Timing attacks

1970s: TENEX operating system
compares user-supplied string
against secret password

one character at a time,
stopping at first difference:

e AAAAAA vs. SECRET: stop at 1.
e SAAAAA vs. SECRET: stop at 2.
e SEAAAA vs. SECRET: stop at 3.

Attacker sees comparison time,
deduces position of difference.
A few hundred tries

reveal secret password.

How typical software checks
16-byte authenticator:
for (i = 0;1 < 16;++1i)
if (x[i] '= y[i]) return O;

return 1;

Fix, eliminating information flow
from secrets to timings:
uint32 diff = 0O;
for (1 = 0;1 < 16;++1)
diff |= x[i] =~ yl[i];
return 1 & ((diff-1) >> 8);
Notice that the language

makes the wrong thing simple
and the right thing complex.

attacks

[ENEX operating system
s user-supplied string
secret password

acter at a time,

- at first difference:

A vs. SECRET: stop at 1.
A vs. SECRET: stop at 2.
A vs. SECRET: stop at 3.

- sees comparison time,
position of difference.
indred tries

cret password.

How typical software checks
16-byte authenticator:
for (i = 0;1 < 16;++1i)
if (x[i] '= yl[i]) return O;

return 1;

Fix, eliminating information flow
from secrets to timings:
ulint32 diff = 0O;
for (1 = 0;1i < 16;++1i)
diff |= x[i] =~ yl[i];
return 1 & ((diff-1) >> 8);
Notice that the language

makes the wrong thing simple
and the right thing complex.

Languag
“right” |

So mist:

erating system
plied string
sword

time,
ifference:

ET: stop at 1.
ET: stop at 2.
ET: stop at 3.

parison time,
f difference.
S

vord.

How typical software checks
16-byte authenticator:
for (i = 0;1i < 16;++1i)
if (x[i] '= y[i]) return O;

return 1;

Fix, eliminating information flow
from secrets to timings:
uint32 diff = O;
for (1 = 0;1 < 16;++1)
diff |= x[i] = yl[i];
return 1 & ((diff-1) >> 8);

Notice that the language
makes the wrong thing simple
and the right thing complex.

Language designet
“right” Is too wea

So mistakes contir

stem

at 1.
at 2.
at 3.

Nne,

How typical software checks
16-byte authenticator:
for (i = 0;1 < 16;++1i)
if (x[i] '= y[i]) return O;

return 1;

Fix, eliminating information flow
from secrets to timings:
uint32 diff = 0O;
for (1 = 0;1 < 16;++1i)
diff |= x[i] =~ yl[i];
return 1 & ((diff-1) >> 8);
Notice that the language

makes the wrong thing simple
and the right thing complex.

Language designer's notion
“right” Is too weak for secu

So mistakes continue to hag

How typical software checks
16-byte authenticator:

for (i = 0;1 < 16;++1i)

if (x[i] '= y[i]) return O;

return 1;

Fix, eliminating information flow
from secrets to timings:
uint32 diff = 0O;
for (1 = 0;1 < 16;++1)
diff |= x[i] = yl[i];
return 1 & ((diff-1) >> 8);
Notice that the language

makes the wrong thing simple
and the right thing complex.

Language designer’'s notion of
“right” Is too weak for security.

So mistakes continue to happen.

How typical software checks
16-byte authenticator:

for (i = 0;1 < 16;++1i)

if (x[i]

return 1;

Fix, eliminating information flow
from secrets to timings:
uint32 diff = 0O;
for (1 = 0;1 < 16;++1)
diff |= x[i] = yl[i];
return 1 & ((diff-1) >> 8)

Notice that the language
makes the wrong thing simple
and the right thing complex.

= y[i]) return O;

)

Language designer’'s notion of
“right” Is too weak for security.

So mistakes continue to happen.

One of many current examples,
part of the reference software for

CAESAR candidate CLOC:

/* compare the tag */
int 1;
for(i = 0;i < CRYPTO_ABYTES;i++)
if (tagli]l !'= c[(¥mlen) + i]){
return RETURN_TAG_NO_MATCH;

}
return RETURN_SUCCESS;

ical software checks

authenticator:

(1 = 0;1i < 16;++1i)
(x[i]

rn 1;

= y[i]) return O;

inating information flow
rets to timings:

32 diff = O;
(1 = 0;1i < 16;++1i)
ff |= x[i] ~ yl[il;

rn 1 & ((diff-1) >> 8);

hat the language
1e wrong thing simple
right thing complex.

Language designer’'s notion of
“right” Is too weak for security.

So mistakes continue to happen.

One of many current examples,

part of the reference software for
CAESAR candidate CLOC:

/* compare the tag */
int 1;
for(i = 0;i < CRYPTO_ABYTES;i++)
if(tagli]l !'= cl[(¥mlen) + i]){
return RETURN_TAG_NO_MATCH;

}
return RETURN_SUCCESS;

Do timir

Objectic

ire checks
tor:
< 16;++1)

y[i]) return O;

formation flow
Nings:

O;

< 16;++1)
1 7 ylil;
diff-1) >> 8);
nguage

thing simple
> complex.

Language designer’'s notion of
“right” Is too weak for security.

So mistakes continue to happen.

One of many current examples,
part of the reference software for

CAESAR candidate CLOC:

/* compare the tag */
int 1;
for(i = 0;i < CRYPTO_ABYTES;i++)
if (tagli]l !'= c[(¥mlen) + i]){
return RETURN_TAG_NO_MATCH;

}
return RETURN_SUCCESS;

Do timing attacks

Objection: “Timir

turn O;

flow

Language designer’'s notion of
“right” Is too weak for security.

So mistakes continue to happen.

One of many current examples,
part of the reference software for

CAESAR candidate CLOC:

/* compare the tag */
int 1;
for(i = 0;i < CRYPTO_ABYTES;i++)
if(tagli]l !'= cl[(¥mlen) + i]){
return RETURN_TAG_NO_MATCH;

}
return RETURN_SUCCESS;

Do timing attacks really wol

Objection: “Timings are noi

Language designer’'s notion of
“right” Is too weak for security.

So mistakes continue to happen.

One of many current examples,
part of the reference software for

CAESAR candidate CLOC:

/* compare the tag */
int 1;
for(i = 0;i < CRYPTO_ABYTES;i++)
if (tagli]l !'= c[(¥mlen) + i]){
return RETURN_TAG_NO_MATCH;

}
return RETURN_SUCCESS;

Do timing attacks really work?

Objection: “Timings are noisy!”

Language designer’'s notion of
“right” Is too weak for security.

So mistakes continue to happen.

One of many current examples,
part of the reference software for

CAESAR candidate CLOC:

/* compare the tag */
int 1;
for(i = 0;i < CRYPTO_ABYTES;i++)
if (tagli]l !'= c[(¥mlen) + i]){
return RETURN_TAG_NO_MATCH;

}
return RETURN_SUCCESS;

Do timing attacks really work?

Objection: “Timings are noisy!”

Answer 7£1:

Does noise stop all attacks?
To guarantee security, defender
must block all information flow.

Language designer’'s notion of
“right” Is too weak for security.

So mistakes continue to happen.

One of many current examples,
part of the reference software for

CAESAR candidate CLOC:

/* compare the tag */
int 1;
for(i = 0;i < CRYPTO_ABYTES;i++)
if (tagli]l !'= c[(¥mlen) + i]){
return RETURN_TAG_NO_MATCH;

}
return RETURN_SUCCESS;

Do timing attacks really work?

Objection: “Timings are noisy!”

Answer 7£1:

Does noise stop all attacks?
To guarantee security, defender
must block all information flow.

Answer #2: Attacker uses
statistics to eliminate noise.

Language designer’'s notion of
“right” Is too weak for security.

So mistakes continue to happen.

One of many current examples,
part of the reference software for

CAESAR candidate CLOC:

/* compare the tag */
int 1;
for(i = 0;i < CRYPTO_ABYTES;i++)
if (tagli]l !'= c[(¥mlen) + i]){
return RETURN_TAG_NO_MATCH;

}
return RETURN_SUCCESS;

Do timing attacks really work?

Objection: “Timings are noisy!”

Answer 7£1:

Does noise stop all attacks?
To guarantee security, defender
must block all information flow.

Answer #2: Attacker uses
statistics to eliminate noise.

Answer #3, what the

1970s attackers actually did:
Cross page boundary,
inducing page faults,

to amplify timing signal.

e designer’'s notion of
s too weak for security.

1kes continue to happen.

nany current examples,
he reference software for

R candidate CLOC:

are the tag */

0;i < CRYPTO_ABYTES;i++)

o[i] !'= cl[(*mlen) + i])A
airn RETURN_TAG_NO_MATCH;

RETURN_SUCCESS

Do timing attacks really work?

Objection: “Timings are noisy!”

Answer 7£1:
Does noise stop all attacks?
To guarantee security, defender

must block all information flow.

Answer #2: Attacker uses
statistics to eliminate noise.

Answer #3, what the

1970s attackers actually did:
Cross page boundary,
inducing page faults,

to amplify timing signal.

Example

2005 Tr
65ms to
used for

2013 All
Thirteen
DTLS re

plaintex

2014 vai
steals Bi
of 25 Oj

2016 Ya

“CacheE
key via 1

's notion of
k for security.

'ue to happen.

2nt examples,
ce software for

e CLOC:

ag */

YPTO_ABYTES;i++)
[(*mlen) + i]){
N_TAG_NO_MATCH;

CCESS;

Do timing attacks really work?

Objection: “Timings are noisy!”

Answer 7£1:
Does noise stop all attacks?
To guarantee security, defender

must block all information flow.

Answer #2: Attacker uses
statistics to eliminate noise.

Answer #3, what the

1970s attackers actually did:
Cross page boundary,
inducing page faults,

to amplify timing signal.

Examples of succe

2005 Tromer—Qsvi
65ms to steal Lint
used for hard-disk

2013 AlFardan—Pa
Thirteen: breaking

DTLS record prot:
plaintext using de

2014 van de Pol-¢
steals Bitcoin key
of 25 OpenSSL sig

2016 Yarom—Genk
“CacheBleed” stex
key via timings of

of
rity.

pen.

les,
e for

ES;i++)
+ i]){
MATCH;

Do timing attacks really work?

Objection: “Timings are noisy!”

Answer 7£1:
Does noise stop all attacks?
To guarantee security, defender

must block all information flow.

Answer #2: Attacker uses
statistics to eliminate noise.

Answer #3, what the

1970s attackers actually did:
Cross page boundary,
inducing page faults,

to amplify timing signal.

Examples of successful attac

2005 Tromer—Osvik—Shamir:
65ms to steal Linux AES ke
used for hard-disk encryptiol

2013 AlFardan—Paterson “Li
Thirteen: breaking the TLS
DTLS record protocols” ste:
plaintext using decryption ti

2014 van de Pol-Smart—Yar
steals Bitcoin key from timit

of 25 OpenSSL signatures.

2016 Yarom—Genkin—Hening

“CacheBleed" steals RSA se
key via timings of OpenSSL

Do timing attacks really work?

Objection: “Timings are noisy!”

Answer 7£1:
Does noise stop all attacks?
To guarantee security, defender

must block all information flow.

Answer #2: Attacker uses
statistics to eliminate noise.

Answer #3, what the

1970s attackers actually did:
Cross page boundary,
inducing page faults,

to amplify timing signal.

Examples of successful attacks:

2005 Tromer—Osvik—Shamir:
65ms to steal Linux AES key
used for hard-disk encryption.

2013 AlFardan—Paterson “Lucky
Thirteen: breaking the TLS and
DTLS record protocols” steals

plaintext using decryption timings.

2014 van de Pol-Smart—Yarom
steals Bitcoin key from timings

of 25 OpenSSL signatures.

2016 Yarom—Genkin—Heninger
“CacheBleed"” steals RSA secret
key via timings of OpenSSL.

g attacks really work?

n: “Timings are noisy!”

1
ise stop all attacks?
antee security, defender

yck all information flow.

#2: Attacker uses
5 to eliminate noise.

3, what the
tackers actually did:
ge boundary,

- page faults,

fy timing signal.

Examples of successful attacks:

2005 Tromer—Osvik—Shamir:
65ms to steal Linux AES key
used for hard-disk encryption.

2013 AlFardan—Paterson “Lucky
Thirteen: breaking the TLS and
DTLS record protocols” steals

plaintext using decryption timings.

2014 van de Pol-Smart—Yarom
steals Bitcoin key from timings

of 25 OpenSSL signatures.

2016 Yarom—Genkin—Heninger
“CacheBleed"” steals RSA secret
key via timings of OpenSSL.

Constan

ECDH c
where a

Key gen
Signing:

All of th
Does tin

Are ther
ECC op:s
Do the
take var

really work?

1gs are noisy!”

| attacks?
rity, defender

yrmation flow.

ker uses
ate noise.

the
tually did:

ary,
ts,

signal.

Examples of successful attacks:

2005 Tromer—Osvik—Shamir:
65ms to steal Linux AES key
used for hard-disk encryption.

2013 AlFardan—Paterson “Lucky
Thirteen: breaking the TLS and
DTLS record protocols” steals

plaintext using decryption timings.

2014 van de Pol-Smart—Yarom
steals Bitcoin key from timings

of 25 OpenSSL signatures.

2016 Yarom—Genkin—Heninger
“CacheBleed"” steals RSA secret
key via timings of OpenSSL.

Constant-time EC

ECDH computatic
where a Is your se

Key generation: a

Signing: r— rB.

All of these use se

Does timing leak 1

Are there any brar
ECC ops? Point o

Do the una

take variab

erlying
e time

syl”

der

low.

Examples of successful attacks:

2005 Tromer—Osvik—Shamir:
65ms to steal Linux AES key
used for hard-disk encryption.

2013 AlFardan—Paterson “Lucky
Thirteen: breaking the TLS and
DTLS record protocols” steals

plaintext using decryption timings.

2014 van de Pol-Smart—Yarom
steals Bitcoin key from timings

of 25 OpenSSL signatures.

2016 Yarom—Genkin—Heninger
“CacheBleed"” steals RSA secret
key via timings of OpenSSL.

Constant-time ECC

ECDH computation: a, P —
where a Is your secret key.

Key generation: a+— ab.
Signing: r— rB.

All of these use secret data.
Does timing leak this data?

Are there any branches in
ECC ops? Point ops? Field
Do the underlying machine |

take variable time?

Examples of successful attacks:

2005 Tromer—Osvik—Shamir:
65ms to steal Linux AES key
used for hard-disk encryption.

2013 AlFardan—Paterson “Lucky
Thirteen: breaking the TLS and
DTLS record protocols” steals

plaintext using decryption timings.

2014 van de Pol-Smart—Yarom
steals Bitcoin key from timings

of 25 OpenSSL signatures.

2016 Yarom—Genkin—Heninger
“CacheBleed"” steals RSA secret
key via timings of OpenSSL.

Constant-time ECC

ECDH computation: a, P — aP
where a Is your secret key.

Key generation: a+— ab.
Signing: r— rB.

All of these use secret data.
Does timing leak this data?

Are there any branches In
ECC ops? Point ops? Field ops?
Do the underlying machine insns

take variable time?

s of successful attacks:

omer—QOsvik—Shamir:
steal Linux AES key
hard-disk encryption.

-ardan—Paterson “Lucky
: breaking the TLS and
cord protocols” steals

- using decryption timings.

1 de Pol-Smart—Yarom
tcoin key from timings
enSSL signatures.

rom—Genkin—Heninger
3leed” steals RSA secret
imings of OpenSSL.

Constant-time ECC

ECDH computation: a, P — aP
where a Is your secret key.

Key generation: a+— ab.
Signing: r— rB.

All of these use secret data.
Does timing leak this data?

Are there any branches In
ECC ops? Point ops? Field ops?
Do the underlying machine insns

take variable time?

Recall le
to comp
using pc

def sca.
if n :
if n :
R =8
R =R
if n

retur:

Many br
NAF etc

ssful attacks:

k—Shamir:
Ix AES key
encryption.

terson “Lucky
r the TLS and
bcols’ steals

“ryption timings.

ymart—Yarom
from timings
rnatures.

In—Heninger
1Is RSA secret
OpenSSL.

Constant-time ECC

ECDH computation: a, P — aP
where a Is your secret key.

Key generation: a+— ab.
Signing: r— rB.

All of these use secret data.
Does timing leak this data?

Are there any branches In
ECC ops? Point ops? Field ops?
Do the underlying machine insns

take variable time?

Recall left-to-right
to compute n, P +
using point additic

def scalarmult(n
if n == 0: ret
if n == 1: ret
R = scalarmult
R=R+R
if n /, 2: R =

return R

Many branches he
NAF etc. also use

-ks:

ucky
and
s

mings.

om

1gS

er
cret

Constant-time ECC

ECDH computation: a, P — aP
where a Is your secret key.

Key generation: a+— ab.

Signing: r— rB.

All of these use secret data.

Does timing leak this data?

Are there any branches In
ECC ops? Point ops? Field ops?

Do the unc

take variab

erlying machine insns

e time?

Recall left-to-right binary m
to compute n, P — nP
using point addition:

def scalarmult(n,P):
if n == 0: return O
if n == 1: return P
R = scalarmult(n//2,P)
R =R+R
if n) 2: R=R + P

return R

Many branches here.
NAF etc. also use many bra

Constant-time ECC

ECDH computation: a, P — aP
where a Is your secret key.

Key generation: a+— ab.
Signing: r— rB.

All of these use secret data.
Does timing leak this data?

Are there any branches In
ECC ops? Point ops? Field ops?
Do the underlying machine insns

take variable time?

Recall left-to-right binary method
to compute n, P — nP
using point addition:

def scalarmult(n,P):
if n == 0: return O
if n == 1: return P
R = scalarmult(n//2,P)
R =R+ R
if n % 2: R=R + P

return R

Many branches here.
NAF etc. also use many branches.

t-time ECC

omputation: a, P — aP

IS your secret key.

eration: a — aB.

r — rB.

ese use secret data.

ning leak this data?

e any branches in

¢ Point ops? Field ops?

ING

ab

erlying machine insns

e time?

Recall left-to-right binary method
to compute n, P — nP
using point addition:

def scalarmult(n,P):
if n == 0: return O
if n == 1: return P
R = scalarmult(n//2,P)
R =R+R
if n) 2: R=R + P

return R

Many branches here.

NAF etc. also use many branches.

Even if ¢
takes thi
(certainl
total tin

If oe—1 j
n has ex

number

Particul:
usually 1
“Lattice
compute
position:

C

n: a, P — aP
cret key.

— ab.

cret data.
‘his data?

1ches In

ps? Field ops?
machine insns
/

Recall left-to-right binary method
to compute n, P — nP
using point addition:

def scalarmult(n,P):
if n == 0: return O
if n == 1: return P
R = scalarmult(n//2,P)
R=R+R
if n) 2: R=R + P

return R

Many branches here.

NAF etc. also use many branches.

Even if each point
takes the same an
(certainly not true
total time depend:

If 261 < n < 2¢,
n has exactly w bi
number of additio

Particularly fast tc
usually indicates v
“Lattice attacks”
compute the secre
positions of very s

s aP

ops’
nsns

Recall left-to-right binary method
to compute n, P — nP
using point addition:

def scalarmult(n,P):
if n == 0: return O
if n == 1: return P
R = scalarmult(n//2,P)
R =R+R
if n) 2: R=R + P

return R

Many branches here.

NAF etc. also use many branches.

Even if each point addition
takes the same amount of ti
(certainly not true in Pythol
total time depends on n.

If 2671 < n < 2¢ and
n has exactly w bits set:
number of additions is e 4 1

Particularly fast total time

usually indicates very small
“Lattice attacks” on signatL
compute the secret key give
positions of very small nonc

Recall left-to-right binary method
to compute n, P — nP
using point addition:

def scalarmult(n,P):
if n == 0: return O
if n == 1: return P
R = scalarmult(n//2,P)
R=R+R
if n) 2: R=R + P

return R

Many branches here.

NAF etc. also use many branches.

Even if each point addition
takes the same amount of time
(certainly not true in Python),
total time depends on n.

If 261 < n < 2¢ and
n has exactly w bits set:
number of additions is e + w — 2.

Particularly fast total time
usually indicates very small n.
“Lattice attacks” on signatures
compute the secret key given
positions of very small nonces r.

ft-to-right binary method
ute n, P — nP
int addition:

larmult(n,P):
== 0: return O

== 1: return P

calarmult(n//2,P)
+ R

s 2: R=R + P

n R

anches here.

. also use many branches.

Even if each point addition
takes the same amount of time
(certainly not true in Python),
total time depends on n.

If 2671 < n < 2¢ and
n has exactly w bits set:

number of additions is e + w — 2.

Particularly fast total time
usually indicates very small n.
“Lattice attacks” on signatures
compute the secret key given
positions of very small nonces r.

Even wo
CPUs dc¢
metadat

Actual t
affects, .
detailed
branch

Attacker
often se
Exploite

- binary method
> nP

n.

,P):
urn O

urn P

(n//2,P)

re.

many branches.

Even if each point addition
takes the same amount of time
(certainly not true in Python),
total time depends on n.

If 2671 < n < 2¢ and
n has exactly w bits set:

number of additions is e + w — 2.

Particularly fast total time
usually indicates very small n.
“Lattice attacks” on signatures
compute the secret key given
positions of very small nonces r.

Even worse:
CPUs do not try t
metadata regardin

Actual time for a
affects, and is affe
detailed state of ¢
branch predictor, ¢

Attacker interacts
often sees pattern
Exploited in, e.g.,

ethod Even if each point addition Even worse:
takes the same amount of time CPUs do not try to protect
(certainly not true in Python), metadata regarding branche

total time depends on n. .
P Actual time for a branch

If oe—1 < n < 2¢ and affects, and is affected by,

n has exactly w bits set: detailed state of code cache
number of additions is e + w — 2. branch predictor, etc.
Particularly fast total time Attacker interacts with this
usually indicates very small n. often sees pattern of branch
“Lattice attacks” on signatures Exploited in, e.g., Bitcoin at

compute the secret key given
nches. positions of very small nonces r.

Even if each point addition
takes the same amount of time
(certainly not true in Python),
total time depends on n.

If 261 < n < 2¢ and
n has exactly w bits set:
number of additions is e + w — 2.

Particularly fast total time
usually indicates very small n.
“Lattice attacks” on signatures
compute the secret key given
positions of very small nonces r.

Even worse:
CPUs do not try to protect
metadata regarding branches.

Actual time for a branch

affects, and is affected by,
detailed state of code cache,
branch predictor, etc.

Attacker interacts with this state,
often sees pattern of branches.
Exploited in, e.g., Bitcoin attack.

Even if each point addition
takes the same amount of time
(certainly not true in Python),
total time depends on n.

If 261 < n < 2¢ and
n has exactly w bits set:
number of additions is e + w — 2.

Particularly fast total time
usually indicates very small n.
“Lattice attacks” on signatures
compute the secret key given
positions of very small nonces r.

Even worse:
CPUs do not try to protect
metadata regarding branches.

Actual time for a branch

affects, and is affected by,
detailed state of code cache,
branch predictor, etc.

Attacker interacts with this state,
often sees pattern of branches.
Exploited in, e.g., Bitcoin attack.

Confidence-inspiring solution:
Avoid all data flow from
secrets to branch conditions.

2ach point addition

e same amount of time
y not true in Python),
1e depends on n.

< n < 2¢ and
actly w bits set:
of additions is e + w — 2.

rly fast total time
ndicates very small n.
attacks’ on signatures
 the secret key given

s of very small nonces r.

Even worse:
CPUs do not try to protect
metadata regarding branches.

Actual time for a branch

affects, and is affected by,
detailed state of code cache,
branch predictor, etc.

Attacker interacts with this state,
often sees pattern of branches.
Exploited in, e.g., Bitcoin attack.

Confidence-inspiring solution:
Avoid all data flow from
secrets to branch conditions.

Double-;

Eliminat
always c

def sca.
1f b :
R = s

retur:

Works ft
Always t
(includir
Use pub

addition
yount of time
“in Python),

> ON .

ind
ts set:
ns Is e + w — 2.

tal time

ery small n.
on signatures
t key given
mall nonces r.

Even worse:
CPUs do not try to protect
metadata regarding branches.

Actual time for a branch

affects, and is affected by,
detailed state of code cache,
branch predictor, etc.

Attacker interacts with this state,
often sees pattern of branches.
Exploited in, e.g., Bitcoin attack.

Confidence-inspiring solution:
Avoid all data flow from
secrets to branch conditions.

Double-and-add-al

Eliminate branche
always computing

def scalarmult(n
if b == 0: ret
R = scalarmult
R2 = R + R
S = [R2,R2 + P

return S[n % 2

Works for 0 < n <
Always takes 2b a
(including b doubl

Use public b: bits

Even worse:
CPUs do not try to protect
metadata regarding branches.

Actual time for a branch

affects, and is affected by,
detailed state of code cache,
branch predictor, etc.

Attacker interacts with this state,
often sees pattern of branches.
Exploited in, e.g., Bitcoin attack.

Confidence-inspiring solution:
Avoid all data flow from
secrets to branch conditions.

Double-and-add-always

Eliminate branches by
always computing both resu

def scalarmult(n,b,P):
if b == 0: return O
R = scalarmult(n//2,b-1
R2 = R + R
S = [R2,R2 + P]

return S[n % 2

Works for 0 < n < b
Always takes 2b additions
(including b doublings).

Use public b: bits allowed i

Even worse:
CPUs do not try to protect
metadata regarding branches.

Actual time for a branch

affects, and is affected by,
detailed state of code cache,
branch predictor, etc.

Attacker interacts with this state,
often sees pattern of branches.
Exploited in, e.g., Bitcoin attack.

Confidence-inspiring solution:
Avoid all data flow from
secrets to branch conditions.

10
Double-and-add-always

Eliminate branches by
always computing both results:

def scalarmult(n,b,P):
if b == 0: return O
R = scalarmult(n//2,b-1,P)
R2 = R + R
S = [R2,R2 + P]

return S[n % 2

Works for 0 < n < b

Always takes 2b additions
(including b doublings).

Use public b: bits allowed in n.

rse: Double-and-add-always Another
> not try to protect o CPUs d«
y- P Eliminate branches by
a regarding branches. . metadat
always computing both results:
ime for a branch Actual t
_ def scalarmult(n,b,P):
and is affected by, , affects, .
if b == 0: return O _
state of code cache, detailed
_ R = scalarmult(n//2,b-1,P)
yredictor, etc. store-to-
R2 = R + R
Interacts with this state, S = [R2,R2 + P] Exploite
a5 pattern of branches. return S[n % 2. despite |
d in, e.g., Bitcoin attack. claimin
& Works for 0 < n < 2b. 5
1ce-inspiring solution: Always takes 2b additions
Il data flow from (including b doublings).

to branch conditions. Use public b: bits allowed In n.

O protect

g branches.

branc
'Cted

N

DY,

ode cache,

2{C.

with

this state,

of branches.
Bitcoin attack.

12 solution:

w from

1 conditions.

Double-and-add-always

Eliminate branches by
always computing both results:

def scalarmult(n,b,P):
if b == 0: return O
R = scalarmult(n//2,b-1,P)
R2 = R + R
S = [R2,R2 + P

return S[n % 2

Works for 0 < n < b

Always takes 2b additions
(including b doublings).

Use public b: bits allowed in n.

10

Another big proble
CPUs do not try t
metadata regardin

Actual time for x|
affects, and is affe
detailed state of d
store-to-load forw:

Exploited in, e.g.,
despite Intel and (
claiming their cod

state,

tack.

Double-and-add-always

Eliminate branches by
always computing both results:

def scalarmult(n,b,P):
if b == 0: return O
R = scalarmult(n//2,b-1,P)
R2 = R + R
S = [R2,R2 + P]

return S[n % 2

Works for 0 < n < b
Always takes 2b additions
(including b doublings).

Use public b: bits allowed in n.

10

Another big problem:
CPUs do not try to protect
metadata regarding array in

Actual time for x[i]
affects, and is affected by,
detailed state of data cache
store-to-load forwarder, etc.

Exploited in, e.g., CacheBle
despite Intel and OpenSSL
claiming their code was safe

Double-and-add-always

Eliminate branches by
always computing both results:

def scalarmult(n,b,P):
if b == 0: return O
R = scalarmult(n//2,b-1,P)
R2 = R + R
S = [R2,R2 + P

return S[n % 2

Works for 0 < n < b
Always takes 2b additions
(including b doublings).

Use public b: bits allowed in n.

10

Another big problem:
CPUs do not try to protect

metadata regarding array indices.

Actual time for x[1i]
affects, and is affected by,
detailed state of data cache,
store-to-load forwarder, etc.

Exploited in, e.g., CacheBleed,
despite Intel and OpenSSL
claiming their code was safe.

11

Double-and-add-always

Eliminate branches by
always computing both results:

def scalarmult(n,b,P):
if b ==
R = scalarmult(n//2,b-1,P)
R2 = R + R
S = [R2,R2 + P

: return O

return S[n % 2

Works for 0 < n < b
Always takes 2b additions
(including b doublings).

Use public b: bits allowed in n.

10

Another big problem:
CPUs do not try to protect
metadata regarding array indices.

Actual time for x[1i]
affects, and is affected by,
detailed state of data cache,
store-to-load forwarder, etc.

Exploited in, e.g., CacheBleed,
despite Intel and OpenSSL
claiming their code was safe.

Confidence-inspiring solution:
Avoid all data flow from
secrets to memory addresses.

11

and-add-always

e branches by
omputing both results:

larmult(n,b,P):

== (0: return O
calarmult(n//2,b-1,P)
R + R
R2,R2 + P
n S[n % 2.

v 0 < n< 2P
akes 2b additions
g b doublings).

lic b: bits allowed in n.

10

Another big problem:
CPUs do not try to protect

metadata regarding array indices.

Actual time for x[1i]
affects, and is affected by,
detailed state of data cache,
store-to-load forwarder, etc.

Exploited in, e.g., CacheBleed,
despite Intel and OpenSSL
claiming their code was safe.

Confidence-inspiring solution:
Avoid all data flow from
secrets to memory addresses.

11

Table lo

Always 1

Use bit «
the desii

def sca.

if b -

ways

5 by
both results:

,b,P):
urn O

(n//2,b-1,P)

- 2b.
dditions
ings).

allowed In n.

10

Another big problem:
CPUs do not try to protect

metadata regarding array indices.

Actual time for x[1i]
affects, and is affected by,
detailed state of data cache,
store-to-load forwarder, etc.

Exploited in, e.g., CacheBleed,
despite Intel and OpenSSL
claiming their code was safe.

Confidence-inspiring solution:
Avoid all data flow from
secrets to memory addresses.

11

Table lookups via

Always read all tal
Use bit operations
the desired table €

def scalarmult(n
if b == 0: ret
R = scalarmult
R2 =R + R
S = [R2,R2 + P
mask = -(n % 2

return S[0] "~ (m

10 11
Another big problem: Table lookups via arithmetic

CPUs do not try to protect
metadata regarding array indices.

Always read all table entries

Its: Use bit operations to select

Actual time for x[i] the desired table entry:

affects, and is affected by, dof 1 1t (n.b.P)
ef scalarmu n,o,r):

detailed state of data cache, ,
,P) if b == 0: return O

store-to-load forwarder, etc.
R = scalarmult(n//2,b-1

Exploited in, e.g., CacheBleed, R2 =R + R
despite Intel and OpenSSL S = [R2,R2 + P]
claiming their code was safe. mask = -(n % 2)

Confidence-inspiring solution: return S[0]" (mask&(S(1]

Avoid all data flow from
1N, secrets to memory addresses.

Another big problem:
CPUs do not try to protect

metadata regarding array indices.

Actual time for x[1i]
affects, and is affected by,
detailed state of data cache,
store-to-load forwarder, etc.

Exploited in, e.g., CacheBleed,
despite Intel and OpenSSL
claiming their code was safe.

Confidence-inspiring solution:
Avoid all data flow from
secrets to memory addresses.

11

12
Table lookups via arithmetic

Always read all table entries.
Use bit operations to select
the desired table entry:

def scalarmult(n,b,P):
if b == 0: return O
R = scalarmult(n//2,b-1,P)
R2 = R + R
S = [R2,R2 + P]
mask = -(n 7% 2)
return S[0]~ (mask&(S[1]~S[0]))

big problem:
> not try to protect
a regarding array indices.

ime for x[1i]

and is affected by,
state of data cache,
load forwarder, etc.

d in, e.g., CacheBleed,
ntel and OpenSSL
‘their code was safe.

1ce-Inspiring solution:
Il data flow from
to memory addresses.

11

Table lookups via arithmetic

Always read all table entries.
Use bit operations to select
the desired table entry:

def scalarmult(n,b,P):
if b == 0: return O
R = scalarmult(n//2,b-1,P)
R2 = R + R
S = [R2,R2 + P]
mask = —-(n % 2)
return S[0]~ (mask&(S[1]~S[0]))

12

Width-2

def fix
if b -
T = t
mask :
T ~=
mask :
T ~=
mask
T ~=
R =1
R =R
R =R
retur:

11 12
M Table lookups via arithmetic Width-2 unsigned
o protect .
P S Always read all table entries. def fixwin2(n,Db,
g array indices. . . |
Use bit operations to select if b <= 0: ret
i] the desired table entry: T = table[0]
cted by, ask = (-(1 ~
Y def scalarmult(n,b,P): . (=
ata cache, , T "= "mask & (
. if b == 0: return O
arder, etc. k = (-(2°
R = scalarmult(n//2,b-1,P) Has (=
T "= "mask &
CacheBleed, R2 =R + R ¢ (
mask = (-(3 ~
DpenSSL S = [R2,R2 + P]
: T "= "mask & (
e was safe. mask = -(n % 2) o
R = fixwin2(n
. return S[0]~ (mask&(S[1]°S[0]))
1g solution: R =R + R
w from R=R+R
ry addresses. return R + T

dices.

SES.

11

Table lookups via arithmetic

Always read all table entries.
Use bit operations to select
the desired table entry:

def scalarmult(n,b,P):
if b == 0: return O
R = scalarmult(n//2,b-1,P)
R2 = R + R
S = [R2,R2 + P]
mask = —-(n % 2)
return S[0]~ (mask&(S[1]~S[0]))

12

Width-2 unsigned fixed winc

def fixwin2(n,b,table):

1if b <= 0: return O

T = tablel[0]

mask = (-(1 = (n % 4)))
T "= "mask & (T tablell
mask = (-(2 ~ (n % 4)))
T "= "mask & (T "tablelZ
mask = (-(3 ~ (n % 4)))
T "= "mask & (T tablel3

R = fixwin2(n//4,b-2,ta
R =R+ R
R =R+ R

return R + T

Table lookups via arithmetic

Always read all table entries.
Use bit operations to select
the desired table entry:

def scalarmult(n,b,P):
if b ==
R = scalarmult(n//2,b-1,P)
R2 = R + R
S = [R2,R2 + P]
mask = -(n % 2)
return S[0]~ (mask&(S[1]~S[0]))

: return O

12

Width-2 unsigned fixed windows

def fixwin2(n,b,table):
if b <= 0:
T = tablel[0]
mask = (-(1 =~ (n % 4))) >> 2
T "= "mask & (T tablel1])
mask = (-(2 =~ (n % 4))) >> 2
T "= "mask & (T "tablel2])
mask = (-(3 = (n % 4))) >> 2

return O

T "= "mask & (T tablel[3])

R = fixwin2(n//4,b-2,table)
R =R+ R

R =R+ R

return R + T

13

okups via arithmetic

ead all table entries.
operations to select
ed table entry:

larmult(n,b,P):

== (0: return O
calarmult(n//2,b-1,P)

R + R

R2,R2 + P]

= -(n % 2)

n S[0] " (mask&(S[1]1°S[0]))

12

Width-2 unsigned fixed windows

def fixwin2(n,b,table):

1if b <= 0: return O

T = tablel[0]

mask = (-(1 =~ (m % 4))) >> 2
T "= "mask & (T tablel1])
mask = (-(2 =~ (n % 4))) >> 2
T "= "mask & (T tablel2])
mask = (-(3 = (n % 4))) >> 2
T "= "mask & (T "tablel3])

R = fixwin2(n//4,b-2,table)
R =R + R
R =R+ R

return R + T

13

def sca
P2 =]
table

retur:

Public b

For b €
Always |
Always |

Always

Can sim
larger-w
Unsigne
Signed i

arithmetic

ble entries.
to select
ntry:

,b,P):
urn O

(n//2,b-1,P)

]

)
ask&(S[1]1°S[0]))

12

Width-2 unsigned fixed windows

def fixwin2(n,b,table):

if b <= 0: return O

T = tablel[0]

mask = (-(1 = (n % 4))) >> 2
T "= "mask & (T tablel1])
mask = (-(2 -~ (n % 4))) >> 2
T "= "mask & (T tablel[2])
mask = (-(3 = (n % 4))) >> 2
T "= "mask & (T "tablel3])

R = fixwin2(n//4,b-2,table)
R=R+R
R =R+ R

return R + T

13

def scalarmult(n

P2 = P+P

table = [0,P,P

return fixwin?2

Public branches, p

For b € 2Z.:

Always 2 add

Can similarly

Always b doubling
Always b/2 additic

1tions

prote

larger-width fixed

Unsigned is s
Signed is slig

ightl

ntly f

~S[0]1))

12

Width-2 unsigned fixed windows

def fixwin2(n,b,table):

1if b <= 0: return O

T = tablel[0]

mask = (-(1 =~ (m % 4))) >> 2
T "= "mask & (T tablel1])
mask = (-(2 =~ (n % 4))) >> 2
T "= "mask & (T tablel2])
mask = (-(3 = (n % 4))) >> 2
T "= "mask & (T "tablel3])

R = fixwin2(n//4,b-2,table)
R =R + R
R =R+ R

return R + T

13

def scalarmult(n,b,P):

P2 = P+P

table = [0,P,P2,P2+P]

return fixwin2(n,b,tabl

Public branches, public indic

For b € 2Z:

Can similarly

Always b doublings.
Always b/2 additions of T.
Always 2 additions for table

protect

larger-width fixed windows.

Unsigned is s
Signed is slig

ightly easier.

ntly faster.

Width-2 unsigned fixed windows

def fixwin2(n,b,table):

if b <= 0: return O

T = tablel[0]

mask = (-(1 =~ (n % 4))) >> 2
T "= "mask & (T tablel1])
mask = (-(2 =~ (n % 4))) >> 2
T "= "mask & (T tablel2])
mask = (-(3 = (n % 4))) >> 2
T "= "mask & (T "tablel3])

R = fixwin2(n//4,b-2,table)
R=R+R
R =R+ R

return R + T

13

def scalarmult(n,b,P):
P2 = P+P
table = [0,P,P2,P2+P]

return fixwin2(n,b,table)

Public branches, public indices.

For b € 2Z.

Always b doublings.

Always b/2 additions of T.
Always 2 additions for table.

Can similarly protect
larger-width fixed windows.
Unsigned is slightly easier.

Signed is slightly faster.

14

“unsigned fixed windows

7in2(n,b,table):

<= 0: return O

able [0]

= (-(1 -~ (n % 4))) > 2
“mask & (T "tablel[1])

= (-2 " (% 4))) > 2
“mask & (T "tablel[2])

= (-3~ (% 4))) > 2
“mask & (T table[3])
ixwin2(n//4,b-2,table)
+ R

+ R

n R + T

13

P2 = P+P

For b € 2Z:

Can similarly

Unsigned is s
Signed is slig

def scalarmult(n,b,P):

table = [0,P,P2,P2+P]

return fixwin2(n,b,table)

Public branches, public indices.

Always b doublings.
Always b/2 additions of T.
Always 2 additions for table.

protect

larger-width fixed windows.

ightly easier.

ntly faster.

14

Fixed-ba

Obvious
a— aB
reuse n,

fixed windows

table) :

urn O

(n % 4))) > 2
T~table[1])

(n % 4))) > 2
T~table[2])

(n % 4))) > 2
T~table[3])
/4,b-2,table)

13

def scalarmult(n,b,P):
P2 = P+P
table = [0,P,P2,P2+P]

return fixwin2(n,b,table)

Public branches, public indices.

For b € 2Z.

Always b doublings.

Always b/2 additions of T.
Always 2 additions for table.

Can similarly protect
larger-width fixed windows.
Unsigned is slightly easier.

Signed is slightly faster.

14

Fixed-base scalar |

Obvious way to he
a — ab and signi
reuse n, P — nP f{

lows

>> 2

13

def scalarmult(n,b,P):
P2 = P+P
table = [0,P,P2,P2+P]

return fixwin2(n,b,table)
Public branches, public indices.

For b € 2Z.

Always b doublings.

Always b/2 additions of T.
Always 2 additions for table.

Can similarly protect
larger-width fixed windows.
Unsigned is slightly easier.

Signed is slightly faster.

14

Fixed-base scalar multiplicat

Obvious way to handle keyg
a+— aB and signing r — rE
reuse n, P — nP from ECDI

14 15
def scalarmult(n,b,P): Fixed-base scalar multiplication

P2 = P+P
table = [0,P,P2,P2+P]

Obvious way to handle keygen

a — abB and signing r — rB:
reuse n, P — nP from ECDH.

return fixwin2(n,b,table)
Public branches, public indices.

For b € 2Z.

Always b doublings.

Always b/2 additions of T.
Always 2 additions for table.

Can similarly protect
larger-width fixed windows.
Unsigned is slightly easier.

Signed is slightly faster.

def scalarmult(n,b,P):
P2 = P+P
table = [0,P,P2,P2+P]

return fixwin2(n,b,table)

Public branches, public indices.

For b € 2Z.

Always b doublings.

Always b/2 additions of T.
Always 2 additions for table.

Can similarly protect
larger-width fixed windows.
Unsigned is slightly easier.

Signed is slightly faster.

14

15
Fixed-base scalar multiplication

Obvious way to handle keygen
a — abB and signing r — rB:

reuse n, P — nP from ECDH.

Can do much better since B is
a constant: standard base point.

e.g. For b = 256: Compute
(2128n1 + ng)B as mB1 + ngB
using double-scalar fixed windows,
after precomputing B; = 21%8B.

Fun exercise: For each k, try to
minimize number of additions
using k precomputed points.

larmult(n,b,P):

P+P

= [0,P,P2,P2+P]

n fixwin2(n,b,table)

ranches, public indices.

2L

) doublings.

H/2 additions of T.
) additions for table.

ilarly protect
dth fixed windows.
1 is slightly easier.

s slightly faster.

14

Fixed-base scalar multiplication

Obvious way to handle keygen
a — abB and signing r — rB:

reuse n, P — nP from ECDH.

Can do much better since B is
a constant: standard base point.

e.g. For b = 256: Compute
(2128n1 + ng)B as mB1 + ngB
using double-scalar fixed windows,
after precomputing B; = 21%8B.

Fun exercise: For each k, try to
minimize number of additions

using k precomputed points.

15

Recall C
57164 ¢
63526 ¢
205741 .
159128

ECDH i

Verificat
somewh.

(But ba

Keygen
much fa
Signing
dependil

,b,P):

2,P2+P]
(n,b,table)

ublic indices.

S.
ons of T.
5 for table.

ct
windows.
y easler.
aster.

14

Fixed-base scalar multiplication

Obvious way to handle keygen
a — abB and signing r — rB:

reuse n, P — nP from ECDH.

Can do much better since B is
a constant: standard base point.

e.g. For b = 256: Compute
(2128n1 + ng)B as mB1 + ngB
using double-scalar fixed windows,
after precomputing By = 21%8B.

Fun exercise: For each k, try to
minimize number of additions
using k precomputed points.

15

Recall Chou timin,
57164 cycles for k
63526 cycles for si

205741 cyc
159128 cyc

es for
es for

ECDH is single-sc:

Verification

Is dou

somewhat slower 1
(But batch verific:

Keygen is fixed-ba

much faster than

Signing is keygen

depending on mes

_€S.

14

Fixed-base scalar multiplication

Obvious way to handle keygen
a — abB and signing r — rB:

reuse n, P — nP from ECDH.

Can do much better since B is
a constant: standard base point.

e.g. For b = 256: Compute
(2128n1 + ng)B as mB1 + ngB
using double-scalar fixed windows,
after precomputing B; = 21%8B.

Fun exercise: For each k, try to
minimize number of additions
using k precomputed points.

15

Recall Chou timings:

57164 cycles for keygen,

63526 cycles for signature,

205741 cyc
159128 cyc

es for verificatiol
es for ECDH.

ECDH is single-scalar mult.

Verification

Is double-scalar

somewhat slower than ECDI

(But batch verification is fa

Keygen is fixed-base scalar r
much faster than ECDH.

Signing is keygen plus overh

depending on message lengt

Fixed-base scalar multiplication

Obvious way to handle keygen
a — abB and signing r — rB:

reuse n, P — nP from ECDH.

Can do much better since B is
a constant: standard base point.

e.g. For b = 256: Compute
(2128n1 + ng)B as mB1 + ngB
using double-scalar fixed windows,
after precomputing By = 21%8B.

Fun exercise: For each k, try to
minimize number of additions
using k precomputed points.

15

Recall Chou timings:

57164 cycles for keygen,

63526 cycles for signature,

205741 cyc
159128 cyc

es for verification,
es for ECDH.

ECDH is single-scalar mult.

Verification is double-scalar mult,

somewhat slower than ECDH.

(But batch verification is faster.)

Keygen is fixed-base scalar mult,
much faster than ECDH.

Signing is keygen plus overhead

depending on message length.

16

se scalar multiplication

way to handle keygen
and signing r — rB:
P — nP from ECDH.

much better since B s
nt: standard base point.

b = 256: Compute
+ no)B as m By + ngB

uble-scalar fixed windows,

computing By = 21%8B.

cise: For each k, try to
> number of additions
precomputed points.

15

Recall Chou timings:
57164 cycles for keygen,

63526 cycles for signature,
205741 cycles for veritfication,
159128 cycles for ECDH.

ECDH is single-scalar mult.

Verification is double-scalar mult,

somewhat slower than ECDH.
(But batch verification is faster.)

Keygen is fixed-base scalar mult,
much faster than ECDH.

Signing is keygen plus overhead
depending on message length.

16

Let's mc

ECC
verify S

Poinf
P, Q

Field'

X1, X2

I\/Iachin'
32-bit r

Gat
AND

nultiplication

indle keygen
g r— rB:
rom ECDH.

er since B is
ard base point.

Compute
"mBy+ ngB

r fixed windows,

> B; = 21288

each k, try to
of additions

ted points.

15

Recall Chou timings:
57164 cycles for keygen,

63526 cycles for signature,
205741 cycles for verification,
159128 cycles for ECDH.

ECDH is single-scalar mult.

Verification is double-scalar mult,

somewhat slower than ECDH.
(But batch verification is faster.)

Keygen is fixed-base scalar mult,
much faster than ECDH.

Signing is keygen plus overhead
depending on message length.

16

Let's move down :

ECC ops: e.g.,
verify SB = R +

lwindov

Point ops: e.g.
PQQ— P+ Q

lfaster‘

Field ops: e.g.,
X1, X2 —= X1X2 In

vdelayec

Machine |
32-bit mu

nsns: e
tiplicat

Vplpelln

Gates: e.g.,
AND, OR, XOF

oint.

0B

1dows,

y to
1S

15

Recall Chou timings:
57164 cycles for keygen,

63526 cycles for signature,
205741 cycles for veritication,
159128 cycles for ECDH.

ECDH is single-scalar mult.

Verification is double-scalar mult,

somewhat slower than ECDH.
(But batch verification is faster.)

Keygen is fixed-base scalar mult,
much faster than ECDH.

Signing is keygen plus overhead
depending on message length.

16

Let's move down a level:

ECC ops: e.g.,

verify SB

= R+ hA

lwindowing etc.

Point o

PQR— P+ Q@

ps: e.g.,

lfaster doubling e

Field ops: e.g.,
X1, X2 —= X1X2 In Fp

vdelayed carries €

Machine |
32-bit mu

nsns: e.g.,
tiplication

Vpipelining etc.

Gates: e.g.,
AND, OR, XOR

Recall Chou timings:
57164 cycles for keygen,

63526 cycles for signature,
205741 cycles for verification,
159128 cycles for ECDH.

ECDH is single-scalar mult.

Verification is double-scalar mult,

somewhat slower than ECDH.
(But batch verification is faster.)

Keygen is fixed-base scalar mult,
much faster than ECDH.

Signing is keygen plus overhead
depending on message length.

16

Let's move down a level:

ECC ops: e.g.,
verify SB = R + hA

lwindowing etc.

Point ops: e.g.,
PQQ+— P+Q

lfaster doubling etc.

Field ops: e.g.,
X1, X2 —= X1X2 In Fp

Y

Machine insns: e.g.,
32-bit multiplication

vpipelining etc.

Gates: e.g.,
AND, OR, XOR

delayed carries etc.

17

hou timings:
ycles for keygen,

ycles for signature,
cycles for verification,

cycles for ECDH.

5 single-scalar mult.

ion iIs double-scalar mult,
at slower than ECDH.
ch verification is faster.)

Is fixed-base scalar mult,
ster than ECDH.

Is keygen plus overhead
1g on message length.

16

Let's move down a level:

ECC ops: e.g.,
verify SB = R + hA

lwindowing etc.

Point ops: e.g.,
PQ+— P+Q

lfaster doubling etc.

Field ops: e.g.,
X1, X2 —= X1X2 In Fp

Y

Machine insns: e.g.,
32-bit multiplication

Vpipelining etc.

Gates: e.g.,
AND, OR, XOR

delayed carries etc.

17

Eliminat

Have to
of curve
How to

addition

Additior

((x1y2

(y1y2 —
uses exp

'S
eygen,
gnature,
verification,

ECDH.

alar mult.

ble-scalar mult,
han ECDH.
ition is faster.)

se scalar mult,
FCDH.

plus overhead
sage length.

16

Let's move down a level:

ECC ops: e.g.,

verify SB = R + hA

lwindowing etc.

Point ops: e.g.,
PQQ— P+Q

lfaster doubling etc.

Field ops: e.g.,
X1, X2 —= X1X2 In Fp

Y

delayed carries etc.

Machine insns: e.g.,

32-bit multiplication

Y
Gates: e.g.,
AND, OR, XOR

pipelining etc.

17

Eliminating divisio

Have to do many
of curve points: F
How to efficiently
additions into fielc

Addition (X1 , y1) ~

((x1y2 + y1x2) /(1

(yiy2 — x1x2) /(1
uses expensive div

mult,

Ster.)

nult,

ead

16

Let's move down a level:

ECC ops: e.g.,

verify SB

= R+ hA

lwindowing etc.

Point o

PQR— P+Q

ps: e.g.,

lfaster doubling etc.

Field ops: e.g.,
X1, X2 —= X1X2 In Fp

Y

Machine insns: e.g.,

32-bit mu

tiplication

Vpipelining etc.

Gates: e.g.,
AND, OR, XOR

delayed carries etc.

17

Eliminating divisions

Have to do many additions
of curve points: P,Q — P -
How to efficiently decompos
additions into field ops?

Addition (x1, y1) 4+ (x2, y2) -
((x1y2 + y1x2) /(1 + dxixoy-

(y1y2 —x1x2)/(1 — dxixay:
uses expensive divisions.

Let's move down a level:

ECC ops: e.g.,
verify SB = R + hA

lwindowing etc.

Point ops: e.g.,
PQQ+— P+Q

lfaster doubling etc.

Field ops: e.g.,
X1, X2 —= X1X2 In Fp

Y
Machine insns: e.g.,

32-bit multiplication

vpipelining etc.

Gates: e.g.,
AND, OR, XOR

delayed carries etc.

17

Eliminating divisions

Have to do many additions

of curve points: P,Q — P + Q.
How to efficiently decompose
additions into field ops?

Addition (x1, y1) + (x2, y2) =
((x1y2 + y1x2) /(1 + dxixoy1y2),

W1y2 = x1x2) /(1 — dxix2y1y2))
uses expensive divisions.

18

Let's move down a level:

ECC ops: e.g.,
verify SB = R + hA

lwindowing etc.

Point ops: e.g.,
PQQ+— P+Q

lfaster doubling etc.

Field ops: e.g.,
X1, X2 —= X1X2 In Fp

Y
Machine insns: e.g.,

32-bit multiplication

vpipelining etc.

Gates: e.g.,
AND, OR, XOR

delayed carries etc.

17

Eliminating divisions

Have to do many additions

of curve points: P,Q — P + Q.
How to efficiently decompose
additions into field ops?

Addition (x1, y1) + (x2, y2) =
((x1y2 + y1x2) /(1 + dxixoy1y2),

W1y2 = x1x2) /(1 — dxix2y1y2))
uses expensive divisions.

Better: postpone divisions

and work with fractions.
Represent (x,y) as (X : Y : Z)
with x =X/Z, y=Y/Z, Z # 0.

18

we down a level:

ops: e.g.,
B =R+ hA

lwindowing etc.

ops: e.g.,
— P+ Q

lfaster doubling etc.

ops: e.g.,
- X1 X2 In Fp

Y
e Insns: e.g.,
nultiplication

Vpipelining etc.

es: e.g.,
" OR, XOR

delayed carries etc.

17

Eliminating divisions

Have to do many additions

of curve points: P,Q — P+ Q.
How to efficiently decompose
additions into field ops?

Addition (x1, y1) + (x2, y2) =
((x1y2 + y1x2) /(1 + dx1xoy12),

1y2 = x1x2) /(1 — dxi1xoy1y2))
uses expensive divisions.

Better: postpone divisions

and work with fractions.
Represent (x,y) as (X : Y : Z)
with x =X/Z, y=Y/Z, Z # 0.

18

Additior
handle f

X1 Y
71 7

) level:

doubling etc.

;.

1 carries etc.

.,
jon

Ing etc.

\

17

Eliminating divisions

Have to do many additions

of curve points: P,Q — P + Q.
How to efficiently decompose
additions into field ops?

Addition (x1, y1) + (x2, y2) =
((x1y2 + y1x2) /(1 + dxixoy1y2),

W1y2 = x1x2) /(1 — dxixoy1y2))
uses expensive divisions.

Better: postpone divisions

and work with fractions.
Represent (x,y) as (X : Y : Z)
with x =X/Z, y=Y/Z, Z # 0.

18

Addition now has

handle fractions a:

X1 "M X
71 73 V4

X1Y2 . 11 X0
L1 24y ' L1 2Ly
1

Xm XoMY
L1 £y L1 L

Y1 Yo X1 X
Ly Ly Ly Ly
X1 XoY1 Y
l—d7 Z 7 7

1cC.

LC.

17

Eliminating divisions

Have to do many additions

of curve points: P,Q — P+ Q.
How to efficiently decompose
additions into field ops?

Addition (x1, y1) + (x2, y2) =

((x1y2

y1x2)/(1

dx1x2y1Y2),

1y2 = x1x2) /(1 — dxixoy1y2))
uses expensive divisions.

Better: postpone divisions

and work with fractions.
Represent (x,y) as (X : Y : Z)
with x = X/Z, y=Y/Z, Z # 0.

18

Addition now has to
handle fractions as input:

X1 "M X2 Y
71 71 7> Z>

Y1 Xo

Xl Y2 |
1 2y ' 2y 2
1 dX1X2 Y1 Yo'

L1 £y £y £y

Y1 Y

Z1 £y

1—dX1 Xo Y1 Yo

X1 X
Z1 2) _

L1 £y £y £y

Eliminating divisions

Have to do many additions

of curve points: P,Q — P+ Q.
How to efficiently decompose
additions into field ops?

Addition (x1, y1) + (x2, y2) =
((x1y2 + y1x2) /(1 + dxixoy1y2),

(W1y2 = x1x2)/(1 — dxixoy1y2))
uses expensive divisions.

Better: postpone divisions

and work with fractions.
Represent (x,y) as (X : Y : Z)
with x =X/Z, y=Y/Z, Z # 0.

18

Addition now has to

handle fractions as input:

Y?

X1 "M
71 73

X1 Y2 | 11 X
AW LSRN
1 Xm Xo Y1 Y

L1 £y £y £y

Y1 Y9 X1 X
1 4y L1 £y

1 _ Xm Xo Y1 V)
L1 £y £y £y

X2
7> Z>

)

)_

Eliminating divisions

Have to do many additions

of curve points: P,Q — P+ Q.
How to efficiently decompose
additions into field ops?

Addition (x1, y1) + (x2, y2) =
((x1y2 + y1x2) /(1 + dxixoy1y2),

(W1y2 = x1x2)/(1 — dxixoy1y2))
uses expensive divisions.

Better: postpone divisions

and work with fractions.
Represent (x,y) as (X : Y : Z)
with x =X/Z, y=Y/Z, Z # 0.

18

Addition now has to

handle fractions as input:

(
(

(

X1 1

71 73
X1 Y2 | 11 X
AW LSRN

1 Xm Xo Y1 Yo'
L1 £y £y £y

(Xz Y5

1 4y L1 £y
1 _ Xm Xo Y1 V)
L1 £y £y £y

Y1 Y9 X1 X)

Z21Z5(X1Y2 + Y1 X2)
Z%Z% + dX1X2Y1Ys

Z21Z>(Y1Y2 — X1.Xp)
775 — dX1XoM1 Yo

Zz'Zz>

|

18 19

ing divisions Addition now has to ' a (é
- handle fractions as input: Z1
do many additions
points: P,Q — P + Q. (Xl Yl) (Xz Y2) _ _ (ﬁ
efficiently decompose 44! £2 42 43
s into field ops? X1Y2 . 11 X0 where
(L1 Ly | L1 4 /::Z%‘
_ X1 XoY] Yo
| (Xl,)/l) + (X21)/2) — 1 dzi Z; Z]i 222 G = Z%‘
' leQ)/(]- XmXleyQ), Y, Ys X1 X X3 — Z]
x1x2) /(1 — dxyxoy1y2)) L2, 412 | _ Ya — 7
ensive divisions PERESECRiRoNy o
' VAN A WAL Z3:F(
postone di.ViSionS Z12>2(X1Y> + Y1.X2) Input to
k with fractions. Z%ZS 4+ dX1X2Y1Y2 ’ Xl, Yl, b
it (x,y)as (X Y : Z) Output
- X/Z, y=Y/Z, Z+0. Z2125(Y1Y2 — X1 X2) X3, Ys, ;
7272 — dX1XoM1Ya -

nS

additions
Q— P+ Q.
decompose

| ops?

- (x2,y2) =
dx1x2y1y2),

— dx1x0y1y2))
Isions.

divisions
“tions.

s(X :Y : Z)
=Y/Z, Z # 0.

Addition now has to
handle fractions as input:

X1 "M X2 Y
71 73 7> Z>

X1 Y2 | 11 X
AW LSRN
1

Xm Xo Y1 Yo'
L1 £y £y £y

1 4y L1 £y
1 _ Xm Xo Y1 V)
L1 £y £y £y

Yi Y X{Xo)

Z1Z5(X1Y2 + Y1 X2)
Z%Z% + dX1XoY1Ys

Z1Z,(M1Y2 — X1.Xo)
775 — dX1XoM1Ys

19

. X1 N N
|.€.
Zl'Zl

(X3 Vs
-\ Z3' Z3

where
F=27?7Z5—dXi.
G=27?7Z5+dXy.
X3 = Z2122(X1Y2
Y3 = Z12>2(Y1Y2 -
Z3 = FG.

Input to addition :
X1, Y1, 41, X2, Y,
Output from addi
X3, Yg, Z3. No div

£0.

Addition now has to
handle fractions as input:

X1 "M X2 Y
71 71 7> Z>

X1 Y2 | 11X
1 24y ' 2y 2
1

Xm Xo Y1 Yy
L1 £y £y £y

1 £y L1 4y
1 _ Xm Xo Y1 Yo
L1 £y £y £y

Y1 Y X1 X)

Z21Z5(X1Y2 + Y1 X2)
Z%Z% + dX1XoY1Ys

Z1Z5(Y1Y2 — X1.Xo)
7375 — dX1XoM1 Yo

19

. X1 Y Xy Yo
1.e. , -+ ,
VARVA Ly 2y,

(X3 Y73
~\Z3' Z3

where

F =277 —dX1XaY1Yo,

G = Z%Z% + dX1X2Y1Yo,
X3 = Z]_ZQ(X]_YQ + Y1X2)F
Y3 = Z1Z>(Y1Y2 — X1 X2)G,
73 = FG.

Input to addition algorithm:
X1,Y1,21, X2,Y, 2£>.

Output from addition algorr
X3,Y3,Z3. No divisions nee

Addition now has to
handle fractions as input:

X1 " X2 Yo\
71 73 7> 75)

X1 Y2 | 11 X
AW LSRN
1

Xm Xo Y1 Yo'
L1 £y £y £y

1 4y L1 £y
1 _ Xm Xo Y1 V)
L1 £y £y £y

Y1 Y9 X1 X)

Z21Z5(X1Y2 + Y1 X2)
Z%Z% + dX1XoY1Ys

Z1Z(Y1Y2 — X1.Xp)
775 — dX1XoM1Ys

19

. X1 Y X2 Yo
l.e. , + ,
ARVA| Ly 2>

(X3 Y73
~\Z3' Z3

where

F=277Z5 — dX1Xo"1Ys,

G = Z%Z% + dX1X2Y1Ys,
X3 = Z1Z2(X1Y2 + Y1 X2)F,
Y3 = Z1Z>(Y1Y2 — X1 X2)G,
73 = FG.

Input to addition algorithm:
X1,Y1, 21, X2, Y2, Z>.

Output from addition algorithm:

X3, Y3, Z3. No divisions needed!

20

' now has to
ractions as Iinput:

1 Zy 77

) | Y1X2
L1 4
X1 Xo Y1 Y2
L1 £y L1 47

X1 X9
AR, _
X1 Xo0Yi1 Yo |
Z1 Zy 21 79

X1Y2 +Y1X2)
+ dX1XoY1Ys

Y1Y2 — X1 Xp)
— dX1XoY1Y>

. X1 M X2 Yo
1.e. , -+ ,
VARVA Ly 2>

(X3 Y73
~\Z3' Z3

where

F =277 —dX1XaY1Yo,

G = Z%Z% + dX1X2Y1Yo,
X3 = Z1Z>(X1Y2 + Y1 X3)F,
Y3 = Z1Z>(Y1Y2 — X1 X2)G,
73 = FG.

Input to addition algorithm:
X1.Y1, 21, X2, Y0, Z£>.

Output from addition algorithm:

X3, Y3, Z3. No divisions needed!

20

Eliminat
to save |
A= 74
C = Xj
D=Y1
E=d-
F =B -
X3 =A
Y3 =A-
/3= F
Cost: 1]
M, S are
Choose

19

. X1 Y X2 Yo
|.e. , + ,
ARVA| Ly 2>

(X3 Y73
~\Z3' Z3

where

F=277Z5 — dX1Xo"1Ys,

G = Z%Z% + dX1X2Y1Ys,
X3 = Z1Z2(X1Y2 + Y1 X2)F,
Y3 = Z1Z2(Y1Y2 — X1 X2)G,
73 = FG.

Input to addition algorithm:
X1,Y1, 21, X2, Y2, Z>.

Output from addition algorithm:

X3, Y3, Z3. No divisions needed!

20

Eliminate commor
to save multiplicat

A=721-2yr B =
C = Xq- X,
D=Y1-Yo;
E=d-C-D:
F=B—-E: G=
X3=A F-(X;
Ys=A-G-(D—
Zs=F-G.

Cost: 11M + 1S -
M S are costs of
Choose small d fo

19

. X1 Y Xo Y
1.e. , -+ ,
VARVA Ly 2>

(X3 Y73
~\Z3' Z3

where

F =237 —dX1XaY1Yo,

G = Z%Z% + dX1X2Y1Yo,
X3 = Z122(X1Y2 + Y1.X2)F,
Y3 = Z1Z>(Y1Y2 — X1 X2)G,
73 = FG.

Input to addition algorithm:
X1.Y1, 21, X2, Y2, Z>.

Output from addition algorithm:

X3, Y3, Z3. No divisions needed!

20

Eliminate common subexpre
to save multiplications:

A=Z7-Zy B= A%

C = X1 Xo;
D=Y1-Yo;
E=d-C-D;

F=B-E G=B+E;
X3=A-F-(X;-Ya+V]-,
Y3=A-G:-(D - C);
Za=F-G.

Cost: 11M + 1S 4+ 1M, wh

M, S are costs of mult, squs
Choose small d for cheap MV

. X1 Y Xo Y
l.e. , + ,
ARVA| Ly 2>

(X3 Y73
~\Z3' Z3

where

F=27%7Z5 — dX1Xo%1Ya,

G = Z%Z% + dX1X2Y1Ys,
X3 = Z125(X1Y2 + Y1 .Xo)F,
Y3 = Z1Z>(Y1Y2 — X1 X2)G,
73 = FG.

Input to addition algorithm:
X1,Y1, 21, X2, Y2, Z>.

Output from addition algorithm:

X3, Y3, Z3. No divisions needed!

20

21
Eliminate common subexpressions

to save multiplications:

A=7 -7y B= A%

C = X1 Xo;
D=Y1-Yo;
E=d-C-D:

F=B—E G=B+E
X3:A-F-(X1-Y2—|—Y1-X2);
Y3=A-G-(D—-C);
Z:=F.G.

Cost: 11M + 1S + 1M, where
M, S are costs of mult, square.
Choose small d for cheap M.

" N X2 Y
A4 Z>' 7>

Y3
/3

75 — dX1 X211 Ya,
Z% + dX1X2Y1Yo,
ZH(X1Y2 +Y1.X0)F,
Z>(Y1Y2 — X1X3)G,

—~

J .

addition algorithm:
71, X2, Y2, Z>.

from addition algorithm:

’3. No divisions needed!

20

Eliminate common subexpressions
to save multiplications:

A=7-Zy B= A%

C = X1 Xo;
D=Y1-Yo;
E=d-C-D:

F=B-—-E:G=B+E:
X3=A-F-(X1-Y2+Y1-X2);
Y3=A-G-(D - C);
Z:=F-G.

Cost: 11M + 1S + 1M, where
M, S are costs of mult, square.
Choose small d for cheap M.

21

Can do |

Obvious
compute
of polys

C =Xq

D=Y;
M = X,

X2 Y
7> 27>

X2Y1Y2,
X2Y1Y2,
+ Y1 X2)F,
- X1X2)G,

algorithm:
/5.

lon algorithm:

1sions needed!

20

Eliminate common subexpressions
to save multiplications:

A=7-Zy B= A%

C = X1 Xo;
D=Y1-Yo;
E=d-C-D:

F=B—-E:G=B+E:
X3=A-F-(X1-Y2+Y1-X2);
Y3=A-G-(D - C);
Z:=F-G.

Cost: 11M + 1S + 1M, where
M, S are costs of mult, square.
Choose small d for cheap M.

21

Can do better: 10

Obvious 4M meth

compute product
of polys X7 + Yit,

C = X1 Xo;

D =YY,
M=X; Yo +Y

21
Eliminate common subexpressions Can do better: 10M + 1S +

to save multiplications: .
P Obvious 4M method to

A=271 Z> B= A% compute product C + Mt +
C = X1 - Xo; of polys X1 + Yit, Xo + Yot
ST D =Y Y

F—B—FE;G=B+E:
X3=A-F-(X1-Y2+Y1-X2);
Y3=A-G (D - C);
Z3s=F-G.

M= X1 -Ys+Y Xo.

Cost: 11M + 1S + 1M, where
M, S are costs of mult, square.
Choose small d for cheap M.

21 22
Eliminate common subexpressions Can do better: 10M + 1S + 1M,.

to save multiplications: .
P Obvious 4M method to

A=27{-7Z> B= A2 compute product C + Mt + Dt?
C = X1 Xo; of polys X1 + Yit, Xo 4+ Yot:
ST D=Y1 Y

F=B—FE, G=B+E;
X3=A F-(X{-Ya+Ys Xp):
Ys=A-G-(D—C):
Z3=F.G.

M= Xq1-Y2+Y1 Xo.

Cost: 11M + 1S + 1M, where
M, S are costs of mult, square.
Choose small d for cheap M.

Eliminate common subexpressions
to save multiplications:

A=71 -7y B= A%

C = X1 - Xo;
D=Y1-Yo;
E=d-C-D:

F=B—FE, G=B+E;
X3=A F-(X{-Ya+Ys Xp):
Ys=A-G-(D—C):
Z3=F.G.

Cost: 11M + 1S + 1M, where
M, S are costs of mult, square.
Choose small d for cheap M.

21

Can do better: 10M + 1S + 1M,

Obvious 4M method to
compute product C + Mt + Dt?
of polys X1 + Yit, Xo 4+ Yot:

C = X1 - Xo;
D=Y1 Y
M=X1-Y>+ Y - Xo.

Karatsuba's 3M method:

C = X1 - Xp;
D=Y1-Yo;

M= (X1+Y1) (Xo+Y2)—C—-D.

22

e common subexpressions
multiplications:

. Zy; B = A?;

- X2,

Y2,

C-D;
-E; G =B+ E;

F (X1 Y2+ Y- Xo),
G (D - C);

G.

M + 1S + 1M, where
» costs of mult, square.
small d for cheap My.

21

Can do better: 10M + 1S + 1M,

Obvious 4M method to
compute product C + Mt + Dt?
of polys X1 + Yit, Xo + Yot:

C = Xq - X,

D =Y Y
M=X1-Y+ Y - Xo.

Karatsuba's 3M method:

C = X1 - X,
D =YY,

M= (X14+Y1) (Xo+Y2)—C—-D.

22

Faster d

(x1,y1)-
((ay1+
(viy1—

((2x1y1)
(vf —xj

1 subexpressions
IoNs:

A2.

5+ E;
Yo +Y1 - Xo);
C);

- 1M, where
mult, square.
r cheap M.

21

Can do better: 10M + 1S + 1M,

Obvious 4M method to
compute product C + Mt + Dt?
of polys X1 + Yit, Xo 4+ Yot:

C = X1 - Xo;
D=Y1 Y
M=X1-Y>+ Y - Xo.

Karatsuba's 3M method:

C = X1 Xp;
D=Y1-Yo;

M= (X1+Y1) (Xo+Y2)—C—-D.

22

Faster doubling

ssilons

€re
Ir'E.

21

Can do better: 10M + 1S + 1M,

Obvious 4M method to
compute product C + Mt + Dt?
of polys X1 + Yit, Xo + Yot:

C = X1 - Xo;
D =YY
M=X1-Y>+ Y - Xo.

Karatsuba's 3M method:

C = X1 - Xo;
D=Y1-Yo;

M= (X14+Y1) (Xo+Y2)—C—-D.

22

Faster doubling

(x1,y1) + (x1, 1) =
((x1y1+y1x1)/(1+dxixiy1y
(yiy1—xix1)/(I—dxixiy1y
((2x1y1)/(1 + dxy7),
(vi—x{)/(1 — dxty)).

Can do better: 10M + 1S + 1M,

Obvious 4M method to
compute product C + Mt + Dt?
of polys X1 + Yit, Xo 4+ Yot:

C = X1 - Xo;
D=Y1 Y
M=X1-Y>+ Y - Xo.

Karatsuba's 3M method:

C = X1 Xp;
D=Y1-Yo;

M= (X1+Y1) (Xo+Y2)—C—-D.

22

Faster doubling

2x1y1)/ (1 + dx¢y7),

(
(yiyi—x1x1)/(1=dxix1y1y1)) =
(
(yi—x3)/(1 — dxiy?)).

23

Can do better: 10M + 1S + 1M,

Obvious 4M method to
compute product C + Mt + Dt?
of polys X1 + Yit, Xo 4+ Yot:

C = X1 - Xo;
D=Y1 Y
M=X1-Y>+ Y - Xo.

Karatsuba's 3M method:

C = X1 Xp;
D=Y1-Yo;

M= (X1+Y1) (Xo+Y2)—C—-D.

22

Faster doubling

2x1y1)/ (1 + dx¢y7),
yi—x3)/(1 — dxiy?)).

2 2 2,2
x{ +yi =1+ dx{yi so

(x1,y1) + (X1, y1) =
((2x1y1)/(xF + ¥7),
(yi—x7)/(2 = x¢ — y7))-

(
(yiyi—x1x1)/(1=dxix1y1y1)) =
(
(

23

Can do better: 10M + 1S + 1M,

Obvious 4M method to
compute product C + Mt + Dt?
of polys X1 + Yit, Xo 4+ Yot:

C = X1 - Xo;
D=Y1 Y
M=X1-Y>+ Y - Xo.

Karatsuba's 3M method:

C = X1 Xp;
D=Y1-Yo;

M= (X1+Y1) (Xo+Y2)—C—-D.

22

23
Faster doubling

2x1y1)/ (1 + dx¢y7),
yi—x3)/(1 — dxiy?)).

i +yp =1

(
(yiyi—x1x1)/(1=dxix1y1y1)) =
(
(

dX12y12 SO
(x1,y1) + (x1,01) =
((2x1y1)/(xF + ¥5).
(Yi—x7)/(2 = x{ = y1))-

Again eliminate divisions
using (X : Y : Z): only 3M + 4S.
Much faster than addition.

better: 10M + 1S + 1My,.

4M method to
 product C + Mt + Dt?
X1+ Yit, Xo 4+ Yot:

Yo + Y71 - Xo.

)a's 3M method:

- X2;
Y2,

1+Y1) (Xo+Y2)—C—D.

22

Faster doubling

(X1, 1) + (x1,y1) =
((x1y1+y1x)/(1+dxixiyiya),
Wy1—xix1)/(1—dxixiyiy1)) =
((2x1y1)/(1 + dx7y7).
(vi—x{)/(1 — dxiyi)).

X3 y2 =1 d><12y12 SO

(x1,y1) + (x1,01) =

((2xay1)/(xF + 7).
(yi—x3)/(2 =3 — ¥7)).

Again eliminate divisions

using (X : Y : Z): only 3M + 4S.

Much faster than addition.

23

More ad

Dual ad:
(x1,y1)-
((x1y1 +

(x1y1 -
Low deg

M + 1S + 1M,

od to
C + Mt + Dt?
Xo + Yaot:

22

Faster doubling

2x1y1)/(1 + dx¢y7),
yi—x3)/(1 — dxiy?)).

2 2 2,2
x{ +yi =1+ dx{y{ so

(x1,y1) + (x1,y1) =
((2x1y1)/(xF + ¥7),
(yi—x7)/(2 = x — y7))-

Again eliminate divisions

(
(yiyi—x1x1)/(1=dxix1y1y1)) =
(
(

using (X : Y : Z): only 3M + 4S.

Much faster than addition.

23

More addition stre

Dual addition forn

(x1, 1) + (x2, y2)
((x1y1 + x2x2)/(x

(x1y1 — x2y2)/(x:
Low degree, no ne

1My,

22

Faster doubling

(X1, 1) + (x1,y1) =
((x1y1+y1x)/(1+dxixiyiyi),
Wy1—xix1)/(I1—dxixiy1y1)) =
((2x1y1)/(1 + dx7y7).
(vi—x{)/(1 — dxiyi)).

X3 y2 =1 dx12y12 SO

(x1,y1) + (x1,01) =

((2xay1)/(xF + 7).
(yi—x7)/(2 =3 — ¥7)).

Again eliminate divisions

using (X : Y : Z): only 3M + 4S.

Much faster than addition.

23

More addition strategies

Dual addition formula:
(x1,y1) + (X0, ¥0) =
((x1y1 + x2y2)/(x1X2 + y1y2

(x1y1 — x2y2)/(X1y2 — X2y1
Low degree, no need for d.

Faster doubling

(x1,y1) + (x1, 1) =
((xay1tyixa)/(L+dxixayiyr),
1y1—x1x1)/(1—dxix1y1y1)) =
((2x1y1)/(1 + dxy7),
(vi—x{)/(1 — dx{y)).

X12 y12 =1 dX12y12 SO

(x1,y1) + (x1,y1) =

((2xay1)/(xF + y7),
(yi—x?)/(2 = xF — yi)).

Again eliminate divisions

using (X : Y : Z): only 3M + 4S.

Much faster than addition.

23

More addition strategies

Dual addition formula:

(x1,y1) + (x2,)2) =
((xy1 + xex2)/(x1x2 + y1)2),

(x1y1 — x2y2)/(x1y2 — x2y1)).

Low degree, no need for d.

24

Faster doubling

(x1,y1) + (x1,y1) =

((xay1+y1x1)/(I+dxaixiyiyr),
(yiy1—x1x1)/(1=dxix1y1y1)) =

((2x1y1)/(1 + dxgy7),

(yi—x3)/(1 — dxiy?)).

2

a’xl2 y12 SO

X3 y12 — 1
(x1,y1) + (x1,y1) =
((2x1y1)/(xF + y7),
(Yi—x7)/(2 =X — y7)).

Again eliminate divisions

using (X : Y : Z): only 3M + 4S.

Much faster than addition.

23

24
More addition strategies

Dual addition formula:

(x1,y1) + (x2,)2) =
((xy1 + xex2)/(x1x2 + y1)2),

(x1y1 — xay2)/(x1y2 — x2y1)).
Low degree, no need for d.

Warning: fails for doubling!
Is this really “addition”?
Most EC formulas have failures.

Faster doubling

dX12y12 SO
(x1,y1) + (x1,01) =
((2x1y1)/(xF + ¥5).
(Yi—x7)/(2 = x{ = y1))-

Again eliminate divisions

X3 y12:1

using (X : Y : Z): only 3M + 4S.

Much faster than addition.

23

24
More addition strategies

Dual addition formula:

(x1,y1) + (x2,)2) =
((xy1 + xex2)/(x1x2 + y1)2),

(x1y1 — xay2)/(x1y2 — x2y1)).
Low degree, no need for d.

Warning: fails for doubling!
Is this really “addition”?
Most EC formulas have failures.

Can test for failure cases.

Can produce constant-time code
by eliminating branches.

For some ECC ops, can prove
that failure cases never happen.

oubling

+(x1, 1) =
y1x1)/(1+dxix1y1y1),
x1x1)/(1—dxix1y1y1)) =
/(1 + dxiyy).

)/(1 = dxiyt)).

=1 dx12y12 SO

+ (x1,y1) =

/(4 + ¥5),

)/ (2= x5 —y1)).

Iminate divisions

(Y : Z): only 3M + 4S.

ster than addition.

23

More addition strategies

Dual addition formula:
(x1, y1) + (X2, ¥2) =
((x1y1 + x2y2)/(x1X2 + y1)2)

(x1y1 — x2y2)/(x1y2 — x2y1)).
Low degree, no need for d.

Warning: fails for doubling!
Is this really “addition”?
Most EC formulas have failures.

Can test for failure cases.

Can produce constant-time code
by eliminating branches.

For some ECC ops, can prove
that failure cases never happen.

24

More co
® Inverte
® extenc
e compl

“—1-twi
Yy
further <

Inside m
8M for

3M + 4!

dx1x1y1y1),
dxix1yiy1)) =
.y12)'

2y?)).

Y2 so

),

— 7).

vVISions

only 3M + 48S.

addition.

23

More addition strategies

Dual addition formula:

(x1,y1) + (x2,)2) =
((xay1 +xex2)/(x1x2 + y1)2),

(x1y1 — x2y2)/(x1y2 — x2y1)).
Low degree, no need for d.

Warning: fails for doubling!
Is this really “addition”?
Most EC formulas have failures.

Can test for failure cases.

Can produce constant-time code
by eliminating branches.

For some ECC ops, can prove
that failure cases never happen.

24

More coordinate s
e inverted: x =2/
e extended: x =/
e completed: x =

XY =

“—1-twisted Edwa
—x? 4+ y2 =1+a
further speedups r
—x*+yt=(y—

Inside modern EC
8M for addition,
3M + 4S for doub

+ 4S.

23

More addition strategies

Dual addition formula:

(x1,¥1) + (X2, y2) =
((x1y1 + x2y2)/(x1x2 + y1y2)

(x1y1 — x2y2)/(x1y2 — x2y1)).
Low degree, no need for d.

Warning: fails for doubling!
Is this really “addition”?
Most EC formulas have failures.

Can test for failure cases.

Can produce constant-time code
by eliminating branches.

For some ECC ops, can prove
that failure cases never happen.

24

More coordinate systems: e
e inverted: x =2/X, y = 2
e extended: x =X/Z, y =
e completed: x = X/Z, y =
xy=T/Z.

"—1-twisted Edwards curves
—x? + y? =1+ dx?y?:
further speedups related to
—x*+y*=(y = x)(y +x)

Inside modern ECC operatic
8M for addition,
3M + 4S for doubling.

More addition strategies

Dual addition formula:

(x1,y1) + (x2,)2) =
((xy1 +xex2)/(x1x2 + y1y2),

(x1y1 — x2y2)/(x1y2 — x2y1)).
Low degree, no need for d.

Warning: fails for doubling!
Is this really “addition”?
Most EC formulas have failures.

Can test for failure cases.

Can produce constant-time code
by eliminating branches.

For some ECC ops, can prove
that failure cases never happen.

24

25
More coordinate systems: e.g.,

e inverted: x=2/X,y=2/Y.

e extended: x =X/Z, y=Y/T.

e completed: x=X/Z, y=Y/Z,
xy=T/Z.

"—1-twisted Edwards curves”
—x? + y? =1+ dx°y?:
further speedups related to
x>+ y* = (y = x)(y +x).

Inside modern ECC operations:
8M for addition,
3M + 4S for doubling.

dition strategies

dition formula:
+ (x2, y2) =
- x0y2)/(x1x2 + y1)2)

- x2y2)/(x1y2 — x2¥1)).
ree, no need for d.

. fails for doubling!
ally “addition” ?
~ formulas have failures.

- for failure cases.

duce constant-time code
1ating branches.

e ECC ops, can prove
Ure cases never happen.

24

More coordinate systems: e.g.,

e inverted: x=2/X,y=2/Y.

e extended: x =X/Z, y=Y/T.

e completed: x=X/Z, y=Y/Z,
xy=T/Z.

"—1-twisted Edwards curves”
“x2 4 y2 =1+ dx2y2:
further speedups related to
x>+ y* = (y = x)(y + x).

Inside modern ECC operations:
8M for addition,
3M + 4S for doubling.

25

NIST cu
were sta
Edwards

Much sl

tegies

1ula:

X2 + y1y2),

¥ — xo¥1)).
ed for d.

doubling!
tion" 7
have failures.

> cases.
rant-time code
nches.

5, Can prove
1ever happen.

24

More coordinate systems: e.g.,

e inverted: x=2/X,y=2/Y.

e extended: x =X/Z, y=Y/T.

e completed: x=X/Z, y=Y/Z,
xy=T/Z.

"—1-twisted Edwards curves”
“x2 4 y2 =1+ dx2y2:
further speedups related to
—x*+y* = (y = x)(y +x).

Inside modern ECC operations:
8M for addition,
3M + 4S for doubling.

25

NIST curves (e.g.,
were standardized
Edwards curves we

Much slower addit

IFES.

code

/€
)en.

24

More coordinate systems: e.g.,
e inverted: x=2/X,y=2/Y.
e extended: x = X/Z, y=Y/T.

e completed: x=X/Z, y=Y/Z,

xy=T/Z.

"—1-twisted Edwards curves”
“x2 4 y2 =1+ dx2y2:
further speedups related to
—x*+y* = (y = x)(y + x).

Inside modern ECC operations:
8M for addition,
3M + 4S for doubling.

25

NIST curves (e.g., P-256)
were standardized before
Edwards curves were publist

Much slower additions.

More coordinate systems: e.g.,
e inverted: x=2/X,y=2/Y.
e extended: x =X/Z, y=Y/T.

e completed: x=X/Z, y=Y/Z,

xy=T/Z.

"—1-twisted Edwards curves”
“x2 4 y2 =1+ dx2y2:
further speedups related to
—x*+y* = (y = x)(y +x).

Inside modern ECC operations:
8M for addition,
3M + 4S for doubling.

25

NIST curves (e.g., P-256)
were standardized before
Edwards curves were published.

Much slower additions.

26

More coordinate systems: e.g.,
e inverted: x=2/X,y=2/Y.
e extended: x =X/Z, y=Y/T.

e completed: x=X/Z, y=Y/Z,

xy=T/Z.

"—1-twisted Edwards curves”
“x2 4 y2 =1+ dx2y2:
further speedups related to
—x*+y* = (y = x)(y +x).

Inside modern ECC operations:
8M for addition,
3M + 4S for doubling.

25

NIST curves (e.g., P-256)
were standardized before
Edwards curves were published.

Much slower additions.

Express as Edwards curves
using a field extension: slow.

26

More coordinate systems: e.g.,
e inverted: x=2/X,y=2/Y.
e extended: x =X/Z, y=Y/T.

e completed: x=X/Z, y=Y/Z,

xy=T/Z.

"—1-twisted Edwards curves”
“x2 4 y2 =1+ dx2y2:
further speedups related to
—x*+y* = (y = x)(y +x).

Inside modern ECC operations:
8M for addition,
3M + 4S for doubling.

25

NIST curves (e.g., P-256)
were standardized before
Edwards curves were published.

Much slower additions.

Express as Edwards curves
using a field extension: slow.

How did Curve25519 obtain
good speeds for ECDH?
"Montgomery curve with
the Montgomery ladder.”

26

More coordinate systems: e.g.,
e inverted: x=2/X,y=2/Y.
e extended: x =X/Z, y=Y/T.

e completed: x=X/Z, y=Y/Z,

xy=T/Z.

"—1-twisted Edwards curves”
“x2 4 y2 =1+ dx2y2:
further speedups related to
—x*+y* = (y = x)(y +x).

Inside modern ECC operations:
8M for addition,
3M + 4S for doubling.

25

NIST curves (e.g., P-256)
were standardized before
Edwards curves were published.

Much slower additions.

Express as Edwards curves
using a field extension: slow.

How did Curve25519 obtain

good speeds for ECDH?

“Montgomery curve with
the Montgomery ladder.”

Why did NIST not choose
Montgomery curves? Unclear.

26

