Benchmarking benchmarking,
and optimizing optimization

Daniel J. Bernstein

University of lllinois at Chicago &
Technische Universiteit Eindhoven

Bit operations per bit of plaintext

(assuming precomputed subkeys),

as listed in recent Skinny paper:

key | ops/bit | cipher

128 | 88 Simon: 60 ops broken
128 | 100 NOEKEON

128 | 117 Skinny

256 | 144 Simon: 106 ops broken
128 147.2 |PRESENT

256 | 156 Skinny

128 | 162.75 | Piccolo

128 202.5 | AES

256 |283.5 | AES
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includes essentially the following

implementation of Salsa20:

int crypto_core_salssz
const u8 *1in,const ué
{

u32 wl[i16],x[16],y[1

int 1,j,m;

FOR(i,4) A
x[5%i] = 1d32(c+4
x[1+i] = 1d32(k+4
x[6+i] = 1d32(in-

x[11+i] = 1d32(k+

FOR(i,16) yl[i] = x|
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int crypto_core_salsa20(u8 *out,

const u8 *in,const u8 *k,const u8 *c)

{
u32 wl16],x[16],y[16],t[4];

int 1,j,m;

FOR(1i,4) {
x[6xi] = 1d32(c+4x%i);
x[1+i] = 1d32(k+4%*1i);

x[6+i] = 1d32(in+4x*i);

x[11+i] = 1d32(k+16+4x%1i);

FOR(i,16) y[i] = x[i];

FOR (i, 2
FOR (j

FOR

FOR

FOR (m

FOR (i, 1¢

return |
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int crypto_core_salsa20(u8 *out, FOR(i,20) {
[ const u8 *in,const u8 *k,const u8 *c) FOR(j,4) {
L. { FOR(m,4) t[m] = x[(5*j+4*m
u32 wl[16],x[16],y[16],t[4]; t[1] == L32(t[0]+t[3], 7);
o int i,j,m; t[2] ~= L32(t[1]1+t[0], 9);
R £[3] "= L32(t[2]+t[1],13);
FOR(i,4) { t[0] "= L32(t[3]+t[2],18);
x[6%xi] = 1d32(c+4x*i); FOR(m,4) w[4*xj+(j+m)%4] =
x[1+i] = 1d32(k+4*1i) ; }
x[6+1i] = 1d32(in+4x%i); FOR(m,16) x[m] = wlm];
x[11+i] = 1d32(k+16+4%*i); }
NING ’
FOR(i,16) st32(out + 4 * i,x[i
FOR(i,16) yl[i] = x[i]; return O;
+




int crypto_core_salsa20(u8 *out,

const u8 *in,const u8 *k,const u8 *c)

{

u32 wl16],x[16],y[16],t[4];

int 1,j,m;

FOR(i,4) {
x[5*%i] = 1d32(c+4%i);
x[1+i] = 1d32(k+4*i);

x[6+i] = 1d32(in+4x*i);

x[11+i] = 1d32(k+16+4%*i);

FOR(i,16) y[i] = x[i];

FOR(i,20) {
FOR(j,4) {
FOR(m,4) t[m] = x[(5%j+4+*m)%16];
t[1] == L32(t[0]+t([3], 7);

t[2] ~= L32(t[1]+t[0], 9);

t[3] ~= L32(t[2]+t[1],13);
t[0] ~= L32(t[3]+t[2],18);
FOR(m,4) w[4*xj+(j+m)%4] = t[m];
+

FOR(m,16) x[m] = wlm];

FOR(i,16) st32(out + 4 * i,x[i] + y[il);

return O;
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FOR(i,16) st32(out + 4 * i,x[i] + y[il);

return O;
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const u8 *m,u64 b,cor
{
u8 z[16],x[64];
u32 u,1;
if (Ib) return O;
FOR(i,16) z[i] = O;
FOR(1,8) z[i] = nl[3
while (b >= 64) {
crypto_core_salse
FOR(i,64) cl[i] =
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crypto_core_salsa20(x,z,k,si
FOR(i,64) cl[i] = (m?m[i]:0)

u=1;



FOR(i,20) {
FOR(j,4) {
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return O;
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FOR(i,64) cl[i] = (m?m[i]:0) ~ x[i];

u=1;
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const u8 *m,u64 b,const u8 *n,const u8 *k) }

{ b -=
u8 z[16],x[64]; c +=
u32 u,i; if (m
if (!b) return O; +
FOR(i,16) z[i] = 0; if (b) -
FOR(i,8) z[i] = nl[il; crypt
while (b >= 64) { FOR (i

crypto_core_salsa20(x,z,k,sigma) ; }
FOR(i,64) cl[i] = (m?m[i]:0) =~ xI[i]; return |
u = 1; +
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static const u8 sigmal[16]

= "expand 32-byte k";

int crypto_stream_salsa20_xor(u8 *c,
const u8 *m,u64 b,const u8 *n,const u8 *k)
{
u8 z[16],x[64];
u32 u,1;
if (!'b) return O;
FOR(i,16) z[i] = O;
FOR(i,8) z[i] = nl[i];
while (b >= 64) {
crypto_core_salsa20(x,z,k,sigma) ;
FOR(i,64) cl[i] = (m?m[i]:0) ~ x[i];

u=1;

+

for (1 = 8;1i < 1¢
u += (u32) z[il]

z[1i] = u;

c += 64;

if (m) m += 64;

if (b) {

}

crypto_core_salse

FOR(i,b) cl[i] =

return O;
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static const u8 sigmal[16]

= "expand 32-byte k";

int crypto_stream_salsa20_xor(u8 *c,

const u8 *m,u64 b,const u8 *n,const u8 *k)

{

u8 z[16],x[64];
u32 u,1;

if (!'b) return O;

FOR(i,16) z[i] = 0;

FOR(i,8) z[i] = nl[il;

while (b >= 64) {

crypto_core_salsa20(x,z,k,sigma);

FOR(i,64) cl[i] = (m?m[i]:0)

u=1;

~ x[i];

for (i = 8;i < 16;++i) {
u += (u32) zl[il;

z[i] = u;

c += 64;
if (m) m += 64;
Js
if (b) {
crypto_core_salsa20(x,z,k,si
FOR(i,b) cl[i] = (m?m[i]:0) ~
¥

return O;
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static const u8 sigmal[16] for (i = 8;i < 16;++i) A
= "expand 32-byte k"; u += (u32) zl[i];
z[1i] = u;
int crypto_stream_salsa20_xor(u8 *c, u >>= 38;
const u8 *m,u64 b,const u8 *n,const u8 *k) }
{ b -= 64;
u8 z[16],x[64]; c += 64;
u32 u,i; if (m) m += 64;
if (!b) return O; +
FOR(i,16) z[i] = 0; if (b) {
FOR(1i,8) z[i] = n[i]; crypto_core_salsa20(x,z,k,sigma) ;
while (b >= 64) { FOR(i,b) c[i] = (m?m[i]:0) ~ x[i];
crypto_core_salsa20(x,z,k,sigma) ; }
FOR(i,64) cl[i] = (m?m[i]:0) =~ xI[i]; return O;
u = 1; +
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32-byte k";

y_stream_salsa20_xor (u8 *c,

¥m,u64 b,const u8 *n,const u8 *k)

| ,x[64] ;

return O;
5) z[i] = O;
) z[i] = nl[i];

b >= 64) {

b_core_salsa20(x,z,k,sigma) ;

,64) cl[i] = (m?m[i]:0) ~

x[i];

+

for (i = 8;i < 16;++i) {

u += (u32) zl[il;

z[i] = u;
u >>= 8;
by
b —= 64;
c += 64;

if (m) m += 64;

if (b) {

}

crypto_core_salsa20(x,z,k,sigma);

FOR(i,b) cl[i] = (m?m[i]:0) ~

return O;

x[i];

Next ste
For eacl
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[16] for (i = 8;i < 16;++i) { Next step in analy
u += (u32) z[il; For each target ClI
z[i] = u; compile the simple
sa20_xor (u8 *c, u >>= 8; and see how fast |
1St u8 *n,const u8 *k) }
b —= 64;
c += 64;

if (m) m += 64;
+
if (b) {
1; crypto_core_salsa20(x,z,k,sigma);
FOR(i,b) cl[i] = (m?m[i]:0) ~ x[i];
120 (x,z,k,sigma) ; +

(m?m[i] :0) =~ x[i]; return O;
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nst u8 *k)

gma) ;

x[i];

+

for (i = 8;i < 16;++i) {

u += (u32) zl[il;

z[i] = u;

u >>= 8;

c += 64;

if (m) m += 64;

if (b) {

}

crypto_core_salsa20(x,z,k,sigma);

FOR(i,b) cl[i] = (m?m[i]:0) ~

return O;

x[i];

Next step in analysis:
For each target CPU,
compile the simple code,
and see how fast it is.



for (i = 8;i < 16;++i) { Next step in analysis:
u += (u32) z[il; For each target CPU,
z[i] = u; compile the simple code,
u >>= 8; and see how fast it is.

¥

b -= 64;

c += 64;

if (m) m += 64;

+

if (b) {
crypto_core_salsa20(x,z,k,sigma);
FOR(i,b) c[i] = (m?m[i]:0) =~ x[il;

+

return O;




for (i = 8;i < 16;++i) { Next step in analysis:
u += (u32) z[il; For each target CPU,
z[i] = u; compile the simple code,
u >>= 8; and see how fast it is.

¥

In compiler writer’'s fantasy world,
b —= 64;

the analysis now ends.
c += 64;
if (m) m += 64;

+

if (b) {
crypto_core_salsa20(x,z,k,sigma);
FOR(i,b) c[i] = (m?m[i]:0) =~ x[il;

+

return O;




for (i = 8;i < 16;++i) { Next step in analysis:
u += (u32) z[il; For each target CPU,
z[i] = u; compile the simple code,
u >>= 8; and see how fast it is.
! In compiler writer’'s fantasy world,
oo the analysis now ends.
c += 64;
if (m) m += 64: “We come so close to optimal on
} most architectures that we can't
i (b) { do much more without using NP
crypto_core_salsa20(x,z,k,signa) ; complete algorithms instead of
FOR(i.b) c[i] = (m7m[i]:0) ~ x[i]: heuristics. We can only try to
3 get little niggles here and there

where the heuristics get

return O;

slightly wrong answers.”




i = 8;1 < 16;++i) {

= (u32) zl[i]l;

b_core_salsa20(x,z,k,sigma) ;

,b) cli] = (m?m[i]:0) ~ xI[i];

Next step In analysis:
For each target CPU,
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