
1

Benchmarking benchmarking,

and optimizing optimization

Daniel J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven



2

Bit operations per bit of plaintext

(assuming precomputed subkeys),

as listed in recent Skinny paper:

key ops/bit cipher

128 88 Simon: 60 ops broken
128 100 NOEKEON
128 117 Skinny

256 144 Simon: 106 ops broken
128 147.2 PRESENT
256 156 Skinny
128 162.75 Piccolo
128 202.5 AES
256 283.5 AES



2

Bit operations per bit of plaintext

(assuming precomputed subkeys),

not entirely listed in Skinny paper:

key ops/bit cipher
256 54 Salsa20/8
256 78 Salsa20/12
128 88 Simon: 60 ops broken
128 100 NOEKEON
128 117 Skinny
256 126 Salsa20
256 144 Simon: 106 ops broken
128 147.2 PRESENT
256 156 Skinny
128 162.75 Piccolo
128 202.5 AES
256 283.5 AES



3

Operation counts are a

poor model of hardware cost,

worse model of software cost.

Pick a cipher: e.g., Salsa20.

How fast is Salsa20 software?

First step in analysis:

Write simple software.

e.g. Bernstein–van Gastel–

Janssen–Lange–Schwabe–

Smetsers “TweetNaCl”

includes essentially the following

implementation of Salsa20:



4

int crypto_core_salsa20(u8 *out,

const u8 *in,const u8 *k,const u8 *c)

{

u32 w[16],x[16],y[16],t[4];

int i,j,m;

FOR(i,4) {

x[5*i] = ld32(c+4*i);

x[1+i] = ld32(k+4*i);

x[6+i] = ld32(in+4*i);

x[11+i] = ld32(k+16+4*i);

}

FOR(i,16) y[i] = x[i];



5

FOR(i,20) {

FOR(j,4) {

FOR(m,4) t[m] = x[(5*j+4*m)%16];

t[1] ^= L32(t[0]+t[3], 7);

t[2] ^= L32(t[1]+t[0], 9);

t[3] ^= L32(t[2]+t[1],13);

t[0] ^= L32(t[3]+t[2],18);

FOR(m,4) w[4*j+(j+m)%4] = t[m];

}

FOR(m,16) x[m] = w[m];

}

FOR(i,16) st32(out + 4 * i,x[i] + y[i]);

return 0;

}



6

static const u8 sigma[16]

= "expand 32-byte k";

int crypto_stream_salsa20_xor(u8 *c,

const u8 *m,u64 b,const u8 *n,const u8 *k)

{

u8 z[16],x[64];

u32 u,i;

if (!b) return 0;

FOR(i,16) z[i] = 0;

FOR(i,8) z[i] = n[i];

while (b >= 64) {

crypto_core_salsa20(x,z,k,sigma);

FOR(i,64) c[i] = (m?m[i]:0) ^ x[i];

u = 1;



7

for (i = 8;i < 16;++i) {

u += (u32) z[i];

z[i] = u;

u >>= 8;

}

b -= 64;

c += 64;

if (m) m += 64;

}

if (b) {

crypto_core_salsa20(x,z,k,sigma);

FOR(i,b) c[i] = (m?m[i]:0) ^ x[i];

}

return 0;

}



8

Next step in analysis:

For each target CPU,

compile the simple code,

and see how fast it is.



8

Next step in analysis:

For each target CPU,

compile the simple code,

and see how fast it is.

In compiler writer’s fantasy world,

the analysis now ends.



8

Next step in analysis:

For each target CPU,

compile the simple code,

and see how fast it is.

In compiler writer’s fantasy world,

the analysis now ends.

“We come so close to optimal on

most architectures that we can’t

do much more without using NP

complete algorithms instead of

heuristics. We can only try to

get little niggles here and there

where the heuristics get

slightly wrong answers.”



9

Reality is more complicated:



10

SUPERCOP benchmarking toolkit

includes 2064 implementations

of 563 cryptographic primitives.

>20 implementations of Salsa20.

Haswell: Reasonably simple ref

implementation compiled with

gcc -O3 -fomit-frame-pointer

is 6:15× slower than fastest

Salsa20 implementation.

merged implementation

with “machine-independent”

optimizations and best of 121

compiler options: 4:52× slower.



11

Many more implementations

were developed on the way

to the (currently) fastest

implementation for this CPU.



11

Many more implementations

were developed on the way

to the (currently) fastest

implementation for this CPU.

This is a common pattern.

Very fast development cycle:

modify the implementation,

check that it still works,

evaluate its performance.



11

Many more implementations

were developed on the way

to the (currently) fastest

implementation for this CPU.

This is a common pattern.

Very fast development cycle:

modify the implementation,

check that it still works,

evaluate its performance.

Results of each evaluation

guide subsequent modifications.



11

Many more implementations

were developed on the way

to the (currently) fastest

implementation for this CPU.

This is a common pattern.

Very fast development cycle:

modify the implementation,

check that it still works,

evaluate its performance.

Results of each evaluation

guide subsequent modifications.

The software engineer needs

fast evaluation of performance.



12

The unfortunate reality:

Slow evaluation of performance

is often a huge obstacle

to this optimization process.



12

The unfortunate reality:

Slow evaluation of performance

is often a huge obstacle

to this optimization process.

When performance evaluation is

too slow, the software engineer

has to switch context, and then

switching back to optimization

produces severe cache misses

inside software engineer’s brain.

(“I’m out of the zone.”)



12

The unfortunate reality:

Slow evaluation of performance

is often a huge obstacle

to this optimization process.

When performance evaluation is

too slow, the software engineer

has to switch context, and then

switching back to optimization

produces severe cache misses

inside software engineer’s brain.

(“I’m out of the zone.”)

Often optimization is aborted.

(“I’ll try some other time.”)



13

Goal of this talk:

Speed up the optimization process

by speeding up benchmarking.

“Optimize benchmarking to

help optimize optimization.”



13

Goal of this talk:

Speed up the optimization process

by speeding up benchmarking.

“Optimize benchmarking to

help optimize optimization.”

What are the bottlenecks

that really need speedups?

Measure the benchmarking

process to gain understanding.

“Benchmark benchmarking to

help optimize benchmarking.”



14

Accessing different CPUs

The software engineer writes code

on his laptop, but cares about

performance on many more CPUs.



14

Accessing different CPUs

The software engineer writes code

on his laptop, but cares about

performance on many more CPUs.

Or at least should care!

Surprisingly common failure:

A paper with “faster algorithms”

actually has slower algorithms

running on faster processors.



14

Accessing different CPUs

The software engineer writes code

on his laptop, but cares about

performance on many more CPUs.

Or at least should care!

Surprisingly common failure:

A paper with “faster algorithms”

actually has slower algorithms

running on faster processors.

Systematic fix: Optimize

each algorithm, new or old,

for older and newer processors.



15

For each target CPU:

Find a machine with that CPU,

copy code to that machine

(assuming it’s on the Internet),

collect measurements there.



15

For each target CPU:

Find a machine with that CPU,

copy code to that machine

(assuming it’s on the Internet),

collect measurements there.

But, for security reasons,

most machines on the Internet

disallow access by default,

except access by the owner.



15

For each target CPU:

Find a machine with that CPU,

copy code to that machine

(assuming it’s on the Internet),

collect measurements there.

But, for security reasons,

most machines on the Internet

disallow access by default,

except access by the owner.

Solution #1: Each software

engineer buys each CPU.

This is expensive at high end,

time-consuming at low end.



16

Solution #2: Amazon.

Poor coverage of CPUs.



16

Solution #2: Amazon.

Poor coverage of CPUs.

Solution #3: Compile farms,

such as GCC Compile Farm.

Coverage of CPUs is better

but not good enough for crypto.

Usual goals are OS coverage

and architecture coverage.



16

Solution #2: Amazon.

Poor coverage of CPUs.

Solution #3: Compile farms,

such as GCC Compile Farm.

Coverage of CPUs is better

but not good enough for crypto.

Usual goals are OS coverage

and architecture coverage.

Solution #4: Figure out who

has the right machines. (How?)

Send email saying “Are you

willing to run this code?”

Slow; unreliable; scales badly.



17

Solution #5: Send email saying

“Can I have an account?”

Saves time but less reliable.



17

Solution #5: Send email saying

“Can I have an account?”

Saves time but less reliable.

Solution #6: eBACS.

Good: One-time centralized

effort to find machines.



17

Solution #5: Send email saying

“Can I have an account?”

Saves time but less reliable.

Solution #6: eBACS.

Good: One-time centralized

effort to find machines.

Good: For each code submission,

one-time centralized audit.



17

Solution #5: Send email saying

“Can I have an account?”

Saves time but less reliable.

Solution #6: eBACS.

Good: One-time centralized

effort to find machines.

Good: For each code submission,

one-time centralized audit.

Good: High reliability,

high coverage, built-in tests.



17

Solution #5: Send email saying

“Can I have an account?”

Saves time but less reliable.

Solution #6: eBACS.

Good: One-time centralized

effort to find machines.

Good: For each code submission,

one-time centralized audit.

Good: High reliability,

high coverage, built-in tests.

Bad: Much too slow.



18

The eBACS data flow

Software engineer has impl:

something to benchmark.

Software engineer submits impl:

sends package by email or (with

centralized account) git push.

eBACS manager audits impl,

integrates into SUPERCOP.

eBACS manager builds

new SUPERCOP package:

currently 26-megabyte xz.



19

eBACS manager uploads

and announces package.

Each machine operator

waits until the machine

is sufficiently idle.

Each machine operator

downloads SUPERCOP, runs it.

SUPERCOP scans data

stored on disk from previous runs.

On a typical high-end CPU:

millions of files, several GB.



20

For each new impl-compiler pair,

SUPERCOP compiles+tests impl.

SUPERCOP measures each

working compiled impl,

saves results on disk.

Typically at least an hour.

SUPERCOP collects all data

from this machine, typically

700-megabyte data.gz.

Machine operator uploads

data.gz, announces it.



21

eBACS manager copies

data.gz into central database.

Database currently uses 500GB:

53% current uncompressed data,

47% archives of superseded data.

For each new data.gz

(or for cross-cutting updates):

scripts process all results.

Typically an hour per machine.

Web pages are regenerated.

Under an hour.



22

In progress: SUPERCOP 2

New database stored centrally:

All impls ever submitted.

Some metadata not affecting

measurements. But turning on

“publish results” for an impl

does force new measurements.

All compiled impls.

All checksums of outputs.

All measurements.

All tables, graphs, etc.



23

When new impl is submitted:

Impl is pushed to compile servers.

Each compiled impl is pushed

to checksum machines.

Each working compiled impl is

pushed to benchmark machines

(when they are sufficiently idle).

Each measurement is available

immediately to submitter.

If impl says “publish results”:

Measurements are put online

after comparisons are done.



24

Wait, what about security?

No more central auditing:

there’s no time for it.

Critical integrity concerns:

Can a rogue code submitter

take over the machine?

Or corrupt benchmarks

from other submitters?



24

Wait, what about security?

No more central auditing:

there’s no time for it.

Critical integrity concerns:

Can a rogue code submitter

take over the machine?

Or corrupt benchmarks

from other submitters?

Concerns start before code is

tested and measured: compilers

have bugs, sometimes serious.



24

Wait, what about security?

No more central auditing:

there’s no time for it.

Critical integrity concerns:

Can a rogue code submitter

take over the machine?

Or corrupt benchmarks

from other submitters?

Concerns start before code is

tested and measured: compilers

have bugs, sometimes serious.

Smaller availability concerns:

e.g., Bitcoin mining.



25

SUPERCOP 1 sets some

OS-level resource limits:

impl cannot open any files,

cannot fork any processes.

SUPERCOP 2 manages

pool of uids and chroot jails on

each compile server, checksum

machine, benchmark machine.

Enforces reasonable policy

for files legitimately used

in compiling an impl.

More difficult to enforce:

integrity policy for, e.g.,

tables comparing impls.


