
1

Usable verification of

fast cryptographic software

Daniel J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

http://terminals.classiccmp.org/wiki/index.php/DEC_VT102


2

terminal

processes files

RAM disk

Operating-system kernel

divides RAM among processes,

divides disk among files.

Provides convenient functions

for processes to access files,

start new processes, etc.



3

my terminal

my processes my files

RAM disk

Donald’s processes Donald’s
files

Donald’s terminal



4

Can Donald corrupt the data

appearing on my terminal?



4

Can Donald corrupt the data

appearing on my terminal?

Attack: guess my password.



4

Can Donald corrupt the data

appearing on my terminal?

Attack: guess my password.

Defense: I have a high-entropy

randomly generated password.



4

Can Donald corrupt the data

appearing on my terminal?

Attack: guess my password.

Defense: I have a high-entropy

randomly generated password.

Attack: replace the terminal

with a rigged terminal that

intercepts my password.



4

Can Donald corrupt the data

appearing on my terminal?

Attack: guess my password.

Defense: I have a high-entropy

randomly generated password.

Attack: replace the terminal

with a rigged terminal that

intercepts my password.

Defense: physical security.



4

Can Donald corrupt the data

appearing on my terminal?

Attack: guess my password.

Defense: I have a high-entropy

randomly generated password.

Attack: replace the terminal

with a rigged terminal that

intercepts my password.

Defense: physical security.

Attack: use my terminal earlier

and leave a program running that

looks like the usual login screen

but intercepts my password.



4

Can Donald corrupt the data

appearing on my terminal?

Attack: guess my password.

Defense: I have a high-entropy

randomly generated password.

Attack: replace the terminal

with a rigged terminal that

intercepts my password.

Defense: physical security.

Attack: use my terminal earlier

and leave a program running that

looks like the usual login screen

but intercepts my password.

Defense: secure attention key.



5

Donald is authorized to store

data on the same computer.

Attack: Donald stores data in my

part of RAM, or my part of disk.



5

Donald is authorized to store

data on the same computer.

Attack: Donald stores data in my

part of RAM, or my part of disk.

Two-part defense:

1. “Memory protection”.

Hardware does not allow

processes to access data

outside areas marked by kernel.

2. Kernel keeps track of which

parts of RAM and disk are mine,

and which parts are Donald’s.



6

Bugs in this kernel code

can compromise security,

allowing Donald to write

to my part of RAM or disk.



6

Bugs in this kernel code

can compromise security,

allowing Donald to write

to my part of RAM or disk.

Fix: Eliminate the bugs!

Bug-free code is expensive

but not impossible when

code volume is small enough.

Successful example:

computer-verified proof of

seL4 microkernel correctness,

including RAM partitioning etc.



7

If a small bug-free kernel

has cut off Donald’s

communication with me:

I can run a 10000000-line

program filled with bugs,

and still be confident that

Donald is unable to corrupt

the output of the program.



7

If a small bug-free kernel

has cut off Donald’s

communication with me:

I can run a 10000000-line

program filled with bugs,

and still be confident that

Donald is unable to corrupt

the output of the program.

The trusted computing base

(TCB) is the part of the system

that enforces security policy.

The 10000000-line program

is not part of the TCB.



8

But we want communication!

Today: Alice sends me email.

I download Bob’s web page.

These users are authorized

to put data on my screen.



8

But we want communication!

Today: Alice sends me email.

I download Bob’s web page.

These users are authorized

to put data on my screen.

Security policy: Whenever the

computer shows me a file, it also

tells me the source of the file.



8

But we want communication!

Today: Alice sends me email.

I download Bob’s web page.

These users are authorized

to put data on my screen.

Security policy: Whenever the

computer shows me a file, it also

tells me the source of the file.

If Donald creates a file

and convinces the computer

to show me the file

as having source “Alice”

then this policy is violated.



9



10

Which part of the system

enforces the security policy?



10

Which part of the system

enforces the security policy?

Widely deployed software systems

make no real efforts to limit this.

There is some “security” code

inside kernel and browser.

But bugs in other code

can and do compromise security.

TCB has >30000000 lines.



10

Which part of the system

enforces the security policy?

Widely deployed software systems

make no real efforts to limit this.

There is some “security” code

inside kernel and browser.

But bugs in other code

can and do compromise security.

TCB has >30000000 lines.

Fix: rearchitect entire system

so that a small TCB

tracks sources of all data.

Eliminate all bugs in TCB.



11

Cryptography in the TCB

What happens if data is sent

through Donald’s network?

http://www.verizon.com/about/careers/
https://www.nsa.gov/careers/


11

Cryptography in the TCB

What happens if data is sent

through Donald’s network?

Solution: Sender and receiver

scramble communication in a way

that Donald cannot understand

and cannot silently corrupt.

http://www.verizon.com/about/careers/
https://www.nsa.gov/careers/


12

OpenSSL crypto library has

500000 lines of code, and there

are many other crypto libraries.

All of this is in the TCB.

Many devastating security bugs.

Why is crypto so big?



12

OpenSSL crypto library has

500000 lines of code, and there

are many other crypto libraries.

All of this is in the TCB.

Many devastating security bugs.

Why is crypto so big?

Most important answer:

the pursuit of performance.

(Same issue elsewhere in TCB,

but most blatant for crypto.

The rest of this talk

will focus on crypto.)



13

e.g. Variable-length-big-integer

arithmetic library inside OpenSSL

consumes 50000 lines of code.

Includes 38 asm implementations

optimized for various CPUs.



13

e.g. Variable-length-big-integer

arithmetic library inside OpenSSL

consumes 50000 lines of code.

Includes 38 asm implementations

optimized for various CPUs.

e.g. ECDSA signature verification:

(H(M)=S)B + (x(R)=S)A = R,

with S checked to be nonzero.

OpenSSL has complicated code

for fast computation of 1=S.

Checking H(M)B + x(R)A = SR

would be somewhat slower.



14

e.g. NIST P-256 prime p is

2256 − 2224 + 2192 + 296 − 1.

ECDSA standard specifies

reduction procedure given

an integer “A less than p2”:

Write A as

(A15; A14; A13; A12; A11; A10; A9;

A8; A7; A6; A5; A4; A3; A2; A1; A0),

meaning
P

i Ai2
32i .

Define

T ;S1;S2;S3;S4;D1;D2;D3;D4

as



15

(A7; A6; A5; A4; A3; A2; A1; A0);

(A15; A14; A13; A12; A11; 0; 0; 0);

(0; A15; A14; A13; A12; 0; 0; 0);

(A15; A14; 0; 0; 0; A10; A9; A8);

(A8; A13; A15; A14; A13; A11; A10; A9);

(A10; A8; 0; 0; 0; A13; A12; A11);

(A11; A9; 0; 0; A15; A14; A13; A12);

(A12; 0; A10; A9; A8; A15; A14; A13);

(A13; 0; A11; A10; A9; 0; A15; A14).

Compute T + 2S1 + 2S2 + S3 +

S4 −D1 −D2 −D3 −D4.

Reduce modulo p “by adding or

subtracting a few copies” of p.



16

Next-generation crypto

One of my favorite topics:

removing tensions between

security, simplicity, speed.

In particular, designing

simple high-security crypto

setting new speed records.

e.g. 2006 Bernstein “Curve25519”

is twice as fast as standard ECC

and much simpler to implement.

>1000000000 Curve25519 users

today: iOS, Signal, OpenSSH,

Tor, QUIC, WhatsApp, more.



17

NaCl: fast easy-to-use

high-security crypto library. Joint

work with Lange and Schwabe.

nacl.cr.yp.to

https://nacl.cr.yp.to


17

NaCl: fast easy-to-use

high-security crypto library. Joint

work with Lange and Schwabe.

nacl.cr.yp.to

TweetNaCl: self-contained

100-tweet C library providing

the same easy-to-use

high-security functions. Joint

work with van Gastel, Janssen,

Lange, Schwabe, Smetsers.

twitter.com/tweetnacl

https://nacl.cr.yp.to
https://twitter.com/tweetnacl


17

NaCl: fast easy-to-use

high-security crypto library. Joint

work with Lange and Schwabe.

nacl.cr.yp.to

TweetNaCl: self-contained

100-tweet C library providing

the same easy-to-use

high-security functions. Joint

work with van Gastel, Janssen,

Lange, Schwabe, Smetsers.

twitter.com/tweetnacl

Can we guarantee zero bugs in

TweetNaCl? And in NaCl?

https://nacl.cr.yp.to
https://twitter.com/tweetnacl


18

Biggest challenge: the gap

between big-integer operations

such as a; b 7→ ab mod 2255 − 19

and (e.g.) 32-bit operations.



18

Biggest challenge: the gap

between big-integer operations

such as a; b 7→ ab mod 2255 − 19

and (e.g.) 32-bit operations.

Some big-integer software

has been formally verified.

Could NaCl switch to this?



18

Biggest challenge: the gap

between big-integer operations

such as a; b 7→ ab mod 2255 − 19

and (e.g.) 32-bit operations.

Some big-integer software

has been formally verified.

Could NaCl switch to this?

1. Not state-of-the-art speed.

Okay for TweetNaCl; not NaCl.



18

Biggest challenge: the gap

between big-integer operations

such as a; b 7→ ab mod 2255 − 19

and (e.g.) 32-bit operations.

Some big-integer software

has been formally verified.

Could NaCl switch to this?

1. Not state-of-the-art speed.

Okay for TweetNaCl; not NaCl.

2. Input-dependent timing.

Timing can leak secret keys.

Not okay even for TweetNaCl.



19

ACM CCS 2014 Chen–Hsu–Lin–

Schwabe–Tsai–Wang–Yang–Yang

“Verifying Curve25519 software”:

computer-aided proof of

correctness of main loops

in two high-speed asm

Curve25519 implementations.



19

ACM CCS 2014 Chen–Hsu–Lin–

Schwabe–Tsai–Wang–Yang–Yang

“Verifying Curve25519 software”:

computer-aided proof of

correctness of main loops

in two high-speed asm

Curve25519 implementations.

Proof required extensive human

effort for each implementation:

many detailed annotations, plus

higher-level composition work.



19

ACM CCS 2014 Chen–Hsu–Lin–

Schwabe–Tsai–Wang–Yang–Yang

“Verifying Curve25519 software”:

computer-aided proof of

correctness of main loops

in two high-speed asm

Curve25519 implementations.

Proof required extensive human

effort for each implementation:

many detailed annotations, plus

higher-level composition work.

Each proof also required

many hours of computer time.



20

Joint work with Schwabe:

new verifier gfverif

focusing on arithmetic mod p.

gfverif.cryptojedi.org

Automatically build computation

graph from original code.

Automatically analyze ranges,

convert ops into polynomials.

New peephole range optimizer.

Ask human for occasional

annotations expressing high-level

computations on integers mod p.

http://gfverif.cryptojedi.org


21

Have verified entire Curve25519

computation, not just main loop,

for another implementation.

Only 1 minute of computer time.

Under 300 lines of easy

annotations per implementation.

Usable by crypto developers.

Continuing to improve gfverif

annotation language. Should

be able to reduce below 100

annotations per implementation.


