Benchmarking benchmarking,
and optimizing optimization

Daniel J. Bernstein

University of lllinois at Chicago &
Technische Universiteit Eindhoven

Bit operations per bit of plaintext

(assuming precomputed subkeys),

as listed in recent Skinny paper:

key | ops/bit | cipher

128 | 88 Simon: 60 ops broken
128 | 100 NOEKEON

128 | 117 Skinny

256 | 144 Simon: 106 ops broken
128 147.2 |PRESENT

256 | 156 Skinny

128 | 162.75 | Piccolo

128 202.5 | AES

256 |283.5 | AES

Benchmarking benchmarking,
and optimizing optimization

Daniel J. Bernstein

University of lllinois at Chicago &
Technische Universiteit Eindhoven

Bit operations per bit of plaintext

(assuming precomputed subkeys),

not entirely listed in Skinny paper:

key | ops/bit | cipher

256 | 54 Salsa20/8

256 | 78 Salsa20/12

128 | 88 Simon: 60 ops broken
128 | 100 NOEKEON

128 | 117 Skinny

256|126 Salsa20

256 | 144 Simon: 106 ops broken
128 147.2 |PRESENT

256 | 156 Skinny

128 | 162.75 | Piccolo

128 202.5 | AES

256(283.5 | AES

arking benchmarking,

mizing optimization
. Bernstein

ty of lllinois at Chicago &
he Universiteit Eindhoven

Bit operations per bit of plaintext

(assuming precomputed subkeys),

not entirely listed in Skinny paper:

key | ops/bit | cipher

256 | 54 Salsa20/8

256 | 78 Salsa20/12

128 | 88 Simon: 60 ops broken
128 | 100 NOEKEON

128 | 117 Skinny

256 | 126 Salsa20

256 | 144 Simon: 106 ops broken
128 | 147.2 | PRESENT

256 | 156 Skinny

128 | 162.75 | Piccolo

128 202.5 | AES

2561283.5 | AES

Operatic
PDOOr MC

WOIrSE m

Pick a c
How fas

First ste
Write sii

e.g. Ber
Janssen-
Smetser:
includes
impleme

ichmarking,

timization
N

is at Chicago &
siteit Eindhoven

Bit operations per bit of plaintext

(assuming precomputed subkeys),

not entirely listed in Skinny paper:

key | ops/bit | cipher

256 | 54 Salsa20/8

256 | 78 Salsa20/12

128 | 88 Simon: 60 ops broken
128 | 100 NOEKEON

128 | 117 Skinny

256|126 Salsa20

256 | 144 Simon: 106 ops broken
128 147.2 |PRESENT

256 | 156 Skinny

128 | 162.75 | Piccolo

128 202.5 | AES

256(283.5 | AES

Operation counts
poor model of har
worse model of so

Pick a cipher: e.g
How fast is Salsa?

First step In analy
Write simple softw

e.g. Bernstein—var
Janssen—Lange—Sc
Smetsers “Tweet)

iIncludes essentially
implementation of

UM

g0 &
hoven

Bit operations per bit of plaintext

(assuming precomputed subkeys),

not entirely listed in Skinny paper:

key | ops/bit | cipher

256 | 54 Salsa20/8

256 | 78 Salsa20/12

128 | 88 Simon: 60 ops broken
128 | 100 NOEKEON

128 | 117 Skinny

256 | 126 Salsa20

256 | 144 Simon: 106 ops broken
128 [147.2 | PRESENT

256 | 156 Skinny

128 | 162.75 | Piccolo

128 202.5 | AES

256283.5 | AES

Operation counts are a
poor model of hardware cos
worse model of software cos

Pick a cipher: e.g., Salsa20.
How fast is Salsa20 software

First step Iin analysis:
Write simple software.

e.g. Bernstein—van Gastel-
Janssen—Lange—Schwabe—
Smetsers “TweetNaCl"

includes essentially the follo

implementation of Salsa20:

Bit operations per bit of plaintext

(assuming precomputed subkeys),

not entirely listed in Skinny paper:

key | ops/bit | cipher

256 | 54 Salsa20/8

256 | 78 Salsa20/12

128 | 88 Simon: 60 ops broken
128 | 100 NOEKEON

128 | 117 Skinny

256|126 Salsa20

256 | 144 Simon: 106 ops broken
128 147.2 |PRESENT

256 | 156 Skinny

128 | 162.75 | Piccolo

128 202.5 | AES

256(283.5 | AES

Operation counts are a
poor model of hardware cost,
worse model of software cost.

Pick a cipher: e.g., Salsa20.
How fast is Salsa20 software?

First step Iin analysis:
Write simple software.

e.g. Bernstein—van Gastel—
Janssen—Lange—Schwabe—
Smetsers “TweetNaCl”

includes essentially the following

implementation of Salsa20:

ations per bit of plaintext
1g precomputed subkeys),
ely listed in Skinny paper:

/bit | cipher

| Salsa20/8

3 Salsa20/12

3 Simon: 60 ops broken
) NOEKEON

7 Skinny

) Salsa20

| Simon: 106 ops broken
7.2 | PRESENT

) Skinny

.75 | Piccolo

5 | AES

.5 | AES

Operation counts are a
poor model of hardware cost,
worse model of software cost.

Pick a cipher: e.g., Salsa20.
How fast is Salsa20 software?

First step Iin analysis:
Write simple software.

e.g. Bernstein—van Gastel-
Janssen—Lange—Schwabe—
Smetsers “TweetNaCl"

includes essentially the following

implementation of Salsa20:

int crypte
const ud :
{

u32 wlie

int i, j

FOR(i,4
x [5%i]
x[1+i.
X [6+1.

x[11+:

FOR (i, 1¢

bit of plaintext
puted subkeys),
in Skinny paper:

cr

120/8
120/12

on: 60 ops broken
"KEON

ny
120
on: 106 ops broken

SENT

ny
olo

Operation counts are a
poor model of hardware cost,
worse model of software cost.

Pick a cipher: e.g., Salsa20.
How fast is Salsa20 software?

First step Iin analysis:
Write simple software.

e.g. Bernstein—van Gastel—
Janssen—Lange—Schwabe—
Smetsers “TweetNaCl”

includes essentially the following

implementation of Salsa20:

int crypto_core_salssz
const u8 *1in,const ué
{

u32 wl[i16],x[16],y[1

int 1,j,m;

FOR(i,4) A
x[5%i] = 1d32(c+4
x[1+i] = 1d32(k+4
x[6+i] = 1d32(in-

x[11+i] = 1d32(k+

FOR(i,16) yl[i] = x|

Intext Operation counts are a int crypto_core_salsa20(u8 *out,
keys), poor model of hardware cost, const u8 *in,const u8 *k,const u
paper: worse model of software cost. {

Pick a cipher: e.g., Salsa20 ud2 wiiel,xli6l,yliel, vials

int 1,j,m;

How fast is Salsa20 software?

broken First step in analysis: FOR(i . 4) {
erte S|mp|e SOftware X[5*i] —_ ld32(C+4*i);
e.g. Bernstein—van Gastel— x[1+i] = 1d32(k+4*1) ;
Janssen—Lange—Schwabe— x[6+1] = 1d32(in+dxi);
s broken

Smetsers “TweetNaCl” x[11+1] = 1d32(k+16+4%1) ;

includes essentially the following

implementation of Salsa20:
FOR(i,16) yl[i] = x[i];

Operation counts are a int crypto_core_salsa20(u8 *out,
POOr model] of hardware COSt, const u8 *in,const u8 *k,const u8 *c)
worse model of software cost. {

Pick a cipher: e.g., Salsa20 132 whelxtieh.y el e e

int 1,j,m;

How fast is Salsa20 software?

First step Iin analysis: FOR(i,4) {

W”te S|mp|e SOftware X[5*i] 1d32(C+4*i);

x [1+i] 1d32(k+4x*i) ;

e.g. Bernstein—van Gastel-

Janssen—Lange—Schwabe— x[6+1] = 1d32(in+dxi);

Smetsers “TweetNaCl” x[11+i] = 1d32(k+16+4%1);

includes essentially the following

implementation of Salsa20:
FOR(i,16) yl[i] = x[i];

)N counts are a
del of hardware cost,
odel of software cost.

ipher: e.g., Salsa20.
t 1s Salsa20 software?

p In analysis:
mple software.

nstein—van Gastel—

- ange—Schwabe—

s “TweetNaCl”
essentially the following
ntation of Salsa20:

int crypto_core_salsa20(u8 *out,

const u8 *in,const u8 *k,const u8 *c)

{
u32 wl16],x[16],y[16],t[4];

int 1,j,m;

FOR(1i,4) {
x[6xi] = 1d32(c+4x%i);
x[1+i] = 1d32(k+4%*1i);

x[6+i] = 1d32(in+4x*i);

x[11+i] = 1d32(k+16+4x%1i);

FOR(i,16) y[i] = x[i];

FOR (i, 2
FOR (j

FOR

FOR

FOR (m

FOR (i, 1¢

return |

are a int crypto_core_salsa20(u8 *out, FOR(i,20) {

dware COSt, const u8 *in,const u8 *k,const u8 *c) FOR(j,4) {

ftware cost. { FOR(m,4) t[m] -

) Salsa20. u32 wl16],x[16],y[16],t[4]; t[1] ~= L32(t[C

0 software? int i,j,m; t[2] ~= L32(t[1
t[3] ~= L32(t[2

SIS: FOR(i,4) { t[0] ~= L32(t[

/are. x[6*i] = 1d32(c+4%*i); FOR(m,4) w[4*j-

) Gastel— x[1+i] = 1d32(k+4*i); by

hwabe— x[6+i] = 1d32(in+4*i); FOR(m,16) x[m] =

[aC|" x[11+i] = 1d32(k+16+4x*i); +

/ the following ’

'S315320- FOR(i,16) st32(out

FOR(i,16) yl[i] = x[i]; return O;

3 4
int crypto_core_salsa20(u8 *out, FOR(i,20) {
[const u8 *in,const u8 *k,const u8 *c) FOR(j,4) {
L. { FOR(m,4) t[m] = x[(5*j+4*m
u32 wl[16],x[16],y[16],t[4]; t[1] == L32(t[0]+t[3], 7);
o int i,j,m; t[2] ~= L32(t[1]1+t[0], 9);
R £[3] "= L32(t[2]+t[1],13);
FOR(i,4) { t[0] "= L32(t[3]+t[2],18);
x[6%xi] = 1d32(c+4x*i); FOR(m,4) w[4*xj+(j+m)%4] =
x[1+i] = 1d32(k+4*1i) ; }
x[6+1i] = 1d32(in+4x%i); FOR(m,16) x[m] = wlm];
x[11+i] = 1d32(k+16+4%*i); }
NING ’
FOR(i,16) st32(out + 4 * i,x[i
FOR(i,16) yl[i] = x[i]; return O;
+

int crypto_core_salsa20(u8 *out,

const u8 *in,const u8 *k,const u8 *c)

{

u32 wl16],x[16],y[16],t[4];

int 1,j,m;

FOR(i,4) {
x[5*%i] = 1d32(c+4%i);
x[1+i] = 1d32(k+4*i);

x[6+i] = 1d32(in+4x*i);

x[11+i] = 1d32(k+16+4%*i);

FOR(i,16) y[i] = x[i];

FOR(i,20) {
FOR(j,4) {
FOR(m,4) t[m] = x[(5%j+4+*m)%16];
t[1] == L32(t[0]+t([3], 7);

t[2] ~= L32(t[1]+t[0], 9);

t[3] ~= L32(t[2]+t[1],13);
t[0] ~= L32(t[3]+t[2],18);
FOR(m,4) w[4*xj+(j+m)%4] = t[m];
+

FOR(m,16) x[m] = wlm];

FOR(i,16) st32(out + 4 * i,x[i] + y[il);

return O;

>_core_salsa20(u8 *out,

kin,const u8 *k,const u8 *c)

5] ,x[16] ,y[16],t[4];

, M,

) {

| = 1d32(c+4x%i);
| = 1d32(k+4x*i);
| = 1d32(in+4x*i);

i] = 1d32(k+16+4%i) ;

5) ylil = x[il;

FOR(i,20) {

FOR(j,4) {

FOR(m,4) t[m] =

t

t

t

t [0]

(1
(2.

3.

”~

L32(t [O.

L32(t[1.

L32(t[2.

x [(5*%j+4*m)%16] ;

+t

+t

+t

3.
0.

1

s 1)
s 9);

,13);

L32(t [3]+t[2],18);

FOR(m,4) w[4*j+(j+m)%4] = t[m];

+

FOR(m,16) x[m] =

FOR(i,16) st32(out + 4 * i,x[i] + y[il);

return O;

wlm] ;

static co:

= "expand

int crypt
const ud :
{
us8 z[16.
u32 u,1
if (!'b)
FOR(3i, 1
FOR(1,8.
while (]
crypt
FOR (i

u =1

120 (u8 *out,

3 xk,const u8 *c)

6] ,t[4];

%1) ;
%1) ;
-4%7) ;

-16+4%1) ;

FOR(i,20) {
FOR(j,4) {

FOR(m,4) t[m]

t[1] == L32(tl

t[2] ~= L32(t

t[3] "= L32(t

(1

(2

x [(5%j+4*m)7%16] ;

1+t

+t

+tT

3.
0

(1.

s 1)
s 9);

,13);

t[0] ~= L32(t[3]+t[2],18);

FOR(m,4) w[4*xj+(j+m)%4] = t[m];

+

FOR(m,16) x[m]

FOR(i,16) st32(out + 4 * i,x[i] + y[il);

return O;

w[m] ;

static const u8 sigme

= "expand 32-byte k";

int crypto_stream_sal
const u8 *m,u64 b,cor
{
u8 z[16],x[64];
u32 u,1;
if (Ib) return O;
FOR(i,16) z[i] = O;
FOR(1,8) z[i] = nl[3
while (b >= 64) {
crypto_core_salse
FOR(i,64) cl[i] =

u=1;

8 *c)

FOR(i,20) {

FOR(j,4) {

FOR(m,4) t[m] =

t

t

t

t [0]

(1
(2.

3.

”~

”~

L32(t [O.

L32(t[1.

L32(t[2.

x [(5*%j+4*m)%16] ;

+t

+t

+t

3.
0.

1

s 1)
s 9);

,13);

L32(t [3]+t[2],18);

FOR(m,4) w[4*j+(j+m)%4] = t[m];

+

FOR(m,16) x[m] =

FOR(i,16) st32(out + 4 * i,x[i] + y[il);

return O;

wlm] ;

static const u8 sigmal[16]

= "expand 32-byte k'";

int crypto_stream_salsa20_xor (u8
const u8 *m,u64 b,const u8 *n,co
{
u8 z[16],x[64];
u32 u,1;
if (!'b) return O;
FOR(i,16) z[i] = O;
FOR(i,8) z[i] = nl[il;
while (b >= 64) {
crypto_core_salsa20(x,z,k,si
FOR(i,64) cl[i] = (m?m[i]:0)

u=1;

FOR(i,20) {
FOR(j,4) {
FOR(m,4) t[m] = x[(5%j+4+*m)%16];
t[1] == L32(t[0]+t[3], 7);

t[2] ~= L32(t[1]+t[0], 9);

t[3] ~= L32(t[2]+t[1],13);
t[0] ~= L32(t[3]+t[2],18);
FOR(m,4) w[4*xj+(j+m)%4] = t[m];
+

FOR(m,16) x[m] = wlm];

FOR(i,16) st32(out + 4 * i,x[i] + y[il);

return O;

static const u8 sigmal[16]

= "expand 32-byte k";

int crypto_stream_salsa20_xor(u8 *c,
const u8 *m,u64 b,const u8 *n,const u8 *k)
{
u8 z[16],x[64];
u32 u,1;
if (!'b) return O;
FOR(i,16) z[i] = O;
FOR(i,8) z[i] = nl[i];
while (b >= 64) {
crypto_core_salsa20(x,z,k,sigma) ;
FOR(i,64) cl[i] = (m?m[i]:0) ~ x[i];

u=1;

)

,4) 1

{

(m,4) tlm] =

”~

|-

L32(t [O_

L32(t[1.

L32(t[2.

x [(5*%j+4*m)%16] ;

+t [3]

+t [0]

+t [1]

s 1)
s 9);

,13);

L32(t [3]+t[2],18);

(m,4) wl4*xj+(j+m)%4] = t[m];

,16) x[m] =

5) st32(out + 4 * i,x[i] + y[il);

);

wlm] ;

6
static const u8 sigmal[16] for (:
= "expand 32-byte k"; u +:
z[i
int crypto_stream_salsa20_xor(u8 *c, u >
const u8 *m,u64 b,const u8 *n,const u8 *k) }

{ b -=
u8 z[16],x[64]; c +=
u32 u,i; if (m
if (!b) return O; +
FOR(i,16) z[i] = 0; if (b) -
FOR(i,8) z[i] = nl[il; crypt
while (b >= 64) { FOR (i

crypto_core_salsa20(x,z,k,sigma) ; }
FOR(i,64) cl[i] = (m?m[i]:0) =~ xI[i]; return |
u = 1; +

= x [(5%j+4*m)%16] ;
1+t [3], 7);

1+t [0], 9);

1+t [1],13);
]+t [2],18);

-(j+m)%4] = t[m];

w[m] ;

+ 4 x i,x[i] + y[il);

static const u8 sigmal[16]

= "expand 32-byte k";

int crypto_stream_salsa20_xor(u8 *c,
const u8 *m,u64 b,const u8 *n,const u8 *k)
{
u8 z[16],x[64];
u32 u,1;
if (!'b) return O;
FOR(i,16) z[i] = O;
FOR(i,8) z[i] = nl[i];
while (b >= 64) {
crypto_core_salsa20(x,z,k,sigma) ;
FOR(i,64) cl[i] = (m?m[i]:0) ~ x[i];

u=1;

+

for (1 = 8;1i < 1¢
u += (u32) z[il]

z[1i] = u;

c += 64;

if (m) m += 64;

if (b) {

}

crypto_core_salse

FOR(i,b) cl[i] =

return O;

)%16] ;

t [m] ;

1 + y[il);

static const u8 sigmal[16]

= "expand 32-byte k";

int crypto_stream_salsa20_xor(u8 *c,

const u8 *m,u64 b,const u8 *n,const u8 *k)

{

u8 z[16],x[64];
u32 u,1;

if (!'b) return O;

FOR(i,16) z[i] = 0;

FOR(i,8) z[i] = nl[il;

while (b >= 64) {

crypto_core_salsa20(x,z,k,sigma);

FOR(i,64) cl[i] = (m?m[i]:0)

u=1;

~ x[i];

for (i = 8;i < 16;++i) {
u += (u32) zl[il;

z[i] = u;

c += 64;
if (m) m += 64;
Js
if (b) {
crypto_core_salsa20(x,z,k,si
FOR(i,b) cl[i] = (m?m[i]:0) ~
¥

return O;

6
static const u8 sigmal[16] for (i = 8;i < 16;++i) A
= "expand 32-byte k"; u += (u32) zl[i];
z[1i] = u;
int crypto_stream_salsa20_xor(u8 *c, u >>= 38;
const u8 *m,u64 b,const u8 *n,const u8 *k) }
{ b -= 64;
u8 z[16],x[64]; c += 64;
u32 u,i; if (m) m += 64;
if (!b) return O; +
FOR(i,16) z[i] = 0; if (b) {
FOR(1i,8) z[i] = n[i]; crypto_core_salsa20(x,z,k,sigma) ;
while (b >= 64) { FOR(i,b) c[i] = (m?m[i]:0) ~ x[i];
crypto_core_salsa20(x,z,k,sigma) ; }
FOR(i,64) cl[i] = (m?m[i]:0) =~ xI[i]; return O;
u = 1; +

1st u8 sigmall16]

32-byte k";

y_stream_salsa20_xor (u8 *c,

¥m,u64 b,const u8 *n,const u8 *k)

| ,x[64] ;

return O;
5) z[i] = O;
) z[i] = nl[i];

b >= 64) {

b_core_salsa20(x,z,k,sigma) ;

,64) cl[i] = (m?m[i]:0) ~

x[i];

+

for (i = 8;i < 16;++i) {

u += (u32) zl[il;

z[i] = u;
u >>= 8;
by
b —= 64;
c += 64;

if (m) m += 64;

if (b) {

}

crypto_core_salsa20(x,z,k,sigma);

FOR(i,b) cl[i] = (m?m[i]:0) ~

return O;

x[i];

Next ste
For eacl
compile
and see

[16] for (i = 8;i < 16;++i) { Next step in analy
u += (u32) z[il; For each target ClI
z[i] = u; compile the simple
sa20_xor (u8 *c, u >>= 8; and see how fast |
1St u8 *n,const u8 *k) }
b —= 64;
c += 64;

if (m) m += 64;
+
if (b) {
1; crypto_core_salsa20(x,z,k,sigma);
FOR(i,b) cl[i] = (m?m[i]:0) ~ x[i];
120 (x,z,k,sigma) ; +

(m?m[i] :0) =~ x[i]; return O;

*C,

nst u8 *k)

gma) ;

x[i];

+

for (i = 8;i < 16;++i) {

u += (u32) zl[il;

z[i] = u;

u >>= 8;

c += 64;

if (m) m += 64;

if (b) {

}

crypto_core_salsa20(x,z,k,sigma);

FOR(i,b) cl[i] = (m?m[i]:0) ~

return O;

x[i];

Next step in analysis:
For each target CPU,
compile the simple code,
and see how fast it is.

for (i = 8;i < 16;++i) { Next step in analysis:
u += (u32) z[il; For each target CPU,
z[i] = u; compile the simple code,
u >>= 8; and see how fast it is.

¥

b -= 64;

c += 64;

if (m) m += 64;

+

if (b) {
crypto_core_salsa20(x,z,k,sigma);
FOR(i,b) c[i] = (m?m[i]:0) =~ x[il;

+

return O;

for (i = 8;i < 16;++i) { Next step in analysis:
u += (u32) z[il; For each target CPU,
z[i] = u; compile the simple code,
u >>= 8; and see how fast it is.

¥

In compiler writer’'s fantasy world,
b —= 64;

the analysis now ends.
c += 64;
if (m) m += 64;

+

if (b) {
crypto_core_salsa20(x,z,k,sigma);
FOR(i,b) c[i] = (m?m[i]:0) =~ x[il;

+

return O;

for (i = 8;i < 16;++i) { Next step in analysis:
u += (u32) z[il; For each target CPU,
z[i] = u; compile the simple code,
u >>= 8; and see how fast it is.
! In compiler writer’'s fantasy world,
oo the analysis now ends.
c += 64;
if (m) m += 64: “We come so close to optimal on
} most architectures that we can't
i (b) { do much more without using NP
crypto_core_salsa20(x,z,k,signa) ; complete algorithms instead of
FOR(i.b) c[i] = (m7m[i]:0) ~ x[i]: heuristics. We can only try to
3 get little niggles here and there

where the heuristics get

return O;

slightly wrong answers.”

i = 8;1 < 16;++i) {

= (u32) zl[i]l;

b_core_salsa20(x,z,k,sigma) ;

,b) cli] = (m?m[i]:0) ~ xI[i];

Next step In analysis:
For each target CPU,
compile the simple code,
and see how fast it is.

In compiler writer’'s fantasy world,

the analysis now ends.

“We come so close to optimal on
most architectures that we can't
do much more without using NP
complete algorithms instead of
heuristics. We can only try to
get little niggles here and there
where the heuristics get

slightly wrong answers.”

Reality |

crypto_stream _
salsa20 = dolbeau/amd6d-
implementations

amdé4d Skylake ’

armeabi Armada

Time

s ++1) o

120(x,z,k,sigma) ;

m?m[i]:0) ~

x[i];

Next step in analysis:
For each target CPU,
compile the simple code,
and see how fast it is.

In compiler writer’'s fantasy world,

the analysis now ends.

“We come so close to optimal on
most architectures that we can't
do much more without using NP
complete algorithms instead of
heuristics. We can only try to
get little niggles here and there
where the heuristics get

slightly wrong answers.”

Reality is more co

crypto_stream
7P - A6 _ xomm 61—
salsa0 dolbeau/and64-xinGint armneoné \\\\
e agdfd-xmb 2 S
-
e/ andBd-Rams 4

implementations

amde64d Skylake

U s | U

amd64 HWHAES

—_— e e e e e e e e e e e e e ey e e A - - - =

amde4 IB+AES

amd64 Sandy Bridge

amdée4 Bulldozer

i
e it (e 2
amd64 C2 65nm
amd64 K10 32nm ! beer
amd64 K10 45nm e
_______________________________ T
amd64 K10 65nm
amdé4 Airmont
amde4 K8 .

amdée4 Bobcat

amdéd Atom

x86 P4 Willamette

aarche4 Cortex-A57

aarche4 Cortex-A53

armeabi Cortex-Al5

armeabi Cortex-Ag8 <
armeabi Cortex-A94NEON N
armeabi Cortex-A9
;1 r_m_e; t;i _A_r r_n ; d_ .
Time 4096 8192

gma) ;

x[i];

Next step In analysis:
For each target CPU,
compile the simple code,
and see how fast it is.

In compiler writer’'s fantasy world,

the analysis now ends.

“We come so close to optimal on
most architectures that we can't
do much more without using NP
complete algorithms instead of
heuristics. We can only try to
get little niggles here and there
where the heuristics get

slightly wrong answers.”

Reality i1s more complicated:

crypto_stream
salsall
implementations

amdé4d Skylake

- I .

U, N

amdé4 C2 65nm

————————————————————————————————

amdéd K10 32nm

aarch64 Cortex-A57

aarch64 Cortex-A53

e — _—] = = o o A — . — — — — — -

armeabi Cortex-Al5

e

armeabi Cortex-A94+NEON

armeabi Cortex-A9

— e

armeabi Armada

Time 4096 8192 16384 32768 6553

Next step in analysis: Reality is more complicated:
For each target CPU, S

salsaZ
implementations

compile the simple code,

afxBS-eTZ]}Htps ://bench.cr.yp.to
20161010

— — — L - - — - - -

—_— e, e e e e e = T = e = = = = H AR — o — — — — = — — e e e e - = =

and see how fast it is.

U A, N S P R — Y I U

In compiler writer's fantasy world, s B % il

———————————————————————————————

_—— R S . S Y | O

amdé4 C2 65nm

— a0 f s TR I A ot A MY MRy £ S) ooy 8 R

. S N R

____________________________ Vg R O = gl 0 S R S e ey

t h e a n a |yS I S n OW e n d S . amd64 K10 32nm ; . 4 , . I|'

“““““““““““““ "y ‘ : ‘. .I =117 S B B et

amd64 K10 45nm ey e | I - | e
|

amded K10 65nm

“We come so close to o pti mal on e Ao T '-_j;. o -

— - — e l—f = —— — - -4 - - - - - - = = =

most architectures that we can't
do much more without using NP

aarche4 Cortex-A57

complete algorithms instead of | “™e=™ % -

aarche4 Cortex-A53

e - — — — — — — — — — — — — — — — _— Bt = = o 4= e . m —

armeabi Cortex-Al5

heuristics. We can only try to

armeabi Cortex-A7

e e e

armeabi Cortex-A8

get little niggles here and there | ™o

armeabi Cortex-A94+NEON

armeabi Cortex-A9

armeabi Armada

Time 4096 8192 16384 327638 65536

slightly wrong answers.”

p In analysis:
target CPU,
the simple code,
how fast it is.

iler writer’'s fantasy world,

ySIS now ends.

ne so close to optimal on
hitectures that we can't
' more without using NP
e algorithms instead of
s. We can only try to
niggles here and there
1e heuristics get
Nrong answers.”

Reality i1s more complicated:

crypto_stream s ia““i“ i o/ xB6- "’m"https //bench.cr.yp.to
salsa20 dolbeau/and6d-ximgint \, e/m ' 20161010
implementations B Wy Neod
amd64 Skylake ' |
______________ ",_________ _____|_,||_]L________________
amd64 HW-+AES L |

— f
————————————————— e —— — - — — — el il i E B

U, N

amdé4 C2 65nm

—_—— e e i —_—

amdéd K10 32nm

amdé4 K10 45nm e ey el | I | ::':.i_'l.:::;::.:,:.i::,:_j_jj:::i:: .: - ::;:;
______________________________ “b‘}’ :,?_!_ - '|!|%I'I,'I_I'II_ _,'I_ - - |I_ __'-_ - - - - - - - - - - - - - - -

amdéed K10 65nm

aarch64 Cortex-A57

aarch64 Cortex-A53

armeabi Cortex-A94+NEON

armeabi Cortex-A9

— e e — — — — o —

armeabi Armada

Time 4096 8192 16384 32768 65536

SUPERC(
includes
of 563 ¢
>20 imy

Haswell:
Impleme
gcc -03
1S 6.15 X%
Salsa20

merged
with “m
optimiza
compiler

SIS:

°U

» code,
t Is.

s fantasy world,

:nds.

e to optimal on
- that we can't
hout using NP
ns instead of

1 only try to
ere and there
cs get

wers.'

Reality i1s more complicated:

crypto_stream

""XB?'_“_’_?_XJ}PFPS ://bench.cr.yp.to
[20161010

salsaZ dolbeau/andsd-
implementations

aarche4 Cortex-A57

aarche4 Cortex-A53

armeabi Cortex-Al5

armeabi Cortex-A7

armeabi Cortex-A94+NEON

armeabi Cortex-A9

armeabi Armada

Time 4096 8192 16384 327638 65536

SUPERCOP bencl
includes 2064 imp
of 563 cryptograpl

>20 implementati

Haswell: Reasonal
Implementation cc
gcc -03 —fomit-
Is ©6.15x slower th
Salsa20 implemen

merged implemen
with “machine-ind
optimizations and
compiler options:

world,

al on
an't
NP
of

to

V™

ere

Reality i1s more complicated:

crypto_stream E""S‘f‘:_“:’:’;l{r.ltps ://bench.cr.yp.to
] |

20161010

salsaZl dnlheau.-"amd?:i&— mGint
implementations

amdé4d Skylake

amd64 HWHAES

-_——_—— = = = = = = = = = S — = = = — - - = = = -,

amdé4d IB+AES

amdée4 Sandy Bridge

amdé4 Piledriver

——————————————————————————————————

amdé4 Bulldozer

amdéd K10 32nm
amdéd4 K10 45nm

amdéed K10 65nm

amdé4 Airmont

amd64 K8 ‘\Y
amd64 Bobcat l L)

amdé4 Atom

X86 P4 Willamette

—_——— e e e e e e e e e e e e == — _— - - = s, — - — — — e — — m m — — — — — = — = —

aarch64 Cortex-A57

__

aarch64 Cortex-A53

armeabi Cortex-Al5

e e AT i g, g,

armeabi Cortex-AT7

— e e e e m m m m m m — e

armeabi Cortex-AS8

armeabi Armada

Time 4096 8192 16384 32768 65536

SUPERCOP benchmarking -

includes 2064 implementatic
of 563 cryptographic primiti
>20 implementations of Sal

Haswell: Reasonably simple
implementation compiled wi
gcc —03 —fomit-frame-po
is 6.15x slower than fastest
Salsa20 implementation.

merged implementation

with “machine-independent’
optimizations and best of 12
compiler options: 4.52x slo

Reality i1s more complicated:

Ema.ﬁf?__m.,,_, es’xﬂfi'__ﬂj_lf'f_]:lj:ltps ://bench.cr.yp.to
implementations

amde64d Skylake .

amd64 HWHAES

—-_——_— e —— — — = — = — = = S, — = = = == - — = = -+

amde4 IB+AES

amd64 Sandy Bridge

amdé4 Piledriver

L

——

amdée4 Bulldozer

—_——— e e e e e e e e e e = = = - — —_— — — el e e e - -

amdéed K10 32nm

amdéd K10 45nm

amded K10 65nm

amdéed Airmont

————————————————————————————————

amd64 K8 ‘\Y
amd64 Bobcat 1 b

amdéd Atom

x86 P4 Willamette

| ;-.!'_"_-.. i Soad 1 BB, 39 |alel Pl A, B PV el 715 oy ST
! P
——————————————————————————————————— - #ﬂﬂ.“-_':-__-:;‘-—--!'——————————————————————————
{ Lk e]
e T |
=1] Msskmiran 6 8 STARAG 1% AVICUS. Trges B3, Arcend Carten ST GEINUSTLN opnsny AR

aarche4 Cortex-A57

__

aarche4 Cortex-A53

armeabi Cortex-A7

__
armeabi Cortex-A8

armeabi Armada

Time 4096 8192 16384 327638 65536

SUPERCOP benchmarking toolkit
Includes 2064 implementations

of 563 cryptographic primitives.
>20 implementations of Salsa20.

Haswell: Reasonably simple ref
Implementation compiled with
gcc —03 -fomit-frame-pointer
is 6.15x slower than fastest
Salsa20 implementation.

merged implementation

with “machine-independent”
optimizations and best of 121
compiler options: 4.52x slower.

10

s more complicated:

Ehaff?pprs:ffbench.cr.yp.to
| 20161010

|

——————————————————————————————————

—————————————————————————————————

S U [o | -E----4r------F4--=-=-=-"=-"=-"-"-"——----—--

———————————————————————————————————

L |

4096 8192 16384 32768 65536

SUPERCOP benchmarking toolkit

includes 2064 implementations
of 563 cryptographic primitives.
>20 implementations of Salsa20.

Haswell: Reasonably simple ref
implementation compiled with
gcc —03 -fomit-frame-pointer
is 6.15x slower than fastest
Salsa20 implementation.

merged implementation

with “machine-independent”
optimizations and best of 121
compiler options: 4.52x slower.

10

Many m
were de\
to the («
impleme

mplicated:

y . 6pm e/ "=https://bench.cr.yp.to

regs &,/amd63-1 il e/ x86-2 II e/ x86-1

{ l < efref il efx86-athlon | { 20161010
" armneonl | i a/zBE-3 I' |

16384 327638 65536

SUPERCOP benchmarking toolkit
includes 2064 implementations

of 563 cryptographic primitives.
>20 implementations of Salsa20.

Haswell: Reasonably simple ref
iImplementation compiled with
gcc —03 -fomit-frame-pointer
is 6.15x slower than fastest
Salsa20 implementation.

merged implementation

with “machine-independent”
optimizations and best of 121
compiler options: 4.52x slower.

10

Many more impler
were developed on
to the (currently)
implementation fo

JxB6- .
T https: //bench.cr.yp.to
] |

SUPERCOP benchmarking toolkit

includes 2064 implementations
of 563 cryptographic primitives.
>20 implementations of Salsa20.

Haswell: Reasonably simple ref
implementation compiled with
gcc —03 -fomit-frame-pointer
is 6.15x slower than fastest
Salsa20 implementation.

merged implementation

with “machine-independent”
optimizations and best of 121
compiler options: 4.52x slower.

10

Many more implementations
were developed on the way
to the (currently) fastest
implementation for this CPL

SUPERCOP benchmarking toolkit
includes 2064 implementations

of 563 cryptographic primitives.
>20 implementations of Salsa20.

Haswell: Reasonably simple ref
Implementation compiled with
gcc —03 -fomit-frame-pointer
is 6.15x slower than fastest
Salsa20 implementation.

merged implementation

with “machine-independent”
optimizations and best of 121
compiler options: 4.52x slower.

10

Many more implementations
were developed on the way
to the (currently) fastest
implementation for this CPU.

11

SUPERCOP benchmarking toolkit
includes 2064 implementations

of 563 cryptographic primitives.
>20 implementations of Salsa20.

Haswell: Reasonably simple ref
Implementation compiled with
gcc —03 -fomit-frame-pointer
is 6.15x slower than fastest
Salsa20 implementation.

merged implementation

with “machine-independent”
optimizations and best of 121
compiler options: 4.52x slower.

10

11
Many more implementations

were developed on the way
to the (currently) fastest
implementation for this CPU.

This 1Is a common pattern.
Very fast development cycle:
modify the implementation,
check that i1t still works,
evaluate its performance.

SUPERCOP benchmarking toolkit
includes 2064 implementations

of 563 cryptographic primitives.
>20 implementations of Salsa20.

Haswell: Reasonably simple ref
Implementation compiled with
gcc —03 -fomit-frame-pointer
is 6.15x slower than fastest
Salsa20 implementation.

merged implementation

with “machine-independent”
optimizations and best of 121
compiler options: 4.52x slower.

10

11
Many more implementations

were developed on the way
to the (currently) fastest
implementation for this CPU.

This 1Is a common pattern.
Very fast development cycle:
modify the implementation,
check that i1t still works,
evaluate its performance.

Results of each evaluation
guide subsequent modifications.

SUPERCOP benchmarking toolkit
includes 2064 implementations

of 563 cryptographic primitives.
>20 implementations of Salsa20.

Haswell: Reasonably simple ref
Implementation compiled with
gcc —03 -fomit-frame-pointer
is 6.15x slower than fastest
Salsa20 implementation.

merged implementation

with “machine-independent”
optimizations and best of 121
compiler options: 4.52x slower.

10

11
Many more implementations

were developed on the way
to the (currently) fastest
implementation for this CPU.

This 1Is a common pattern.
Very fast development cycle:
modify the implementation,
check that i1t still works,
evaluate its performance.

Results of each evaluation
guide subsequent modifications.

The software engineer needs
fast evaluation of performance.

_OP benchmarking toolkit
2064 implementations
ryptographic primitives.
ylementations of Salsa20.

Reasonably simple ref
ntation compiled with
—fomit-frame-pointer

slower than fastest
Implementation.

implementation
achine-independent”
tions and best of 121
~options: 4.52x slower.

10

Many more implementations
were developed on the way
to the (currently) fastest
implementation for this CPU.

This 1Is a common pattern.
Very fast development cycle:
modify the implementation,
check that 1t still works,
evaluate its performance.

Results of each evaluation
guide subsequent modifications.

The software engineer needs

fast evaluation of performance.

11

The unf

Slow ev:
IS often
to this ¢

rmarking toolkit
lementations

nic primitives.
ons of Salsa20.

oly simple ref
mpiled with
frame-pointer
an fastest
tation.

tation
ependent”

best of 121
4 .52 % slower.

10

Many more implementations
were developed on the way
to the (currently) fastest
implementation for this CPU.

This 1Is a common pattern.
Very fast development cycle:
modify the implementation,
check that i1t still works,
evaluate its performance.

Results of each evaluation
guide subsequent modifications.

The software engineer needs
fast evaluation of performance.

11

The unfortunate r

Slow evaluation of
Is often a huge ob
to this optimizatic

foolkit
NS

VES.
sa20.

ref
th

inter

1

WET .

10

Many more implementations
were developed on the way
to the (currently) fastest
implementation for this CPU.

This 1Is a common pattern.
Very fast development cycle:
modify the implementation,
check that 1t still works,
evaluate its performance.

Results of each evaluation
guide subsequent modifications.

The software engineer needs
fast evaluation of performance.

11

The unfortunate reality:

Slow evaluation of performa
is often a huge obstacle
to this optimization process.

Many more implementations
were developed on the way
to the (currently) fastest
implementation for this CPU.

This 1Is a common pattern.
Very fast development cycle:
modify the implementation,
check that i1t still works,
evaluate its performance.

Results of each evaluation
guide subsequent modifications.

The software engineer needs
fast evaluation of performance.

11

The unfortunate reality:

Slow evaluation of performance
Is often a huge obstacle
to this optimization process.

12

11 12
Many more implementations The unfortunate reality:

were developed on the wa .
P Y Slow evaluation of performance

to the (currently) fastest .
(Y) is often a huge obstacle

implementation for this CPU. . o
to this optimization process.

This 1Is a common pattern. L
When performance evaluation is

Very fast development cycle: .
too slow, the software engineer

modify the implementation,
check that i1t still works,

evaluate its performance.

has to switch context, and then
switching back to optimization
produces severe cache misses

Results of each evaluation inside software engineer’s brain.
guide subsequent modifications. (“I'm out of the zone.")

The software engineer needs
fast evaluation of performance.

Many more implementations
were developed on the way
to the (currently) fastest
implementation for this CPU.

This 1Is a common pattern.
Very fast development cycle:
modify the implementation,
check that i1t still works,

evaluate its performance.

Results of each evaluation
guide subsequent modifications.

The software engineer needs

fast evaluation of performance.

11

The

12
unfortunate reality:

Slow evaluation of performance

Is often a huge obstacle

to this optimization process.

When performance evaluation is

too slow, the software engineer

has to switch context, and then

switching back to optimization

Proc

INSIC

uces severe cache misses
e software engineer’s brain.

(“I'm out of the zone.”)

Often optimization is aborted.

(“I'll try some other time.")

ore iImplementations
/eloped on the way
urrently) fastest
ntation for this CPU.

| common pattern.

t development cycle:
he implementation,
at it still works,

its performance.

of each evaluation
bsequent modifications.

tware engineer needs

luation of performance.

11

The unfortunate reality:

Slow evaluation of performance
is often a huge obstacle
to this optimization process.

When performance evaluation is
too slow, the software engineer
has to switch context, and then
switching back to optimization
produces severe cache misses

inside software engineer’s brain.
(“I'm out of the zone.”)

Often optimization is aborted.
(“I'll try some other time.")

12

Goal of

Speed u
by speec

“Optimi
help opt

nentations
the way

fastest
r this CPU.

pattern.
nent cycle:
1entation,
works,
mance.

aluation
modifications.

rineer needs

f performance.

11

The unfortunate reality:

Slow evaluation of performance
Is often a huge obstacle
to this optimization process.

When performance evaluation is
too slow, the software engineer
has to switch context, and then
switching back to optimization
produces severe cache misses

inside software engineer’s brain.
(“I'm out of the zone.”)

Often optimization is aborted.
(“I'll try some other time.")

12

Goal of this talk:
Speed up the opti

by speeding up be

“O
hel

btimize benchn

D optimize optl

11 12
; The unfortunate reality: Goal of this talk:

: Speed up the optimization
Slow evaluation of performance P P P F

is often a huge obstacle by speeding up benchmarkir

to this optimization process. “Optimize benchmarking to

L. help optimize optimization.”
When performance evaluation is P P

too slow, the software engineer
has to switch context, and then
switching back to optimization
produces severe cache misses

inside software engineer’s brain.
ons. (“I'm out of the zone.”)

2ds Often optimization is aborted.
ance. (“I'll try some other time.")

The unfortunate reality:

Slow evaluation of performance
Is often a huge obstacle
to this optimization process.

When performance evaluation is
too slow, the software engineer
has to switch context, and then
switching back to optimization
produces severe cache misses

inside software engineer’s brain.
(“I'm out of the zone.”)

Often optimization is aborted.
(“I'll try some other time.")

12

13
Goal of this talk:

Speed up the optimization process
by speeding up benchmarking.

“Optimize benchmarking to

help optimize optimization.”

The

unfortunate reality:

Slow evaluation of performance

Is often a huge obstacle

to this optimization process.

When performance evaluation is

too slow, the software engineer

has to switch context, and then

switching back to optimization

Proc

INSIC

uces severe cache misses
e software engineer’s brain.

(“I'm out of the zone.”)

Often optimization is aborted.

(“I'll try some other time.")

12

Goal of this talk:
Speed up the optimization process
by speeding up benchmarking.

“Optimize benchmarking to

help optimize optimization.”

What are the bottlenecks
that really need speedups?
Measure the benchmarking
process to gain understanding.

"Benchmark benchmarking to
help optimize benchmarking.”

13

ortunate reality:

luation of performance
a huge obstacle
ptimization process.

arformance evaluation is
, the software engineer
vitch context, and then
o back to optimization

5 severe cache misses
ftware engineer’s brain.
t of the zone.”)

ytimization i1s aborted.
some other time."”)

12

13
Goal of this talk:

Speed up the optimization process
by speeding up benchmarking.

“Optimize benchmarking to

help optimize optimization.”

What are the bottlenecks
that really need speedups?
Measure the benchmarking
process to gain understanding.

"Benchmark benchmarking to
help optimize benchmarking.”

Accessin

The soft

on his |3
perform:

cality:

- performance
stacle
N process.

> evaluation is
vare engineer
ext, and then
optimization
i)che misses
yineer's brain.
one.")

1 1S aborted.
er time.")

12

13
Goal of this talk:

Speed up the optimization process
by speeding up benchmarking.

“Optimize benchmarking to

help optimize optimization.”

What are the bottlenecks
that really need speedups?
Measure the benchmarking
process to gain understanding.

"Benchmark benchmarking to
help optimize benchmarking.”

Accessing differen

The software engi
on his laptop, but
performance on m

NCE

n IS
eer
hen
on

ain.

12

13
Goal of this talk:

Speed up the optimization process
by speeding up benchmarking.

“Optimize benchmarking to

help optimize optimization.”

What are the bottlenecks
that really need speedups?
Measure the benchmarking
process to gain understanding.

"Benchmark benchmarking to
help optimize benchmarking.”

Accessing different CPUs

The software engineer write:
on his laptop, but cares abo
performance on many more

Goal of this talk:
Speed up the optimization process
by speeding up benchmarking.

“Optimize benchmarking to

help optimize optimization.”

What are the bottlenecks
that really need speedups?
Measure the benchmarking
process to gain understanding.

"Benchmark benchmarking to
help optimize benchmarking.”

13

Accessing different CPUs

The software engineer writes code
on his laptop, but cares about
performance on many more CPUs.

14

Goal of this talk:
Speed up the optimization process
by speeding up benchmarking.

“Optimize benchmarking to

help optimize optimization.”

What are the bottlenecks
that really need speedups?
Measure the benchmarking
process to gain understanding.

"Benchmark benchmarking to
help optimize benchmarking.”

13

14
Accessing different CPUs

The software engineer writes code
on his laptop, but cares about
performance on many more CPUs.

Or at least should carel

Surprisingly common failure:

A paper with “faster algorithms”
actually has slower algorithms
running on faster processors.

Goal of this talk:
Speed up the optimization process
by speeding up benchmarking.

“Optimize benchmarking to

help optimize optimization.”

What are the bottlenecks
that really need speedups?
Measure the benchmarking
process to gain understanding.

"Benchmark benchmarking to
help optimize benchmarking.”

13

14
Accessing different CPUs

The software engineer writes code
on his laptop, but cares about
performance on many more CPUs.

Or at least should carel

Surprisingly common failure:

A paper with “faster algorithms”
actually has slower algorithms
running on faster processors.

Systematic fix: Optimize
each algorithm, new or old,
for older and newer processors.

this talk:
p the optimization process
ling up benchmarking.

ze benchmarking to
Imize optimization.”

e the bottlenecks

ly need speedups?

- the benchmarking

to gain understanding.

nark benchmarking to
imize benchmarking.”

13

Accessing different CPUs

The software engineer writes code
on his laptop, but cares about

performance on many more CPUs.

Or at least should care!

Surprisingly common failure:

A paper with “faster algorithms”
actually has slower algorithms
running on faster processors.

Systematic fix: Optimize
each algorithm, new or old,

for older and newer processors.

14

For eact
Find a n
COpYy COC
(assumir
collect n

mization process
nchmarking.

\arking to

mization.”

lenecks
eedups?
1marking
derstanding.

nmarking to
hmarking.”

13

Accessing different CPUs

The software engineer writes code
on his laptop, but cares about

performance on many more CPUs.

Or at least should carel

Surprisingly common failure:

A paper with “faster algorithms”
actually has slower algorithms
running on faster processors.

Systematic fix: Optimize
each algorithm, new or old,
for older and newer processors.

14

For each target CI
Find a machine w
copy code to that
(assuming it's on
collect measureme

13

rocess
g,

1g.

O

Accessing different CPUs

The software engineer writes code
on his laptop, but cares about

performance on many more CPUs.

Or at least should care!

Surprisingly common failure:

A paper with “faster algorithms”
actually has slower algorithms
running on faster processors.

Systematic fix: Optimize
each algorithm, new or old,
for older and newer processors.

14

For each target CPU.

Find a machine with that C
copy code to that machine
(assuming it's on the Intern
collect measurements there.

Accessing different CPUs

The software engineer writes code
on his laptop, but cares about

performance on many more CPUs.

Or at least should carel

Surprisingly common failure:

A paper with “faster algorithms”
actually has slower algorithms
running on faster processors.

Systematic fix: Optimize
each algorithm, new or old,
for older and newer processors.

14

For each target CPU:

Find a machine with that CPU,
copy code to that machine
(assuming it's on the Internet),
collect measurements there.

15

Accessing different CPUs

The software engineer writes code
on his laptop, but cares about

performance on many more CPUs.

Or at least should carel

Surprisingly common failure:

A paper with “faster algorithms”
actually has slower algorithms
running on faster processors.

Systematic fix: Optimize
each algorithm, new or old,
for older and newer processors.

14

For each target CPU:

Find a machine with that CPU,
copy code to that machine
(assuming it's on the Internet),
collect measurements there.

But, for security reasons,

most machines on the Internet
disallow access by default,
except access by the owner.

15

Accessing different CPUs

The software engineer writes code
on his laptop, but cares about

performance on many more CPUs.

Or at least should carel

Surprisingly common failure:

A paper with “faster algorithms”
actually has slower algorithms
running on faster processors.

Systematic fix: Optimize
each algorithm, new or old,
for older and newer processors.

14

For each target CPU:

Find a machine with that CPU,
copy code to that machine
(assuming it's on the Internet),
collect measurements there.

But, for security reasons,

most machines on the Internet
disallow access by default,
except access by the owner.

Solution #1: Each software

engineer buys each CPU.
This is expensive at high end,
time-consuming at low end.

15

g different CPUs

ware engineer writes code
ptop, but cares about

ance on many more CPUs.

st should care!

gly common failure:
with “faster algorithms”
has slower algorithms
on faster processors.

tic fix: Optimize
orithm, new or old,
~and newer processors.

14

For each target CPU.

Find a machine with that CPU,
copy code to that machine
(assuming it's on the Internet),
collect measurements there.

But, for security reasons,

most machines on the Internet
disallow access by default,
except access by the owner.

Solution #1: Each software

engineer buys each CPU.
This is expensive at high end,
time-consuming at low end.

15

Solution
Poor coy

t CPUs

neer writes code
cares about

any more CPUs.

carel

on failure:

ter algorithms”
r algorithms
DFOCESSOL'S.

Yytimize
'w or old,
) Processors.

14

15
For each target CPU:

Find a machine with that CPU,
copy code to that machine
(assuming it's on the Internet),
collect measurements there.

But, for security reasons,

most machines on the Internet
disallow access by default,
except access by the owner.

Solution #1: Each software

engineer buys each CPU.
This is expensive at high end,
time-consuming at low end.

Solution #2: Am:
Poor coverage of ¢

5 code

CPUs.

"mSs
1S

I'S.

14

For each target CPU.

Find a machine with that CPU,
copy code to that machine
(assuming it's on the Internet),
collect measurements there.

But, for security reasons,

most machines on the Internet
disallow access by default,
except access by the owner.

Solution #1: Each software

engineer buys each CPU.
This is expensive at high end,
time-consuming at low end.

15

Solution #2: Amazon.
Poor coverage of CPUs.

For each target CPU:

Find a machine with that CPU,
copy code to that machine
(assuming it's on the Internet),
collect measurements there.

But, for security reasons,

most machines on the Internet
disallow access by default,
except access by the owner.

Solution #1: Each software

engineer buys each CPU.
This is expensive at high end,
time-consuming at low end.

15

Solution #2: Amazon.
Poor coverage of CPUs.

16

For each target CPU:

Find a machine with that CPU,
copy code to that machine
(assuming it's on the Internet),
collect measurements there.

But, for security reasons,

most machines on the Internet
disallow access by default,
except access by the owner.

Solution #1: Each software

engineer buys each CPU.
This is expensive at high end,
time-consuming at low end.

15

Solution #2: Amazon.
Poor coverage of CPUs.

Solution #3: Compile farms,
such as GCC Compile Farm.
Coverage of CPUs is better

but not good enough for crypto.

Usual goals are OS coverage
and architecture coverage.

16

For each target CPU:

Find a machine with that CPU,

copy code to that

(assuming it's on the Internet),

machine

collect measurements there.

But, for security reasons,

most machines on the Internet

disallow access by default,

except access by the owner.

Solution #1: Eac
engineer buys eac

n software

n CPU.

This is expensive at high end,

time-consuming at low end.

15

16
Solution #2: Amazon.

Poor coverage of CPUs.

Solution #3: Compile farms,
such as GCC Compile Farm.
Coverage of CPUs is better

but not good enough for crypto.
Usual goals are OS coverage
and architecture coverage.

Solution #4: Figure out who
has the right machines. (How?)
Send email saying “Are you
willing to run this code?”

Slow; unreliable; scales badly.

 target CPU:

1achine with that CPU,
le to that machine

1g it's on the Internet),
neasurements there.

security reasons,
ichines on the Internet
access by default,
ccess by the owner.

+#1: Each software
“buys each CPU.
xpensive at high end,

isuming at low end.

15

Solution #2: Amazon.
Poor coverage of CPUs.

Solution #3: Compile farms,
such as GCC Compile Farm.
Coverage of CPUs is better

but not good enough for crypto.
Usual goals are OS coverage
and architecture coverage.

Solution #4: Figure out who
has the right machines. (How?)
Send email saying “Are you
willing to run this code?”

Slow; unreliable; scales badly.

16

Solution
“Can | F
Saves ti

> U:

th that CPU,
machine

the Internet),
nts there.

2as0ns,

the Internet
default,

he owner.

1 software

1 CPU.
1t high end,
- low end.

15

16
Solution #2: Amazon.

Poor coverage of CPUs.

Solution #3: Compile farms,
such as GCC Compile Farm.
Coverage of CPUs is better

but not good enough for crypto.
Usual goals are OS coverage
and architecture coverage.

Solution #4: Figure out who
has the right machines. (How?)
Send email saying “Are you
willing to run this code?”

Slow; unreliable; scales badly.

Solution #5: Sen
“Can | have an ac
Saves time but les

PU,

ot),

1et

15

Solution #2: Amazon.
Poor coverage of CPUs.

Solution #3: Compile farms,
such as GCC Compile Farm.
Coverage of CPUs is better

but not good enough for crypto.

Usual goals are OS coverage
and architecture coverage.

Solution #4: Figure out who
has the right machines. (How?)
Send email saying “Are you
willing to run this code?”

Slow; unreliable; scales badly.

16

Solution #5: Send email sa:
“Can | have an account?”
Saves time but less reliable.

Solution #2: Amazon.
Poor coverage of CPUs.

Solution #3: Compile farms,
such as GCC Compile Farm.
Coverage of CPUs is better

but not good enough for crypto.
Usual goals are OS coverage
and architecture coverage.

Solution #4: Figure out who
has the right machines. (How?)
Send email saying “Are you
willing to run this code?”

Slow; unreliable; scales badly.

16

Solution #5: Send email saying
“Can | have an account?”
Saves time but less reliable.

17

Solution #2: Amazon.
Poor coverage of CPUs.

Solution #3: Compile farms,
such as GCC Compile Farm.
Coverage of CPUs is better

but not good enough for crypto.

Usual goals are OS coverage
and architecture coverage.

Solution #4: Figure out who
has the right machines. (How?)
Send email saying “Are you
willing to run this code?”

Slow; unreliable; scales badly.

16

Solution #5: Send email saying
“Can | have an account?”
Saves time but less reliable.

Solution #6: eBACS.

Good: One-time centralized
effort to find machines.

17

Solution #2: Amazon.
Poor coverage of CPUs.

Solution #3: Compile farms,
such as GCC Compile Farm.
Coverage of CPUs is better

but not good enough for crypto.
Usual goals are OS coverage
and architecture coverage.

Solution #4: Figure out who
has the right machines. (How?)
Send email saying “Are you
willing to run this code?”

Slow; unreliable; scales badly.

16

17

Solution #5: Send email saying

“Can | have an account?”

Saves time but less reliable.

Solution #6: eBACS.

Good: One-time centralized

effort to find machines.

Good: For each coc

one-time centralizec

€ Su

omission,

dUC

It.

Solution #2: Amazon.
Poor coverage of CPUs.

Solution #3: Compile farms,
such as GCC Compile Farm.
Coverage of CPUs is better

but not good enough for crypto.

Usual goals are OS coverage
and architecture coverage.

Solution #4: Figure out who
has the right machines. (How?)
Send email saying “Are you
willing to run this code?”

Slow; unreliable; scales badly.

16

17

Solution #5: Send email saying

“Can | have an account?”

Saves time but less reliable.

Solution #6: eBACS.

Good: One-time centralized

effort to find machines.

Good: For each coc

one-time centralizec

€ Su

omission,

dUC

Good: High reliability,
high coverage, built-in tests.

It.

Solution #2: Amazon.
Poor coverage of CPUs.

Solution #3: Compile farms,
such as GCC Compile Farm.
Coverage of CPUs is better

but not good enough for crypto.

Usual goals are OS coverage
and architecture coverage.

Solution #4: Figure out who
has the right machines. (How?)
Send email saying “Are you
willing to run this code?”

Slow; unreliable; scales badly.

16

17

Solution #5: Send email saying

“Can | have an account?”

Saves time but less reliable.

Solution #6: eBACS.

Good: One-time centralized

effort to find machines.

Good: For each coc

one-time centralizec

€ Su

omission,

dUC

Good: High reliability,
high coverage, built-in tests.

Bad: Much too slow.

It.

+#2: Amazon.
jerage of CPUs.

+#3: Compile farms,
GCC Compile Farm.

e of CPUs is better

good enough for crypto.

als are OS coverage
litecture coverage.

#4: Figure out who
right machines. (How?)
1ail saying “Are you
o0 run this code?”
reliable; scales badly.

16

Solution #5: Send email saying
“Can | have an account?”
Saves time but less reliable.

Solution #6: eBACS.

Good: One-time centralized
effort to find machines.

Good: For each code submission,

one-time centralized audit.

Good: High reliability,
high coverage, built-in tests.

Bad: Much too slow.

17

The eB/

Software
somethii

Software
sends pc
centraliz

eBACS |
Integrat

eBACS |
new SUI
currenth

1Z201N.

_PUs.

\pile farms,
pile Farm.
IS better

1igh for crypto.

> coverage
overage.

re out who

lines. (How?)
“Are you
code?”

cales badly.

16

Solution #5: Send email saying
“Can | have an account?”
Saves time but less reliable.

Solution #6: eBACS.

Good: One-time centralized
effort to find machines.

Good: For each code submission,

one-time centralized audit.

Good: High reliability,
high coverage, built-in tests.

Bad: Much too slow.

17

The eBACS data |

Software engineer
something to benc

Software engineer
sends package by
centralized accoun

eBACS manager a
integrates into SU

eBACS manager &
new SUPERCOP |

currently 26-mega

16

Solution #5: Send email saying

“Can | have an account?”

Saves time but less reliable.

Solution #6: eBACS.

Good: One-time centralized

effort to find machines.

Good: For each coc

one-time centralizec

€ Su

omission,

dUC

Good: High reliability,
high coverage, built-in tests.

Bad: Much too slow.

It.

17

The eBACS data flow

Software engineer has impl:

something to benchmark.

Software engineer submits ir
sends package by email or (
centralized account) git pu

eBACS manager audits impl
integrates into SUPERCOP.

eBACS manager builds

new SUPERCOP package:
currently 26-megabyte xz.

Solution #5: Send email saying

“Can | have an account?”

Saves time but less reliable.

Solution #6: eBACS.

Good: One-time centralized

effort to find machines.

Good: For each coc

one-time centralizec

€ Su

omission,

dUC

Good: High reliability,
high coverage, built-in tests.

Bad: Much too slow.

It.

17

The eBACS data flow

Software engineer has impl:

something to benchmark.

Software engineer submits impl;
sends package by email or (with
centralized account) git push.

eBACS manager audits impl,
integrates into SUPERCOP.

eBACS manager builds

new SUPERCOP package:
currently 26-megabyte xz.

18

#5: Send email saying

1ave an account?’

me but less reliable.

+#6: eBACS.

)ne-time centralized

find machines.

or each coc

» centralizeg

€ Su

omission,

dUC

ligh reliability,

It.

erage, built-in tests.

uch too slow.

17

The eBACS data flow

Software engineer has impl:

something to benchmark.

Software engineer submits impl:
sends package by email or (with
centralized account) git push.

eBACS manager audits impl,
integrates into SUPERCOP.

eBACS manager builds
new SUPERCOP package:
currently 26-megabyte xz.

18

eBACS |
and ann

Each m:
walts un

Is suffici

Each m:
downloa

SUPERKC
stored o
On a tyj

millions

1 emalil saying
count?”’
s reliable.

CS.

entralized
11nes.

yde submission,

~d audit.

ility,
lt-1n tests.

OW.

17

The eBACS data flow

Software engineer has impl:

something to benchmark.

Software engineer submits impl;
sends package by email or (with
centralized account) git push.

eBACS manager audits impl,
integrates into SUPERCOP.

eBACS manager builds
new SUPERCOP package:

currently 26-megabyte xz.

18

eBACS manager u
and announces pa

Each machine ope
waits until the ma
is sufficiently idle.

Each machine ope
downloads SUPEF

SUPERCOP scans
stored on disk fror

On a typical high-
millions of files, se

ying

ssion,

17

The eBACS data flow

Software engineer has impl:

something to benchmark.

Software engineer submits impl:

sends package by email or (with

centralized account) git push.

eBACS

manager audits impl,

integrates into SUPERCOP.

eBACS
new SU

current

manager builds
PERCOP package:
y 20-megabyte xz.

18

eBACS manager uploads
and announces package.

Each machine operator
waits until the machine
is sufficiently idle.

Each machine operator
downloads SUPERCOP, run

SUPERCOP scans data
stored on disk from previous

On a typical high-end CPU:
millions of files, several GB.

The eBACS data flow

Software engineer has impl:

something to benchmark.

Software engineer submits impl;

sends package by email or (with

centralized account) git push.

eBACS

manager audits impl,

integrates into SUPERCOP.

eBACS
new SU

current

manager builds
PERCOP package:
y 20-megabyte xz.

18

19
eBACS manager uploads

and announces package.

Each machine operator
waits until the machine
is sufficiently idle.

Each machine operator
downloads SUPERCOP, runs it.

SUPERCOP scans data
stored on disk from previous runs.

On a typical high-end CPU:
millions of files, several GB.

\CS data flow

 engineer has impl:

1g to benchmark.

 engineer submits impl:
ckage by email or (with
ed account) git push.

manager audits impl,
s into SUPERCOP.

manager builds
ERCOP package:
/ 26-megabyte xz.

18

eBACS manager uploads
and announces package.

Each machine operator
waits until the machine
is sufficiently idle.

Each machine operator
downloads SUPERCOP, runs it.

SUPERCOP scans data

stored on disk from previous runs.

On a typical high-end CPU:
millions of files, several GB.

19

For eackh
SUPERKC

SUPERC(
working

SAVES [é€!

Typically

SUPERC(
from thi
700-meg

Machine
data. gz

low

nas impl:

‘hmark.

submits impl:
email or (with

t) git push.

udits impl,
PERCOP.

uilds
nackage:
byte xz.

18

eBACS manager uploads
and announces package.

Each machine operator
waits until the machine
is sufficiently idle.

Each machine operator
downloads SUPERCOP, runs it.

SUPERCOP scans data

stored on disk from previous runs.

On a typical high-end CPU:
millions of files, several GB.

19

For each new imp|
SUPERCOP comrg

SUPERCOP meas

working compiled
saves results on di

Typically at least

SUPERCOP collec
from this machine

(00-megabyte dat

Machine operator
data.gz, announc

npl:
vith

18

eBACS manager uploads
and announces package.

Each machine operator
waits until the machine
is sufficiently idle.

Each machine operator
downloads SUPERCOP, runs it.

SUPERCOP scans data

stored on disk from previous runs.

On a typical high-end CPU:
millions of files, several GB.

19

For each new impl-compiler
SUPERCOP compiles+tests

SUPERCOP measures each
working compiled impl,
saves results on disk.

Typically at least an hour.

SUPERCOP collects all datz:
from this machine, typically
700-megabyte data.gz.

Machine operator uploads
data.gz, announces It.

eBACS manager uploads
and announces package.

Each machine operator
waits until the machine
is sufficiently idle.

Each machine operator
downloads SUPERCOP, runs it.

SUPERCOP scans data

stored on disk from previous runs.

On a typical high-end CPU:
millions of files, several GB.

19

20
For each new impl-compiler pair,

SUPERCOP compiles+tests impl.

SUPERCOP measures each
working compiled impl,
saves results on disk.

Typically at least an hour.

SUPERCOP collects all data
from this machine, typically

700-megabyte data.gz.

Machine operator uploads
data.gz, announces It.

manager uploads
ounces package.

ichine operator
til the machine
ently idle.

ichine operator
ds SUPERCOP, runs it.

“OP scans data

n disk from previous runs.

vical high-end CPU:
of files, several GB.

19

For each new impl-compiler pair,

SUPERCOP compiles+tests impl.

SUPERCOP measures each
working compiled impl,
saves results on disk.

Typically at least an hour.

SUPERCOP collects all data
from this machine, typically

700-megabyte data.gz.

Machine operator uploads
data.gz, announces It.

20

eBACS |
data.g:

Databas
53% cur
47% arc

For eact
(or for c
scripts p
Typically

Web pag
Under a

ploads
ckage.

rator
chine

rator
COP, runs it.

. data

N previous runs.

end CPU:
veral GB.

19

For each new impl-compiler pair,

SUPERCOP compiles+tests impl.

SUPERCOP measures each
working compiled impl,
saves results on disk.

Typically at least an hour.

SUPERCOP collects all data
from this machine, typically

700-megabyte data.gz.

Machine operator uploads
data.gz, announces It.

20

eBACS manager c
data.gz into cent

Database currentl
53% current unco
47% archives of st

For each new dat.
(or for cross-cuttir
scripts process all
Typically an hour

Web pages are reg
Under an hour.

S It.

 Funs.

19

For each new impl-compiler pair,

SUPERCOP compiles+tests impl.

SUPERCOP measures each
working compiled impl,
saves results on disk.

Typically at least an hour.

SUPERCOP collects all data
from this machine, typically
700-megabyte data.gz.

Machine operator uploads
data.gz, announces It.

20

eBACS manager copies
data.gz into central databs:

Database currently uses 500
53% current uncompressed
47% archives of superseded

For each new data.gz

(or for cross-cutting update:
scripts process all results.
Typically an hour per machi

Web pages are regenerated.
Under an hour.

For each new impl-compiler pair,

SUPERCOP compiles+tests impl.

SUPERCOP measures each
working compiled impl,
saves results on disk.

Typically at least an hour.

SUPERCOP collects all data
from this machine, typically
700-megabyte data.gz.

Machine operator uploads
data.gz, announces It.

20

eBACS manager copies
data.gz into central database.

Database currently uses 500GB:
53% current uncompressed data,

47% archives of superseded data.

For each new data.gz

(or for cross-cutting updates):
scripts process all results.
Typically an hour per machine.

Web pages are regenerated.
Under an hour.

21

' new Impl-compiler pair,

_OP compiles—+tests impl.

_OP measures each
compiled impl,
sults on disk.

/ at least an hour.

_OP collects all data
s machine, typically
abyte data.gz.

 operator uploads
2. announces It.

20

eBACS manager copies
data.gz into central database.

Database currently uses 500GB:
53% current uncompressed data,

47% archives of superseded data.

For each new data.gz

(or for cross-cutting updates):
scripts process all results.
Typically an hour per machine.

Web pages are regenerated.
Under an hour.

21

In_progr

New dat
All impl:

Some m

measure
“publish
does for

All comj
All chec

All meas

All table

-compiler pair,

iles+tests impl.

ures each
impl,
sk.

an hour.

ts all data

, typically
a.g2z.

uploads
es It.

20

eBACS manager copies
data.gz into central database.

Database currently uses 500GB:
53% current uncompressed data,
A47% archives of superseded data.

For each new data.gz

(or for cross-cutting updates):
scripts process all results.
Typically an hour per machine.

Web pages are regenerated.
Under an hour.

21

In progress: SUPE

New database stoi
All impls ever subi

Some metadata ne
measurements. Bi
“publish results” f
does force new mze

All compiled impls
All checksums of «
All measurements.

All tables, graphs,

pair,

impl.

20

eBACS manager copies
data.gz into central database.

Database currently uses 500GB:
53% current uncompressed data,
47% archives of superseded data.

For each new data.gz

(or for cross-cutting updates):
scripts process all results.
Typically an hour per machine.

Web pages are regenerated.
Under an hour.

21

In progress: SUPERCOP 2

New database stored centra
All impls ever submitted.

Some metadata not affectin
measurements. But turning
“publish results” for an imp|
does force new measuremen

All compiled impls.
All checksums of outputs.
All measurements.

All tables, graphs, etc.

21 22
eBACS manager copies In progress: SUPERCOP 2

data.gz into central database.

New database stored centrally:

Database currently uses 500GB: All impls ever submitted.

53% current uncompressed data,

A47% archives of superseded data. Some metadata not affecting

measurements. But turning on

For each new data. y . ', .
Waata. gz publish results” for an impl

(or for cross-cutting updates): does force new measurements.

scripts process all results.

Typically an hour per machine. All compiled impls.
Web pages are regenerated. All checksums of outputs.
Under an hour. All measurements.

All tables, graphs, etc.

manager Coples
2 Into central database.

e currently uses 500GB:
rent uncompressed data,
hives of superseded data.

 new data.gz
ross-cutting updates):
rocess all results.

/ an hour per machine.

res are regenerated.
n hour.

21

In progress: SUPERCOP 2

New database stored centrally:
All impls ever submitted.

Some metadata not affecting
measurements. But turning on
“publish results” for an impl
does force new measurements.

All compiled impls.
All checksums of outputs.
All measurements.

All tables, graphs, etc.

22

When n
Impl Is |

Each col
to check

Each wc
pushed -
(when t

Each me

immedia

If impl s
Measure
after col

oples
ral database.

/ uses b00GB:
mpressed data,

Iperseded data.

A . g2
g updates):
results.

per machine.

‘enerated.

21

In progress: SUPERCOP 2

New database stored centrally:
All impls ever submitted.

Some metadata not affecting
measurements. But turning on
“publish results” for an impl
does force new measurements.

All compiled impls.
All checksums of outputs.
All measurements.

All tables, graphs, etc.

22

When new impl Is
Impl is pushed to

Each compiled imj
to checksum mack

Each working com
pushed to benchm
(when they are su

Each measuremen
immediately to sul

If impl says “publi
Measurements are
after comparisons

1S€E.

GB:
Jata,

data.

21

In progress: SUPERCOP 2

New database stored centrally:
All impls ever submitted.

Some metadata not affecting
measurements. But turning on
“publish results” for an impl
does force new measurements.

All compiled impls.
All checksums of outputs.
All measurements.

All tables, graphs, etc.

22

When new impl Is submittec
Impl 1s pushed to compile se

Each compiled impl is pushe
to checksum machines.

Each working compiled impl
pushed to benchmark machi
(when they are sufficiently i

Each measurement is availal
immediately to submitter.

If impl says “publish results’
Measurements are put onlin
after comparisons are done.

In progress: SUPERCOP 2

New database stored centrally:
All impls ever submitted.

Some metadata not affecting
measurements. But turning on
“publish results” for an impl
does force new measurements.

All compiled impls.
All checksums of outputs.
All measurements.

All tables, graphs, etc.

22

When new impl I1s submitted:

Impl Is pushed to compile servers.

Each compiled impl 1s pushed
to checksum machines.

Each working compiled impl is
pushed to benchmark machines
(when they are sufficiently idle).

Each measurement is available
immediately to submitter.

If impl says “publish results":
Measurements are put online
after comparisons are done.

23

oss: SUPERCOP 2

abase stored centrally:
5 ever submitted.

etadata not affecting
ments. But turning on
results” for an impl

Cé new measurements.
iled impls.

ksums of outputs.
urements.

s, graphs, etc.

22

When new impl I1s submitted:

Impl Is pushed to compile servers.

Each compiled impl is pushed
to checksum machines.

Each working compiled impl is
pushed to benchmark machines
(when they are sufficiently idle).

Each measurement is available
immediately to submitter.

If impl says “publish results":
Measurements are put online
after comparisons are done.

23

Wait, wl

No more
there's r
Critical |
Can a rc
take ove

Or corru
from otl

-RCOP 2

ed centrally:
nitted.

ot affecting
1t turning on
or an impl
rasurements.

utputs.

etc.

22

When new impl I1s submitted:

Impl is pushed to compile servers.

Each compiled impl 1s pushed
to checksum machines.

Each working compiled impl is
pushed to benchmark machines
(when they are sufficiently idle).

Each measurement is available
iImmediately to submitter.

If impl says “publish results":
Measurements are put online
after comparisons are done.

23

Wait, what about

No more central a
there's no time foi

Critical integrity ¢
Can a rogue code
take over the mac
Or corrupt benchr
from other submit

ly:

22

When new impl I1s submitted:

Impl is pushed to compile servers.

Each compiled impl is pushed
to checksum machines.

Each working compiled impl is
pushed to benchmark machines
(when they are sufficiently idle).

Each measurement is available
immediately to submitter.

If impl says “publish results":
Measurements are put online
after comparisons are done.

23

Wait, what about security?

No more central auditing:
there's no time for it.

Critical integrity concerns:
Can a rogue code submitter
take over the machine?

Or corrupt benchmarks
from other submitters?

When new impl I1s submitted:

Impl Is pushed to compile servers.

Each compiled impl 1s pushed
to checksum machines.

Each working compiled impl is
pushed to benchmark machines
(when they are sufficiently idle).

Each measurement is available
iImmediately to submitter.

If impl says “publish results":
Measurements are put online
after comparisons are done.

23

Wait, what about security?

No more central auditing:
there's no time for it.

Critical integrity concerns:
Can a rogue code submitter
take over the machine?

Or corrupt benchmarks
from other submitters?

24

When new impl I1s submitted:

Impl Is pushed to compile servers.

Each compiled impl 1s pushed
to checksum machines.

Each working compiled impl is
pushed to benchmark machines
(when they are sufficiently idle).

Each measurement is available
iImmediately to submitter.

If impl says “publish results":
Measurements are put online
after comparisons are done.

23

Wait, what about security?

No more central auditing:
there's no time for it.

Critical integrity concerns:
Can a rogue code submitter
take over the machine?

Or corrupt benchmarks
from other submitters?

Concerns start before code is
tested and measured: compilers

have bugs, sometimes serious.

24

When new impl I1s submitted:

Impl Is pushed to compile servers.

Each compiled impl 1s pushed
to checksum machines.

Each working compiled impl is
pushed to benchmark machines
(when they are sufficiently idle).

Each measurement is available
iImmediately to submitter.

If impl says “publish results":
Measurements are put online
after comparisons are done.

23

24
Wait, what about security?

No more central auditing:
there's no time for it.

Critical integrity concerns:
Can a rogue code submitter
take over the machine?

Or corrupt benchmarks
from other submitters?

Concerns start before code is
tested and measured: compilers

have bugs, sometimes serious.

Smaller availability concerns:
e.g., Bitcoin mining.

2w Impl Is submitted:
yushed to compile servers.

mpiled impl is pushed
sum machines.

rking compiled impl is
0 benchmark machines
ey are sufficiently idle).

asurement is available
tely to submitter.

ays publish results":
ments are put online
nparisons are done.

23

Wait, what about security?

No more central auditing:
there's no time for it.

Critical integrity concerns:
Can a rogue code submitter
take over the machine?

Or corrupt benchmarks
from other submitters?

Concerns start before code is
tested and measured: compilers

have bugs, sometimes serious.

Smaller availability concerns:

e.g., Bitcoin mining.

24

SUPERC(
OS-level

car

Imp

cannot f

SUPERX(
pool of |
each cor
machine

Enforces
for files
In comp

More dif
Integrity
tables c¢

submitted:
compile servers.

ol 1s pushed
1INes.

piled impl is
ark machines
fficiently idle).

t 1s available
omitter.

sh results’ :
put online
are done.

23

Wait, what about security?

No more central auditing:
there's no time for it.

Critical integrity concerns:
Can a rogue code submitter
take over the machine?

Or corrupt benchmarks
from other submitters?

Concerns start before code is
tested and measured: compilers

have bugs, sometimes serious.

Smaller availability concerns:
e.g., Bitcoin mining.

24

SUPERCOP 1 set
OS-level resource

Impl cannot open

cannot fork any pt

SUPERCOP 2 ma
pool of uids and ¢
each compile serve
machine, benchm:

Enforces reasonab
for files legitimate

in compiling an inr

More difficult to e
integrity policy for
tables comparing |

rvers.

d

1S
nes

le).

Ole

23

Wait, what about security?

No more central auditing:
there's no time for it.

Critical integrity concerns:
Can a rogue code submitter
take over the machine?

Or corrupt benchmarks
from other submitters?

Concerns start before code is
tested and measured: compilers

have bugs, sometimes serious.

Smaller availability concerns:
e.g., Bitcoin mining.

24

SUPERCOP 1 sets some

OS-

Imp

evel resource limits:
cannot open any files,

cannot fork any processes.

SUPERCOP 2 manages
pool of uids and chroot jails

each compile server, checkst

machine, benchmark machir

Enforces reasonable policy

for files legitimately used

in compiling an impl.

More difficult to enforce:

integrity policy for, e.g.,

tables comparing impls.

Wait, what about security?

No more central auditing:
there's no time for it.

Critical integrity concerns:
Can a rogue code submitter
take over the machine?

Or corrupt benchmarks
from other submitters?

Concerns start before code is
tested and measured: compilers

have bugs, sometimes serious.

Smaller availability concerns:
e.g., Bitcoin mining.

24

25

SUPERCOP 1 sets some

OS-

Imp

evel resource limits:
cannot open any files,

cannot fork any processes.

SUPERCOP 2 manages
pool of uids and chroot jails on

each compile server, checksum

machine, benchmark machine.

Enforces reasonable policy

for tiles legitimately used

in compiling an impl.

More difficult to enforce:

integrity policy for, e.g.,

tables comparing impls.

