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Public key h = 3g=f mod q.

Sender chooses small m; r ∈ R.

Ciphertext c = m + hr mod q.
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1998 Hoffstein–Pipher–Silverman

introduced this system.

Many subsequent NTRU papers:

meet-in-the-middle attacks,

lattice attacks, hybrid attacks;

chosen-ciphertext attacks;

decryption-failure attacks;

complicated padding systems;

variations for efficiency;

parameter selection.

Also many ideas that in retrospect

were small tweaks of NTRU:

e.g., homomorphic encryption.
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2014 Eisenträger–Hallgren–

Kitaev–Song: different algorithm

that takes quantum poly time.

23

Smart–Vercauteren also dismiss

this generator as not being short.

Have ideal I of R.

Want short g with gR = I.

Have g ′ with g ′R = I.

Know g ′ = ug for some u ∈ R∗.
But how do we find u?



21

SV/Soliloquy parameter:

k ≥ 1. Define R = Z[x ]=Φ2k .

Public key: prime q and c ∈ Z=q.

Secret key: short element g ∈ R
with gR = qR+ (x − c)R;

i.e., short generator

of the ideal qR+ (x − c)R.

But wait, isn’t it known how to

compute a generator of an ideal?

See, e.g., 1993 Cohen textbook

“A course in computational

algebraic number theory”.

22

Smart–Vercauteren dismiss this

as taking exponential time.

It actually takes subexponential

time. Same basic idea as NFS.

Campbell–Groves–Shepherd

claim quantum poly time.

Claim disputed by Biasse,

not defended by CGS.

2016 Biasse–Song, building on

2014 Eisenträger–Hallgren–
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Attackers can also use

automorphisms in more ways.

2016 Albrecht–Bai–Ducas

“A subfield lattice attack on

overstretched NTRU assumptions:

Cryptanalysis of some FHE and

Graded Encoding Schemes” use

norms gff(g), and independently

2016 Cheon–Jeong–Lee (“The

main technique of our algorithm

is the reduction of a problem on

a field to one in a subfield”) use

traces g + ff(g), where ff is

an order-2 automorphism.
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