Timing attacks

1970s: TENEX operating system
compares user-supplied string
against secret password

one character at a time,
stopping at first difference:

e AAAAAA vs. SECRET: stop at 1.
e SAAAAA vs. SECRET: stop at 2.
e SEAAAA vs. SECRET: stop at 3.

Attacker sees comparison time,
deduces position of difference.
A few hundred tries

reveal secret password.

How typical software checks
16-byte authenticator:
for (i = 0;1 < 16;++1i)
if (x[i] '= y[i]) return O;

return 1;

Fix, eliminating information flow
from secrets to timings:
uint32 diff = 0O;
for (1 = 0;1 < 16;++1)
diff |= x[i] =~ yl[i];
return 1 & ((diff-1) >> 8);
Notice that the language

makes the wrong thing simple
and the right thing complex.
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Language designer’'s notion of
“right” Is too weak for security.

So mistakes continue to happen.

One of many current examples,
part of the reference software for

CAESAR candidate CLOC:

/* compare the tag */
int 1;
for(i = 0;i < CRYPTO_ABYTES;i++)
if (tagli]l !'= c[(¥mlen) + i]){
return RETURN_TAG_NO_MATCH;

}
return RETURN_SUCCESS;



ical software checks

authenticator:

(1 = 0;1i < 16;++1i)
(x[i]

rn 1;

= y[i]) return O;

inating information flow
rets to timings:

32 diff = O;
(1 = 0;1i < 16;++1i)
ff |= x[i] ~ yl[il;

rn 1 & ((diff-1) >> 8);

hat the language
1e wrong thing simple
right thing complex.

Language designer’'s notion of
“right” Is too weak for security.

So mistakes continue to happen.

One of many current examples,

part of the reference software for
CAESAR candidate CLOC:

/* compare the tag */
int 1;
for(i = 0;i < CRYPTO_ABYTES;i++)
if(tagli]l !'= cl[(¥mlen) + i]){
return RETURN_TAG_NO_MATCH;

}
return RETURN_SUCCESS;

Do timir

Objectic



ire checks
tor:
< 16;++1)

y[i]) return O;

formation flow
Nings:

O;

< 16;++1)
1 7 ylil;
diff-1) >> 8);
nguage

thing simple
> complex.

Language designer’'s notion of
“right” Is too weak for security.

So mistakes continue to happen.

One of many current examples,
part of the reference software for

CAESAR candidate CLOC:

/* compare the tag */
int 1;
for(i = 0;i < CRYPTO_ABYTES;i++)
if (tagli]l !'= c[(¥mlen) + i]){
return RETURN_TAG_NO_MATCH;

}
return RETURN_SUCCESS;

Do timing attacks

Objection: “Timir



turn O;

flow

Language designer’'s notion of
“right” Is too weak for security.

So mistakes continue to happen.

One of many current examples,
part of the reference software for

CAESAR candidate CLOC:

/* compare the tag */
int 1;
for(i = 0;i < CRYPTO_ABYTES;i++)
if(tagli]l !'= cl[(¥mlen) + i]){
return RETURN_TAG_NO_MATCH;

}
return RETURN_SUCCESS;

Do timing attacks really wol

Objection: “Timings are noi



Language designer’'s notion of
“right” Is too weak for security.

So mistakes continue to happen.

One of many current examples,
part of the reference software for

CAESAR candidate CLOC:

/* compare the tag */
int 1;
for(i = 0;i < CRYPTO_ABYTES;i++)
if (tagli]l !'= c[(¥mlen) + i]){
return RETURN_TAG_NO_MATCH;

}
return RETURN_SUCCESS;

Do timing attacks really work?

Objection: “Timings are noisy!”



Language designer’'s notion of
“right” Is too weak for security.

So mistakes continue to happen.

One of many current examples,
part of the reference software for

CAESAR candidate CLOC:

/* compare the tag */
int 1;
for(i = 0;i < CRYPTO_ABYTES;i++)
if (tagli]l !'= c[(¥mlen) + i]){
return RETURN_TAG_NO_MATCH;

}
return RETURN_SUCCESS;

Do timing attacks really work?

Objection: “Timings are noisy!”

Answer 7£1:

Does noise stop all attacks?
To guarantee security, defender
must block all information flow.



Language designer’'s notion of
“right” Is too weak for security.

So mistakes continue to happen.

One of many current examples,
part of the reference software for

CAESAR candidate CLOC:

/* compare the tag */
int 1;
for(i = 0;i < CRYPTO_ABYTES;i++)
if (tagli]l !'= c[(¥mlen) + i]){
return RETURN_TAG_NO_MATCH;

}
return RETURN_SUCCESS;

Do timing attacks really work?

Objection: “Timings are noisy!”

Answer 7£1:

Does noise stop all attacks?
To guarantee security, defender
must block all information flow.

Answer #2: Attacker uses
statistics to eliminate noise.



Language designer’'s notion of
“right” Is too weak for security.

So mistakes continue to happen.

One of many current examples,
part of the reference software for

CAESAR candidate CLOC:

/* compare the tag */
int 1;
for(i = 0;i < CRYPTO_ABYTES;i++)
if (tagli]l !'= c[(¥mlen) + i]){
return RETURN_TAG_NO_MATCH;

}
return RETURN_SUCCESS;

Do timing attacks really work?

Objection: “Timings are noisy!”

Answer 7£1:

Does noise stop all attacks?
To guarantee security, defender
must block all information flow.

Answer #2: Attacker uses
statistics to eliminate noise.

Answer #3, what the

1970s attackers actually did:
Cross page boundary,
inducing page faults,

to amplify timing signal.



e designer’'s notion of
s too weak for security.

1kes continue to happen.

nany current examples,
he reference software for

R candidate CLOC:

are the tag */

0;i < CRYPTO_ABYTES;i++)

o[i] !'= cl[(*mlen) + i])A
airn RETURN_TAG_NO_MATCH;

RETURN_SUCCESS

Do timing attacks really work?

Objection: “Timings are noisy!”

Answer 7£1:
Does noise stop all attacks?
To guarantee security, defender

must block all information flow.

Answer #2: Attacker uses
statistics to eliminate noise.

Answer #3, what the

1970s attackers actually did:
Cross page boundary,
inducing page faults,

to amplify timing signal.

Example

2005 Tr
65ms to
used for

2013 All
Thirteen
DTLS re

plaintex

2014 vai
steals Bi
of 25 Oj

2016 Ya

“CacheE
key via 1



's notion of
k for security.

'ue to happen.

2nt examples,
ce software for

e CLOC:

ag */

YPTO_ABYTES;i++)
[(*mlen) + i]){
N_TAG_NO_MATCH;

CCESS;

Do timing attacks really work?

Objection: “Timings are noisy!”

Answer 7£1:
Does noise stop all attacks?
To guarantee security, defender

must block all information flow.

Answer #2: Attacker uses
statistics to eliminate noise.

Answer #3, what the

1970s attackers actually did:
Cross page boundary,
inducing page faults,

to amplify timing signal.

Examples of succe

2005 Tromer—Qsvi
65ms to steal Lint
used for hard-disk

2013 AlFardan—Pa
Thirteen: breaking

DTLS record prot:
plaintext using de

2014 van de Pol-¢
steals Bitcoin key
of 25 OpenSSL sig

2016 Yarom—Genk
“CacheBleed” stex
key via timings of



of
rity.

pen.

les,
e for

ES;i++)
+ i]){
MATCH;

Do timing attacks really work?

Objection: “Timings are noisy!”

Answer 7£1:
Does noise stop all attacks?
To guarantee security, defender

must block all information flow.

Answer #2: Attacker uses
statistics to eliminate noise.

Answer #3, what the

1970s attackers actually did:
Cross page boundary,
inducing page faults,

to amplify timing signal.

Examples of successful attac

2005 Tromer—Osvik—Shamir:
65ms to steal Linux AES ke
used for hard-disk encryptiol

2013 AlFardan—Paterson “Li
Thirteen: breaking the TLS
DTLS record protocols” ste:
plaintext using decryption ti

2014 van de Pol-Smart—Yar
steals Bitcoin key from timit

of 25 OpenSSL signatures.

2016 Yarom—Genkin—Hening

“CacheBleed" steals RSA se
key via timings of OpenSSL



Do timing attacks really work?

Objection: “Timings are noisy!”

Answer 7£1:
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Always read all table entries.
Use bit operations to select
the desired table entry:
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Always read all table entries.
Use bit operations to select
the desired table entry:
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Table lookups via arithmetic

Always read all table entries.
Use bit operations to select
the desired table entry:
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mask = —-(n % 2)
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def scalarmult(n,b,P): Fixed-base scalar multiplication

P2 = P+P
table = [0,P,P2,P2+P]

Obvious way to handle keygen

a — abB and signing r — rB:
reuse n, P — nP from ECDH.

return fixwin2(n,b,table)
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Signed is slightly faster.
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Always b/2 additions of T.
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Can similarly protect
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Unsigned is slightly easier.
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Fixed-base scalar multiplication

Obvious way to handle keygen
a — abB and signing r — rB:

reuse n, P — nP from ECDH.

Can do much better since B is
a constant: standard base point.

e.g. For b = 256: Compute
(2128n1 + ng)B as mB1 + ngB
using double-scalar fixed windows,
after precomputing B; = 21%8B.

Fun exercise: For each k, try to
minimize number of additions
using k precomputed points.
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(But batch verification is faster.)

Keygen is fixed-base scalar mult,
much faster than ECDH.

Signing is keygen plus overhead
depending on message length.
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Let's move down a level:

ECC ops: e.g.,
verify SB = R + hA

lwindowing etc.

Point ops: e.g.,
PQQ+— P+Q

lfaster doubling etc.

Field ops: e.g.,
X1, X2 —= X1X2 In Fp

Y

Machine insns: e.g.,
32-bit multiplication

vpipelining etc.

Gates: e.g.,
AND, OR, XOR

delayed carries etc.
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Field ops: e.g.,
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Y

Machine insns: e.g.,

32-bit mu

tiplication

Vpipelining etc.

Gates: e.g.,
AND, OR, XOR
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Eliminating divisions

Have to do many additions
of curve points: P,Q — P -
How to efficiently decompos
additions into field ops?

Addition (x1, y1) 4+ (x2, y2) -
((x1y2 + y1x2) /(1 + dxixoy-

(y1y2 —x1x2)/(1 — dxixay:
uses expensive divisions.
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verify SB = R + hA
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Point ops: e.g.,
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Field ops: e.g.,
X1, X2 —= X1X2 In Fp

Y
Machine insns: e.g.,

32-bit multiplication

vpipelining etc.

Gates: e.g.,
AND, OR, XOR
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Eliminating divisions

Have to do many additions

of curve points: P,Q — P + Q.
How to efficiently decompose
additions into field ops?

Addition (x1, y1) + (x2, y2) =
((x1y2 + y1x2) /(1 + dxixoy1y2),

W1y2 = x1x2) /(1 — dxix2y1y2))
uses expensive divisions.
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Field ops: e.g.,
X1, X2 —= X1X2 In Fp

Y
Machine insns: e.g.,

32-bit multiplication

vpipelining etc.

Gates: e.g.,
AND, OR, XOR

delayed carries etc.

17

Eliminating divisions

Have to do many additions

of curve points: P,Q — P + Q.
How to efficiently decompose
additions into field ops?

Addition (x1, y1) + (x2, y2) =
((x1y2 + y1x2) /(1 + dxixoy1y2),

W1y2 = x1x2) /(1 — dxix2y1y2))
uses expensive divisions.

Better: postpone divisions

and work with fractions.
Represent (x,y) as (X : Y : Z)
with x =X/Z, y=Y/Z, Z # 0.
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uses expensive divisions.
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and work with fractions.
Represent (x,y) as (X : Y : Z)
with x =X/Z, y=Y/Z, Z # 0.

18

Additior
handle f

X1 Y
71 7




) level:

doubling etc.

;.

1 carries etc.

.,
jon

Ing etc.

\

17

Eliminating divisions

Have to do many additions

of curve points: P,Q — P + Q.
How to efficiently decompose
additions into field ops?

Addition (x1, y1) + (x2, y2) =
((x1y2 + y1x2) /(1 + dxixoy1y2),

W1y2 = x1x2) /(1 — dxixoy1y2))
uses expensive divisions.

Better: postpone divisions

and work with fractions.
Represent (x,y) as (X : Y : Z)
with x =X/Z, y=Y/Z, Z # 0.

18

Addition now has

handle fractions a:

X1 "M X
71 73 V4

X1Y2 . 11 X0
L1 24y ' L1 2Ly
1

Xm XoMY
L1 £y L1 L

Y1 Yo X1 X
Ly Ly Ly Ly
X1 XoY1 Y
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Eliminating divisions

Have to do many additions

of curve points: P,Q — P+ Q.
How to efficiently decompose
additions into field ops?

Addition (x1, y1) + (x2, y2) =

((x1y2
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dx1x2y1Y2),

1y2 = x1x2) /(1 — dxixoy1y2))
uses expensive divisions.

Better: postpone divisions

and work with fractions.
Represent (x,y) as (X : Y : Z)
with x = X/Z, y=Y/Z, Z # 0.
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Addition now has to
handle fractions as input:
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((x1y2 + y1x2) /(1 + dxixoy1y2),

(W1y2 = x1x2)/(1 — dxixoy1y2))
uses expensive divisions.
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with x =X/Z, y=Y/Z, Z # 0.
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Have to do many additions

of curve points: P,Q — P+ Q.
How to efficiently decompose
additions into field ops?

Addition (x1, y1) + (x2, y2) =
((x1y2 + y1x2) /(1 + dxixoy1y2),

(W1y2 = x1x2)/(1 — dxixoy1y2))
uses expensive divisions.

Better: postpone divisions

and work with fractions.
Represent (x,y) as (X : Y : Z)
with x =X/Z, y=Y/Z, Z # 0.
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. X1 N N
|.€.
Zl'Zl

(X3 Vs
-\ Z3' Z3

where
F=27?7Z5—dXi.
G=27?7Z5+dXy.
X3 = Z2122(X1Y2
Y3 = Z12>2(Y1Y2 -
Z3 = FG.

Input to addition :
X1, Y1, 41, X2, Y,
Output from addi
X3, Yg, Z3. No div
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Addition now has to
handle fractions as input:

X1 "M X2 Y
71 71 7> Z>
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. X1 Y Xy Yo
1.e. , -+ ,
VARVA Ly 2y,

(X3 Y73
~\Z3' Z3

where

F =277 —dX1XaY1Yo,

G = Z%Z% + dX1X2Y1Yo,
X3 = Z]_ZQ(X]_YQ + Y1X2)F
Y3 = Z1Z>(Y1Y2 — X1 X2)G,
73 = FG.

Input to addition algorithm:
X1,Y1,21, X2,Y, 2£>.

Output from addition algorr
X3,Y3,Z3. No divisions nee



Addition now has to
handle fractions as input:
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where

F=277Z5 — dX1Xo"1Ys,

G = Z%Z% + dX1X2Y1Ys,
X3 = Z1Z2(X1Y2 + Y1 X2)F,
Y3 = Z1Z>(Y1Y2 — X1 X2)G,
73 = FG.

Input to addition algorithm:
X1,Y1, 21, X2, Y2, Z>.

Output from addition algorithm:

X3, Y3, Z3. No divisions needed!
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73 = FG.

Input to addition algorithm:
X1.Y1, 21, X2, Y0, Z£>.

Output from addition algorithm:

X3, Y3, Z3. No divisions needed!

20

Eliminat
to save |
A= 74
C = Xj
D=Y1
E=d-
F =B -
X3 =A
Y3 =A-
/3= F
Cost: 1]
M, S are
Choose
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C = Xq- X,
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E=d-C-D:
F=B—-E: G=
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Ys=A-G-(D—
Zs=F-G.
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M S are costs of
Choose small d fo
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73 = FG.

Input to addition algorithm:
X1.Y1, 21, X2, Y2, Z>.

Output from addition algorithm:

X3, Y3, Z3. No divisions needed!
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Eliminate common subexpre
to save multiplications:

A=Z7-Zy B= A%

C = X1 Xo;
D=Y1-Yo;
E=d-C-D;

F=B-E G=B+E;
X3=A-F-(X;-Ya+V]-,
Y3=A-G:-(D - C);
Za=F-G.

Cost: 11M + 1S 4+ 1M, wh
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Choose small d for cheap MV
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G = Z%Z% + dX1X2Y1Ys,
X3 = Z125(X1Y2 + Y1 .Xo)F,
Y3 = Z1Z>(Y1Y2 — X1 X2)G,
73 = FG.

Input to addition algorithm:
X1,Y1, 21, X2, Y2, Z>.

Output from addition algorithm:

X3, Y3, Z3. No divisions needed!
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21
Eliminate common subexpressions

to save multiplications:

A=7 -7y B= A%

C = X1 Xo;
D=Y1-Yo;
E=d-C-D:

F=B—E G=B+E
X3:A-F-(X1-Y2—|—Y1-X2);
Y3=A-G-(D—-C);
Z:=F.G.

Cost: 11M + 1S + 1M, where
M, S are costs of mult, square.
Choose small d for cheap M.
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addition algorithm:
71, X2, Y2, Z>.

from addition algorithm:

’3. No divisions needed!
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Eliminate common subexpressions
to save multiplications:

A=7-Zy B= A%

C = X1 Xo;
D=Y1-Yo;
E=d-C-D:

F=B-—-E:G=B+E:
X3=A-F-(X1-Y2+Y1-X2);
Y3=A-G-(D - C);
Z:=F-G.

Cost: 11M + 1S + 1M, where
M, S are costs of mult, square.
Choose small d for cheap M.
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Can do |

Obvious
compute
of polys

C =Xq

D=Y;
M = X,



X2 Y
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+ Y1 X2)F,
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algorithm:
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Eliminate common subexpressions
to save multiplications:

A=7-Zy B= A%

C = X1 Xo;
D=Y1-Yo;
E=d-C-D:

F=B—-E:G=B+E:
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Y3=A-G-(D - C);
Z:=F-G.

Cost: 11M + 1S + 1M, where
M, S are costs of mult, square.
Choose small d for cheap M.
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Can do better: 10

Obvious 4M meth

compute product
of polys X7 + Yit,

C = X1 Xo;

D =YY,
M=X; Yo +Y
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to save multiplications: .
P Obvious 4M method to

A=271 Z> B= A% compute product C + Mt +
C = X1 - Xo; of polys X1 + Yit, Xo + Yot
ST D =Y Y

F—B—FE;G=B+E:
X3=A-F-(X1-Y2+Y1-X2);
Y3=A-G (D - C);
Z3s=F-G.

M= X1 -Ys+Y  Xo.

Cost: 11M + 1S + 1M, where
M, S are costs of mult, square.
Choose small d for cheap M.
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Cost: 11M + 1S + 1M, where
M, S are costs of mult, square.
Choose small d for cheap M.
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Can do better: 10M + 1S + 1M,

Obvious 4M method to
compute product C + Mt + Dt?
of polys X1 + Yit, Xo 4+ Yot:

C = X1 - Xo;
D=Y1 Y
M=X1-Y>+ Y - Xo.

Karatsuba's 3M method:

C = X1 - Xp;
D=Y1-Yo;

M= (X1+Y1) (Xo+Y2)—C—-D.

22
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of polys X1 + Yit, Xo + Yot:

C = Xq - X,
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M= (X14+Y1) (Xo+Y2)—C—-D.
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22

Faster doubling




ssilons

€re
Ir'E.

21

Can do better: 10M + 1S + 1M,

Obvious 4M method to
compute product C + Mt + Dt?
of polys X1 + Yit, Xo + Yot:

C = X1 - Xo;
D =YY
M=X1-Y>+ Y - Xo.

Karatsuba's 3M method:

C = X1 - Xo;
D=Y1-Yo;

M= (X14+Y1) (Xo+Y2)—C—-D.

22

Faster doubling

(x1,y1) + (x1, 1) =
((x1y1+y1x1)/(1+dxixiy1y
(yiy1—xix1)/(I—dxixiy1y
((2x1y1)/(1 + dxy7),
(vi—x{)/(1 — dxty)).



Can do better: 10M + 1S + 1M,

Obvious 4M method to
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of polys X1 + Yit, Xo 4+ Yot:

C = X1 - Xo;
D=Y1 Y
M=X1-Y>+ Y - Xo.

Karatsuba's 3M method:

C = X1 Xp;
D=Y1-Yo;

M= (X1+Y1) (Xo+Y2)—C—-D.

22

Faster doubling

2x1y1)/ (1 + dx¢y7),

(
(yiyi—x1x1)/(1=dxix1y1y1)) =
(
(yi—x3)/(1 — dxiy?)).
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Obvious 4M method to
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of polys X1 + Yit, Xo 4+ Yot:

C = X1 - Xo;
D=Y1 Y
M=X1-Y>+ Y - Xo.

Karatsuba's 3M method:

C = X1 Xp;
D=Y1-Yo;
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NIST curves (e.g., P-256)
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Edwards curves were published.

Much slower additions.

Express as Edwards curves
using a field extension: slow.

How did Curve25519 obtain

good speeds for ECDH?

“Montgomery curve with
the Montgomery ladder.”

Why did NIST not choose
Montgomery curves? Unclear.
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