfloor$. Can multiply f by a precomputed 1/p approximates a sily adjust to obtain $\lfloor f/p \rfloor$

Slight speedup: "2-adic invention "2-adic invent

Many other algebraic speedups in polynomial multiplication: "Toom," "FFT," etc.

Increasingly important as polynomial degree grows. $O(n \lg n \lg \lg n)$ coeff operations to compute n-coeff product.

Useful for sizes of *n* that occur in cryptography? In some cases, yes!
But Karatsuba is the limit for prime-field ECC/ECDLP on most current CPUs.

Modular reduction

How to compute $f \mod p$?

Can use definition:

 $f \mod p = f - p \lfloor f/p \rfloor$.

Can multiply f by a

precomputed 1/p approximation;

easily adjust to obtain $\lfloor f/p \rfloor$.

Slight speedup: "2-adic inverse"; "Montgomery reduction."

ther algebraic speedups omial multiplication:

""FFT," etc.

ngly important as ial degree grows.

lg lg *n*) coeff operations ute *n*-coeff product.

or sizes of *n* our in cryptography? cases, yes!

e-field ECC/ECDLP current CPUs.

Modular reduction

How to compute $f \mod p$?

Can use definition:

 $f \mod p = f - p \lfloor f/p \rfloor$.

Can multiply f by a precomputed 1/p approximation; easily adjust to obtain |f/p|.

Slight speedup: "2-adic inverse"; "Montgomery reduction."

e.g. 314

Precomp | 100000

= 36787

Compute 314159

= 11557

Compute 3141592

= 57823

Oops, to

578230

306402

```
raic speedups tiplication: etc.
```

tant as

grows.
eff operations

f product.

n +00

tography?

! :he limit

C/ECDLP PUs.

Modular reduction

How to compute $f \mod p$?

Can use definition:

 $f \mod p = f - p \lfloor f/p \rfloor$.

Can multiply f by a precomputed 1/p approximation; easily adjust to obtain |f/p|.

Slight speedup: "2-adic inverse"; "Montgomery reduction."

e.g. 31415926535

Precompute | 10000000000/2

= 3678796.

Compute

314159 · 3678796

= 1155726872564

Compute

314159265358 - 1

= 578230.

Oops, too big:

578230 - 271828

306402 - 271828

ıps

ons

Modular reduction

How to compute *f* mod *p*?

Can use definition:

 $f \mod p = f - p \lfloor f/p \rfloor$.

Can multiply f by a

precomputed 1/p approximation;

easily adjust to obtain $\lfloor f/p \rfloor$.

Slight speedup: "2-adic inverse"; "Montgomery reduction."

e.g. 314159265358 mod 271

Precompute

 $\lfloor 10000000000000/271828 \rfloor$

= 3678796.

Compute

314159 · 3678796

= 1155726872564.

Compute

 $314159265358 - 1155726 \cdot 2$

= 578230.

Oops, too big:

578230 - 271828 = 306402

306402 - 271828 = 34574.

Modular reduction

How to compute $f \mod p$?

Can use definition:

 $f \mod p = f - p \lfloor f/p \rfloor$.

Can multiply f by a

precomputed 1/p approximation;

easily adjust to obtain $\lfloor f/p \rfloor$.

Slight speedup: "2-adic inverse"; "Montgomery reduction."

e.g. 314159265358 mod 271828:

Precompute

 $\lfloor 10000000000000/271828 \rfloor$

= 3678796.

Compute

314159 · 3678796

= 1155726872564.

Compute

 $314159265358 - 1155726 \cdot 271828$

= 578230.

Oops, too big:

578230 - 271828 = 306402.

306402 - 271828 = 34574.

reduction

compute $f \mod p$?

definition:

$$p = f - p \lfloor f/p \rfloor$$
.

tiply f by a

outed 1/p approximation;

ljust to obtain $\lfloor f/p \rfloor$.

peedup: "2-adic inverse";

omery reduction."

e.g. 314159265358 mod 271828:

Precompute

 $\lfloor 10000000000000/271828 \rfloor$

= 3678796.

Compute

314159 · 3678796

= 1155726872564.

Compute

 $314159265358 - 1155726 \cdot 271828$

= 578230.

Oops, too big:

578230 - 271828 = 306402.

306402 - 271828 = 34574.

to make Special

We can

p is chos

for \mathbf{F}_{p}^{*} , (but not

Curve25

NIST P-

secp112

gls1271:

degree-2

```
f mod p?

f/p:
a
approximation;
tain \lfloor f/p \rfloor.
```

e.g. 314159265358 mod 271828:

Precompute
[10000000000000/271828]
= 3678796.

Compute
314159 · 3678796
= 1155726872564.

Compute

314159265358 — 1155726 · 271828

= 578230.

Oops, too big:

578230 - 271828 = 306402. 306402 - 271828 = 34574.

We can do better:

p is chosen with a

to make f mod p

Special primes hur for \mathbf{F}_p^* , Clock (\mathbf{F}_p) , but not for elliptic

Curve25519: *p* =

NIST P-224: p =

secp112r1: p = (2 Divides special for Divide

gls1271: $p = 2^{127}$ degree-2 extension

tion;

erse";

17

e.g. 314159265358 mod 271828:

Precompute

 $\lfloor 10000000000000/271828 \rfloor$

= 3678796.

Compute

314159 · 3678796

= 1155726872564.

Compute

 $314159265358 - 1155726 \cdot 271828$

= 578230.

Oops, too big:

578230 - 271828 = 306402.

306402 - 271828 = 34574.

We can do better: normally p is chosen with a special for to make f mod p much fast

Special primes hurt security for \mathbf{F}_{p}^{*} , $\text{Clock}(\mathbf{F}_{p})$, etc., but not for elliptic curves!

Curve 25519: $p = 2^{255} - 19$.

NIST P-224: $p = 2^{224} - 2^{96}$

secp112r1: $p = (2^{128} - 3)/3$ Divides special form.

gls1271: $p = 2^{127} - 1$, with degree-2 extension (a bit sca

e.g. 314159265358 mod 271828:

Precompute

|100000000000/271828|

= 3678796.

Compute

314159 - 3678796

= 1155726872564.

Compute

 $314159265358 - 1155726 \cdot 271828$

= 578230.

Oops, too big:

578230 - 271828 = 306402.

306402 - 271828 = 34574.

We can do better: normally p is chosen with a special form to make f mod p much faster.

Special primes hurt security for \mathbf{F}_p^* , $\text{Clock}(\mathbf{F}_p)$, etc., but not for elliptic curves!

Curve 25519: $p = 2^{255} - 19$.

NIST P-224: $p = 2^{224} - 2^{96} + 1$.

secp112r1: $p = (2^{128} - 3)/76439$. *Divides* special form.

gls1271: $p = 2^{127} - 1$, with degree-2 extension (a bit scary).

159265358 mod 271828: oute 0000000/271828] '96.

17

e 3678796 '26872564.

o big:

65358 — 1155726 · 271828 80.

-271828 = 306402.

-271828 = 34574.

We can do better: normally p is chosen with a special form to make f mod p much faster.

Special primes hurt security for \mathbf{F}_p^* , $\text{Clock}(\mathbf{F}_p)$, etc., but not for elliptic curves!

Curve 25519: $p = 2^{255} - 19$.

NIST P-224: $p = 2^{224} - 2^{96} + 1$.

secp112r1: $p = (2^{128} - 3)/76439$. *Divides* special form.

gls1271: $p = 2^{127} - 1$, with degree-2 extension (a bit scary).

Small ex Then 10 e.g. 314 314159 -314159(

-677119

-94247

Easily adding to the radding addingtone e.g. -67

8 mod 271828:

271828

.

155726 - 271828

= 306402.

= 34574.

We can do better: normally p is chosen with a special form to make f mod p much faster.

Special primes hurt security for \mathbf{F}_p^* , $\text{Clock}(\mathbf{F}_p)$, etc., but not for elliptic curves!

Curve 25519: $p = 2^{255} - 19$.

NIST P-224: $p = 2^{224} - 2^{96} + 1$.

secp112r1: $p = (2^{128} - 3)/76439$. *Divides* special form.

gls1271: $p = 2^{127} - 1$, with degree-2 extension (a bit scary).

Easily adjust b = 3 to the range $\{0, 1\}$ by adding/subtracted. e.g. $-677119 \equiv 3$

.828:

271828

We can do better: normally p is chosen with a special form to make f mod p much faster.

Special primes hurt security for \mathbf{F}_p^* , $\text{Clock}(\mathbf{F}_p)$, etc., but not for elliptic curves!

Curve 25519: $p = 2^{255} - 19$.

NIST P-224: $p = 2^{224} - 2^{96} + 1$.

secp112r1: $p = (2^{128} - 3)/76439$.

Divides special form.

gls1271: $p = 2^{127} - 1$, with degree-2 extension (a bit scary).

Small example: p = 100000Then $1000000a + b \equiv b - 3$ e.g. 314159265358 = $314159 \cdot 10000000 + 265358$ 314159(-3) + 265358 =-942477 + 265358 =-677119.

Easily adjust b-3a to the range $\{0, 1, ..., p-1\}$ by adding/subtracting a few e.g. $-677119 \equiv 322884$.

We can do better: normally p is chosen with a special form to make f mod p much faster.

Special primes hurt security for \mathbf{F}_p^* , $\text{Clock}(\mathbf{F}_p)$, etc., but not for elliptic curves!

Curve 25519: $p = 2^{255} - 19$.

NIST P-224: $p = 2^{224} - 2^{96} + 1$.

secp112r1: $p = (2^{128} - 3)/76439$. *Divides* special form.

gls1271: $p = 2^{127} - 1$, with degree-2 extension (a bit scary).

Small example: p = 1000003. Then $1000000a + b \equiv b - 3a$.

e.g. 314159265358 = $314159 \cdot 1000000 + 265358 \equiv$ 314159(-3) + 265358 = -942477 + 265358 = -677119.

Easily adjust b-3a to the range $\{0,1,\ldots,p-1\}$ by adding/subtracting a few p's: e.g. $-677119 \equiv 322884$.

do better: normally sen with a special form f mod p much faster.

Primes hurt security $Clock(\mathbf{F}_p)$, etc., for elliptic curves!

519:
$$p = 2^{255} - 19$$
.

224:
$$p = 2^{224} - 2^{96} + 1$$
.

r1:
$$p = (2^{128} - 3)/76439$$
. special form.

$$p = 2^{127} - 1$$
, with extension (a bit scary).

Small example: p = 1000003. Then $1000000a + b \equiv b - 3a$. e.g. 314159265358 =

e.g.
$$514159205356 =$$
 $314159 \cdot 10000000 + 265358 =$
 $314159(-3) + 265358 =$
 $-942477 + 265358 =$
 $-677119.$

Easily adjust b-3a to the range $\{0,1,\ldots,p-1\}$ by adding/subtracting a few p's: e.g. $-677119 \equiv 322884$.

Hmmm, Condition and leak Can elin but adju Speedup for inter "Lazy re Adjust c

b – 3*a* is

to contin

normally special form much faster.

t security etc., curves!

$$2^{255} - 19$$
.

$$2^{224} - 2^{96} + 1$$
.

$$(2^{128} - 3)/76439.$$

m.

Small example: p = 1000003. Then $10000000a + b \equiv b - 3a$.

e.g.
$$314159265358 =$$
 $314159 \cdot 1000000 + 265358 \equiv$
 $314159(-3) + 265358 =$
 $-942477 + 265358 =$
 -677119 .

Easily adjust b-3a to the range $\{0,1,\ldots,p-1\}$ by adding/subtracting a few p's: e.g. $-677119 \equiv 322884$.

Conditional branch and leak secrets the Can eliminate the but adjustment is

Hmmm, is adjustn

Speedup: Skip the for intermediate re "Lazy reduction."
Adjust only for ou

b - 3a is small end to continue compu

19

er.

T e

5 + 1.

76439.

ary).

Small example: p = 1000003. Then $10000000a + b \equiv b - 3a$.

e.g. 314159265358 = $314159 \cdot 1000000 + 265358 \equiv$ 314159(-3) + 265358 = -942477 + 265358 = -677119.

Easily adjust b-3a to the range $\{0,1,\ldots,p-1\}$ by adding/subtracting a few p's: e.g. $-677119 \equiv 322884$.

Hmmm, is adjustment so ea

Conditional branches are slo and leak secrets through tim Can eliminate the branches, but adjustment isn't free.

Speedup: Skip the adjustment for intermediate results.

"Lazy reduction."

Adjust only for output.

b-3a is small enough to continue computations.

Small example: p = 1000003. Then $1000000a + b \equiv b - 3a$.

e.g. 314159265358 = $314159 \cdot 1000000 + 265358 \equiv$ 314159(-3) + 265358 = -942477 + 265358 = -677119.

Easily adjust b-3a to the range $\{0,1,\ldots,p-1\}$ by adding/subtracting a few p's: e.g. $-677119 \equiv 322884$.

Hmmm, is adjustment so easy?

Conditional branches are slow and leak secrets through timing. Can eliminate the branches, but adjustment isn't free.

Speedup: Skip the adjustment for intermediate results.

"Lazy reduction."

Adjust only for output.

b-3a is small enough to continue computations.

cample: p = 1000003.

 $00000a + b \equiv b - 3a.$

159265358 =

 $1000000 + 265358 \equiv$

-3) + 265358 =

7 + 265358 =

9.

djust b - 3a

ange $\{0,1,\ldots,p-1\}$

g/subtracting a few p's:

 $77119 \equiv 322884.$

Hmmm, is adjustment so easy?

Conditional branches are slow and leak secrets through timing. Can eliminate the branches, but adjustment isn't free.

Speedup: Skip the adjustment for intermediate results.

"Lazy reduction."

Adjust only for output.

b-3a is small enough to continue computations.

Can dela multiplic

e.g. To s
in **Z**/100

 $3t^5 + 1t$ obtainin

 $14t^7 + 4$

 $82t^3 + 4$

Reduce:

 $(-3c_i)t^i$

 $64t^3 - 3$

Carry: $8t^3 + 2t^3$

= 1000003.

 $b \equiv b - 3a$.

=

 $+ 265358 \equiv$

5358 =

= 8

3*a*

 $\{\ldots,p-1\}$

ting a few p's:

22884.

Hmmm, is adjustment so easy?

Conditional branches are slow and leak secrets through timing. Can eliminate the branches, but adjustment isn't free.

Speedup: Skip the adjustment for intermediate results.

"Lazy reduction."

Adjust only for output.

b-3a is small enough to continue computations.

Can delay carries a multiplication by 3

e.g. To square 314 in $\mathbf{Z}/1000003$: Sq $3t^5 + 1t^4 + 4t^3 + 6$ obtaining $9t^{10} + 6$ $14t^7 + 48t^6 + 72t^8$

Reduce: replace ($(-3c_i)t^i$, obtainin $64t^3 - 32t^2 + 48t^3$

 $82t^3 + 43t^2 + 90t$

Carry: $8t^6 - 4t^5 - 1t^3 + 2t^2 + 2t^1 - 1t^3 + 2t^2 + 2t^1 - 1t^2 + 2t^2 + 2t^2 - 1t^3 + 2t^2 + 2t^2 + 2t^3 + 2t^2 + 2t^3 + 2t^2 + 2t^3 +$

a.

Conditional branches are slow and leak secrets through timing.

Can eliminate the branches, but adjustment isn't free.

Speedup: Skip the adjustment for intermediate results.

"Lazy reduction."

Adjust only for output.

b-3a is small enough to continue computations.

Hmmm, is adjustment so easy?

Can delay carries until after multiplication by 3.

e.g. To square 314159 in $\mathbf{Z}/1000003$: Square poly $3t^5 + 1t^4 + 4t^3 + 1t^2 + 5t^1$ obtaining $9t^{10} + 6t^9 + 25t^8$ $14t^7 + 48t^6 + 72t^5 + 59t^4$ $82t^3 + 43t^2 + 90t^1 + 81t^0$.

Reduce: replace $(c_i)t^{6+i}$ by $(-3c_i)t^i$, obtaining $72t^5+3$ $64t^3 - 32t^2 + 48t^1 - 63t^0$.

Carry: $8t^6 - 4t^5 - 2t^4 +$ $1t^3 + 2t^2 + 2t^1 - 3t^0$.

Hmmm, is adjustment so easy?

Conditional branches are slow and leak secrets through timing. Can eliminate the branches, but adjustment isn't free.

Speedup: Skip the adjustment for intermediate results.

"Lazy reduction."

Adjust only for output.

b-3a is small enough to continue computations.

20

Can delay carries until after multiplication by 3.

e.g. To square 314159 in **Z**/1000003: Square poly $3t^5 + 1t^4 + 4t^3 + 1t^2 + 5t^1 + 9t^0$, obtaining $9t^{10} + 6t^9 + 25t^8 + 14t^7 + 48t^6 + 72t^5 + 59t^4 + 82t^3 + 43t^2 + 90t^1 + 81t^0$.

Reduce: replace $(c_i)t^{6+i}$ by $(-3c_i)t^i$, obtaining $72t^5 + 32t^4 + 64t^3 - 32t^2 + 48t^1 - 63t^0$.

Carry: $8t^6 - 4t^5 - 2t^4 + 1t^3 + 2t^2 + 2t^1 - 3t^0$.

is adjustment so easy?

nal branches are slow secrets through timing. ninate the branches, stment isn't free.

Skip the adjustment mediate results.

eduction."

only for output.

s small enough nue computations. Can delay carries until after multiplication by 3.

e.g. To square 314159 in **Z**/1000003: Square poly $3t^5 + 1t^4 + 4t^3 + 1t^2 + 5t^1 + 9t^0$, obtaining $9t^{10} + 6t^9 + 25t^8 + 14t^7 + 48t^6 + 72t^5 + 59t^4 + 82t^3 + 43t^2 + 90t^1 + 81t^0$.

Reduce: replace $(c_i)t^{6+i}$ by $(-3c_i)t^i$, obtaining $72t^5 + 32t^4 + 64t^3 - 32t^2 + 48t^1 - 63t^0$.

Carry: $8t^6 - 4t^5 - 2t^4 + 1t^3 + 2t^2 + 2t^1 - 3t^0$.

To mining mix reduced carrying

e.g. Star $25t^8 + 1$

$$82t^3 + 4$$

Reduce $t^5 \rightarrow t^6$ $56t^6 - 5$

$$90t^{1} + 8$$

Finish re $64t^3 - 3$

$$t^0 \rightarrow t^1$$

$$-4t^{5}-2$$

nent so easy?

nes are slow nrough timing. branches, n't free.

e adjustment esults.

tput.

ough utations. Can delay carries until after multiplication by 3.

e.g. To square 314159 in **Z**/1000003: Square poly $3t^5 + 1t^4 + 4t^3 + 1t^2 + 5t^1 + 9t^0$, obtaining $9t^{10} + 6t^9 + 25t^8 + 14t^7 + 48t^6 + 72t^5 + 59t^4 + 82t^3 + 43t^2 + 90t^1 + 81t^0$.

Reduce: replace $(c_i)t^{6+i}$ by $(-3c_i)t^i$, obtaining $72t^5 + 32t^4 + 64t^3 - 32t^2 + 48t^1 - 63t^0$.

Carry: $8t^6 - 4t^5 - 2t^4 + 1t^3 + 2t^2 + 2t^1 - 3t^0$.

To minimize poly mix reduction and carrying the top so

e.g. Start from square $25t^8 + 14t^7 + 48t^6$ $82t^3 + 43t^2 + 90t^6$

Reduce $t^{10} \rightarrow t^4$ $t^5 \rightarrow t^6$: $6t^9 + 2$ $56t^6 - 5t^5 + 2t^4 - 1$ $90t^1 + 81t^0$.

Finish reduction: $64t^3 - 32t^2 + 48t^4$

$$t^0 \rightarrow t^1 \rightarrow t^2 \rightarrow$$
 $-4t^5 - 2t^4 + 1t^3 +$

sy?

w ning.

ent

Can delay carries until after multiplication by 3.

e.g. To square 314159 in $\mathbf{Z}/1000003$: Square poly $3t^5 + 1t^4 + 4t^3 + 1t^2 + 5t^1 + 9t^0$, obtaining $9t^{10} + 6t^9 + 25t^8 + 14t^7 + 48t^6 + 72t^5 + 59t^4 + 82t^3 + 43t^2 + 90t^1 + 81t^0$.

Reduce: replace $(c_i)t^{6+i}$ by $(-3c_i)t^i$, obtaining $72t^5 + 32t^4 + 64t^3 - 32t^2 + 48t^1 - 63t^0$.

Carry: $8t^6 - 4t^5 - 2t^4 + 1t^3 + 2t^2 + 2t^1 - 3t^0$.

To minimize poly degree, mix reduction and carrying, carrying the top sooner.

e.g. Start from square $9t^{10}$ - $25t^8 + 14t^7 + 48t^6 + 72t^5 + 82t^3 + 43t^2 + 90t^1 + 81t^0$.

Reduce $t^{10} \rightarrow t^4$ and carry $t^5 \rightarrow t^6$: $6t^9 + 25t^8 + 14t^4$ $56t^6 - 5t^5 + 2t^4 + 82t^3 + 44t^4$ $90t^1 + 81t^0$.

Finish reduction: $-5t^5 + 2t^6$ $64t^3 - 32t^2 + 48t^1 - 87t^0$. $t^0 \rightarrow t^1 \rightarrow t^2 \rightarrow t^3 \rightarrow t^4 - 4t^5 - 2t^4 + 1t^3 + 2t^2 - 1t^1$ Can delay carries until after multiplication by 3.

e.g. To square 314159 in $\mathbf{Z}/1000003$: Square poly $3t^5 + 1t^4 + 4t^3 + 1t^2 + 5t^1 + 9t^0$, obtaining $9t^{10} + 6t^9 + 25t^8 + 14t^7 + 48t^6 + 72t^5 + 59t^4 + 82t^3 + 43t^2 + 90t^1 + 81t^0$.

Reduce: replace $(c_i)t^{6+i}$ by $(-3c_i)t^i$, obtaining $72t^5 + 32t^4 + 64t^3 - 32t^2 + 48t^1 - 63t^0$.

Carry: $8t^6 - 4t^5 - 2t^4 + 1t^3 + 2t^2 + 2t^1 - 3t^0$.

To minimize poly degree, mix reduction and carrying, carrying the top sooner.

e.g. Start from square $9t^{10}+6t^9+25t^8+14t^7+48t^6+72t^5+59t^4+82t^3+43t^2+90t^1+81t^0$.

Reduce $t^{10} \rightarrow t^4$ and carry $t^4 \rightarrow t^5 \rightarrow t^6$: $6t^9 + 25t^8 + 14t^7 + 56t^6 - 5t^5 + 2t^4 + 82t^3 + 43t^2 + 90t^1 + 81t^0$.

Finish reduction: $-5t^5 + 2t^4 + 64t^3 - 32t^2 + 48t^1 - 87t^0$. Carry $t^0 \to t^1 \to t^2 \to t^3 \to t^4 \to t^5$: $-4t^5 - 2t^4 + 1t^3 + 2t^2 - 1t^1 + 3t^0$.

ay carries until after cation by 3.

square 314159

00003: Square poly $t^4 + 4t^3 + 1t^2 + 5t^1 + 9t^0$,
g $9t^{10} + 6t^9 + 25t^8 + 18t^6 + 72t^5 + 59t^4 + 13t^2 + 90t^1 + 81t^0$.

replace $(c_i)t^{6+i}$ by , obtaining $72t^5 + 32t^4 + 32t^2 + 48t^1 - 63t^0$.

$$t^6 - 4t^5 - 2t^4 + 2t^2 + 2t^1 - 3t^0$$
.

To minimize poly degree, mix reduction and carrying, carrying the top sooner.

e.g. Start from square $9t^{10} + 6t^9 + 25t^8 + 14t^7 + 48t^6 + 72t^5 + 59t^4 + 82t^3 + 43t^2 + 90t^1 + 81t^0$.

Reduce $t^{10} \rightarrow t^4$ and carry $t^4 \rightarrow t^5 \rightarrow t^6$: $6t^9 + 25t^8 + 14t^7 + 56t^6 - 5t^5 + 2t^4 + 82t^3 + 43t^2 + 90t^1 + 81t^0$.

Finish reduction: $-5t^5 + 2t^4 + 64t^3 - 32t^2 + 48t^1 - 87t^0$. Carry $t^0 \to t^1 \to t^2 \to t^3 \to t^4 \to t^5$: $-4t^5 - 2t^4 + 1t^3 + 2t^2 - 1t^1 + 3t^0$.

Speedup

$$p = 2^{61}$$

Five coe $f_4t^4 + f_3$ Most co

Square · Coeff of

Reduce: $... + (2^{5}$ Coeff co

Very litt

addition

on 32-bi

until after

1159
uare poly $1t^{2} + 5t^{1} + 9t^{0},$ $5t^{9} + 25t^{8} + 59t^{4} + 59t^{4} + 100$

$$c_i)t^{6+i}$$
 by $g 72t^5 + 32t^4 + 1 - 63t^0$.

$$-2t^4 + 3t^0$$
.

To minimize poly degree, mix reduction and carrying, carrying the top sooner.

e.g. Start from square $9t^{10} + 6t^9 + 25t^8 + 14t^7 + 48t^6 + 72t^5 + 59t^4 + 82t^3 + 43t^2 + 90t^1 + 81t^0$.

Reduce $t^{10} \rightarrow t^4$ and carry $t^4 \rightarrow t^5 \rightarrow t^6$: $6t^9 + 25t^8 + 14t^7 + 56t^6 - 5t^5 + 2t^4 + 82t^3 + 43t^2 + 90t^1 + 81t^0$.

Finish reduction: $-5t^5 + 2t^4 + 64t^3 - 32t^2 + 48t^1 - 87t^0$. Carry $t^0 \to t^1 \to t^2 \to t^3 \to t^4 \to t^5$: $-4t^5 - 2t^4 + 1t^3 + 2t^2 - 1t^1 + 3t^0$.

Speedup: non-inte

$$p = 2^{61} - 1$$
.

Five coeffs in radia $f_4t^4 + f_3t^3 + f_2t^2$ Most coeffs could

Square
$$\cdots + 2(f_4f_5)$$

Coeff of t^5 could

Reduce: $2^{65} = 2^4$... + $(2^5(f_4f_1 + f_3)^2$ Coeff could be > 2

Very little room for additions, delayed on 32-bit platform

 $+9t^{0}$,

 $32t^4 +$

To minimize poly degree, mix reduction and carrying, carrying the top sooner.

e.g. Start from square $9t^{10} + 6t^9 + 25t^8 + 14t^7 + 48t^6 + 72t^5 + 59t^4 + 82t^3 + 43t^2 + 90t^1 + 81t^0$.

Reduce $t^{10} \rightarrow t^4$ and carry $t^4 \rightarrow t^5 \rightarrow t^6$: $6t^9 + 25t^8 + 14t^7 + 56t^6 - 5t^5 + 2t^4 + 82t^3 + 43t^2 + 90t^1 + 81t^0$.

Finish reduction: $-5t^5 + 2t^4 + 64t^3 - 32t^2 + 48t^1 - 87t^0$. Carry $t^0 \rightarrow t^1 \rightarrow t^2 \rightarrow t^3 \rightarrow t^4 \rightarrow t^5$: $-4t^5 - 2t^4 + 1t^3 + 2t^2 - 1t^1 + 3t^0$.

Speedup: non-integer radix

$$p = 2^{61} - 1$$
.

Five coeffs in radix 2^{13} ? $f_4t^4 + f_3t^3 + f_2t^2 + f_1t^1 + t^4$ Most coeffs could be 2^{12} .

Square $\cdots + 2(f_4f_1 + f_3f_2)t^5$ Coeff of t^5 could be $> 2^{25}$.

Reduce: $2^{65} = 2^4$ in $\mathbb{Z}/(2^{61} + t_3 f_2) + t_0^2$ $t = 2^4$ in $\mathbb{Z}/(2^{61} + t_3 f_2) + t_0^2$. Coeff could be $t = 2^{29}$.

Very little room for additions, delayed carries, et on 32-bit platforms.

To minimize poly degree, mix reduction and carrying, carrying the top sooner.

e.g. Start from square $9t^{10}+6t^9+25t^8+14t^7+48t^6+72t^5+59t^4+82t^3+43t^2+90t^1+81t^0$.

Reduce $t^{10} \rightarrow t^4$ and carry $t^4 \rightarrow t^5 \rightarrow t^6$: $6t^9 + 25t^8 + 14t^7 + 56t^6 - 5t^5 + 2t^4 + 82t^3 + 43t^2 + 90t^1 + 81t^0$.

Finish reduction: $-5t^5 + 2t^4 + 64t^3 - 32t^2 + 48t^1 - 87t^0$. Carry $t^0 \rightarrow t^1 \rightarrow t^2 \rightarrow t^3 \rightarrow t^4 \rightarrow t^5$: $-4t^5 - 2t^4 + 1t^3 + 2t^2 - 1t^1 + 3t^0$.

Speedup: non-integer radix

$$p = 2^{61} - 1$$
.

Five coeffs in radix 2^{13} ? $f_4t^4 + f_3t^3 + f_2t^2 + f_1t^1 + f_0t^0.$ Most coeffs could be 2^{12} .

Square $\cdots + 2(f_4f_1 + f_3f_2)t^5 + \cdots$ Coeff of t^5 could be $> 2^{25}$.

Reduce: $2^{65} = 2^4$ in $\mathbb{Z}/(2^{61} - 1)$; $\cdots + (2^5(f_4f_1 + f_3f_2) + f_0^2)t^0$. Coeff could be $> 2^{29}$.

Very little room for additions, delayed carries, etc. on 32-bit platforms.

t from square
$$9t^{10}+6t^9+4t^7+48t^6+72t^5+59t^4+3t^2+90t^1+81t^0$$
.

$$t^{10}
ightharpoonup t^4$$
 and carry $t^4
ightharpoonup 5$: $6t^9 + 25t^8 + 14t^7 + 5t^5 + 2t^4 + 82t^3 + 43t^2 + 81t^0$.

eduction:
$$-5t^5 + 2t^4 + 82t^2 + 48t^1 - 87t^0$$
. Carry $\rightarrow t^2 \rightarrow t^3 \rightarrow t^4 \rightarrow t^5$: $2t^4 + 1t^3 + 2t^2 - 1t^1 + 3t^0$.

Speedup: non-integer radix

$$p=2^{61}-1.$$

Five coeffs in radix 2^{13} ? $f_4t^4 + f_3t^3 + f_2t^2 + f_1t^1 + f_0t^0.$ Most coeffs could be 2^{12} .

Square
$$\cdots + 2(f_4f_1 + f_3f_2)t^5 + \cdots$$

Coeff of t^5 could be $> 2^{25}$.

Reduce: $2^{65} = 2^4$ in $\mathbf{Z}/(2^{61} - 1)$; $\cdots + (2^5(f_4f_1 + f_3f_2) + f_0^2)t^0$. Coeff could be $> 2^{29}$.

Very little room for additions, delayed carries, etc. on 32-bit platforms.

Scaled:

 f_4 is mu f_3 is mu f_2 is mu

 f_0 is mu $\cdots + (2^n)$

 f_1 is mu

Better:

 f_4 is mu f_3 is mu

 f_2 is mu

 f_1 is mu

 f_0 is mu

Saves a

degree, carrying, ooner.

Jare
$$9t^{10} + 6t^9 + 50t^4 + 72t^5 + 59t^4 + 50t^1 + 81t^0$$
.

and carry
$$t^4 \rightarrow$$
 $5t^8 + 14t^7 +$
 $+82t^3 + 43t^2 +$

$$-5t^{5} + 2t^{4} + 2t^{1} - 87t^{0}$$
. Carry $t^{3} \rightarrow t^{4} \rightarrow t^{5}$: $-2t^{2} - 1t^{1} + 3t^{0}$.

Speedup: non-integer radix

$$p = 2^{61} - 1$$
.

Five coeffs in radix 2^{13} ? $f_4t^4 + f_3t^3 + f_2t^2 + f_1t^1 + f_0t^0.$ Most coeffs could be 2^{12} .

Square $\cdots + 2(f_4f_1 + f_3f_2)t^5 + \cdots$ Coeff of t^5 could be $> 2^{25}$.

Reduce: $2^{65} = 2^4$ in $\mathbf{Z}/(2^{61} - 1)$; $\cdots + (2^5(f_4f_1 + f_3f_2) + f_0^2)t^0$. Coeff could be $> 2^{29}$.

Very little room for additions, delayed carries, etc. on 32-bit platforms.

Scaled: Evaluate a f_4 is multiple of 2^5 f_3 is multiple of 2^5 f_2 is multiple of 2^5 f_1 is multiple of 2^5 f_1 is multiple of 2^5 f_2 is multiple of 2^5 f_3 is multiple of 2^5 f_4 is multiple of 2^5 f_4 f_4 f_4 f_4

Better: Non-integration f_4 is multiple of 2^4 f_3 is multiple of 2^5 f_2 is multiple of 2^5 f_1 is multiple of 2^5 f_0 is multiple of 2^5

Saves a few bits in

 $+6t^{9}+$

 $59t^4 +$

 $t^4 \rightarrow 0.7$

 $43t^2 +$

Carry

 $\rightarrow t^5$:

 $+3t^{0}$.

Speedup: non-integer radix

$$p=2^{61}-1$$
.

Five coeffs in radix 2^{13} ?

$$f_4t^4 + f_3t^3 + f_2t^2 + f_1t^1 + f_0t^0$$
.

Most coeffs could be 2^{12} .

Square
$$\cdots + 2(f_4f_1 + f_3f_2)t^5 + \cdots$$

Coeff of t^5 could be $> 2^{25}$.

Reduce:
$$2^{65} = 2^4$$
 in $\mathbb{Z}/(2^{61} - 1)$;

$$\cdots + (2^5(f_4f_1 + f_3f_2) + f_0^2)t^0.$$

Coeff could be $> 2^{29}$.

Very little room for

additions, delayed carries, etc.

on 32-bit platforms.

Scaled: Evaluate at t = 1.

 f_4 is multiple of 2^{52} ;

 f_3 is multiple of 2^{39} ;

 f_2 is multiple of 2^{26} ;

 f_1 is multiple of 2^{13} ;

 f_0 is multiple of 2^0 . Reduce

$$\cdots + (2^{-60}(f_4f_1 + f_3f_2) + f_0^2$$

Better: Non-integer radix 2³

 f_4 is multiple of 2^{49} ;

 f_3 is multiple of 2^{37} ;

 f_2 is multiple of 2^{25} ;

 f_1 is multiple of 2^{13} ;

 f_0 is multiple of 2^0 .

Saves a few bits in coeffs.

Speedup: non-integer radix

$$p = 2^{61} - 1$$
.

Five coeffs in radix 2^{13} ?

$$f_4t^4 + f_3t^3 + f_2t^2 + f_1t^1 + f_0t^0$$
.

Most coeffs could be 2^{12} .

Square $\cdots + 2(f_4f_1 + f_3f_2)t^5 + \cdots$

Coeff of t^5 could be $> 2^{25}$.

Reduce: $2^{65} = 2^4$ in $\mathbb{Z}/(2^{61} - 1)$;

$$\cdots + (2^5(f_4f_1 + f_3f_2) + f_0^2)t^0.$$

Coeff could be $> 2^{29}$.

Very little room for

additions, delayed carries, etc.

on 32-bit platforms.

Scaled: Evaluate at t = 1.

 f_4 is multiple of 2^{52} ;

 f_3 is multiple of 2^{39} ;

 f_2 is multiple of 2^{26} ;

 f_1 is multiple of 2^{13} ;

 f_0 is multiple of 2^0 . Reduce:

$$\cdots + (2^{-60}(f_4f_1 + f_3f_2) + f_0^2)t^0.$$

Better: Non-integer radix $2^{12.2}$.

 f_4 is multiple of 2^{49} ;

 f_3 is multiple of 2^{37} ;

 f_2 is multiple of 2^{25} ;

 f_1 is multiple of 2^{13} ;

 f_0 is multiple of 2^0 .

Saves a few bits in coeffs.

: non-integer radix

− 1.

ffs in radix 2^{13} ? $3t^3 + f_2t^2 + f_1t^1 + f_0t^0$. effs could be 2^{12} .

$$\cdots + 2(f_4f_1 + f_3f_2)t^5 + \cdots$$

 t^5 could be $> 2^{25}$.

$$2^{65} = 2^4 \text{ in } \mathbf{Z}/(2^{61} - 1);$$
 $f(f_4f_1 + f_3f_2) + f_0^2(t^0)$ and be $> 2^{29}$.

le room for s, delayed carries, etc. t platforms.

Scaled: Evaluate at t = 1. f_4 is multiple of 2^{52} ; f_3 is multiple of 2^{39} ;

 f_2 is multiple of 2^{26} ;

 f_1 is multiple of 2^{13} ;

 f_0 is multiple of 2^0 . Reduce:

$$\cdots + (2^{-60}(f_4f_1 + f_3f_2) + f_0^2)t^0.$$

Better: Non-integer radix $2^{12.2}$.

 f_4 is multiple of 2^{49} ;

 f_3 is multiple of 2^{37} ;

 f_2 is multiple of 2^{25} ;

 f_1 is multiple of 2^{13} ;

 f_0 is multiple of 2^0 .

Saves a few bits in coeffs.

More ba

NIST P- $2^{256} - 2^{256}$ i.e. $t^8 -$

evaluate

eger radix

$$\times 2^{13}$$
?
+ $f_1 t^1 + f_0 t^0$.
be 2^{12} .

$$f_1 + f_3 f_2 t^5 + \cdots$$

be $> 2^{25}$.

in
$$\mathbf{Z}/(2^{61}-1)$$
;
 $f_2)+f_0^2)t^0$.
 2^{29} .

carries, etc. s. Scaled: Evaluate at t = 1.

$$f_4$$
 is multiple of 2^{52} ;
 f_3 is multiple of 2^{39} ;
 f_2 is multiple of 2^{26} ;
 f_1 is multiple of 2^{13} ;
 f_0 is multiple of 2^0 . Reduce:
 $\cdots + (2^{-60}(f_4f_1 + f_3f_2) + f_0^2)t^0$.

Better: Non-integer radix 2^{12.2}.

 f_4 is multiple of 2^{49} ; f_3 is multiple of 2^{37} ; f_2 is multiple of 2^{25} ; f_1 is multiple of 2^{13} ;

 f_0 is multiple of 2^0 .

Saves a few bits in coeffs.

More bad choices

NIST P-256 prime $2^{256} - 2^{224} + 2^{192}$ i.e. $t^8 - t^7 + t^6 + 2^{192}$ evaluated at $t = 2^{192}$

-1);

Scaled: Evaluate at t = 1.

 f_4 is multiple of 2^{52} ;

 f_3 is multiple of 2^{39} ;

 f_2 is multiple of 2^{26} ;

 f_1 is multiple of 2^{13} ;

 f_0 is multiple of 2^0 . Reduce:

$$\cdots + (2^{-60}(f_4f_1 + f_3f_2) + f_0^2)t^0.$$

Better: Non-integer radix 2^{12.2}.

 f_4 is multiple of 2^{49} ;

 f_3 is multiple of 2^{37} ;

 f_2 is multiple of 2^{25} ;

 f_1 is multiple of 2^{13} ;

 f_0 is multiple of 2^0 .

Saves a few bits in coeffs.

More bad choices from NIST

NIST P-256 prime:

$$2^{256} - 2^{224} + 2^{192} + 2^{96} - 2^{192}$$

i.e. $t^8 - t^7 + t^6 + t^3 - 1$

evaluated at $t = 2^{32}$.

Scaled: Evaluate at t = 1.

 f_4 is multiple of 2^{52} ;

 f_3 is multiple of 2^{39} ;

 f_2 is multiple of 2^{26} ;

 f_1 is multiple of 2^{13} ;

 f_0 is multiple of 2^0 . Reduce:

 $\cdots + (2^{-60}(f_4f_1 + f_3f_2) + f_0^2)t^0.$

Better: Non-integer radix $2^{12.2}$.

 f_4 is multiple of 2^{49} ;

 f_3 is multiple of 2^{37} ;

 f_2 is multiple of 2^{25} ;

 f_1 is multiple of 2^{13} ;

 f_0 is multiple of 2^0 .

Saves a few bits in coeffs.

More bad choices from NIST

NIST P-256 prime: $2^{256} - 2^{224} + 2^{192} + 2^{96} - 1.$ i.e. $t^8 - t^7 + t^6 + t^3 - 1$ evaluated at $t = 2^{32}$.

Scaled: Evaluate at t = 1.

 f_4 is multiple of 2^{52} ;

 f_3 is multiple of 2^{39} ;

 f_2 is multiple of 2^{26} ;

 f_1 is multiple of 2^{13} ;

 f_0 is multiple of 2^0 . Reduce:

 $\cdots + (2^{-60}(f_4f_1 + f_3f_2) + f_0^2)t^0.$

Better: Non-integer radix 2^{12.2}.

 f_4 is multiple of 2^{49} ;

 f_3 is multiple of 2^{37} ;

 f_2 is multiple of 2^{25} ;

 f_1 is multiple of 2^{13} ;

 f_0 is multiple of 2^0 .

Saves a few bits in coeffs.

More bad choices from NIST

NIST P-256 prime: $2^{256} - 2^{224} + 2^{192} + 2^{96} - 1$. i.e. $t^8 - t^7 + t^6 + t^3 - 1$ evaluated at $t = 2^{32}$.

Reduction: replace $c_i t^{8+i}$ with $c_i t^{7+i} - c_i t^{6+i} - c_i t^{3+i} + c_i t^i$. Minor problem: often slower than

small const mult and one add.

Scaled: Evaluate at t = 1.

 f_4 is multiple of 2^{52} ;

 f_3 is multiple of 2^{39} ;

 f_2 is multiple of 2^{26} ;

 f_1 is multiple of 2^{13} ;

 f_0 is multiple of 2^0 . Reduce:

 $\cdots + (2^{-60}(f_4f_1 + f_3f_2) + f_0^2)t^0.$

Better: Non-integer radix $2^{12.2}$.

 f_4 is multiple of 2^{49} ;

 f_3 is multiple of 2^{37} ;

 f_2 is multiple of 2^{25} ;

 f_1 is multiple of 2^{13} ;

 f_0 is multiple of 2^0 .

Saves a few bits in coeffs.

More bad choices from NIST

NIST P-256 prime: $2^{256} - 2^{224} + 2^{192} + 2^{96} - 1.$ i.e. $t^8 - t^7 + t^6 + t^3 - 1$ evaluated at $t = 2^{32}$.

Reduction: replace $c_i t^{8+i}$ with $c_i t^{7+i} - c_i t^{6+i} - c_i t^{3+i} + c_i t^i$. Minor problem: often slower than small const mult and one add.

Major problem: With radix 2^{32} , products are almost 2^{64} .

Sums are slightly above 2^{64} : bad for every common CPU.

Need very frequent carries.