
1

High-speed cryptography

Daniel J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

with some slides from:

Tanja Lange

Technische Universiteit Eindhoven



2

Do we care about speed?

Almost all software is

much slower than it could be.

Is software applied to much data?

Usually not. Usually the

wasted CPU time is negligible.

But crypto software should be

applied to all communication.

Crypto that’s too slow ⇒
fewer users ⇒ fewer cryptanalysts

⇒ less attractive for everybody.



3

Implementors pursue speed

e.g. Variable-length-big-integer

arithmetic library inside OpenSSL

consumes 50000 lines of code.

Includes 38 asm implementations

optimized for various CPUs.



3

Implementors pursue speed

e.g. Variable-length-big-integer

arithmetic library inside OpenSSL

consumes 50000 lines of code.

Includes 38 asm implementations

optimized for various CPUs.

e.g. ECDSA verification computes

(S−1H(M))B + (S−1R)A.

OpenSSL has complicated code

for fast computation of S−1.

Much simpler code would make

verification considerably slower.



4

Applications pursue speed

e.g. Latest “DNSSEC operational

practices” recommendation

(2012) says “No one has broken

a regular 1024-bit [RSA] key : : :

it is estimated that most zones

can safely use 1024-bit keys for

at least the next ten years : : :

Signing and verifying with a 2048-

bit key takes longer than with a

1024-bit key : : : public operations

(such as verification) are about

four times slower.”



5

DNSSEC key sizes, 2016.11.28:

2048-bit DNSSEC master key
controlled by U.S.



5

DNSSEC key sizes, 2016.11.28:

2048-bit DNSSEC master key
controlled by U.S.

signature
��

2048-bit “zone-signing key”



5

DNSSEC key sizes, 2016.11.28:

2048-bit DNSSEC master key
controlled by U.S.

signature
��

2048-bit “zone-signing key”

signature
��

2048-bit .org master key



5

DNSSEC key sizes, 2016.11.28:

2048-bit DNSSEC master key
controlled by U.S.

signature
��

2048-bit “zone-signing key”

signature
��

2048-bit .org master key

signature
��

1024-bit “zone-signing key”



5

DNSSEC key sizes, 2016.11.28:

2048-bit DNSSEC master key
controlled by U.S.

signature
��

2048-bit “zone-signing key”

signature
��

2048-bit .org master key

signature
��

1024-bit “zone-signing key”

signatures
��

a few *.org sites



6

2011 Weimerskirch survey of

security for car communication:

“V2V safety applications will

broadcast 10 messages per

second, and a vehicle will receive

1,000 or more messages per

second. There are two approaches

available to process such a high

amount of messages: (1) only

messages that might impose

an actual impact to a vehicle

are processed, or (2) dedicated

security hardware to process all

messages is applied.”



7

2014 Ghoreishizadeh–Yalcin–

Pullini–Micheli–Burleson–Carrara

“A lightweight cryptographic

system for implantable

biosensors”: “This design uses

the recently standardized SHA-3

Keccak secure hash function

implemented in an authenticated

encryption mode : : : By selecting

the newly standardized Keccak

scheme, we benefit from the

large amount of analysis and

testing performed during the

standardization process. : : :



8

we have used the same number

of rounds for all in order to

guarantee the security claim of

the Keccak proposal.



8

we have used the same number

of rounds for all in order to

guarantee the security claim of

the Keccak proposal. However,

instead of using the standard

sizes for bitrate and capacity,

we reduced the overall state size

in order to achieve a compact

implementation with a security

level that would not have been

possible at this cost with any

other authenticated encryption

scheme. The data block size and

state size are selected as 4 and

100 bits, respectively.”



9

Standards pursue speed

e.g. NIST’s final AES report:

“Security was the most important

factor in the evaluation : : :

Rijndael appears to offer an

adequate security margin. : : :

Serpent appears to offer a

high security margin.”

(Emphasis added.)

So why didn’t Serpent win?



9

Standards pursue speed

e.g. NIST’s final AES report:

“Security was the most important

factor in the evaluation : : :

Rijndael appears to offer an

adequate security margin. : : :

Serpent appears to offer a

high security margin.”

(Emphasis added.)

So why didn’t Serpent win?

Maybe side-channel security?



10

“The operations used by Serpent

are among the easiest to defend

against timing and power attacks.”



10

“The operations used by Serpent

are among the easiest to defend

against timing and power attacks.”

Hardware speed: “Serpent is

well suited to restricted-space

environments : : : Fully pipelined

implementations of Serpent offer

the highest throughput of any

of the finalists for non-feedback

modes. : : : Efficiency is generally

very good, and Serpent’s speed is

independent of key size.”



10

“The operations used by Serpent

are among the easiest to defend

against timing and power attacks.”

Hardware speed: “Serpent is

well suited to restricted-space

environments : : : Fully pipelined

implementations of Serpent offer

the highest throughput of any

of the finalists for non-feedback

modes. : : : Efficiency is generally

very good, and Serpent’s speed is

independent of key size.”

Great! Why didn’t Serpent win?



11

Aha: Software speed!



11

Aha: Software speed! “Serpent

is generally the slowest of the

finalists in software speed for

encryption and decryption. : : :

Serpent provides consistently

low-end performance.”



11

Aha: Software speed! “Serpent

is generally the slowest of the

finalists in software speed for

encryption and decryption. : : :

Serpent provides consistently

low-end performance.”

Conclusion: “NIST judged

Rijndael to be the best overall

algorithm for the AES. Rijndael

appears to be consistently a very

good performer in both hardware

and software [and offers good

key agility, low memory, easy

defense, fast defense, flexibility,

parallelism].”



12

Want fast and secure

Bad examples:

The pursuit of speed

damages security.

e.g. using 1024-bit RSA.

e.g. using 100-bit “SHA-3”.

e.g. skipping verification.



12

Want fast and secure

Bad examples:

The pursuit of speed

damages security.

e.g. using 1024-bit RSA.

e.g. using 100-bit “SHA-3”.

e.g. skipping verification.

Good examples:

Obtain better speed

without damaging security.

If security level was too low,

scale up: better security

for the same performance.



13

Success story: ECC.

Extensive work on speed of

ECC at a high security level

⇒ modern ECC is fast enough

for practically all applications.

Requires serious analysis

and optimization of algorithms.

Not just “polynomial time”;

not just “quadratic time”.



13

Success story: ECC.

Extensive work on speed of

ECC at a high security level

⇒ modern ECC is fast enough

for practically all applications.

Requires serious analysis

and optimization of algorithms.

Not just “polynomial time”;

not just “quadratic time”.

RSA and Rabin–Williams are even

faster for signature verification,

but slower for keygen, signing,

sending keys, sending sigs.



14

Some signature-system history

1985 ElGamal: F∗p signatures.

1990 Schnorr: ElGamal

plus various improvements.

Patented until 2008.

1991 DSA, announced by NIST,

later credited to NSA: ElGamal

with one Schnorr improvement.

1999 ECDSA: replacing F∗p in

DSA with an elliptic-curve group.

2011 EdDSA (e.g., Ed25519):

Schnorr plus more improvements.



15

ElGamal verification:

(R; S) is signature of M

if BH(M) ≡ ARRS (mod p)

and R; S ∈ {0; 1; : : : ; p − 2}.

Here p is standard prime,

B is standard base,

A is signer’s public key,

H(M) is hash of message.

Secret key: random a.

Public key: A = Ba mod p.

To sign M: generate random r ,

compute R = Br mod p,

S = r−1(H(M)− aR) mod p − 1.



16

Hash the exponent

Tweak: (R; S) is signature of M

if BH(M) ≡ AH(R)RS (mod p)

and R; S ∈ {0; 1; : : : ; p − 2}.

Signer: as before except S =

r−1(H(M)− aH(R)) mod p − 1.

Speed impact: negligible.

Hashing R is very fast.

Security impact: seems to be

serious obstacle to any attack

strategy that relies on choosing

a particular A exponent.



17

Prime-order subgroup

Choose B to have order q for

standard prime divisor q of p − 1.

e.g. take 3000-bit p, 256-bit q.

Again verify BH(M) ≡ AH(R)RS .

ECC: H(M)B = H(R)A + SR.

Signer: same except now

S = r−1(H(M)− aH(R)) mod q.

Simpler security analysis.

Speed advantage: Smaller S

(when q is smaller than p − 1).

Less time to transmit signature.



18

Two scalars

Verify BH(R)−1H(M) =

ARH(R)−1S .

ECC: (H(R)−1H(M))B =

A + (H(R)−1S)R.

Safe to assume that nobody will

ever find H(R) divisible by q.

No security loss:

if BH(R)−1H(M) = ARH(R)−1S

then BH(M) = AH(R)RS .

Speed advantage: fewer scalars,

outweighing cost of H(R)−1.



19

Precomputing quotient

Notation: S = H(R)−1S.

Send (R; S) instead of (R; S) as

signature: i.e., S computed by

signer instead of verifier.

Verify BH(R)−1H(M) = ARS .

ECC: (H(R)−1H(M))B = A+SR.

Signer computes S =

r−1(H(R)−1H(M)− a) mod q.



19

Precomputing quotient

Notation: S = H(R)−1S.

Send (R; S) instead of (R; S) as

signature: i.e., S computed by

signer instead of verifier.

Verify BH(R)−1H(M) = ARS .

ECC: (H(R)−1H(M))B = A+SR.

Signer computes S =

r−1(H(R)−1H(M)− a) mod q.

From now on: Rename S as S.



20

Merge hashes: collision resilience

BH(R;M) = ARS .

ECC: H(R;M)B = A + SR.

Speed advantage: H(R;M)

is faster than H(R)−1H(M).

Security advantage: Imagine

attacker somehow finding

innocent M and dangerous M ′

with H(M) = H(M ′).

Using H(R)−1H(M): if signer

signs M then attacker reuses

same signature for M ′.

Using H(R;M): no problem.



21

Eliminate divisions

BS = RAH(R;M).

ECC: SB = R + H(R;M)A.

Signer in previous system:

S = r−1(H(R;M)− a) mod q.

Signer in this system:

S = r + H(R;M)a mod q.

Speed advantage:

Skip all inversions.

Security analysis is similar,

slightly simpler. See, e.g.,

2000 Pointcheval–Stern.



22

Signature compression

Schnorr signature is

(H(R;M); S) instead of (R; S).

Given (h; S): verifier

recovers R = BS=Ah,

checks h = H(R;M).

ECC: R = SB − hA.

Speed advantage sending sigs

when H(R;M) is shorter than R.

No security impact:

anyone can compress sigs.



23

Half-size H output

Schnorr chooses half-size H:

e.g., 128 bits instead of 256 bits.

Advantage: smaller (H(R;M); S).



23

Half-size H output

Schnorr chooses half-size H:

e.g., 128 bits instead of 256 bits.

Advantage: smaller (H(R;M); S).

Objection: “128-bit hash

functions allow collisions!”



23

Half-size H output

Schnorr chooses half-size H:

e.g., 128 bits instead of 256 bits.

Advantage: smaller (H(R;M); S).

Objection: “128-bit hash

functions allow collisions!”

Not an obvious problem:

Recall that Schnorr’s system

is collision-resilient.



23

Half-size H output

Schnorr chooses half-size H:

e.g., 128 bits instead of 256 bits.

Advantage: smaller (H(R;M); S).

Objection: “128-bit hash

functions allow collisions!”

Not an obvious problem:

Recall that Schnorr’s system

is collision-resilient.

More serious objection:

multi-target preimage attacks.



24

DSA and ECDSA

DSA is ElGamal plus

• prime-order subgroups;

• A−1 instead of A;

• two scalars.

Much worse than Schnorr: DSA

• does not hash R;

• does not merge hashes;

• is not collision-resilient;

• requires inversion for signer;

• requires inversion for verifier

(or three exponents).



25

EdDSA

EdDSA is Schnorr with

• complete twisted Edwards curve;

• no signature compression;

• double-size H output;

• A as extra H input;

• deterministic R.



25

EdDSA

EdDSA is Schnorr with

• complete twisted Edwards curve;

• no signature compression;

• double-size H output;

• A as extra H input;

• deterministic R.

Extra H input: H(R;A;M).

Speed impact: negligible.

Alleviates concerns that

several public keys could be

attacked simultaneously.



26

Why no signature compression:

1. ECC signatures are short

even without compression.

64 bytes for signature

using high-security curve.

2. Security of shorter H

needs thorough analysis.

3. Double-size H alleviates

concerns regarding H security.

4. Avoiding compression

allows another speedup:

batch signature verification.


