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Timing attacks

1970s: TENEX operating system

compares user-supplied string

against secret password

one character at a time,

stopping at first difference:

• AAAAAA vs. SECRET: stop at 1.

• SAAAAA vs. SECRET: stop at 2.

• SEAAAA vs. SECRET: stop at 3.

Attacker sees comparison time,

deduces position of difference.

A few hundred tries

reveal secret password.

2

How typical software checks

16-byte authenticator:

for (i = 0;i < 16;++i)

if (x[i] != y[i]) return 0;

return 1;

Fix, eliminating information flow

from secrets to timings:

uint32 diff = 0;

for (i = 0;i < 16;++i)

diff |= x[i] ^ y[i];

return 1 & ((diff-1) >> 8);

Notice that the language

makes the wrong thing simple

and the right thing complex.
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One of many current examples,

part of the reference software for

CAESAR candidate CLOC:

/* compare the tag */

int i;

for(i = 0;i < CRYPTO_ABYTES;i++)

if(tag[i] != c[(*mlen) + i]){

return RETURN_TAG_NO_MATCH;

}

return RETURN_SUCCESS;
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Examples of successful attacks:

2005 Tromer–Osvik–Shamir:

65ms to steal Linux AES key

used for hard-disk encryption.

2013 AlFardan–Paterson “Lucky

Thirteen: breaking the TLS and

DTLS record protocols” steals

plaintext using decryption timings.

2014 van de Pol–Smart–Yarom

steals Bitcoin key from timings

of 25 OpenSSL signatures.

2016 Yarom–Genkin–Heninger

“CacheBleed” steals RSA secret

key via timings of OpenSSL.
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Constant-time ECC

ECDH computation: a; P 7→ aP

where a is your secret key.

Key generation: a 7→ aB.

Signing: r 7→ rB.

All of these use secret data.

Does timing leak this data?

Are there any branches in

ECC ops? Point ops? Field ops?

Do the underlying machine insns

take variable time?
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7

Recall left-to-right binary method

to compute n; P 7→ nP

using point addition:

def scalarmult(n,P):

if n == 0: return 0

if n == 1: return P

R = scalarmult(n//2,P)

R = R + R

if n % 2: R = R + P

return R

Many branches here.

NAF etc. also use many branches.
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8

Even if each point addition

takes the same amount of time

(certainly not true in Python),

total time depends on n.

If 2e−1 ≤ n < 2e and

n has exactly w bits set:

number of additions is e + w − 2.

Particularly fast total time

usually indicates very small n.

“Lattice attacks” on signatures

compute the secret key given

positions of very small nonces r .
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Exploited in, e.g., CacheBleed,

despite Intel and OpenSSL

claiming their code was safe.
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13

Width-2 unsigned fixed windows

def fixwin2(n,b,table):

if b <= 0: return 0

T = table[0]

mask = (-(1 ^ (n % 4))) >> 2

T ^= ~mask & (T^table[1])

mask = (-(2 ^ (n % 4))) >> 2

T ^= ~mask & (T^table[2])

mask = (-(3 ^ (n % 4))) >> 2

T ^= ~mask & (T^table[3])

R = fixwin2(n//4,b-2,table)

R = R + R

R = R + R

return R + T
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14

def scalarmult(n,b,P):

P2 = P+P

table = [0,P,P2,P2+P]

return fixwin2(n,b,table)

Public branches, public indices.

For b ∈ 2Z:

Always b doublings.

Always b=2 additions of T .

Always 2 additions for table.

Can similarly protect

larger-width fixed windows.
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after precomputing B1 = 2128B.
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minimize number of additions

using k precomputed points.
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Recall Chou timings:

57164 cycles for keygen,
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205741 cycles for verification,

159128 cycles for ECDH.

ECDH is single-scalar mult.

Verification is double-scalar mult,

somewhat slower than ECDH.

(But batch verification is faster.)

Keygen is fixed-base scalar mult,

much faster than ECDH.

Signing is keygen plus overhead

depending on message length.
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x1; x2 7→ x1x2 in Fp

delayed carries etc.
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Machine insns: e.g.,
32-bit multiplication
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pipelining etc.
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Gates: e.g.,
AND, OR, XOR
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Eliminating divisions

Have to do many additions

of curve points: P;Q 7→ P + Q.

How to efficiently decompose

additions into field ops?

Addition (x1; y1) + (x2; y2) =

((x1y2 + y1x2)=(1 + dx1x2y1y2),

(y1y2 − x1x2)=(1− dx1x2y1y2))

uses expensive divisions.
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with x = X=Z, y = Y=Z, Z 6= 0.
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Addition now has to

handle fractions as input:„
X1

Z1
;
Y1

Z1

«
+

„
X2

Z2
;
Y2

Z2

«
=

 X1
Z1

Y2
Z2

+ Y1
Z1

X2
Z2

1 + d X1
Z1

X2
Z2

Y1
Z1

Y2
Z2

,

Y1
Z1

Y2
Z2
− X1

Z1

X2
Z2

1− d X1
Z1

X2
Z2

Y1
Z1

Y2
Z2

!
=
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Gates: e.g.,
AND, OR, XOR
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of curve points: P;Q 7→ P + Q.

How to efficiently decompose

additions into field ops?

Addition (x1; y1) + (x2; y2) =

((x1y2 + y1x2)=(1 + dx1x2y1y2),

(y1y2 − x1x2)=(1− dx1x2y1y2))

uses expensive divisions.

Better: postpone divisions

and work with fractions.

Represent (x; y) as (X : Y : Z)

with x = X=Z, y = Y=Z, Z 6= 0.
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Addition now has to

handle fractions as input:„
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21

Eliminate common subexpressions

to save multiplications:

A = Z1 · Z2; B = A2;

C = X1 · X2;

D = Y1 · Y2;

E = d · C ·D;

F = B − E; G = B + E;

X3 = A · F · (X1 · Y2 + Y1 · X2);

Y3 = A · G · (D − C);

Z3 = F · G.

Cost: 11M + 1S + 1Md where

M;S are costs of mult, square.

Choose small d for cheap Md .
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22

Can do better: 10M + 1S + 1Md .

Obvious 4M method to

compute product C + Mt + Dt2

of polys X1 + Y1t, X2 + Y2t:

C = X1 · X2;

D = Y1 · Y2;

M = X1 · Y2 + Y1 · X2.
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More addition strategies

Dual addition formula:

(x1; y1) + (x2; y2) =

((x1y1 + x2y2)=(x1x2 + y1y2);

(x1y1 − x2y2)=(x1y2 − x2y1)).

Low degree, no need for d .
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25

More coordinate systems: e.g.,

• inverted: x = Z=X, y = Z=Y .

• extended: x = X=Z, y = Y=T .

• completed: x = X=Z, y = Y=Z,

xy = T=Z.

“−1-twisted Edwards curves”

−x2 + y2 = 1 + dx2y2:

further speedups related to

−x2 + y2 = (y − x)(y + x).

Inside modern ECC operations:

8M for addition,

3M + 4S for doubling.
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26

NIST curves (e.g., P-256)

were standardized before

Edwards curves were published.

Much slower additions.
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Low degree, no need for d .

Warning: fails for doubling!

Is this really “addition”?

Most EC formulas have failures.

Can test for failure cases.

Can produce constant-time code

by eliminating branches.

For some ECC ops, can prove

that failure cases never happen.
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26

NIST curves (e.g., P-256)

were standardized before

Edwards curves were published.

Much slower additions.

Express as Edwards curves

using a field extension: slow.

How did Curve25519 obtain

good speeds for ECDH?

“Montgomery curve with

the Montgomery ladder.”

Why did NIST not choose

Montgomery curves? Unclear.


