
1

NTRU Prime

Daniel J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

cr.yp.to/papers.html

#ntruprime is joint work with:

Chitchanok Chuengsatiansup

Tanja Lange

Christine van Vredendaal

Technische Universiteit Eindhoven

Focus of this talk: motivation.

2

Can we predict future attacks?

1996 Dobbertin–Bosselaers–

Preneel “RIPEMD-160:

a strengthened version of

RIPEMD”: “It is anticipated that

these techniques can be used to

produce collisions for MD5 and

perhaps also for RIPEMD. This

will probably require an additional

effort, but it no longer seems as

far away as it was a year ago.”

1996 Robshaw: Collisions “should

be expected”; upgrade “when

practical and convenient”.



1

NTRU Prime

Daniel J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

cr.yp.to/papers.html

#ntruprime is joint work with:

Chitchanok Chuengsatiansup

Tanja Lange

Christine van Vredendaal

Technische Universiteit Eindhoven

Focus of this talk: motivation.

2

Can we predict future attacks?

1996 Dobbertin–Bosselaers–

Preneel “RIPEMD-160:

a strengthened version of

RIPEMD”: “It is anticipated that

these techniques can be used to

produce collisions for MD5 and

perhaps also for RIPEMD. This

will probably require an additional

effort, but it no longer seems as

far away as it was a year ago.”

1996 Robshaw: Collisions “should

be expected”; upgrade “when

practical and convenient”.

3

Imagine someone responding:

“This is completely out of line.

The attack by Dobbertin does

not break any normal usage of

MD5, so what exactly is the

point of preventing it? This

speculation about MD5 collisions

is controversial and non-scientific,

and creates confusion on the

state of the art. Recommending

alternative hash functions is at

the very least quite premature.”



1

NTRU Prime

Daniel J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

cr.yp.to/papers.html

#ntruprime is joint work with:

Chitchanok Chuengsatiansup

Tanja Lange

Christine van Vredendaal

Technische Universiteit Eindhoven

Focus of this talk: motivation.

2

Can we predict future attacks?

1996 Dobbertin–Bosselaers–

Preneel “RIPEMD-160:

a strengthened version of

RIPEMD”: “It is anticipated that

these techniques can be used to

produce collisions for MD5 and

perhaps also for RIPEMD. This

will probably require an additional

effort, but it no longer seems as

far away as it was a year ago.”

1996 Robshaw: Collisions “should

be expected”; upgrade “when

practical and convenient”.

3

Imagine someone responding:

“This is completely out of line.

The attack by Dobbertin does

not break any normal usage of

MD5, so what exactly is the

point of preventing it? This

speculation about MD5 collisions

is controversial and non-scientific,

and creates confusion on the

state of the art. Recommending

alternative hash functions is at

the very least quite premature.”



1

NTRU Prime

Daniel J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

cr.yp.to/papers.html

#ntruprime is joint work with:

Chitchanok Chuengsatiansup

Tanja Lange

Christine van Vredendaal

Technische Universiteit Eindhoven

Focus of this talk: motivation.

2

Can we predict future attacks?

1996 Dobbertin–Bosselaers–

Preneel “RIPEMD-160:

a strengthened version of

RIPEMD”: “It is anticipated that

these techniques can be used to

produce collisions for MD5 and

perhaps also for RIPEMD. This

will probably require an additional

effort, but it no longer seems as

far away as it was a year ago.”

1996 Robshaw: Collisions “should

be expected”; upgrade “when

practical and convenient”.

3

Imagine someone responding:

“This is completely out of line.

The attack by Dobbertin does

not break any normal usage of

MD5, so what exactly is the

point of preventing it? This

speculation about MD5 collisions

is controversial and non-scientific,

and creates confusion on the

state of the art. Recommending

alternative hash functions is at

the very least quite premature.”



2

Can we predict future attacks?

1996 Dobbertin–Bosselaers–

Preneel “RIPEMD-160:

a strengthened version of

RIPEMD”: “It is anticipated that

these techniques can be used to

produce collisions for MD5 and

perhaps also for RIPEMD. This

will probably require an additional

effort, but it no longer seems as

far away as it was a year ago.”

1996 Robshaw: Collisions “should

be expected”; upgrade “when

practical and convenient”.

3

Imagine someone responding:

“This is completely out of line.

The attack by Dobbertin does

not break any normal usage of

MD5, so what exactly is the

point of preventing it? This

speculation about MD5 collisions

is controversial and non-scientific,

and creates confusion on the

state of the art. Recommending

alternative hash functions is at

the very least quite premature.”



2

Can we predict future attacks?

1996 Dobbertin–Bosselaers–

Preneel “RIPEMD-160:

a strengthened version of

RIPEMD”: “It is anticipated that

these techniques can be used to

produce collisions for MD5 and

perhaps also for RIPEMD. This

will probably require an additional

effort, but it no longer seems as

far away as it was a year ago.”

1996 Robshaw: Collisions “should

be expected”; upgrade “when

practical and convenient”.

3

Imagine someone responding:

“This is completely out of line.

The attack by Dobbertin does

not break any normal usage of

MD5, so what exactly is the

point of preventing it? This

speculation about MD5 collisions

is controversial and non-scientific,

and creates confusion on the

state of the art. Recommending

alternative hash functions is at

the very least quite premature.”

Clearly not a real cryptographer.

Maybe a standards organization.



2

Can we predict future attacks?

1996 Dobbertin–Bosselaers–

Preneel “RIPEMD-160:

a strengthened version of

RIPEMD”: “It is anticipated that

these techniques can be used to

produce collisions for MD5 and

perhaps also for RIPEMD. This

will probably require an additional

effort, but it no longer seems as

far away as it was a year ago.”

1996 Robshaw: Collisions “should

be expected”; upgrade “when

practical and convenient”.

3

Imagine someone responding:

“This is completely out of line.

The attack by Dobbertin does

not break any normal usage of

MD5, so what exactly is the

point of preventing it? This

speculation about MD5 collisions

is controversial and non-scientific,

and creates confusion on the

state of the art. Recommending

alternative hash functions is at

the very least quite premature.”

Clearly not a real cryptographer.

Maybe a standards organization.

4

Now imagine a religious fanatic

saying that all of these functions

are worse than “provably secure”

cryptographic hash functions.



2

Can we predict future attacks?

1996 Dobbertin–Bosselaers–

Preneel “RIPEMD-160:

a strengthened version of

RIPEMD”: “It is anticipated that

these techniques can be used to

produce collisions for MD5 and

perhaps also for RIPEMD. This

will probably require an additional

effort, but it no longer seems as

far away as it was a year ago.”

1996 Robshaw: Collisions “should

be expected”; upgrade “when

practical and convenient”.

3

Imagine someone responding:

“This is completely out of line.

The attack by Dobbertin does

not break any normal usage of

MD5, so what exactly is the

point of preventing it? This

speculation about MD5 collisions

is controversial and non-scientific,

and creates confusion on the

state of the art. Recommending

alternative hash functions is at

the very least quite premature.”

Clearly not a real cryptographer.

Maybe a standards organization.

4

Now imagine a religious fanatic

saying that all of these functions

are worse than “provably secure”

cryptographic hash functions.



2

Can we predict future attacks?

1996 Dobbertin–Bosselaers–

Preneel “RIPEMD-160:

a strengthened version of

RIPEMD”: “It is anticipated that

these techniques can be used to

produce collisions for MD5 and

perhaps also for RIPEMD. This

will probably require an additional

effort, but it no longer seems as

far away as it was a year ago.”

1996 Robshaw: Collisions “should

be expected”; upgrade “when

practical and convenient”.

3

Imagine someone responding:

“This is completely out of line.

The attack by Dobbertin does

not break any normal usage of

MD5, so what exactly is the

point of preventing it? This

speculation about MD5 collisions

is controversial and non-scientific,

and creates confusion on the

state of the art. Recommending

alternative hash functions is at

the very least quite premature.”

Clearly not a real cryptographer.

Maybe a standards organization.

4

Now imagine a religious fanatic

saying that all of these functions

are worse than “provably secure”

cryptographic hash functions.



3

Imagine someone responding:

“This is completely out of line.

The attack by Dobbertin does

not break any normal usage of

MD5, so what exactly is the

point of preventing it? This

speculation about MD5 collisions

is controversial and non-scientific,

and creates confusion on the

state of the art. Recommending

alternative hash functions is at

the very least quite premature.”

Clearly not a real cryptographer.

Maybe a standards organization.

4

Now imagine a religious fanatic

saying that all of these functions

are worse than “provably secure”

cryptographic hash functions.



3

Imagine someone responding:

“This is completely out of line.

The attack by Dobbertin does

not break any normal usage of

MD5, so what exactly is the

point of preventing it? This

speculation about MD5 collisions

is controversial and non-scientific,

and creates confusion on the

state of the art. Recommending

alternative hash functions is at

the very least quite premature.”

Clearly not a real cryptographer.

Maybe a standards organization.

4

Now imagine a religious fanatic

saying that all of these functions

are worse than “provably secure”

cryptographic hash functions.

1991 “provably secure” example,

Chaum–van Heijst–Pfitzmann:

Choose p sensibly.

Define C(x; y) = 4x9y mod p

for suitable ranges of x and y .

Simple, beautiful, structured.

Very easy security reduction:

finding C collision implies

computing a discrete logarithm.



3

Imagine someone responding:

“This is completely out of line.

The attack by Dobbertin does

not break any normal usage of

MD5, so what exactly is the

point of preventing it? This

speculation about MD5 collisions

is controversial and non-scientific,

and creates confusion on the

state of the art. Recommending

alternative hash functions is at

the very least quite premature.”

Clearly not a real cryptographer.

Maybe a standards organization.

4

Now imagine a religious fanatic

saying that all of these functions

are worse than “provably secure”

cryptographic hash functions.

1991 “provably secure” example,

Chaum–van Heijst–Pfitzmann:

Choose p sensibly.

Define C(x; y) = 4x9y mod p

for suitable ranges of x and y .

Simple, beautiful, structured.

Very easy security reduction:

finding C collision implies

computing a discrete logarithm.

5

CvHP is very bad cryptography.

Horrible security for its speed.

Far worse security record than

standard “unstructured”

compression-function designs.

Security losses in C include

1922 Kraitchik (index calculus);

1986 Coppersmith–Odlyzko–

Schroeppel (NFS predecessor);

1993 Gordon (general DL NFS);

1993 Schirokauer (faster NFS);

1994 Shor (quantum poly time).



3

Imagine someone responding:

“This is completely out of line.

The attack by Dobbertin does

not break any normal usage of

MD5, so what exactly is the

point of preventing it? This

speculation about MD5 collisions

is controversial and non-scientific,

and creates confusion on the

state of the art. Recommending

alternative hash functions is at

the very least quite premature.”

Clearly not a real cryptographer.

Maybe a standards organization.

4

Now imagine a religious fanatic

saying that all of these functions

are worse than “provably secure”

cryptographic hash functions.

1991 “provably secure” example,

Chaum–van Heijst–Pfitzmann:

Choose p sensibly.

Define C(x; y) = 4x9y mod p

for suitable ranges of x and y .

Simple, beautiful, structured.

Very easy security reduction:

finding C collision implies

computing a discrete logarithm.

5

CvHP is very bad cryptography.

Horrible security for its speed.

Far worse security record than

standard “unstructured”

compression-function designs.

Security losses in C include

1922 Kraitchik (index calculus);

1986 Coppersmith–Odlyzko–

Schroeppel (NFS predecessor);

1993 Gordon (general DL NFS);

1993 Schirokauer (faster NFS);

1994 Shor (quantum poly time).



3

Imagine someone responding:

“This is completely out of line.

The attack by Dobbertin does

not break any normal usage of

MD5, so what exactly is the

point of preventing it? This

speculation about MD5 collisions

is controversial and non-scientific,

and creates confusion on the

state of the art. Recommending

alternative hash functions is at

the very least quite premature.”

Clearly not a real cryptographer.

Maybe a standards organization.

4

Now imagine a religious fanatic

saying that all of these functions

are worse than “provably secure”

cryptographic hash functions.

1991 “provably secure” example,

Chaum–van Heijst–Pfitzmann:

Choose p sensibly.

Define C(x; y) = 4x9y mod p

for suitable ranges of x and y .

Simple, beautiful, structured.

Very easy security reduction:

finding C collision implies

computing a discrete logarithm.

5

CvHP is very bad cryptography.

Horrible security for its speed.

Far worse security record than

standard “unstructured”

compression-function designs.

Security losses in C include

1922 Kraitchik (index calculus);

1986 Coppersmith–Odlyzko–

Schroeppel (NFS predecessor);

1993 Gordon (general DL NFS);

1993 Schirokauer (faster NFS);

1994 Shor (quantum poly time).



4

Now imagine a religious fanatic

saying that all of these functions

are worse than “provably secure”

cryptographic hash functions.

1991 “provably secure” example,

Chaum–van Heijst–Pfitzmann:

Choose p sensibly.

Define C(x; y) = 4x9y mod p

for suitable ranges of x and y .

Simple, beautiful, structured.

Very easy security reduction:

finding C collision implies

computing a discrete logarithm.

5

CvHP is very bad cryptography.

Horrible security for its speed.

Far worse security record than

standard “unstructured”

compression-function designs.

Security losses in C include

1922 Kraitchik (index calculus);

1986 Coppersmith–Odlyzko–

Schroeppel (NFS predecessor);

1993 Gordon (general DL NFS);

1993 Schirokauer (faster NFS);

1994 Shor (quantum poly time).



4

Now imagine a religious fanatic

saying that all of these functions

are worse than “provably secure”

cryptographic hash functions.

1991 “provably secure” example,

Chaum–van Heijst–Pfitzmann:

Choose p sensibly.

Define C(x; y) = 4x9y mod p

for suitable ranges of x and y .

Simple, beautiful, structured.

Very easy security reduction:

finding C collision implies

computing a discrete logarithm.

5

CvHP is very bad cryptography.

Horrible security for its speed.

Far worse security record than

standard “unstructured”

compression-function designs.

Security losses in C include

1922 Kraitchik (index calculus);

1986 Coppersmith–Odlyzko–

Schroeppel (NFS predecessor);

1993 Gordon (general DL NFS);

1993 Schirokauer (faster NFS);

1994 Shor (quantum poly time).

Imagine someone in 1991 saying

“DL security is well understood”.



4

Now imagine a religious fanatic

saying that all of these functions

are worse than “provably secure”

cryptographic hash functions.

1991 “provably secure” example,

Chaum–van Heijst–Pfitzmann:

Choose p sensibly.

Define C(x; y) = 4x9y mod p

for suitable ranges of x and y .

Simple, beautiful, structured.

Very easy security reduction:

finding C collision implies

computing a discrete logarithm.

5

CvHP is very bad cryptography.

Horrible security for its speed.

Far worse security record than

standard “unstructured”

compression-function designs.

Security losses in C include

1922 Kraitchik (index calculus);

1986 Coppersmith–Odlyzko–

Schroeppel (NFS predecessor);

1993 Gordon (general DL NFS);

1993 Schirokauer (faster NFS);

1994 Shor (quantum poly time).

Imagine someone in 1991 saying

“DL security is well understood”.

6

We still use discrete logs for

pre-quantum public-key crypto.

Which DL groups are best?



4

Now imagine a religious fanatic

saying that all of these functions

are worse than “provably secure”

cryptographic hash functions.

1991 “provably secure” example,

Chaum–van Heijst–Pfitzmann:

Choose p sensibly.

Define C(x; y) = 4x9y mod p

for suitable ranges of x and y .

Simple, beautiful, structured.

Very easy security reduction:

finding C collision implies

computing a discrete logarithm.

5

CvHP is very bad cryptography.

Horrible security for its speed.

Far worse security record than

standard “unstructured”

compression-function designs.

Security losses in C include

1922 Kraitchik (index calculus);

1986 Coppersmith–Odlyzko–

Schroeppel (NFS predecessor);

1993 Gordon (general DL NFS);

1993 Schirokauer (faster NFS);

1994 Shor (quantum poly time).

Imagine someone in 1991 saying

“DL security is well understood”.

6

We still use discrete logs for

pre-quantum public-key crypto.

Which DL groups are best?



4

Now imagine a religious fanatic

saying that all of these functions

are worse than “provably secure”

cryptographic hash functions.

1991 “provably secure” example,

Chaum–van Heijst–Pfitzmann:

Choose p sensibly.

Define C(x; y) = 4x9y mod p

for suitable ranges of x and y .

Simple, beautiful, structured.

Very easy security reduction:

finding C collision implies

computing a discrete logarithm.

5

CvHP is very bad cryptography.

Horrible security for its speed.

Far worse security record than

standard “unstructured”

compression-function designs.

Security losses in C include

1922 Kraitchik (index calculus);

1986 Coppersmith–Odlyzko–

Schroeppel (NFS predecessor);

1993 Gordon (general DL NFS);

1993 Schirokauer (faster NFS);

1994 Shor (quantum poly time).

Imagine someone in 1991 saying

“DL security is well understood”.

6

We still use discrete logs for

pre-quantum public-key crypto.

Which DL groups are best?



5

CvHP is very bad cryptography.

Horrible security for its speed.

Far worse security record than

standard “unstructured”

compression-function designs.

Security losses in C include

1922 Kraitchik (index calculus);

1986 Coppersmith–Odlyzko–

Schroeppel (NFS predecessor);

1993 Gordon (general DL NFS);

1993 Schirokauer (faster NFS);

1994 Shor (quantum poly time).

Imagine someone in 1991 saying

“DL security is well understood”.

6

We still use discrete logs for

pre-quantum public-key crypto.

Which DL groups are best?



5

CvHP is very bad cryptography.

Horrible security for its speed.

Far worse security record than

standard “unstructured”

compression-function designs.

Security losses in C include

1922 Kraitchik (index calculus);

1986 Coppersmith–Odlyzko–

Schroeppel (NFS predecessor);

1993 Gordon (general DL NFS);

1993 Schirokauer (faster NFS);

1994 Shor (quantum poly time).

Imagine someone in 1991 saying

“DL security is well understood”.

6

We still use discrete logs for

pre-quantum public-key crypto.

Which DL groups are best?

1986 Miller proposes ECC.

Gives detailed arguments that

index calculus “is not likely

to work on elliptic curves.”



5

CvHP is very bad cryptography.

Horrible security for its speed.

Far worse security record than

standard “unstructured”

compression-function designs.

Security losses in C include

1922 Kraitchik (index calculus);

1986 Coppersmith–Odlyzko–

Schroeppel (NFS predecessor);

1993 Gordon (general DL NFS);

1993 Schirokauer (faster NFS);

1994 Shor (quantum poly time).

Imagine someone in 1991 saying

“DL security is well understood”.

6

We still use discrete logs for

pre-quantum public-key crypto.

Which DL groups are best?

1986 Miller proposes ECC.

Gives detailed arguments that

index calculus “is not likely

to work on elliptic curves.”

1997 Rivest: “Over time, this

may change, but for now trying to

get an evaluation of the security

of an elliptic-curve cryptosystem

is a bit like trying to get an

evaluation of some recently

discovered Chaldean poetry.”



5

CvHP is very bad cryptography.

Horrible security for its speed.

Far worse security record than

standard “unstructured”

compression-function designs.

Security losses in C include

1922 Kraitchik (index calculus);

1986 Coppersmith–Odlyzko–

Schroeppel (NFS predecessor);

1993 Gordon (general DL NFS);

1993 Schirokauer (faster NFS);

1994 Shor (quantum poly time).

Imagine someone in 1991 saying

“DL security is well understood”.

6

We still use discrete logs for

pre-quantum public-key crypto.

Which DL groups are best?

1986 Miller proposes ECC.

Gives detailed arguments that

index calculus “is not likely

to work on elliptic curves.”

1997 Rivest: “Over time, this

may change, but for now trying to

get an evaluation of the security

of an elliptic-curve cryptosystem

is a bit like trying to get an

evaluation of some recently

discovered Chaldean poetry.”

7

Are RSA, DSA, etc. less scary?

These systems have structure

enabling attacks such as NFS.

Many optimization avenues.

Attacks keep getting better.

>100 scientific papers.

Still many unexplored avenues.

How many people understand

the state of the art?



5

CvHP is very bad cryptography.

Horrible security for its speed.

Far worse security record than

standard “unstructured”

compression-function designs.

Security losses in C include

1922 Kraitchik (index calculus);

1986 Coppersmith–Odlyzko–

Schroeppel (NFS predecessor);

1993 Gordon (general DL NFS);

1993 Schirokauer (faster NFS);

1994 Shor (quantum poly time).

Imagine someone in 1991 saying

“DL security is well understood”.

6

We still use discrete logs for

pre-quantum public-key crypto.

Which DL groups are best?

1986 Miller proposes ECC.

Gives detailed arguments that

index calculus “is not likely

to work on elliptic curves.”

1997 Rivest: “Over time, this

may change, but for now trying to

get an evaluation of the security

of an elliptic-curve cryptosystem

is a bit like trying to get an

evaluation of some recently

discovered Chaldean poetry.”

7

Are RSA, DSA, etc. less scary?

These systems have structure

enabling attacks such as NFS.

Many optimization avenues.

Attacks keep getting better.

>100 scientific papers.

Still many unexplored avenues.

How many people understand

the state of the art?



5

CvHP is very bad cryptography.

Horrible security for its speed.

Far worse security record than

standard “unstructured”

compression-function designs.

Security losses in C include

1922 Kraitchik (index calculus);

1986 Coppersmith–Odlyzko–

Schroeppel (NFS predecessor);

1993 Gordon (general DL NFS);

1993 Schirokauer (faster NFS);

1994 Shor (quantum poly time).

Imagine someone in 1991 saying

“DL security is well understood”.

6

We still use discrete logs for

pre-quantum public-key crypto.

Which DL groups are best?

1986 Miller proposes ECC.

Gives detailed arguments that

index calculus “is not likely

to work on elliptic curves.”

1997 Rivest: “Over time, this

may change, but for now trying to

get an evaluation of the security

of an elliptic-curve cryptosystem

is a bit like trying to get an

evaluation of some recently

discovered Chaldean poetry.”

7

Are RSA, DSA, etc. less scary?

These systems have structure

enabling attacks such as NFS.

Many optimization avenues.

Attacks keep getting better.

>100 scientific papers.

Still many unexplored avenues.

How many people understand

the state of the art?



6

We still use discrete logs for

pre-quantum public-key crypto.

Which DL groups are best?

1986 Miller proposes ECC.

Gives detailed arguments that

index calculus “is not likely

to work on elliptic curves.”

1997 Rivest: “Over time, this

may change, but for now trying to

get an evaluation of the security

of an elliptic-curve cryptosystem

is a bit like trying to get an

evaluation of some recently

discovered Chaldean poetry.”

7

Are RSA, DSA, etc. less scary?

These systems have structure

enabling attacks such as NFS.

Many optimization avenues.

Attacks keep getting better.

>100 scientific papers.

Still many unexplored avenues.

How many people understand

the state of the art?



6

We still use discrete logs for

pre-quantum public-key crypto.

Which DL groups are best?

1986 Miller proposes ECC.

Gives detailed arguments that

index calculus “is not likely

to work on elliptic curves.”

1997 Rivest: “Over time, this

may change, but for now trying to

get an evaluation of the security

of an elliptic-curve cryptosystem

is a bit like trying to get an

evaluation of some recently

discovered Chaldean poetry.”

7

Are RSA, DSA, etc. less scary?

These systems have structure

enabling attacks such as NFS.

Many optimization avenues.

Attacks keep getting better.

>100 scientific papers.

Still many unexplored avenues.

How many people understand

the state of the art?

Recurring themes in attacks:

factorizations of ring elements;

ring automorphisms; subfields;

extending applicability (even to

some curves!) via group maps.



6

We still use discrete logs for

pre-quantum public-key crypto.

Which DL groups are best?

1986 Miller proposes ECC.

Gives detailed arguments that

index calculus “is not likely

to work on elliptic curves.”

1997 Rivest: “Over time, this

may change, but for now trying to

get an evaluation of the security

of an elliptic-curve cryptosystem

is a bit like trying to get an

evaluation of some recently

discovered Chaldean poetry.”

7

Are RSA, DSA, etc. less scary?

These systems have structure

enabling attacks such as NFS.

Many optimization avenues.

Attacks keep getting better.

>100 scientific papers.

Still many unexplored avenues.

How many people understand

the state of the art?

Recurring themes in attacks:

factorizations of ring elements;

ring automorphisms; subfields;

extending applicability (even to

some curves!) via group maps.

8

Which ECC fields do we use?

2005 Bernstein: prime fields

“have the virtue of minimizing

the number of security concerns

for elliptic-curve cryptography.”

2005 ECRYPT key-sizes report:

“Some general concerns

exist about possible future

attacks : : : As a first choice, we

recommend curves over prime

fields.” No extra automorphisms.



6

We still use discrete logs for

pre-quantum public-key crypto.

Which DL groups are best?

1986 Miller proposes ECC.

Gives detailed arguments that

index calculus “is not likely

to work on elliptic curves.”

1997 Rivest: “Over time, this

may change, but for now trying to

get an evaluation of the security

of an elliptic-curve cryptosystem

is a bit like trying to get an

evaluation of some recently

discovered Chaldean poetry.”

7

Are RSA, DSA, etc. less scary?

These systems have structure

enabling attacks such as NFS.

Many optimization avenues.

Attacks keep getting better.

>100 scientific papers.

Still many unexplored avenues.

How many people understand

the state of the art?

Recurring themes in attacks:

factorizations of ring elements;

ring automorphisms; subfields;

extending applicability (even to

some curves!) via group maps.

8

Which ECC fields do we use?

2005 Bernstein: prime fields

“have the virtue of minimizing

the number of security concerns

for elliptic-curve cryptography.”

2005 ECRYPT key-sizes report:

“Some general concerns

exist about possible future

attacks : : : As a first choice, we

recommend curves over prime

fields.” No extra automorphisms.



6

We still use discrete logs for

pre-quantum public-key crypto.

Which DL groups are best?

1986 Miller proposes ECC.

Gives detailed arguments that

index calculus “is not likely

to work on elliptic curves.”

1997 Rivest: “Over time, this

may change, but for now trying to

get an evaluation of the security

of an elliptic-curve cryptosystem

is a bit like trying to get an

evaluation of some recently

discovered Chaldean poetry.”

7

Are RSA, DSA, etc. less scary?

These systems have structure

enabling attacks such as NFS.

Many optimization avenues.

Attacks keep getting better.

>100 scientific papers.

Still many unexplored avenues.

How many people understand

the state of the art?

Recurring themes in attacks:

factorizations of ring elements;

ring automorphisms; subfields;

extending applicability (even to

some curves!) via group maps.

8

Which ECC fields do we use?

2005 Bernstein: prime fields

“have the virtue of minimizing

the number of security concerns

for elliptic-curve cryptography.”

2005 ECRYPT key-sizes report:

“Some general concerns

exist about possible future

attacks : : : As a first choice, we

recommend curves over prime

fields.” No extra automorphisms.



7

Are RSA, DSA, etc. less scary?

These systems have structure

enabling attacks such as NFS.

Many optimization avenues.

Attacks keep getting better.

>100 scientific papers.

Still many unexplored avenues.

How many people understand

the state of the art?

Recurring themes in attacks:

factorizations of ring elements;

ring automorphisms; subfields;

extending applicability (even to

some curves!) via group maps.

8

Which ECC fields do we use?

2005 Bernstein: prime fields

“have the virtue of minimizing

the number of security concerns

for elliptic-curve cryptography.”

2005 ECRYPT key-sizes report:

“Some general concerns

exist about possible future

attacks : : : As a first choice, we

recommend curves over prime

fields.” No extra automorphisms.



7

Are RSA, DSA, etc. less scary?

These systems have structure

enabling attacks such as NFS.

Many optimization avenues.

Attacks keep getting better.

>100 scientific papers.

Still many unexplored avenues.

How many people understand

the state of the art?

Recurring themes in attacks:

factorizations of ring elements;

ring automorphisms; subfields;

extending applicability (even to

some curves!) via group maps.

8

Which ECC fields do we use?

2005 Bernstein: prime fields

“have the virtue of minimizing

the number of security concerns

for elliptic-curve cryptography.”

2005 ECRYPT key-sizes report:

“Some general concerns

exist about possible future

attacks : : : As a first choice, we

recommend curves over prime

fields.” No extra automorphisms.

Imagine a response: “That’s

premature! E(F2n) isn’t broken!”



7

Are RSA, DSA, etc. less scary?

These systems have structure

enabling attacks such as NFS.

Many optimization avenues.

Attacks keep getting better.

>100 scientific papers.

Still many unexplored avenues.

How many people understand

the state of the art?

Recurring themes in attacks:

factorizations of ring elements;

ring automorphisms; subfields;

extending applicability (even to

some curves!) via group maps.

8

Which ECC fields do we use?

2005 Bernstein: prime fields

“have the virtue of minimizing

the number of security concerns

for elliptic-curve cryptography.”

2005 ECRYPT key-sizes report:

“Some general concerns

exist about possible future

attacks : : : As a first choice, we

recommend curves over prime

fields.” No extra automorphisms.

Imagine a response: “That’s

premature! E(F2n) isn’t broken!”

9

Last example: 2013 Garg–Gentry–

Halevi–Raykova–Sahai–Waters

“Candidate indistinguishability

obfuscation and functional

encryption for all circuits”.

UCLA press release: “According

to Sahai, previously developed

techniques for obfuscation

presented only a ‘speed bump,’

forcing an attacker to spend some

effort, perhaps a few days, trying

to reverse-engineer the software.

The new system, he said, puts up

an ‘iron wall’ : : : a game-change

in the field of cryptography.”



7

Are RSA, DSA, etc. less scary?

These systems have structure

enabling attacks such as NFS.

Many optimization avenues.

Attacks keep getting better.

>100 scientific papers.

Still many unexplored avenues.

How many people understand

the state of the art?

Recurring themes in attacks:

factorizations of ring elements;

ring automorphisms; subfields;

extending applicability (even to

some curves!) via group maps.

8

Which ECC fields do we use?

2005 Bernstein: prime fields

“have the virtue of minimizing

the number of security concerns

for elliptic-curve cryptography.”

2005 ECRYPT key-sizes report:

“Some general concerns

exist about possible future

attacks : : : As a first choice, we

recommend curves over prime

fields.” No extra automorphisms.

Imagine a response: “That’s

premature! E(F2n) isn’t broken!”

9

Last example: 2013 Garg–Gentry–

Halevi–Raykova–Sahai–Waters

“Candidate indistinguishability

obfuscation and functional

encryption for all circuits”.

UCLA press release: “According

to Sahai, previously developed

techniques for obfuscation

presented only a ‘speed bump,’

forcing an attacker to spend some

effort, perhaps a few days, trying

to reverse-engineer the software.

The new system, he said, puts up

an ‘iron wall’ : : : a game-change

in the field of cryptography.”



7

Are RSA, DSA, etc. less scary?

These systems have structure

enabling attacks such as NFS.

Many optimization avenues.

Attacks keep getting better.

>100 scientific papers.

Still many unexplored avenues.

How many people understand

the state of the art?

Recurring themes in attacks:

factorizations of ring elements;

ring automorphisms; subfields;

extending applicability (even to

some curves!) via group maps.

8

Which ECC fields do we use?

2005 Bernstein: prime fields

“have the virtue of minimizing

the number of security concerns

for elliptic-curve cryptography.”

2005 ECRYPT key-sizes report:

“Some general concerns

exist about possible future

attacks : : : As a first choice, we

recommend curves over prime

fields.” No extra automorphisms.

Imagine a response: “That’s

premature! E(F2n) isn’t broken!”

9

Last example: 2013 Garg–Gentry–

Halevi–Raykova–Sahai–Waters

“Candidate indistinguishability

obfuscation and functional

encryption for all circuits”.

UCLA press release: “According

to Sahai, previously developed

techniques for obfuscation

presented only a ‘speed bump,’

forcing an attacker to spend some

effort, perhaps a few days, trying

to reverse-engineer the software.

The new system, he said, puts up

an ‘iron wall’ : : : a game-change

in the field of cryptography.”



8

Which ECC fields do we use?

2005 Bernstein: prime fields

“have the virtue of minimizing

the number of security concerns

for elliptic-curve cryptography.”

2005 ECRYPT key-sizes report:

“Some general concerns

exist about possible future

attacks : : : As a first choice, we

recommend curves over prime

fields.” No extra automorphisms.

Imagine a response: “That’s

premature! E(F2n) isn’t broken!”

9

Last example: 2013 Garg–Gentry–

Halevi–Raykova–Sahai–Waters

“Candidate indistinguishability

obfuscation and functional

encryption for all circuits”.

UCLA press release: “According

to Sahai, previously developed

techniques for obfuscation

presented only a ‘speed bump,’

forcing an attacker to spend some

effort, perhaps a few days, trying

to reverse-engineer the software.

The new system, he said, puts up

an ‘iron wall’ : : : a game-change

in the field of cryptography.”



8

Which ECC fields do we use?

2005 Bernstein: prime fields

“have the virtue of minimizing

the number of security concerns

for elliptic-curve cryptography.”

2005 ECRYPT key-sizes report:

“Some general concerns

exist about possible future

attacks : : : As a first choice, we

recommend curves over prime

fields.” No extra automorphisms.

Imagine a response: “That’s

premature! E(F2n) isn’t broken!”

9

Last example: 2013 Garg–Gentry–

Halevi–Raykova–Sahai–Waters

“Candidate indistinguishability

obfuscation and functional

encryption for all circuits”.

UCLA press release: “According

to Sahai, previously developed

techniques for obfuscation

presented only a ‘speed bump,’

forcing an attacker to spend some

effort, perhaps a few days, trying

to reverse-engineer the software.

The new system, he said, puts up

an ‘iron wall’ : : : a game-change

in the field of cryptography.”

10

2013 Bernstein: “The flagship

cryptographic conferences are full

of this sort of shit, and, if this is

the best defense that the world

has against the U.S. National

Security Agency, we’re screwed.”



8

Which ECC fields do we use?

2005 Bernstein: prime fields

“have the virtue of minimizing

the number of security concerns

for elliptic-curve cryptography.”

2005 ECRYPT key-sizes report:

“Some general concerns

exist about possible future

attacks : : : As a first choice, we

recommend curves over prime

fields.” No extra automorphisms.

Imagine a response: “That’s

premature! E(F2n) isn’t broken!”

9

Last example: 2013 Garg–Gentry–

Halevi–Raykova–Sahai–Waters

“Candidate indistinguishability

obfuscation and functional

encryption for all circuits”.

UCLA press release: “According

to Sahai, previously developed

techniques for obfuscation

presented only a ‘speed bump,’

forcing an attacker to spend some

effort, perhaps a few days, trying

to reverse-engineer the software.

The new system, he said, puts up

an ‘iron wall’ : : : a game-change

in the field of cryptography.”

10

2013 Bernstein: “The flagship

cryptographic conferences are full

of this sort of shit, and, if this is

the best defense that the world

has against the U.S. National

Security Agency, we’re screwed.”



8

Which ECC fields do we use?

2005 Bernstein: prime fields

“have the virtue of minimizing

the number of security concerns

for elliptic-curve cryptography.”

2005 ECRYPT key-sizes report:

“Some general concerns

exist about possible future

attacks : : : As a first choice, we

recommend curves over prime

fields.” No extra automorphisms.

Imagine a response: “That’s

premature! E(F2n) isn’t broken!”

9

Last example: 2013 Garg–Gentry–

Halevi–Raykova–Sahai–Waters

“Candidate indistinguishability

obfuscation and functional

encryption for all circuits”.

UCLA press release: “According

to Sahai, previously developed

techniques for obfuscation

presented only a ‘speed bump,’

forcing an attacker to spend some

effort, perhaps a few days, trying

to reverse-engineer the software.

The new system, he said, puts up

an ‘iron wall’ : : : a game-change

in the field of cryptography.”

10

2013 Bernstein: “The flagship

cryptographic conferences are full

of this sort of shit, and, if this is

the best defense that the world

has against the U.S. National

Security Agency, we’re screwed.”



9

Last example: 2013 Garg–Gentry–

Halevi–Raykova–Sahai–Waters

“Candidate indistinguishability

obfuscation and functional

encryption for all circuits”.

UCLA press release: “According

to Sahai, previously developed

techniques for obfuscation

presented only a ‘speed bump,’

forcing an attacker to spend some

effort, perhaps a few days, trying

to reverse-engineer the software.

The new system, he said, puts up

an ‘iron wall’ : : : a game-change

in the field of cryptography.”

10

2013 Bernstein: “The flagship

cryptographic conferences are full

of this sort of shit, and, if this is

the best defense that the world

has against the U.S. National

Security Agency, we’re screwed.”



9

Last example: 2013 Garg–Gentry–

Halevi–Raykova–Sahai–Waters

“Candidate indistinguishability

obfuscation and functional

encryption for all circuits”.

UCLA press release: “According

to Sahai, previously developed

techniques for obfuscation

presented only a ‘speed bump,’

forcing an attacker to spend some

effort, perhaps a few days, trying

to reverse-engineer the software.

The new system, he said, puts up

an ‘iron wall’ : : : a game-change

in the field of cryptography.”

10

2013 Bernstein: “The flagship

cryptographic conferences are full

of this sort of shit, and, if this is

the best defense that the world

has against the U.S. National

Security Agency, we’re screwed.”

2016 Miles–Sahai–Zhandry: “We

exhibit two simple programs that

are functionally equivalent, and

show how to efficiently distinguish

between the obfuscations

of these two programs.”

So Sahai’s claimed “iron wall”

is just another “speed bump”.



9

Last example: 2013 Garg–Gentry–

Halevi–Raykova–Sahai–Waters

“Candidate indistinguishability

obfuscation and functional

encryption for all circuits”.

UCLA press release: “According

to Sahai, previously developed

techniques for obfuscation

presented only a ‘speed bump,’

forcing an attacker to spend some

effort, perhaps a few days, trying

to reverse-engineer the software.

The new system, he said, puts up

an ‘iron wall’ : : : a game-change

in the field of cryptography.”

10

2013 Bernstein: “The flagship

cryptographic conferences are full

of this sort of shit, and, if this is

the best defense that the world

has against the U.S. National

Security Agency, we’re screwed.”

2016 Miles–Sahai–Zhandry: “We

exhibit two simple programs that

are functionally equivalent, and

show how to efficiently distinguish

between the obfuscations

of these two programs.”

So Sahai’s claimed “iron wall”

is just another “speed bump”.

11

Classic NTRU

Standardize prime p; e.g. 743.

Also standardize q; e.g. 2048.

Define R = Z[x ]=(xp − 1).

Receiver chooses small f ; g ∈ R.

(Some invertibility requirements.)

Public key h = 3g=f mod q.

Sender chooses small m; r ∈ R.

Ciphertext c = m + hr mod q.



9

Last example: 2013 Garg–Gentry–

Halevi–Raykova–Sahai–Waters

“Candidate indistinguishability

obfuscation and functional

encryption for all circuits”.

UCLA press release: “According

to Sahai, previously developed

techniques for obfuscation

presented only a ‘speed bump,’

forcing an attacker to spend some

effort, perhaps a few days, trying

to reverse-engineer the software.

The new system, he said, puts up

an ‘iron wall’ : : : a game-change

in the field of cryptography.”

10

2013 Bernstein: “The flagship

cryptographic conferences are full

of this sort of shit, and, if this is

the best defense that the world

has against the U.S. National

Security Agency, we’re screwed.”

2016 Miles–Sahai–Zhandry: “We

exhibit two simple programs that

are functionally equivalent, and

show how to efficiently distinguish

between the obfuscations

of these two programs.”

So Sahai’s claimed “iron wall”

is just another “speed bump”.

11

Classic NTRU

Standardize prime p; e.g. 743.

Also standardize q; e.g. 2048.

Define R = Z[x ]=(xp − 1).

Receiver chooses small f ; g ∈ R.

(Some invertibility requirements.)

Public key h = 3g=f mod q.

Sender chooses small m; r ∈ R.

Ciphertext c = m + hr mod q.



9

Last example: 2013 Garg–Gentry–

Halevi–Raykova–Sahai–Waters

“Candidate indistinguishability

obfuscation and functional

encryption for all circuits”.

UCLA press release: “According

to Sahai, previously developed

techniques for obfuscation

presented only a ‘speed bump,’

forcing an attacker to spend some

effort, perhaps a few days, trying

to reverse-engineer the software.

The new system, he said, puts up

an ‘iron wall’ : : : a game-change

in the field of cryptography.”

10

2013 Bernstein: “The flagship

cryptographic conferences are full

of this sort of shit, and, if this is

the best defense that the world

has against the U.S. National

Security Agency, we’re screwed.”

2016 Miles–Sahai–Zhandry: “We

exhibit two simple programs that

are functionally equivalent, and

show how to efficiently distinguish

between the obfuscations

of these two programs.”

So Sahai’s claimed “iron wall”

is just another “speed bump”.

11

Classic NTRU

Standardize prime p; e.g. 743.

Also standardize q; e.g. 2048.

Define R = Z[x ]=(xp − 1).

Receiver chooses small f ; g ∈ R.

(Some invertibility requirements.)

Public key h = 3g=f mod q.

Sender chooses small m; r ∈ R.

Ciphertext c = m + hr mod q.



10

2013 Bernstein: “The flagship

cryptographic conferences are full

of this sort of shit, and, if this is

the best defense that the world

has against the U.S. National

Security Agency, we’re screwed.”

2016 Miles–Sahai–Zhandry: “We

exhibit two simple programs that

are functionally equivalent, and

show how to efficiently distinguish

between the obfuscations

of these two programs.”

So Sahai’s claimed “iron wall”

is just another “speed bump”.

11

Classic NTRU

Standardize prime p; e.g. 743.

Also standardize q; e.g. 2048.

Define R = Z[x ]=(xp − 1).

Receiver chooses small f ; g ∈ R.

(Some invertibility requirements.)

Public key h = 3g=f mod q.

Sender chooses small m; r ∈ R.

Ciphertext c = m + hr mod q.



10

2013 Bernstein: “The flagship

cryptographic conferences are full

of this sort of shit, and, if this is

the best defense that the world

has against the U.S. National

Security Agency, we’re screwed.”

2016 Miles–Sahai–Zhandry: “We

exhibit two simple programs that

are functionally equivalent, and

show how to efficiently distinguish

between the obfuscations

of these two programs.”

So Sahai’s claimed “iron wall”

is just another “speed bump”.

11

Classic NTRU

Standardize prime p; e.g. 743.

Also standardize q; e.g. 2048.

Define R = Z[x ]=(xp − 1).

Receiver chooses small f ; g ∈ R.

(Some invertibility requirements.)

Public key h = 3g=f mod q.

Sender chooses small m; r ∈ R.

Ciphertext c = m + hr mod q.

Multiply by f mod q: f c mod q.



10

2013 Bernstein: “The flagship

cryptographic conferences are full

of this sort of shit, and, if this is

the best defense that the world

has against the U.S. National

Security Agency, we’re screwed.”

2016 Miles–Sahai–Zhandry: “We

exhibit two simple programs that

are functionally equivalent, and

show how to efficiently distinguish

between the obfuscations

of these two programs.”

So Sahai’s claimed “iron wall”

is just another “speed bump”.

11

Classic NTRU

Standardize prime p; e.g. 743.

Also standardize q; e.g. 2048.

Define R = Z[x ]=(xp − 1).

Receiver chooses small f ; g ∈ R.

(Some invertibility requirements.)

Public key h = 3g=f mod q.

Sender chooses small m; r ∈ R.

Ciphertext c = m + hr mod q.

Multiply by f mod q: f c mod q.

Use smallness: f m + 3gr .



10

2013 Bernstein: “The flagship

cryptographic conferences are full

of this sort of shit, and, if this is

the best defense that the world

has against the U.S. National

Security Agency, we’re screwed.”

2016 Miles–Sahai–Zhandry: “We

exhibit two simple programs that

are functionally equivalent, and

show how to efficiently distinguish

between the obfuscations

of these two programs.”

So Sahai’s claimed “iron wall”

is just another “speed bump”.

11

Classic NTRU

Standardize prime p; e.g. 743.

Also standardize q; e.g. 2048.

Define R = Z[x ]=(xp − 1).

Receiver chooses small f ; g ∈ R.

(Some invertibility requirements.)

Public key h = 3g=f mod q.

Sender chooses small m; r ∈ R.

Ciphertext c = m + hr mod q.

Multiply by f mod q: f c mod q.

Use smallness: f m + 3gr .

Reduce mod 3: f m mod 3.



10

2013 Bernstein: “The flagship

cryptographic conferences are full

of this sort of shit, and, if this is

the best defense that the world

has against the U.S. National

Security Agency, we’re screwed.”

2016 Miles–Sahai–Zhandry: “We

exhibit two simple programs that

are functionally equivalent, and

show how to efficiently distinguish

between the obfuscations

of these two programs.”

So Sahai’s claimed “iron wall”

is just another “speed bump”.

11

Classic NTRU

Standardize prime p; e.g. 743.

Also standardize q; e.g. 2048.

Define R = Z[x ]=(xp − 1).

Receiver chooses small f ; g ∈ R.

(Some invertibility requirements.)

Public key h = 3g=f mod q.

Sender chooses small m; r ∈ R.

Ciphertext c = m + hr mod q.

Multiply by f mod q: f c mod q.

Use smallness: f m + 3gr .

Reduce mod 3: f m mod 3.

Divide by f mod 3: m.



10

2013 Bernstein: “The flagship

cryptographic conferences are full

of this sort of shit, and, if this is

the best defense that the world

has against the U.S. National

Security Agency, we’re screwed.”

2016 Miles–Sahai–Zhandry: “We

exhibit two simple programs that

are functionally equivalent, and

show how to efficiently distinguish

between the obfuscations

of these two programs.”

So Sahai’s claimed “iron wall”

is just another “speed bump”.

11

Classic NTRU

Standardize prime p; e.g. 743.

Also standardize q; e.g. 2048.

Define R = Z[x ]=(xp − 1).

Receiver chooses small f ; g ∈ R.

(Some invertibility requirements.)

Public key h = 3g=f mod q.

Sender chooses small m; r ∈ R.

Ciphertext c = m + hr mod q.

Multiply by f mod q: f c mod q.

Use smallness: f m + 3gr .

Reduce mod 3: f m mod 3.

Divide by f mod 3: m.

12

1998 Hoffstein–Pipher–Silverman

introduced this system.

Many subsequent NTRU papers:

meet-in-the-middle attacks,

lattice attacks, hybrid attacks;

chosen-ciphertext attacks;

decryption-failure attacks;

complicated padding systems;

variations for efficiency;

parameter selection.

Also many ideas that in retrospect

were small tweaks of NTRU:

e.g., homomorphic encryption.



10

2013 Bernstein: “The flagship

cryptographic conferences are full

of this sort of shit, and, if this is

the best defense that the world

has against the U.S. National

Security Agency, we’re screwed.”

2016 Miles–Sahai–Zhandry: “We

exhibit two simple programs that

are functionally equivalent, and

show how to efficiently distinguish

between the obfuscations

of these two programs.”

So Sahai’s claimed “iron wall”

is just another “speed bump”.

11

Classic NTRU

Standardize prime p; e.g. 743.

Also standardize q; e.g. 2048.

Define R = Z[x ]=(xp − 1).

Receiver chooses small f ; g ∈ R.

(Some invertibility requirements.)

Public key h = 3g=f mod q.

Sender chooses small m; r ∈ R.

Ciphertext c = m + hr mod q.

Multiply by f mod q: f c mod q.

Use smallness: f m + 3gr .

Reduce mod 3: f m mod 3.

Divide by f mod 3: m.

12

1998 Hoffstein–Pipher–Silverman

introduced this system.

Many subsequent NTRU papers:

meet-in-the-middle attacks,

lattice attacks, hybrid attacks;

chosen-ciphertext attacks;

decryption-failure attacks;

complicated padding systems;

variations for efficiency;

parameter selection.

Also many ideas that in retrospect

were small tweaks of NTRU:

e.g., homomorphic encryption.



10

2013 Bernstein: “The flagship

cryptographic conferences are full

of this sort of shit, and, if this is

the best defense that the world

has against the U.S. National

Security Agency, we’re screwed.”

2016 Miles–Sahai–Zhandry: “We

exhibit two simple programs that

are functionally equivalent, and

show how to efficiently distinguish

between the obfuscations

of these two programs.”

So Sahai’s claimed “iron wall”

is just another “speed bump”.

11

Classic NTRU

Standardize prime p; e.g. 743.

Also standardize q; e.g. 2048.

Define R = Z[x ]=(xp − 1).

Receiver chooses small f ; g ∈ R.

(Some invertibility requirements.)

Public key h = 3g=f mod q.

Sender chooses small m; r ∈ R.

Ciphertext c = m + hr mod q.

Multiply by f mod q: f c mod q.

Use smallness: f m + 3gr .

Reduce mod 3: f m mod 3.

Divide by f mod 3: m.

12

1998 Hoffstein–Pipher–Silverman

introduced this system.

Many subsequent NTRU papers:

meet-in-the-middle attacks,

lattice attacks, hybrid attacks;

chosen-ciphertext attacks;

decryption-failure attacks;

complicated padding systems;

variations for efficiency;

parameter selection.

Also many ideas that in retrospect

were small tweaks of NTRU:

e.g., homomorphic encryption.



11

Classic NTRU

Standardize prime p; e.g. 743.

Also standardize q; e.g. 2048.

Define R = Z[x ]=(xp − 1).

Receiver chooses small f ; g ∈ R.

(Some invertibility requirements.)

Public key h = 3g=f mod q.

Sender chooses small m; r ∈ R.

Ciphertext c = m + hr mod q.

Multiply by f mod q: f c mod q.

Use smallness: f m + 3gr .

Reduce mod 3: f m mod 3.

Divide by f mod 3: m.

12

1998 Hoffstein–Pipher–Silverman

introduced this system.

Many subsequent NTRU papers:

meet-in-the-middle attacks,

lattice attacks, hybrid attacks;

chosen-ciphertext attacks;

decryption-failure attacks;

complicated padding systems;

variations for efficiency;

parameter selection.

Also many ideas that in retrospect

were small tweaks of NTRU:

e.g., homomorphic encryption.



11

Classic NTRU

Standardize prime p; e.g. 743.

Also standardize q; e.g. 2048.

Define R = Z[x ]=(xp − 1).

Receiver chooses small f ; g ∈ R.

(Some invertibility requirements.)

Public key h = 3g=f mod q.

Sender chooses small m; r ∈ R.

Ciphertext c = m + hr mod q.

Multiply by f mod q: f c mod q.

Use smallness: f m + 3gr .

Reduce mod 3: f m mod 3.

Divide by f mod 3: m.

12

1998 Hoffstein–Pipher–Silverman

introduced this system.

Many subsequent NTRU papers:

meet-in-the-middle attacks,

lattice attacks, hybrid attacks;

chosen-ciphertext attacks;

decryption-failure attacks;

complicated padding systems;

variations for efficiency;

parameter selection.

Also many ideas that in retrospect

were small tweaks of NTRU:

e.g., homomorphic encryption.

13

Unnecessary structures in NTRU

Attacker can evaluate

public polynomials h; c at 1.

Compatible with addition and

multiplication mod xp − 1:

f (1)h(1) = 3g(1) in Z=q;

c(1) = m(1) + h(1)r(1) in Z=q.



11

Classic NTRU

Standardize prime p; e.g. 743.

Also standardize q; e.g. 2048.

Define R = Z[x ]=(xp − 1).

Receiver chooses small f ; g ∈ R.

(Some invertibility requirements.)

Public key h = 3g=f mod q.

Sender chooses small m; r ∈ R.

Ciphertext c = m + hr mod q.

Multiply by f mod q: f c mod q.

Use smallness: f m + 3gr .

Reduce mod 3: f m mod 3.

Divide by f mod 3: m.

12

1998 Hoffstein–Pipher–Silverman

introduced this system.

Many subsequent NTRU papers:

meet-in-the-middle attacks,

lattice attacks, hybrid attacks;

chosen-ciphertext attacks;

decryption-failure attacks;

complicated padding systems;

variations for efficiency;

parameter selection.

Also many ideas that in retrospect

were small tweaks of NTRU:

e.g., homomorphic encryption.

13

Unnecessary structures in NTRU

Attacker can evaluate

public polynomials h; c at 1.

Compatible with addition and

multiplication mod xp − 1:

f (1)h(1) = 3g(1) in Z=q;

c(1) = m(1) + h(1)r(1) in Z=q.



11

Classic NTRU

Standardize prime p; e.g. 743.

Also standardize q; e.g. 2048.

Define R = Z[x ]=(xp − 1).

Receiver chooses small f ; g ∈ R.

(Some invertibility requirements.)

Public key h = 3g=f mod q.

Sender chooses small m; r ∈ R.

Ciphertext c = m + hr mod q.

Multiply by f mod q: f c mod q.

Use smallness: f m + 3gr .

Reduce mod 3: f m mod 3.

Divide by f mod 3: m.

12

1998 Hoffstein–Pipher–Silverman

introduced this system.

Many subsequent NTRU papers:

meet-in-the-middle attacks,

lattice attacks, hybrid attacks;

chosen-ciphertext attacks;

decryption-failure attacks;

complicated padding systems;

variations for efficiency;

parameter selection.

Also many ideas that in retrospect

were small tweaks of NTRU:

e.g., homomorphic encryption.

13

Unnecessary structures in NTRU

Attacker can evaluate

public polynomials h; c at 1.

Compatible with addition and

multiplication mod xp − 1:

f (1)h(1) = 3g(1) in Z=q;

c(1) = m(1) + h(1)r(1) in Z=q.



12

1998 Hoffstein–Pipher–Silverman

introduced this system.

Many subsequent NTRU papers:

meet-in-the-middle attacks,

lattice attacks, hybrid attacks;

chosen-ciphertext attacks;

decryption-failure attacks;

complicated padding systems;

variations for efficiency;

parameter selection.

Also many ideas that in retrospect

were small tweaks of NTRU:

e.g., homomorphic encryption.

13

Unnecessary structures in NTRU

Attacker can evaluate

public polynomials h; c at 1.

Compatible with addition and

multiplication mod xp − 1:

f (1)h(1) = 3g(1) in Z=q;

c(1) = m(1) + h(1)r(1) in Z=q.



12

1998 Hoffstein–Pipher–Silverman

introduced this system.

Many subsequent NTRU papers:

meet-in-the-middle attacks,

lattice attacks, hybrid attacks;

chosen-ciphertext attacks;

decryption-failure attacks;

complicated padding systems;

variations for efficiency;

parameter selection.

Also many ideas that in retrospect

were small tweaks of NTRU:

e.g., homomorphic encryption.

13

Unnecessary structures in NTRU

Attacker can evaluate

public polynomials h; c at 1.

Compatible with addition and

multiplication mod xp − 1:

f (1)h(1) = 3g(1) in Z=q;

c(1) = m(1) + h(1)r(1) in Z=q.

One way to exploit this:

c(1); h(1) are visible; r(1) is

guessable, sometimes standard.

Attacker scans many ciphertexts

to find some with large m(1).

Uses this to speed up m search.



12

1998 Hoffstein–Pipher–Silverman

introduced this system.

Many subsequent NTRU papers:

meet-in-the-middle attacks,

lattice attacks, hybrid attacks;

chosen-ciphertext attacks;

decryption-failure attacks;

complicated padding systems;

variations for efficiency;

parameter selection.

Also many ideas that in retrospect

were small tweaks of NTRU:

e.g., homomorphic encryption.

13

Unnecessary structures in NTRU

Attacker can evaluate

public polynomials h; c at 1.

Compatible with addition and

multiplication mod xp − 1:

f (1)h(1) = 3g(1) in Z=q;

c(1) = m(1) + h(1)r(1) in Z=q.

One way to exploit this:

c(1); h(1) are visible; r(1) is

guessable, sometimes standard.

Attacker scans many ciphertexts

to find some with large m(1).

Uses this to speed up m search.

14

NTRU complicates m selection

so that m(1) is never large.

Limits impact of the attack.



12

1998 Hoffstein–Pipher–Silverman

introduced this system.

Many subsequent NTRU papers:

meet-in-the-middle attacks,

lattice attacks, hybrid attacks;

chosen-ciphertext attacks;

decryption-failure attacks;

complicated padding systems;

variations for efficiency;

parameter selection.

Also many ideas that in retrospect

were small tweaks of NTRU:

e.g., homomorphic encryption.

13

Unnecessary structures in NTRU

Attacker can evaluate

public polynomials h; c at 1.

Compatible with addition and

multiplication mod xp − 1:

f (1)h(1) = 3g(1) in Z=q;

c(1) = m(1) + h(1)r(1) in Z=q.

One way to exploit this:

c(1); h(1) are visible; r(1) is

guessable, sometimes standard.

Attacker scans many ciphertexts

to find some with large m(1).

Uses this to speed up m search.

14

NTRU complicates m selection

so that m(1) is never large.

Limits impact of the attack.



12

1998 Hoffstein–Pipher–Silverman

introduced this system.

Many subsequent NTRU papers:

meet-in-the-middle attacks,

lattice attacks, hybrid attacks;

chosen-ciphertext attacks;

decryption-failure attacks;

complicated padding systems;

variations for efficiency;

parameter selection.

Also many ideas that in retrospect

were small tweaks of NTRU:

e.g., homomorphic encryption.

13

Unnecessary structures in NTRU

Attacker can evaluate

public polynomials h; c at 1.

Compatible with addition and

multiplication mod xp − 1:

f (1)h(1) = 3g(1) in Z=q;

c(1) = m(1) + h(1)r(1) in Z=q.

One way to exploit this:

c(1); h(1) are visible; r(1) is

guessable, sometimes standard.

Attacker scans many ciphertexts

to find some with large m(1).

Uses this to speed up m search.

14

NTRU complicates m selection

so that m(1) is never large.

Limits impact of the attack.



13

Unnecessary structures in NTRU

Attacker can evaluate

public polynomials h; c at 1.

Compatible with addition and

multiplication mod xp − 1:

f (1)h(1) = 3g(1) in Z=q;

c(1) = m(1) + h(1)r(1) in Z=q.

One way to exploit this:

c(1); h(1) are visible; r(1) is

guessable, sometimes standard.

Attacker scans many ciphertexts

to find some with large m(1).

Uses this to speed up m search.

14

NTRU complicates m selection

so that m(1) is never large.

Limits impact of the attack.



13

Unnecessary structures in NTRU

Attacker can evaluate

public polynomials h; c at 1.

Compatible with addition and

multiplication mod xp − 1:

f (1)h(1) = 3g(1) in Z=q;

c(1) = m(1) + h(1)r(1) in Z=q.

One way to exploit this:

c(1); h(1) are visible; r(1) is

guessable, sometimes standard.

Attacker scans many ciphertexts

to find some with large m(1).

Uses this to speed up m search.

14

NTRU complicates m selection

so that m(1) is never large.

Limits impact of the attack.

Better: replace NTRU’s

Z[x ]=(xp − 1) with Z[x ]=Φp.

Recall Φp = (xp − 1)=(x − 1).



13

Unnecessary structures in NTRU

Attacker can evaluate

public polynomials h; c at 1.

Compatible with addition and

multiplication mod xp − 1:

f (1)h(1) = 3g(1) in Z=q;

c(1) = m(1) + h(1)r(1) in Z=q.

One way to exploit this:

c(1); h(1) are visible; r(1) is

guessable, sometimes standard.

Attacker scans many ciphertexts

to find some with large m(1).

Uses this to speed up m search.

14

NTRU complicates m selection

so that m(1) is never large.

Limits impact of the attack.

Better: replace NTRU’s

Z[x ]=(xp − 1) with Z[x ]=Φp.

Recall Φp = (xp − 1)=(x − 1).

Can view poly m mod xp − 1

as two parts: m(1); m mod Φp.

Compatible with add, mult.

Why include m(1) here?

Doesn’t seem to help security.



13

Unnecessary structures in NTRU

Attacker can evaluate

public polynomials h; c at 1.

Compatible with addition and

multiplication mod xp − 1:

f (1)h(1) = 3g(1) in Z=q;

c(1) = m(1) + h(1)r(1) in Z=q.

One way to exploit this:

c(1); h(1) are visible; r(1) is

guessable, sometimes standard.

Attacker scans many ciphertexts

to find some with large m(1).

Uses this to speed up m search.

14

NTRU complicates m selection

so that m(1) is never large.

Limits impact of the attack.

Better: replace NTRU’s

Z[x ]=(xp − 1) with Z[x ]=Φp.

Recall Φp = (xp − 1)=(x − 1).

Can view poly m mod xp − 1

as two parts: m(1); m mod Φp.

Compatible with add, mult.

Why include m(1) here?

Doesn’t seem to help security.

Or use other irreds. Ring-LWE

typically uses Φ2048 = x1024 + 1.



13

Unnecessary structures in NTRU

Attacker can evaluate

public polynomials h; c at 1.

Compatible with addition and

multiplication mod xp − 1:

f (1)h(1) = 3g(1) in Z=q;

c(1) = m(1) + h(1)r(1) in Z=q.

One way to exploit this:

c(1); h(1) are visible; r(1) is

guessable, sometimes standard.

Attacker scans many ciphertexts

to find some with large m(1).

Uses this to speed up m search.

14

NTRU complicates m selection

so that m(1) is never large.

Limits impact of the attack.

Better: replace NTRU’s

Z[x ]=(xp − 1) with Z[x ]=Φp.

Recall Φp = (xp − 1)=(x − 1).

Can view poly m mod xp − 1

as two parts: m(1); m mod Φp.

Compatible with add, mult.

Why include m(1) here?

Doesn’t seem to help security.

Or use other irreds. Ring-LWE

typically uses Φ2048 = x1024 + 1.

15

More generally: Attacker applies

any ring map (Z=q)[x ]=P → T

to the equations h = 3g=f

and c = m + hr in (Z=q)[x ]=P .



13

Unnecessary structures in NTRU

Attacker can evaluate

public polynomials h; c at 1.

Compatible with addition and

multiplication mod xp − 1:

f (1)h(1) = 3g(1) in Z=q;

c(1) = m(1) + h(1)r(1) in Z=q.

One way to exploit this:

c(1); h(1) are visible; r(1) is

guessable, sometimes standard.

Attacker scans many ciphertexts

to find some with large m(1).

Uses this to speed up m search.

14

NTRU complicates m selection

so that m(1) is never large.

Limits impact of the attack.

Better: replace NTRU’s

Z[x ]=(xp − 1) with Z[x ]=Φp.

Recall Φp = (xp − 1)=(x − 1).

Can view poly m mod xp − 1

as two parts: m(1); m mod Φp.

Compatible with add, mult.

Why include m(1) here?

Doesn’t seem to help security.

Or use other irreds. Ring-LWE

typically uses Φ2048 = x1024 + 1.

15

More generally: Attacker applies

any ring map (Z=q)[x ]=P → T

to the equations h = 3g=f

and c = m + hr in (Z=q)[x ]=P .



13

Unnecessary structures in NTRU

Attacker can evaluate

public polynomials h; c at 1.

Compatible with addition and

multiplication mod xp − 1:

f (1)h(1) = 3g(1) in Z=q;

c(1) = m(1) + h(1)r(1) in Z=q.

One way to exploit this:

c(1); h(1) are visible; r(1) is

guessable, sometimes standard.

Attacker scans many ciphertexts

to find some with large m(1).

Uses this to speed up m search.

14

NTRU complicates m selection

so that m(1) is never large.

Limits impact of the attack.

Better: replace NTRU’s

Z[x ]=(xp − 1) with Z[x ]=Φp.

Recall Φp = (xp − 1)=(x − 1).

Can view poly m mod xp − 1

as two parts: m(1); m mod Φp.

Compatible with add, mult.

Why include m(1) here?

Doesn’t seem to help security.

Or use other irreds. Ring-LWE

typically uses Φ2048 = x1024 + 1.

15

More generally: Attacker applies

any ring map (Z=q)[x ]=P → T

to the equations h = 3g=f

and c = m + hr in (Z=q)[x ]=P .



14

NTRU complicates m selection

so that m(1) is never large.

Limits impact of the attack.

Better: replace NTRU’s

Z[x ]=(xp − 1) with Z[x ]=Φp.

Recall Φp = (xp − 1)=(x − 1).

Can view poly m mod xp − 1

as two parts: m(1); m mod Φp.

Compatible with add, mult.

Why include m(1) here?

Doesn’t seem to help security.

Or use other irreds. Ring-LWE

typically uses Φ2048 = x1024 + 1.

15

More generally: Attacker applies

any ring map (Z=q)[x ]=P → T

to the equations h = 3g=f

and c = m + hr in (Z=q)[x ]=P .



14

NTRU complicates m selection

so that m(1) is never large.

Limits impact of the attack.

Better: replace NTRU’s

Z[x ]=(xp − 1) with Z[x ]=Φp.

Recall Φp = (xp − 1)=(x − 1).

Can view poly m mod xp − 1

as two parts: m(1); m mod Φp.

Compatible with add, mult.

Why include m(1) here?

Doesn’t seem to help security.

Or use other irreds. Ring-LWE

typically uses Φ2048 = x1024 + 1.

15

More generally: Attacker applies

any ring map (Z=q)[x ]=P → T

to the equations h = 3g=f

and c = m + hr in (Z=q)[x ]=P .

e.g. typically q = 2048 in NTRU.

Have natural ring maps from

(Z=2048)[x ]=(xp − 1) to

(Z=2)[x ]=(xp − 1),

(Z=4)[x ]=(xp − 1),

(Z=8)[x ]=(xp − 1), etc.

Can attacker exploit these?

Maybe. Complicated. See 2004

Smart–Vercauteren–Silverman.



14

NTRU complicates m selection

so that m(1) is never large.

Limits impact of the attack.

Better: replace NTRU’s

Z[x ]=(xp − 1) with Z[x ]=Φp.

Recall Φp = (xp − 1)=(x − 1).

Can view poly m mod xp − 1

as two parts: m(1); m mod Φp.

Compatible with add, mult.

Why include m(1) here?

Doesn’t seem to help security.

Or use other irreds. Ring-LWE

typically uses Φ2048 = x1024 + 1.

15

More generally: Attacker applies

any ring map (Z=q)[x ]=P → T

to the equations h = 3g=f

and c = m + hr in (Z=q)[x ]=P .

e.g. typically q = 2048 in NTRU.

Have natural ring maps from

(Z=2048)[x ]=(xp − 1) to

(Z=2)[x ]=(xp − 1),

(Z=4)[x ]=(xp − 1),

(Z=8)[x ]=(xp − 1), etc.

Can attacker exploit these?

Maybe. Complicated. See 2004

Smart–Vercauteren–Silverman.

16

Ring-LWE religion, version 1: For

“provable security”, take prime

q so that P splits completely in

Z[x ]=q; i.e., have n different ring

maps (Z=q)[x ]=P → Z=q.



14

NTRU complicates m selection

so that m(1) is never large.

Limits impact of the attack.

Better: replace NTRU’s

Z[x ]=(xp − 1) with Z[x ]=Φp.

Recall Φp = (xp − 1)=(x − 1).

Can view poly m mod xp − 1

as two parts: m(1); m mod Φp.

Compatible with add, mult.

Why include m(1) here?

Doesn’t seem to help security.

Or use other irreds. Ring-LWE

typically uses Φ2048 = x1024 + 1.

15

More generally: Attacker applies

any ring map (Z=q)[x ]=P → T

to the equations h = 3g=f

and c = m + hr in (Z=q)[x ]=P .

e.g. typically q = 2048 in NTRU.

Have natural ring maps from

(Z=2048)[x ]=(xp − 1) to

(Z=2)[x ]=(xp − 1),

(Z=4)[x ]=(xp − 1),

(Z=8)[x ]=(xp − 1), etc.

Can attacker exploit these?

Maybe. Complicated. See 2004

Smart–Vercauteren–Silverman.

16

Ring-LWE religion, version 1: For

“provable security”, take prime

q so that P splits completely in

Z[x ]=q; i.e., have n different ring

maps (Z=q)[x ]=P → Z=q.



14

NTRU complicates m selection

so that m(1) is never large.

Limits impact of the attack.

Better: replace NTRU’s

Z[x ]=(xp − 1) with Z[x ]=Φp.

Recall Φp = (xp − 1)=(x − 1).

Can view poly m mod xp − 1

as two parts: m(1); m mod Φp.

Compatible with add, mult.

Why include m(1) here?

Doesn’t seem to help security.

Or use other irreds. Ring-LWE

typically uses Φ2048 = x1024 + 1.

15

More generally: Attacker applies

any ring map (Z=q)[x ]=P → T

to the equations h = 3g=f

and c = m + hr in (Z=q)[x ]=P .

e.g. typically q = 2048 in NTRU.

Have natural ring maps from

(Z=2048)[x ]=(xp − 1) to

(Z=2)[x ]=(xp − 1),

(Z=4)[x ]=(xp − 1),

(Z=8)[x ]=(xp − 1), etc.

Can attacker exploit these?

Maybe. Complicated. See 2004

Smart–Vercauteren–Silverman.

16

Ring-LWE religion, version 1: For

“provable security”, take prime

q so that P splits completely in

Z[x ]=q; i.e., have n different ring

maps (Z=q)[x ]=P → Z=q.



15

More generally: Attacker applies

any ring map (Z=q)[x ]=P → T

to the equations h = 3g=f

and c = m + hr in (Z=q)[x ]=P .

e.g. typically q = 2048 in NTRU.

Have natural ring maps from

(Z=2048)[x ]=(xp − 1) to

(Z=2)[x ]=(xp − 1),

(Z=4)[x ]=(xp − 1),

(Z=8)[x ]=(xp − 1), etc.

Can attacker exploit these?

Maybe. Complicated. See 2004

Smart–Vercauteren–Silverman.

16

Ring-LWE religion, version 1: For

“provable security”, take prime

q so that P splits completely in

Z[x ]=q; i.e., have n different ring

maps (Z=q)[x ]=P → Z=q.



15

More generally: Attacker applies

any ring map (Z=q)[x ]=P → T

to the equations h = 3g=f

and c = m + hr in (Z=q)[x ]=P .

e.g. typically q = 2048 in NTRU.

Have natural ring maps from

(Z=2048)[x ]=(xp − 1) to

(Z=2)[x ]=(xp − 1),

(Z=4)[x ]=(xp − 1),

(Z=8)[x ]=(xp − 1), etc.

Can attacker exploit these?

Maybe. Complicated. See 2004

Smart–Vercauteren–Silverman.

16

Ring-LWE religion, version 1: For

“provable security”, take prime

q so that P splits completely in

Z[x ]=q; i.e., have n different ring

maps (Z=q)[x ]=P → Z=q.

Do these maps damage security?

Fast attacks in some cases: 2014

Eisenträger–Hallgren–Lauter, 2015

Elias–Lauter–Ozman–Stange,

2016 Chen–Lauter–Stange.

Fast non-q-dependent attack

by 2016 Castryck–Iliashenko–

Vercauteren breaks 2015 ELOS

cases but not 2016 CLS cases.



15

More generally: Attacker applies

any ring map (Z=q)[x ]=P → T

to the equations h = 3g=f

and c = m + hr in (Z=q)[x ]=P .

e.g. typically q = 2048 in NTRU.

Have natural ring maps from

(Z=2048)[x ]=(xp − 1) to

(Z=2)[x ]=(xp − 1),

(Z=4)[x ]=(xp − 1),

(Z=8)[x ]=(xp − 1), etc.

Can attacker exploit these?

Maybe. Complicated. See 2004

Smart–Vercauteren–Silverman.

16

Ring-LWE religion, version 1: For

“provable security”, take prime

q so that P splits completely in

Z[x ]=q; i.e., have n different ring

maps (Z=q)[x ]=P → Z=q.

Do these maps damage security?

Fast attacks in some cases: 2014

Eisenträger–Hallgren–Lauter, 2015

Elias–Lauter–Ozman–Stange,

2016 Chen–Lauter–Stange.

Fast non-q-dependent attack

by 2016 Castryck–Iliashenko–

Vercauteren breaks 2015 ELOS

cases but not 2016 CLS cases.

17

Ring-LWE religion, version 2

(2012 Langlois–Stehlé): “We

prove that the arithmetic form

of the modulus q is irrelevant

to the computational hardness

of LWE and RLWE.”



15

More generally: Attacker applies

any ring map (Z=q)[x ]=P → T

to the equations h = 3g=f

and c = m + hr in (Z=q)[x ]=P .

e.g. typically q = 2048 in NTRU.

Have natural ring maps from

(Z=2048)[x ]=(xp − 1) to

(Z=2)[x ]=(xp − 1),

(Z=4)[x ]=(xp − 1),

(Z=8)[x ]=(xp − 1), etc.

Can attacker exploit these?

Maybe. Complicated. See 2004

Smart–Vercauteren–Silverman.

16

Ring-LWE religion, version 1: For

“provable security”, take prime

q so that P splits completely in

Z[x ]=q; i.e., have n different ring

maps (Z=q)[x ]=P → Z=q.

Do these maps damage security?

Fast attacks in some cases: 2014

Eisenträger–Hallgren–Lauter, 2015

Elias–Lauter–Ozman–Stange,

2016 Chen–Lauter–Stange.

Fast non-q-dependent attack

by 2016 Castryck–Iliashenko–

Vercauteren breaks 2015 ELOS

cases but not 2016 CLS cases.

17

Ring-LWE religion, version 2

(2012 Langlois–Stehlé): “We

prove that the arithmetic form

of the modulus q is irrelevant

to the computational hardness

of LWE and RLWE.”



15

More generally: Attacker applies

any ring map (Z=q)[x ]=P → T

to the equations h = 3g=f

and c = m + hr in (Z=q)[x ]=P .

e.g. typically q = 2048 in NTRU.

Have natural ring maps from

(Z=2048)[x ]=(xp − 1) to

(Z=2)[x ]=(xp − 1),

(Z=4)[x ]=(xp − 1),

(Z=8)[x ]=(xp − 1), etc.

Can attacker exploit these?

Maybe. Complicated. See 2004

Smart–Vercauteren–Silverman.

16

Ring-LWE religion, version 1: For

“provable security”, take prime

q so that P splits completely in

Z[x ]=q; i.e., have n different ring

maps (Z=q)[x ]=P → Z=q.

Do these maps damage security?

Fast attacks in some cases: 2014

Eisenträger–Hallgren–Lauter, 2015

Elias–Lauter–Ozman–Stange,

2016 Chen–Lauter–Stange.

Fast non-q-dependent attack

by 2016 Castryck–Iliashenko–

Vercauteren breaks 2015 ELOS

cases but not 2016 CLS cases.

17

Ring-LWE religion, version 2

(2012 Langlois–Stehlé): “We

prove that the arithmetic form

of the modulus q is irrelevant

to the computational hardness

of LWE and RLWE.”



16

Ring-LWE religion, version 1: For

“provable security”, take prime

q so that P splits completely in

Z[x ]=q; i.e., have n different ring

maps (Z=q)[x ]=P → Z=q.

Do these maps damage security?

Fast attacks in some cases: 2014

Eisenträger–Hallgren–Lauter, 2015

Elias–Lauter–Ozman–Stange,

2016 Chen–Lauter–Stange.

Fast non-q-dependent attack

by 2016 Castryck–Iliashenko–

Vercauteren breaks 2015 ELOS

cases but not 2016 CLS cases.

17

Ring-LWE religion, version 2

(2012 Langlois–Stehlé): “We

prove that the arithmetic form

of the modulus q is irrelevant

to the computational hardness

of LWE and RLWE.”



16

Ring-LWE religion, version 1: For

“provable security”, take prime

q so that P splits completely in

Z[x ]=q; i.e., have n different ring

maps (Z=q)[x ]=P → Z=q.

Do these maps damage security?

Fast attacks in some cases: 2014

Eisenträger–Hallgren–Lauter, 2015

Elias–Lauter–Ozman–Stange,

2016 Chen–Lauter–Stange.

Fast non-q-dependent attack

by 2016 Castryck–Iliashenko–

Vercauteren breaks 2015 ELOS

cases but not 2016 CLS cases.

17

Ring-LWE religion, version 2

(2012 Langlois–Stehlé): “We

prove that the arithmetic form

of the modulus q is irrelevant

to the computational hardness

of LWE and RLWE.”

Basic idea: “modulus switching”

from Z=q to Z=q′. Attacker

multiplies by q′=q and rounds.



16

Ring-LWE religion, version 1: For

“provable security”, take prime

q so that P splits completely in

Z[x ]=q; i.e., have n different ring

maps (Z=q)[x ]=P → Z=q.

Do these maps damage security?

Fast attacks in some cases: 2014

Eisenträger–Hallgren–Lauter, 2015

Elias–Lauter–Ozman–Stange,

2016 Chen–Lauter–Stange.

Fast non-q-dependent attack

by 2016 Castryck–Iliashenko–

Vercauteren breaks 2015 ELOS

cases but not 2016 CLS cases.

17

Ring-LWE religion, version 2

(2012 Langlois–Stehlé): “We

prove that the arithmetic form

of the modulus q is irrelevant

to the computational hardness

of LWE and RLWE.”

Basic idea: “modulus switching”

from Z=q to Z=q′. Attacker

multiplies by q′=q and rounds.

But rounding adds noise,

making attacks harder!

The proof limits security gap

but does not eliminate it.



16

Ring-LWE religion, version 1: For

“provable security”, take prime

q so that P splits completely in

Z[x ]=q; i.e., have n different ring

maps (Z=q)[x ]=P → Z=q.

Do these maps damage security?

Fast attacks in some cases: 2014

Eisenträger–Hallgren–Lauter, 2015

Elias–Lauter–Ozman–Stange,

2016 Chen–Lauter–Stange.

Fast non-q-dependent attack

by 2016 Castryck–Iliashenko–

Vercauteren breaks 2015 ELOS

cases but not 2016 CLS cases.

17

Ring-LWE religion, version 2

(2012 Langlois–Stehlé): “We

prove that the arithmetic form

of the modulus q is irrelevant

to the computational hardness

of LWE and RLWE.”

Basic idea: “modulus switching”

from Z=q to Z=q′. Attacker

multiplies by q′=q and rounds.

But rounding adds noise,

making attacks harder!

The proof limits security gap

but does not eliminate it.

18

We recommend: Take irred P

that remains irred in (Z=q)[x ];

i.e., choose inert modulus q.

Field (Z=q)[x ]=P . No ring map

to any smaller nonzero ring.



16

Ring-LWE religion, version 1: For

“provable security”, take prime

q so that P splits completely in

Z[x ]=q; i.e., have n different ring

maps (Z=q)[x ]=P → Z=q.

Do these maps damage security?

Fast attacks in some cases: 2014

Eisenträger–Hallgren–Lauter, 2015

Elias–Lauter–Ozman–Stange,

2016 Chen–Lauter–Stange.

Fast non-q-dependent attack

by 2016 Castryck–Iliashenko–

Vercauteren breaks 2015 ELOS

cases but not 2016 CLS cases.

17

Ring-LWE religion, version 2

(2012 Langlois–Stehlé): “We

prove that the arithmetic form

of the modulus q is irrelevant

to the computational hardness

of LWE and RLWE.”

Basic idea: “modulus switching”

from Z=q to Z=q′. Attacker

multiplies by q′=q and rounds.

But rounding adds noise,

making attacks harder!

The proof limits security gap

but does not eliminate it.

18

We recommend: Take irred P

that remains irred in (Z=q)[x ];

i.e., choose inert modulus q.

Field (Z=q)[x ]=P . No ring map

to any smaller nonzero ring.



16

Ring-LWE religion, version 1: For

“provable security”, take prime

q so that P splits completely in

Z[x ]=q; i.e., have n different ring

maps (Z=q)[x ]=P → Z=q.

Do these maps damage security?

Fast attacks in some cases: 2014

Eisenträger–Hallgren–Lauter, 2015

Elias–Lauter–Ozman–Stange,

2016 Chen–Lauter–Stange.

Fast non-q-dependent attack

by 2016 Castryck–Iliashenko–

Vercauteren breaks 2015 ELOS

cases but not 2016 CLS cases.

17

Ring-LWE religion, version 2

(2012 Langlois–Stehlé): “We

prove that the arithmetic form

of the modulus q is irrelevant

to the computational hardness

of LWE and RLWE.”

Basic idea: “modulus switching”

from Z=q to Z=q′. Attacker

multiplies by q′=q and rounds.

But rounding adds noise,

making attacks harder!

The proof limits security gap

but does not eliminate it.

18

We recommend: Take irred P

that remains irred in (Z=q)[x ];

i.e., choose inert modulus q.

Field (Z=q)[x ]=P . No ring map

to any smaller nonzero ring.



17

Ring-LWE religion, version 2

(2012 Langlois–Stehlé): “We

prove that the arithmetic form

of the modulus q is irrelevant

to the computational hardness

of LWE and RLWE.”

Basic idea: “modulus switching”

from Z=q to Z=q′. Attacker

multiplies by q′=q and rounds.

But rounding adds noise,

making attacks harder!

The proof limits security gap

but does not eliminate it.

18

We recommend: Take irred P

that remains irred in (Z=q)[x ];

i.e., choose inert modulus q.

Field (Z=q)[x ]=P . No ring map

to any smaller nonzero ring.



17

Ring-LWE religion, version 2

(2012 Langlois–Stehlé): “We

prove that the arithmetic form

of the modulus q is irrelevant

to the computational hardness

of LWE and RLWE.”

Basic idea: “modulus switching”

from Z=q to Z=q′. Attacker

multiplies by q′=q and rounds.

But rounding adds noise,

making attacks harder!

The proof limits security gap

but does not eliminate it.

18

We recommend: Take irred P

that remains irred in (Z=q)[x ];

i.e., choose inert modulus q.

Field (Z=q)[x ]=P . No ring map

to any smaller nonzero ring.

So far this is compatible with

Ring-LWE religion, version 2.



17

Ring-LWE religion, version 2

(2012 Langlois–Stehlé): “We

prove that the arithmetic form

of the modulus q is irrelevant

to the computational hardness

of LWE and RLWE.”

Basic idea: “modulus switching”

from Z=q to Z=q′. Attacker

multiplies by q′=q and rounds.

But rounding adds noise,

making attacks harder!

The proof limits security gap

but does not eliminate it.

18

We recommend: Take irred P

that remains irred in (Z=q)[x ];

i.e., choose inert modulus q.

Field (Z=q)[x ]=P . No ring map

to any smaller nonzero ring.

So far this is compatible with

Ring-LWE religion, version 2.

But we also recommend heresy:

take P with prime degree p

and with large Galois group,

specifically Sp, size p!.

Good example: P = xp − x − 1.



17

Ring-LWE religion, version 2

(2012 Langlois–Stehlé): “We

prove that the arithmetic form

of the modulus q is irrelevant

to the computational hardness

of LWE and RLWE.”

Basic idea: “modulus switching”

from Z=q to Z=q′. Attacker

multiplies by q′=q and rounds.

But rounding adds noise,

making attacks harder!

The proof limits security gap

but does not eliminate it.

18

We recommend: Take irred P

that remains irred in (Z=q)[x ];

i.e., choose inert modulus q.

Field (Z=q)[x ]=P . No ring map

to any smaller nonzero ring.

So far this is compatible with

Ring-LWE religion, version 2.

But we also recommend heresy:

take P with prime degree p

and with large Galois group,

specifically Sp, size p!.

Good example: P = xp − x − 1.

19

2014.02, our 2nd announcement:

To eliminate “worrisome”

structures, use “a number field

of prime degree, so that the only

subfield is Q” and “an irreducible

polynomial xp − x − 1 with a

very large Galois group, so that

the number field is very far from

having automorphisms”.



17

Ring-LWE religion, version 2

(2012 Langlois–Stehlé): “We

prove that the arithmetic form

of the modulus q is irrelevant

to the computational hardness

of LWE and RLWE.”

Basic idea: “modulus switching”

from Z=q to Z=q′. Attacker

multiplies by q′=q and rounds.

But rounding adds noise,

making attacks harder!

The proof limits security gap

but does not eliminate it.

18

We recommend: Take irred P

that remains irred in (Z=q)[x ];

i.e., choose inert modulus q.

Field (Z=q)[x ]=P . No ring map

to any smaller nonzero ring.

So far this is compatible with

Ring-LWE religion, version 2.

But we also recommend heresy:

take P with prime degree p

and with large Galois group,

specifically Sp, size p!.

Good example: P = xp − x − 1.

19

2014.02, our 2nd announcement:

To eliminate “worrisome”

structures, use “a number field

of prime degree, so that the only

subfield is Q” and “an irreducible

polynomial xp − x − 1 with a

very large Galois group, so that

the number field is very far from

having automorphisms”.



17

Ring-LWE religion, version 2

(2012 Langlois–Stehlé): “We

prove that the arithmetic form

of the modulus q is irrelevant

to the computational hardness

of LWE and RLWE.”

Basic idea: “modulus switching”

from Z=q to Z=q′. Attacker

multiplies by q′=q and rounds.

But rounding adds noise,

making attacks harder!

The proof limits security gap

but does not eliminate it.

18

We recommend: Take irred P

that remains irred in (Z=q)[x ];

i.e., choose inert modulus q.

Field (Z=q)[x ]=P . No ring map

to any smaller nonzero ring.

So far this is compatible with

Ring-LWE religion, version 2.

But we also recommend heresy:

take P with prime degree p

and with large Galois group,

specifically Sp, size p!.

Good example: P = xp − x − 1.

19

2014.02, our 2nd announcement:

To eliminate “worrisome”

structures, use “a number field

of prime degree, so that the only

subfield is Q” and “an irreducible

polynomial xp − x − 1 with a

very large Galois group, so that

the number field is very far from

having automorphisms”.



18

We recommend: Take irred P

that remains irred in (Z=q)[x ];

i.e., choose inert modulus q.

Field (Z=q)[x ]=P . No ring map

to any smaller nonzero ring.

So far this is compatible with

Ring-LWE religion, version 2.

But we also recommend heresy:

take P with prime degree p

and with large Galois group,

specifically Sp, size p!.

Good example: P = xp − x − 1.

19

2014.02, our 2nd announcement:

To eliminate “worrisome”

structures, use “a number field

of prime degree, so that the only

subfield is Q” and “an irreducible

polynomial xp − x − 1 with a

very large Galois group, so that

the number field is very far from

having automorphisms”.



18

We recommend: Take irred P

that remains irred in (Z=q)[x ];

i.e., choose inert modulus q.

Field (Z=q)[x ]=P . No ring map

to any smaller nonzero ring.

So far this is compatible with

Ring-LWE religion, version 2.

But we also recommend heresy:

take P with prime degree p

and with large Galois group,

specifically Sp, size p!.

Good example: P = xp − x − 1.

19

2014.02, our 2nd announcement:

To eliminate “worrisome”

structures, use “a number field

of prime degree, so that the only

subfield is Q” and “an irreducible

polynomial xp − x − 1 with a

very large Galois group, so that

the number field is very far from

having automorphisms”.

Subsequent attacks against

several lattice-based systems

have exploited these structures

and have not been extended

to our recommended rings.



18

We recommend: Take irred P

that remains irred in (Z=q)[x ];

i.e., choose inert modulus q.

Field (Z=q)[x ]=P . No ring map

to any smaller nonzero ring.

So far this is compatible with

Ring-LWE religion, version 2.

But we also recommend heresy:

take P with prime degree p

and with large Galois group,

specifically Sp, size p!.

Good example: P = xp − x − 1.

19

2014.02, our 2nd announcement:

To eliminate “worrisome”

structures, use “a number field

of prime degree, so that the only

subfield is Q” and “an irreducible

polynomial xp − x − 1 with a

very large Galois group, so that

the number field is very far from

having automorphisms”.

Subsequent attacks against

several lattice-based systems

have exploited these structures

and have not been extended

to our recommended rings.

20

2014.10 Campbell–Groves–

Shepherd describe an ideal-lattice-

based system “Soliloquy”; claim

quantum poly-time key recovery.



18

We recommend: Take irred P

that remains irred in (Z=q)[x ];

i.e., choose inert modulus q.

Field (Z=q)[x ]=P . No ring map

to any smaller nonzero ring.

So far this is compatible with

Ring-LWE religion, version 2.

But we also recommend heresy:

take P with prime degree p

and with large Galois group,

specifically Sp, size p!.

Good example: P = xp − x − 1.

19

2014.02, our 2nd announcement:

To eliminate “worrisome”

structures, use “a number field

of prime degree, so that the only

subfield is Q” and “an irreducible

polynomial xp − x − 1 with a

very large Galois group, so that

the number field is very far from

having automorphisms”.

Subsequent attacks against

several lattice-based systems

have exploited these structures

and have not been extended

to our recommended rings.

20

2014.10 Campbell–Groves–

Shepherd describe an ideal-lattice-

based system “Soliloquy”; claim

quantum poly-time key recovery.



18

We recommend: Take irred P

that remains irred in (Z=q)[x ];

i.e., choose inert modulus q.

Field (Z=q)[x ]=P . No ring map

to any smaller nonzero ring.

So far this is compatible with

Ring-LWE religion, version 2.

But we also recommend heresy:

take P with prime degree p

and with large Galois group,

specifically Sp, size p!.

Good example: P = xp − x − 1.

19

2014.02, our 2nd announcement:

To eliminate “worrisome”

structures, use “a number field

of prime degree, so that the only

subfield is Q” and “an irreducible

polynomial xp − x − 1 with a

very large Galois group, so that

the number field is very far from

having automorphisms”.

Subsequent attacks against

several lattice-based systems

have exploited these structures

and have not been extended

to our recommended rings.

20

2014.10 Campbell–Groves–

Shepherd describe an ideal-lattice-

based system “Soliloquy”; claim

quantum poly-time key recovery.



19

2014.02, our 2nd announcement:

To eliminate “worrisome”

structures, use “a number field

of prime degree, so that the only

subfield is Q” and “an irreducible

polynomial xp − x − 1 with a

very large Galois group, so that

the number field is very far from

having automorphisms”.

Subsequent attacks against

several lattice-based systems

have exploited these structures

and have not been extended

to our recommended rings.

20

2014.10 Campbell–Groves–

Shepherd describe an ideal-lattice-

based system “Soliloquy”; claim

quantum poly-time key recovery.



19

2014.02, our 2nd announcement:

To eliminate “worrisome”

structures, use “a number field

of prime degree, so that the only

subfield is Q” and “an irreducible

polynomial xp − x − 1 with a

very large Galois group, so that

the number field is very far from

having automorphisms”.

Subsequent attacks against

several lattice-based systems

have exploited these structures

and have not been extended

to our recommended rings.

20

2014.10 Campbell–Groves–

Shepherd describe an ideal-lattice-

based system “Soliloquy”; claim

quantum poly-time key recovery.

2010 Smart–Vercauteren system is

practically identical to Soliloquy.



19

2014.02, our 2nd announcement:

To eliminate “worrisome”

structures, use “a number field

of prime degree, so that the only

subfield is Q” and “an irreducible

polynomial xp − x − 1 with a

very large Galois group, so that

the number field is very far from

having automorphisms”.

Subsequent attacks against

several lattice-based systems

have exploited these structures

and have not been extended

to our recommended rings.

20

2014.10 Campbell–Groves–

Shepherd describe an ideal-lattice-

based system “Soliloquy”; claim

quantum poly-time key recovery.

2010 Smart–Vercauteren system is

practically identical to Soliloquy.

2009 Gentry system (simpler

version described at STOC) has

the same key-recovery problem.



19

2014.02, our 2nd announcement:

To eliminate “worrisome”

structures, use “a number field

of prime degree, so that the only

subfield is Q” and “an irreducible

polynomial xp − x − 1 with a

very large Galois group, so that

the number field is very far from

having automorphisms”.

Subsequent attacks against

several lattice-based systems

have exploited these structures

and have not been extended

to our recommended rings.

20

2014.10 Campbell–Groves–

Shepherd describe an ideal-lattice-

based system “Soliloquy”; claim

quantum poly-time key recovery.

2010 Smart–Vercauteren system is

practically identical to Soliloquy.

2009 Gentry system (simpler

version described at STOC) has

the same key-recovery problem.

2012 Garg–Gentry–Halevi

multilinear maps have the

same key-recovery problem

(and many other security issues).



19

2014.02, our 2nd announcement:

To eliminate “worrisome”

structures, use “a number field

of prime degree, so that the only

subfield is Q” and “an irreducible

polynomial xp − x − 1 with a

very large Galois group, so that

the number field is very far from

having automorphisms”.

Subsequent attacks against

several lattice-based systems

have exploited these structures

and have not been extended

to our recommended rings.

20

2014.10 Campbell–Groves–

Shepherd describe an ideal-lattice-

based system “Soliloquy”; claim

quantum poly-time key recovery.

2010 Smart–Vercauteren system is

practically identical to Soliloquy.

2009 Gentry system (simpler

version described at STOC) has

the same key-recovery problem.

2012 Garg–Gentry–Halevi

multilinear maps have the

same key-recovery problem

(and many other security issues).

21

SV/Soliloquy parameter:

k ≥ 1. Define R = Z[x ]=Φ2k .

Public key: prime q and c ∈ Z=q.

Secret key: short element g ∈ R
with gR = qR+ (x − c)R;

i.e., short generator

of the ideal qR+ (x − c)R.



19

2014.02, our 2nd announcement:

To eliminate “worrisome”

structures, use “a number field

of prime degree, so that the only

subfield is Q” and “an irreducible

polynomial xp − x − 1 with a

very large Galois group, so that

the number field is very far from

having automorphisms”.

Subsequent attacks against

several lattice-based systems

have exploited these structures

and have not been extended

to our recommended rings.

20

2014.10 Campbell–Groves–

Shepherd describe an ideal-lattice-

based system “Soliloquy”; claim

quantum poly-time key recovery.

2010 Smart–Vercauteren system is

practically identical to Soliloquy.

2009 Gentry system (simpler

version described at STOC) has

the same key-recovery problem.

2012 Garg–Gentry–Halevi

multilinear maps have the

same key-recovery problem

(and many other security issues).

21

SV/Soliloquy parameter:

k ≥ 1. Define R = Z[x ]=Φ2k .

Public key: prime q and c ∈ Z=q.

Secret key: short element g ∈ R
with gR = qR+ (x − c)R;

i.e., short generator

of the ideal qR+ (x − c)R.



19

2014.02, our 2nd announcement:

To eliminate “worrisome”

structures, use “a number field

of prime degree, so that the only

subfield is Q” and “an irreducible

polynomial xp − x − 1 with a

very large Galois group, so that

the number field is very far from

having automorphisms”.

Subsequent attacks against

several lattice-based systems

have exploited these structures

and have not been extended

to our recommended rings.

20

2014.10 Campbell–Groves–

Shepherd describe an ideal-lattice-

based system “Soliloquy”; claim

quantum poly-time key recovery.

2010 Smart–Vercauteren system is

practically identical to Soliloquy.

2009 Gentry system (simpler

version described at STOC) has

the same key-recovery problem.

2012 Garg–Gentry–Halevi

multilinear maps have the

same key-recovery problem

(and many other security issues).

21

SV/Soliloquy parameter:

k ≥ 1. Define R = Z[x ]=Φ2k .

Public key: prime q and c ∈ Z=q.

Secret key: short element g ∈ R
with gR = qR+ (x − c)R;

i.e., short generator

of the ideal qR+ (x − c)R.



20

2014.10 Campbell–Groves–

Shepherd describe an ideal-lattice-

based system “Soliloquy”; claim

quantum poly-time key recovery.

2010 Smart–Vercauteren system is

practically identical to Soliloquy.

2009 Gentry system (simpler

version described at STOC) has

the same key-recovery problem.

2012 Garg–Gentry–Halevi

multilinear maps have the

same key-recovery problem

(and many other security issues).

21

SV/Soliloquy parameter:

k ≥ 1. Define R = Z[x ]=Φ2k .

Public key: prime q and c ∈ Z=q.

Secret key: short element g ∈ R
with gR = qR+ (x − c)R;

i.e., short generator

of the ideal qR+ (x − c)R.



20

2014.10 Campbell–Groves–

Shepherd describe an ideal-lattice-

based system “Soliloquy”; claim

quantum poly-time key recovery.

2010 Smart–Vercauteren system is

practically identical to Soliloquy.

2009 Gentry system (simpler

version described at STOC) has

the same key-recovery problem.

2012 Garg–Gentry–Halevi

multilinear maps have the

same key-recovery problem

(and many other security issues).

21

SV/Soliloquy parameter:

k ≥ 1. Define R = Z[x ]=Φ2k .

Public key: prime q and c ∈ Z=q.

Secret key: short element g ∈ R
with gR = qR+ (x − c)R;

i.e., short generator

of the ideal qR+ (x − c)R.

But wait, isn’t it known how to

compute a generator of an ideal?

See, e.g., 1993 Cohen textbook

“A course in computational

algebraic number theory”.



20

2014.10 Campbell–Groves–

Shepherd describe an ideal-lattice-

based system “Soliloquy”; claim

quantum poly-time key recovery.

2010 Smart–Vercauteren system is

practically identical to Soliloquy.

2009 Gentry system (simpler

version described at STOC) has

the same key-recovery problem.

2012 Garg–Gentry–Halevi

multilinear maps have the

same key-recovery problem

(and many other security issues).

21

SV/Soliloquy parameter:

k ≥ 1. Define R = Z[x ]=Φ2k .

Public key: prime q and c ∈ Z=q.

Secret key: short element g ∈ R
with gR = qR+ (x − c)R;

i.e., short generator

of the ideal qR+ (x − c)R.

But wait, isn’t it known how to

compute a generator of an ideal?

See, e.g., 1993 Cohen textbook

“A course in computational

algebraic number theory”.

22

Smart–Vercauteren dismiss this

as taking exponential time.



20

2014.10 Campbell–Groves–

Shepherd describe an ideal-lattice-

based system “Soliloquy”; claim

quantum poly-time key recovery.

2010 Smart–Vercauteren system is

practically identical to Soliloquy.

2009 Gentry system (simpler

version described at STOC) has

the same key-recovery problem.

2012 Garg–Gentry–Halevi

multilinear maps have the

same key-recovery problem

(and many other security issues).

21

SV/Soliloquy parameter:

k ≥ 1. Define R = Z[x ]=Φ2k .

Public key: prime q and c ∈ Z=q.

Secret key: short element g ∈ R
with gR = qR+ (x − c)R;

i.e., short generator

of the ideal qR+ (x − c)R.

But wait, isn’t it known how to

compute a generator of an ideal?

See, e.g., 1993 Cohen textbook

“A course in computational

algebraic number theory”.

22

Smart–Vercauteren dismiss this

as taking exponential time.



20

2014.10 Campbell–Groves–

Shepherd describe an ideal-lattice-

based system “Soliloquy”; claim

quantum poly-time key recovery.

2010 Smart–Vercauteren system is

practically identical to Soliloquy.

2009 Gentry system (simpler

version described at STOC) has

the same key-recovery problem.

2012 Garg–Gentry–Halevi

multilinear maps have the

same key-recovery problem

(and many other security issues).

21

SV/Soliloquy parameter:

k ≥ 1. Define R = Z[x ]=Φ2k .

Public key: prime q and c ∈ Z=q.

Secret key: short element g ∈ R
with gR = qR+ (x − c)R;

i.e., short generator

of the ideal qR+ (x − c)R.

But wait, isn’t it known how to

compute a generator of an ideal?

See, e.g., 1993 Cohen textbook

“A course in computational

algebraic number theory”.

22

Smart–Vercauteren dismiss this

as taking exponential time.



21

SV/Soliloquy parameter:

k ≥ 1. Define R = Z[x ]=Φ2k .

Public key: prime q and c ∈ Z=q.

Secret key: short element g ∈ R
with gR = qR+ (x − c)R;

i.e., short generator

of the ideal qR+ (x − c)R.

But wait, isn’t it known how to

compute a generator of an ideal?

See, e.g., 1993 Cohen textbook

“A course in computational

algebraic number theory”.

22

Smart–Vercauteren dismiss this

as taking exponential time.



21

SV/Soliloquy parameter:

k ≥ 1. Define R = Z[x ]=Φ2k .

Public key: prime q and c ∈ Z=q.

Secret key: short element g ∈ R
with gR = qR+ (x − c)R;

i.e., short generator

of the ideal qR+ (x − c)R.

But wait, isn’t it known how to

compute a generator of an ideal?

See, e.g., 1993 Cohen textbook

“A course in computational

algebraic number theory”.

22

Smart–Vercauteren dismiss this

as taking exponential time.

It actually takes subexponential

time. Same basic idea as NFS.



21

SV/Soliloquy parameter:

k ≥ 1. Define R = Z[x ]=Φ2k .

Public key: prime q and c ∈ Z=q.

Secret key: short element g ∈ R
with gR = qR+ (x − c)R;

i.e., short generator

of the ideal qR+ (x − c)R.

But wait, isn’t it known how to

compute a generator of an ideal?

See, e.g., 1993 Cohen textbook

“A course in computational

algebraic number theory”.

22

Smart–Vercauteren dismiss this

as taking exponential time.

It actually takes subexponential

time. Same basic idea as NFS.

Campbell–Groves–Shepherd

claim quantum poly time.

Claim disputed by Biasse,

not defended by CGS.



21

SV/Soliloquy parameter:

k ≥ 1. Define R = Z[x ]=Φ2k .

Public key: prime q and c ∈ Z=q.

Secret key: short element g ∈ R
with gR = qR+ (x − c)R;

i.e., short generator

of the ideal qR+ (x − c)R.

But wait, isn’t it known how to

compute a generator of an ideal?

See, e.g., 1993 Cohen textbook

“A course in computational

algebraic number theory”.

22

Smart–Vercauteren dismiss this

as taking exponential time.

It actually takes subexponential

time. Same basic idea as NFS.

Campbell–Groves–Shepherd

claim quantum poly time.

Claim disputed by Biasse,

not defended by CGS.

2016 Biasse–Song, building on

2014 Eisenträger–Hallgren–

Kitaev–Song: different algorithm

that takes quantum poly time.



21

SV/Soliloquy parameter:

k ≥ 1. Define R = Z[x ]=Φ2k .

Public key: prime q and c ∈ Z=q.

Secret key: short element g ∈ R
with gR = qR+ (x − c)R;

i.e., short generator

of the ideal qR+ (x − c)R.

But wait, isn’t it known how to

compute a generator of an ideal?

See, e.g., 1993 Cohen textbook

“A course in computational

algebraic number theory”.

22

Smart–Vercauteren dismiss this

as taking exponential time.

It actually takes subexponential

time. Same basic idea as NFS.

Campbell–Groves–Shepherd

claim quantum poly time.

Claim disputed by Biasse,

not defended by CGS.

2016 Biasse–Song, building on

2014 Eisenträger–Hallgren–

Kitaev–Song: different algorithm

that takes quantum poly time.

23

Smart–Vercauteren also dismiss

this generator as not being short.

Have ideal I of R.

Want short g with gR = I.

Have g ′ with g ′R = I.

Know g ′ = ug for some u ∈ R∗.
But how do we find u?



21

SV/Soliloquy parameter:

k ≥ 1. Define R = Z[x ]=Φ2k .

Public key: prime q and c ∈ Z=q.

Secret key: short element g ∈ R
with gR = qR+ (x − c)R;

i.e., short generator

of the ideal qR+ (x − c)R.

But wait, isn’t it known how to

compute a generator of an ideal?

See, e.g., 1993 Cohen textbook

“A course in computational

algebraic number theory”.

22

Smart–Vercauteren dismiss this

as taking exponential time.

It actually takes subexponential

time. Same basic idea as NFS.

Campbell–Groves–Shepherd

claim quantum poly time.

Claim disputed by Biasse,

not defended by CGS.

2016 Biasse–Song, building on

2014 Eisenträger–Hallgren–

Kitaev–Song: different algorithm

that takes quantum poly time.

23

Smart–Vercauteren also dismiss

this generator as not being short.

Have ideal I of R.

Want short g with gR = I.

Have g ′ with g ′R = I.

Know g ′ = ug for some u ∈ R∗.
But how do we find u?



21

SV/Soliloquy parameter:

k ≥ 1. Define R = Z[x ]=Φ2k .

Public key: prime q and c ∈ Z=q.

Secret key: short element g ∈ R
with gR = qR+ (x − c)R;

i.e., short generator

of the ideal qR+ (x − c)R.

But wait, isn’t it known how to

compute a generator of an ideal?

See, e.g., 1993 Cohen textbook

“A course in computational

algebraic number theory”.

22

Smart–Vercauteren dismiss this

as taking exponential time.

It actually takes subexponential

time. Same basic idea as NFS.

Campbell–Groves–Shepherd

claim quantum poly time.

Claim disputed by Biasse,

not defended by CGS.

2016 Biasse–Song, building on

2014 Eisenträger–Hallgren–

Kitaev–Song: different algorithm

that takes quantum poly time.

23

Smart–Vercauteren also dismiss

this generator as not being short.

Have ideal I of R.

Want short g with gR = I.

Have g ′ with g ′R = I.

Know g ′ = ug for some u ∈ R∗.
But how do we find u?



22

Smart–Vercauteren dismiss this

as taking exponential time.

It actually takes subexponential

time. Same basic idea as NFS.

Campbell–Groves–Shepherd

claim quantum poly time.

Claim disputed by Biasse,

not defended by CGS.

2016 Biasse–Song, building on

2014 Eisenträger–Hallgren–

Kitaev–Song: different algorithm

that takes quantum poly time.

23

Smart–Vercauteren also dismiss

this generator as not being short.

Have ideal I of R.

Want short g with gR = I.

Have g ′ with g ′R = I.

Know g ′ = ug for some u ∈ R∗.
But how do we find u?



22

Smart–Vercauteren dismiss this

as taking exponential time.

It actually takes subexponential

time. Same basic idea as NFS.

Campbell–Groves–Shepherd

claim quantum poly time.

Claim disputed by Biasse,

not defended by CGS.

2016 Biasse–Song, building on

2014 Eisenträger–Hallgren–

Kitaev–Song: different algorithm

that takes quantum poly time.

23

Smart–Vercauteren also dismiss

this generator as not being short.

Have ideal I of R.

Want short g with gR = I.

Have g ′ with g ′R = I.

Know g ′ = ug for some u ∈ R∗.
But how do we find u?

Log g ′ = Log u + Log g

where Log is Dirichlet’s log map.

Dirichlet’s unit theorem:

LogR∗ is a lattice, known dim.

Finding Log u is a closest-vector

problem in this lattice.



22

Smart–Vercauteren dismiss this

as taking exponential time.

It actually takes subexponential

time. Same basic idea as NFS.

Campbell–Groves–Shepherd

claim quantum poly time.

Claim disputed by Biasse,

not defended by CGS.

2016 Biasse–Song, building on

2014 Eisenträger–Hallgren–

Kitaev–Song: different algorithm

that takes quantum poly time.

23

Smart–Vercauteren also dismiss

this generator as not being short.

Have ideal I of R.

Want short g with gR = I.

Have g ′ with g ′R = I.

Know g ′ = ug for some u ∈ R∗.
But how do we find u?

Log g ′ = Log u + Log g

where Log is Dirichlet’s log map.

Dirichlet’s unit theorem:

LogR∗ is a lattice, known dim.

Finding Log u is a closest-vector

problem in this lattice.

24

Campbell–Groves–Shepherd:

“A simple generating set for the

cyclotomic units is of course

known. The image of O× [i.e.,

R∗] under the logarithm map

forms a lattice. The determinant

of this lattice turns out to be

much bigger than the typical log-

length of a private key ¸ [i.e.,

g ], so it is easy to recover the

causally short private key given

any generator of ¸O [i.e., I],

e.g. via the LLL lattice reduction

algorithm.”



22

Smart–Vercauteren dismiss this

as taking exponential time.

It actually takes subexponential

time. Same basic idea as NFS.

Campbell–Groves–Shepherd

claim quantum poly time.

Claim disputed by Biasse,

not defended by CGS.

2016 Biasse–Song, building on

2014 Eisenträger–Hallgren–

Kitaev–Song: different algorithm

that takes quantum poly time.

23

Smart–Vercauteren also dismiss

this generator as not being short.

Have ideal I of R.

Want short g with gR = I.

Have g ′ with g ′R = I.

Know g ′ = ug for some u ∈ R∗.
But how do we find u?

Log g ′ = Log u + Log g

where Log is Dirichlet’s log map.

Dirichlet’s unit theorem:

LogR∗ is a lattice, known dim.

Finding Log u is a closest-vector

problem in this lattice.

24

Campbell–Groves–Shepherd:

“A simple generating set for the

cyclotomic units is of course

known. The image of O× [i.e.,

R∗] under the logarithm map

forms a lattice. The determinant

of this lattice turns out to be

much bigger than the typical log-

length of a private key ¸ [i.e.,

g ], so it is easy to recover the

causally short private key given

any generator of ¸O [i.e., I],

e.g. via the LLL lattice reduction

algorithm.”



22

Smart–Vercauteren dismiss this

as taking exponential time.

It actually takes subexponential

time. Same basic idea as NFS.

Campbell–Groves–Shepherd

claim quantum poly time.

Claim disputed by Biasse,

not defended by CGS.

2016 Biasse–Song, building on

2014 Eisenträger–Hallgren–

Kitaev–Song: different algorithm

that takes quantum poly time.

23

Smart–Vercauteren also dismiss

this generator as not being short.

Have ideal I of R.

Want short g with gR = I.

Have g ′ with g ′R = I.

Know g ′ = ug for some u ∈ R∗.
But how do we find u?

Log g ′ = Log u + Log g

where Log is Dirichlet’s log map.

Dirichlet’s unit theorem:

LogR∗ is a lattice, known dim.

Finding Log u is a closest-vector

problem in this lattice.

24

Campbell–Groves–Shepherd:

“A simple generating set for the

cyclotomic units is of course

known. The image of O× [i.e.,

R∗] under the logarithm map

forms a lattice. The determinant

of this lattice turns out to be

much bigger than the typical log-

length of a private key ¸ [i.e.,

g ], so it is easy to recover the

causally short private key given

any generator of ¸O [i.e., I],

e.g. via the LLL lattice reduction

algorithm.”



23

Smart–Vercauteren also dismiss

this generator as not being short.

Have ideal I of R.

Want short g with gR = I.

Have g ′ with g ′R = I.

Know g ′ = ug for some u ∈ R∗.
But how do we find u?

Log g ′ = Log u + Log g

where Log is Dirichlet’s log map.

Dirichlet’s unit theorem:

LogR∗ is a lattice, known dim.

Finding Log u is a closest-vector

problem in this lattice.

24

Campbell–Groves–Shepherd:

“A simple generating set for the

cyclotomic units is of course

known. The image of O× [i.e.,

R∗] under the logarithm map

forms a lattice. The determinant

of this lattice turns out to be

much bigger than the typical log-

length of a private key ¸ [i.e.,

g ], so it is easy to recover the

causally short private key given

any generator of ¸O [i.e., I],

e.g. via the LLL lattice reduction

algorithm.”



23

Smart–Vercauteren also dismiss

this generator as not being short.

Have ideal I of R.

Want short g with gR = I.

Have g ′ with g ′R = I.

Know g ′ = ug for some u ∈ R∗.
But how do we find u?

Log g ′ = Log u + Log g

where Log is Dirichlet’s log map.

Dirichlet’s unit theorem:

LogR∗ is a lattice, known dim.

Finding Log u is a closest-vector

problem in this lattice.

24

Campbell–Groves–Shepherd:

“A simple generating set for the

cyclotomic units is of course

known. The image of O× [i.e.,

R∗] under the logarithm map

forms a lattice. The determinant

of this lattice turns out to be

much bigger than the typical log-

length of a private key ¸ [i.e.,

g ], so it is easy to recover the

causally short private key given

any generator of ¸O [i.e., I],

e.g. via the LLL lattice reduction

algorithm.”

25

x 7→ x3, x 7→ x5, x 7→ x7, etc. are

automorphisms of R = Z[x ]=Φ2k .

Easy to see (1−x3)=(1−x) ∈ R∗.



23

Smart–Vercauteren also dismiss

this generator as not being short.

Have ideal I of R.

Want short g with gR = I.

Have g ′ with g ′R = I.

Know g ′ = ug for some u ∈ R∗.
But how do we find u?

Log g ′ = Log u + Log g

where Log is Dirichlet’s log map.

Dirichlet’s unit theorem:

LogR∗ is a lattice, known dim.

Finding Log u is a closest-vector

problem in this lattice.

24

Campbell–Groves–Shepherd:

“A simple generating set for the

cyclotomic units is of course

known. The image of O× [i.e.,

R∗] under the logarithm map

forms a lattice. The determinant

of this lattice turns out to be

much bigger than the typical log-

length of a private key ¸ [i.e.,

g ], so it is easy to recover the

causally short private key given

any generator of ¸O [i.e., I],

e.g. via the LLL lattice reduction

algorithm.”

25

x 7→ x3, x 7→ x5, x 7→ x7, etc. are

automorphisms of R = Z[x ]=Φ2k .

Easy to see (1−x3)=(1−x) ∈ R∗.



23

Smart–Vercauteren also dismiss

this generator as not being short.

Have ideal I of R.

Want short g with gR = I.

Have g ′ with g ′R = I.

Know g ′ = ug for some u ∈ R∗.
But how do we find u?

Log g ′ = Log u + Log g

where Log is Dirichlet’s log map.

Dirichlet’s unit theorem:

LogR∗ is a lattice, known dim.

Finding Log u is a closest-vector

problem in this lattice.

24

Campbell–Groves–Shepherd:

“A simple generating set for the

cyclotomic units is of course

known. The image of O× [i.e.,

R∗] under the logarithm map

forms a lattice. The determinant

of this lattice turns out to be

much bigger than the typical log-

length of a private key ¸ [i.e.,

g ], so it is easy to recover the

causally short private key given

any generator of ¸O [i.e., I],

e.g. via the LLL lattice reduction

algorithm.”

25

x 7→ x3, x 7→ x5, x 7→ x7, etc. are

automorphisms of R = Z[x ]=Φ2k .

Easy to see (1−x3)=(1−x) ∈ R∗.



24

Campbell–Groves–Shepherd:

“A simple generating set for the

cyclotomic units is of course

known. The image of O× [i.e.,

R∗] under the logarithm map

forms a lattice. The determinant

of this lattice turns out to be

much bigger than the typical log-

length of a private key ¸ [i.e.,

g ], so it is easy to recover the

causally short private key given

any generator of ¸O [i.e., I],

e.g. via the LLL lattice reduction

algorithm.”

25

x 7→ x3, x 7→ x5, x 7→ x7, etc. are

automorphisms of R = Z[x ]=Φ2k .

Easy to see (1−x3)=(1−x) ∈ R∗.



24

Campbell–Groves–Shepherd:

“A simple generating set for the

cyclotomic units is of course

known. The image of O× [i.e.,

R∗] under the logarithm map

forms a lattice. The determinant

of this lattice turns out to be

much bigger than the typical log-

length of a private key ¸ [i.e.,

g ], so it is easy to recover the

causally short private key given

any generator of ¸O [i.e., I],

e.g. via the LLL lattice reduction

algorithm.”

25

x 7→ x3, x 7→ x5, x 7→ x7, etc. are

automorphisms of R = Z[x ]=Φ2k .

Easy to see (1−x3)=(1−x) ∈ R∗.

“Cyclotomic units” are defined as

R∗ ∩
˘
±xe0

Q
i (1− x i )ei

¯
.

Weber’s conjecture: all elements

of R∗ are cyclotomic units.



24

Campbell–Groves–Shepherd:

“A simple generating set for the

cyclotomic units is of course

known. The image of O× [i.e.,

R∗] under the logarithm map

forms a lattice. The determinant

of this lattice turns out to be

much bigger than the typical log-

length of a private key ¸ [i.e.,

g ], so it is easy to recover the

causally short private key given

any generator of ¸O [i.e., I],

e.g. via the LLL lattice reduction

algorithm.”

25

x 7→ x3, x 7→ x5, x 7→ x7, etc. are

automorphisms of R = Z[x ]=Φ2k .

Easy to see (1−x3)=(1−x) ∈ R∗.

“Cyclotomic units” are defined as

R∗ ∩
˘
±xe0

Q
i (1− x i )ei

¯
.

Weber’s conjecture: all elements

of R∗ are cyclotomic units.

Experiments confirm that SV is

quickly broken by LLL using, e.g.,

1997 Washington textbook

basis for cyclotomic units.

Shortness of basis is critical;

missing from bogus CGS analysis.



24

Campbell–Groves–Shepherd:

“A simple generating set for the

cyclotomic units is of course

known. The image of O× [i.e.,

R∗] under the logarithm map

forms a lattice. The determinant

of this lattice turns out to be

much bigger than the typical log-

length of a private key ¸ [i.e.,

g ], so it is easy to recover the

causally short private key given

any generator of ¸O [i.e., I],

e.g. via the LLL lattice reduction

algorithm.”

25

x 7→ x3, x 7→ x5, x 7→ x7, etc. are

automorphisms of R = Z[x ]=Φ2k .

Easy to see (1−x3)=(1−x) ∈ R∗.

“Cyclotomic units” are defined as

R∗ ∩
˘
±xe0

Q
i (1− x i )ei

¯
.

Weber’s conjecture: all elements

of R∗ are cyclotomic units.

Experiments confirm that SV is

quickly broken by LLL using, e.g.,

1997 Washington textbook

basis for cyclotomic units.

Shortness of basis is critical;

missing from bogus CGS analysis.

26

Attackers can also use

automorphisms in more ways.

2016 Albrecht–Bai–Ducas

“A subfield lattice attack on

overstretched NTRU assumptions:

Cryptanalysis of some FHE and

Graded Encoding Schemes” use

norms gff(g), and independently

2016 Cheon–Jeong–Lee (“The

main technique of our algorithm

is the reduction of a problem on

a field to one in a subfield”) use

traces g + ff(g), where ff is

an order-2 automorphism.



24

Campbell–Groves–Shepherd:

“A simple generating set for the

cyclotomic units is of course

known. The image of O× [i.e.,

R∗] under the logarithm map

forms a lattice. The determinant

of this lattice turns out to be

much bigger than the typical log-

length of a private key ¸ [i.e.,

g ], so it is easy to recover the

causally short private key given

any generator of ¸O [i.e., I],

e.g. via the LLL lattice reduction

algorithm.”

25

x 7→ x3, x 7→ x5, x 7→ x7, etc. are

automorphisms of R = Z[x ]=Φ2k .

Easy to see (1−x3)=(1−x) ∈ R∗.

“Cyclotomic units” are defined as

R∗ ∩
˘
±xe0

Q
i (1− x i )ei

¯
.

Weber’s conjecture: all elements

of R∗ are cyclotomic units.

Experiments confirm that SV is

quickly broken by LLL using, e.g.,

1997 Washington textbook

basis for cyclotomic units.

Shortness of basis is critical;

missing from bogus CGS analysis.

26

Attackers can also use

automorphisms in more ways.

2016 Albrecht–Bai–Ducas

“A subfield lattice attack on

overstretched NTRU assumptions:

Cryptanalysis of some FHE and

Graded Encoding Schemes” use

norms gff(g), and independently

2016 Cheon–Jeong–Lee (“The

main technique of our algorithm

is the reduction of a problem on

a field to one in a subfield”) use

traces g + ff(g), where ff is

an order-2 automorphism.



24

Campbell–Groves–Shepherd:

“A simple generating set for the

cyclotomic units is of course

known. The image of O× [i.e.,

R∗] under the logarithm map

forms a lattice. The determinant

of this lattice turns out to be

much bigger than the typical log-

length of a private key ¸ [i.e.,

g ], so it is easy to recover the

causally short private key given

any generator of ¸O [i.e., I],

e.g. via the LLL lattice reduction

algorithm.”

25

x 7→ x3, x 7→ x5, x 7→ x7, etc. are

automorphisms of R = Z[x ]=Φ2k .

Easy to see (1−x3)=(1−x) ∈ R∗.

“Cyclotomic units” are defined as

R∗ ∩
˘
±xe0

Q
i (1− x i )ei

¯
.

Weber’s conjecture: all elements

of R∗ are cyclotomic units.

Experiments confirm that SV is

quickly broken by LLL using, e.g.,

1997 Washington textbook

basis for cyclotomic units.

Shortness of basis is critical;

missing from bogus CGS analysis.

26

Attackers can also use

automorphisms in more ways.

2016 Albrecht–Bai–Ducas

“A subfield lattice attack on

overstretched NTRU assumptions:

Cryptanalysis of some FHE and

Graded Encoding Schemes” use

norms gff(g), and independently

2016 Cheon–Jeong–Lee (“The

main technique of our algorithm

is the reduction of a problem on

a field to one in a subfield”) use

traces g + ff(g), where ff is

an order-2 automorphism.



25

x 7→ x3, x 7→ x5, x 7→ x7, etc. are

automorphisms of R = Z[x ]=Φ2k .

Easy to see (1−x3)=(1−x) ∈ R∗.

“Cyclotomic units” are defined as

R∗ ∩
˘
±xe0

Q
i (1− x i )ei

¯
.

Weber’s conjecture: all elements

of R∗ are cyclotomic units.

Experiments confirm that SV is

quickly broken by LLL using, e.g.,

1997 Washington textbook

basis for cyclotomic units.

Shortness of basis is critical;

missing from bogus CGS analysis.

26

Attackers can also use

automorphisms in more ways.

2016 Albrecht–Bai–Ducas

“A subfield lattice attack on

overstretched NTRU assumptions:

Cryptanalysis of some FHE and

Graded Encoding Schemes” use

norms gff(g), and independently

2016 Cheon–Jeong–Lee (“The

main technique of our algorithm

is the reduction of a problem on

a field to one in a subfield”) use

traces g + ff(g), where ff is

an order-2 automorphism.



25

x 7→ x3, x 7→ x5, x 7→ x7, etc. are

automorphisms of R = Z[x ]=Φ2k .

Easy to see (1−x3)=(1−x) ∈ R∗.

“Cyclotomic units” are defined as

R∗ ∩
˘
±xe0

Q
i (1− x i )ei

¯
.

Weber’s conjecture: all elements

of R∗ are cyclotomic units.

Experiments confirm that SV is

quickly broken by LLL using, e.g.,

1997 Washington textbook

basis for cyclotomic units.

Shortness of basis is critical;

missing from bogus CGS analysis.

26

Attackers can also use

automorphisms in more ways.

2016 Albrecht–Bai–Ducas

“A subfield lattice attack on

overstretched NTRU assumptions:

Cryptanalysis of some FHE and

Graded Encoding Schemes” use

norms gff(g), and independently

2016 Cheon–Jeong–Lee (“The

main technique of our algorithm

is the reduction of a problem on

a field to one in a subfield”) use

traces g + ff(g), where ff is

an order-2 automorphism.

27

We recommend changing

the choice of rings in

ideal-lattice-based cryptography.

Requiring prime degree p

minimizes number of subfields.

Requiring Galois group

Sp maximizes difficulty of

automorphism computations: e.g.,

the smallest field containing all

roots of P has degree p!.

All available evidence is that

this rescues some systems

and never hurts security.



25

x 7→ x3, x 7→ x5, x 7→ x7, etc. are

automorphisms of R = Z[x ]=Φ2k .

Easy to see (1−x3)=(1−x) ∈ R∗.

“Cyclotomic units” are defined as

R∗ ∩
˘
±xe0

Q
i (1− x i )ei

¯
.

Weber’s conjecture: all elements

of R∗ are cyclotomic units.

Experiments confirm that SV is

quickly broken by LLL using, e.g.,

1997 Washington textbook

basis for cyclotomic units.

Shortness of basis is critical;

missing from bogus CGS analysis.

26

Attackers can also use

automorphisms in more ways.

2016 Albrecht–Bai–Ducas

“A subfield lattice attack on

overstretched NTRU assumptions:

Cryptanalysis of some FHE and

Graded Encoding Schemes” use

norms gff(g), and independently

2016 Cheon–Jeong–Lee (“The

main technique of our algorithm

is the reduction of a problem on

a field to one in a subfield”) use

traces g + ff(g), where ff is

an order-2 automorphism.

27

We recommend changing

the choice of rings in

ideal-lattice-based cryptography.

Requiring prime degree p

minimizes number of subfields.

Requiring Galois group

Sp maximizes difficulty of

automorphism computations: e.g.,

the smallest field containing all

roots of P has degree p!.

All available evidence is that

this rescues some systems

and never hurts security.



25

x 7→ x3, x 7→ x5, x 7→ x7, etc. are

automorphisms of R = Z[x ]=Φ2k .

Easy to see (1−x3)=(1−x) ∈ R∗.

“Cyclotomic units” are defined as

R∗ ∩
˘
±xe0

Q
i (1− x i )ei

¯
.

Weber’s conjecture: all elements

of R∗ are cyclotomic units.

Experiments confirm that SV is

quickly broken by LLL using, e.g.,

1997 Washington textbook

basis for cyclotomic units.

Shortness of basis is critical;

missing from bogus CGS analysis.

26

Attackers can also use

automorphisms in more ways.

2016 Albrecht–Bai–Ducas

“A subfield lattice attack on

overstretched NTRU assumptions:

Cryptanalysis of some FHE and

Graded Encoding Schemes” use

norms gff(g), and independently

2016 Cheon–Jeong–Lee (“The

main technique of our algorithm

is the reduction of a problem on

a field to one in a subfield”) use

traces g + ff(g), where ff is

an order-2 automorphism.

27

We recommend changing

the choice of rings in

ideal-lattice-based cryptography.

Requiring prime degree p

minimizes number of subfields.

Requiring Galois group

Sp maximizes difficulty of

automorphism computations: e.g.,

the smallest field containing all

roots of P has degree p!.

All available evidence is that

this rescues some systems

and never hurts security.



26

Attackers can also use

automorphisms in more ways.

2016 Albrecht–Bai–Ducas

“A subfield lattice attack on

overstretched NTRU assumptions:

Cryptanalysis of some FHE and

Graded Encoding Schemes” use

norms gff(g), and independently

2016 Cheon–Jeong–Lee (“The

main technique of our algorithm

is the reduction of a problem on

a field to one in a subfield”) use

traces g + ff(g), where ff is

an order-2 automorphism.

27

We recommend changing

the choice of rings in

ideal-lattice-based cryptography.

Requiring prime degree p

minimizes number of subfields.

Requiring Galois group

Sp maximizes difficulty of

automorphism computations: e.g.,

the smallest field containing all

roots of P has degree p!.

All available evidence is that

this rescues some systems

and never hurts security.



26

Attackers can also use

automorphisms in more ways.

2016 Albrecht–Bai–Ducas

“A subfield lattice attack on

overstretched NTRU assumptions:

Cryptanalysis of some FHE and

Graded Encoding Schemes” use

norms gff(g), and independently

2016 Cheon–Jeong–Lee (“The

main technique of our algorithm

is the reduction of a problem on

a field to one in a subfield”) use

traces g + ff(g), where ff is

an order-2 automorphism.

27

We recommend changing

the choice of rings in

ideal-lattice-based cryptography.

Requiring prime degree p

minimizes number of subfields.

Requiring Galois group

Sp maximizes difficulty of

automorphism computations: e.g.,

the smallest field containing all

roots of P has degree p!.

All available evidence is that

this rescues some systems

and never hurts security.

28

The importance of efficiency

“If you’re so worried about

structure, why are you tolerating

visible polynomial structure?

Use LWE, or classic McEliece!”



26

Attackers can also use

automorphisms in more ways.

2016 Albrecht–Bai–Ducas

“A subfield lattice attack on

overstretched NTRU assumptions:

Cryptanalysis of some FHE and

Graded Encoding Schemes” use

norms gff(g), and independently

2016 Cheon–Jeong–Lee (“The

main technique of our algorithm

is the reduction of a problem on

a field to one in a subfield”) use

traces g + ff(g), where ff is

an order-2 automorphism.

27

We recommend changing

the choice of rings in

ideal-lattice-based cryptography.

Requiring prime degree p

minimizes number of subfields.

Requiring Galois group

Sp maximizes difficulty of

automorphism computations: e.g.,

the smallest field containing all

roots of P has degree p!.

All available evidence is that

this rescues some systems

and never hurts security.

28

The importance of efficiency

“If you’re so worried about

structure, why are you tolerating

visible polynomial structure?

Use LWE, or classic McEliece!”



26

Attackers can also use

automorphisms in more ways.

2016 Albrecht–Bai–Ducas

“A subfield lattice attack on

overstretched NTRU assumptions:

Cryptanalysis of some FHE and

Graded Encoding Schemes” use

norms gff(g), and independently

2016 Cheon–Jeong–Lee (“The

main technique of our algorithm

is the reduction of a problem on

a field to one in a subfield”) use

traces g + ff(g), where ff is

an order-2 automorphism.

27

We recommend changing

the choice of rings in

ideal-lattice-based cryptography.

Requiring prime degree p

minimizes number of subfields.

Requiring Galois group

Sp maximizes difficulty of

automorphism computations: e.g.,

the smallest field containing all

roots of P has degree p!.

All available evidence is that

this rescues some systems

and never hurts security.

28

The importance of efficiency

“If you’re so worried about

structure, why are you tolerating

visible polynomial structure?

Use LWE, or classic McEliece!”



27

We recommend changing

the choice of rings in

ideal-lattice-based cryptography.

Requiring prime degree p

minimizes number of subfields.

Requiring Galois group

Sp maximizes difficulty of

automorphism computations: e.g.,

the smallest field containing all

roots of P has degree p!.

All available evidence is that

this rescues some systems

and never hurts security.

28

The importance of efficiency

“If you’re so worried about

structure, why are you tolerating

visible polynomial structure?

Use LWE, or classic McEliece!”



27

We recommend changing

the choice of rings in

ideal-lattice-based cryptography.

Requiring prime degree p

minimizes number of subfields.

Requiring Galois group

Sp maximizes difficulty of

automorphism computations: e.g.,

the smallest field containing all

roots of P has degree p!.

All available evidence is that

this rescues some systems

and never hurts security.

28

The importance of efficiency

“If you’re so worried about

structure, why are you tolerating

visible polynomial structure?

Use LWE, or classic McEliece!”

Maybe better security, yes—

but huge costs in network traffic.

Is this affordable?



27

We recommend changing

the choice of rings in

ideal-lattice-based cryptography.

Requiring prime degree p

minimizes number of subfields.

Requiring Galois group

Sp maximizes difficulty of

automorphism computations: e.g.,

the smallest field containing all

roots of P has degree p!.

All available evidence is that

this rescues some systems

and never hurts security.

28

The importance of efficiency

“If you’re so worried about

structure, why are you tolerating

visible polynomial structure?

Use LWE, or classic McEliece!”

Maybe better security, yes—

but huge costs in network traffic.

Is this affordable?

If it is, would we gain more

security from larger polynomials?

Larger impact on known attacks,

maybe also on unknown attacks.

Not clear what to recommend.



27

We recommend changing

the choice of rings in

ideal-lattice-based cryptography.

Requiring prime degree p

minimizes number of subfields.

Requiring Galois group

Sp maximizes difficulty of

automorphism computations: e.g.,

the smallest field containing all

roots of P has degree p!.

All available evidence is that

this rescues some systems

and never hurts security.

28

The importance of efficiency

“If you’re so worried about

structure, why are you tolerating

visible polynomial structure?

Use LWE, or classic McEliece!”

Maybe better security, yes—

but huge costs in network traffic.

Is this affordable?

If it is, would we gain more

security from larger polynomials?

Larger impact on known attacks,

maybe also on unknown attacks.

Not clear what to recommend.

29

Conventional wisdom:

Rings (Z=q)[x ]=Φ2k

with q mod 2k+1 = 1 allow

extremely fast FFT-based mults.

NTRU Prime rings will be

several times slower.

Is this affordable? etc.



27

We recommend changing

the choice of rings in

ideal-lattice-based cryptography.

Requiring prime degree p

minimizes number of subfields.

Requiring Galois group

Sp maximizes difficulty of

automorphism computations: e.g.,

the smallest field containing all

roots of P has degree p!.

All available evidence is that

this rescues some systems

and never hurts security.

28

The importance of efficiency

“If you’re so worried about

structure, why are you tolerating

visible polynomial structure?

Use LWE, or classic McEliece!”

Maybe better security, yes—

but huge costs in network traffic.

Is this affordable?

If it is, would we gain more

security from larger polynomials?

Larger impact on known attacks,

maybe also on unknown attacks.

Not clear what to recommend.

29

Conventional wisdom:

Rings (Z=q)[x ]=Φ2k

with q mod 2k+1 = 1 allow

extremely fast FFT-based mults.

NTRU Prime rings will be

several times slower.

Is this affordable? etc.



27

We recommend changing

the choice of rings in

ideal-lattice-based cryptography.

Requiring prime degree p

minimizes number of subfields.

Requiring Galois group

Sp maximizes difficulty of

automorphism computations: e.g.,

the smallest field containing all

roots of P has degree p!.

All available evidence is that

this rescues some systems

and never hurts security.

28

The importance of efficiency

“If you’re so worried about

structure, why are you tolerating

visible polynomial structure?

Use LWE, or classic McEliece!”

Maybe better security, yes—

but huge costs in network traffic.

Is this affordable?

If it is, would we gain more

security from larger polynomials?

Larger impact on known attacks,

maybe also on unknown attacks.

Not clear what to recommend.

29

Conventional wisdom:

Rings (Z=q)[x ]=Φ2k

with q mod 2k+1 = 1 allow

extremely fast FFT-based mults.

NTRU Prime rings will be

several times slower.

Is this affordable? etc.



28

The importance of efficiency

“If you’re so worried about

structure, why are you tolerating

visible polynomial structure?

Use LWE, or classic McEliece!”

Maybe better security, yes—

but huge costs in network traffic.

Is this affordable?

If it is, would we gain more

security from larger polynomials?

Larger impact on known attacks,

maybe also on unknown attacks.

Not clear what to recommend.

29

Conventional wisdom:

Rings (Z=q)[x ]=Φ2k

with q mod 2k+1 = 1 allow

extremely fast FFT-based mults.

NTRU Prime rings will be

several times slower.

Is this affordable? etc.



28

The importance of efficiency

“If you’re so worried about

structure, why are you tolerating

visible polynomial structure?

Use LWE, or classic McEliece!”

Maybe better security, yes—

but huge costs in network traffic.

Is this affordable?

If it is, would we gain more

security from larger polynomials?

Larger impact on known attacks,

maybe also on unknown attacks.

Not clear what to recommend.

29

Conventional wisdom:

Rings (Z=q)[x ]=Φ2k

with q mod 2k+1 = 1 allow

extremely fast FFT-based mults.

NTRU Prime rings will be

several times slower.

Is this affordable? etc.

But we have shown that

an optimized combination of

Karatsuba and Toom is also

extremely fast at crypto sizes.

Hard to find any applications

that will notice the differences.

And we improve network traffic.



28

The importance of efficiency

“If you’re so worried about

structure, why are you tolerating

visible polynomial structure?

Use LWE, or classic McEliece!”

Maybe better security, yes—

but huge costs in network traffic.

Is this affordable?

If it is, would we gain more

security from larger polynomials?

Larger impact on known attacks,

maybe also on unknown attacks.

Not clear what to recommend.

29

Conventional wisdom:

Rings (Z=q)[x ]=Φ2k

with q mod 2k+1 = 1 allow

extremely fast FFT-based mults.

NTRU Prime rings will be

several times slower.

Is this affordable? etc.

But we have shown that

an optimized combination of

Karatsuba and Toom is also

extremely fast at crypto sizes.

Hard to find any applications

that will notice the differences.

And we improve network traffic.

30

What you find in paper

Streamlined NTRU Prime:

an optimized cryptosystem.

The design space of

lattice-based encryption.

Security of Streamlined NTRU

Prime: meet-in-the-middle

attacks, lattice attacks, etc.

Parameters.

Public-key encryption vs.

unauthenticated key exchange.

And more!



28

The importance of efficiency

“If you’re so worried about

structure, why are you tolerating

visible polynomial structure?

Use LWE, or classic McEliece!”

Maybe better security, yes—

but huge costs in network traffic.

Is this affordable?

If it is, would we gain more

security from larger polynomials?

Larger impact on known attacks,

maybe also on unknown attacks.

Not clear what to recommend.

29

Conventional wisdom:

Rings (Z=q)[x ]=Φ2k

with q mod 2k+1 = 1 allow

extremely fast FFT-based mults.

NTRU Prime rings will be

several times slower.

Is this affordable? etc.

But we have shown that

an optimized combination of

Karatsuba and Toom is also

extremely fast at crypto sizes.

Hard to find any applications

that will notice the differences.

And we improve network traffic.

30

What you find in paper

Streamlined NTRU Prime:

an optimized cryptosystem.

The design space of

lattice-based encryption.

Security of Streamlined NTRU

Prime: meet-in-the-middle

attacks, lattice attacks, etc.

Parameters.

Public-key encryption vs.

unauthenticated key exchange.

And more!



28

The importance of efficiency

“If you’re so worried about

structure, why are you tolerating

visible polynomial structure?

Use LWE, or classic McEliece!”

Maybe better security, yes—

but huge costs in network traffic.

Is this affordable?

If it is, would we gain more

security from larger polynomials?

Larger impact on known attacks,

maybe also on unknown attacks.

Not clear what to recommend.

29

Conventional wisdom:

Rings (Z=q)[x ]=Φ2k

with q mod 2k+1 = 1 allow

extremely fast FFT-based mults.

NTRU Prime rings will be

several times slower.

Is this affordable? etc.

But we have shown that

an optimized combination of

Karatsuba and Toom is also

extremely fast at crypto sizes.

Hard to find any applications

that will notice the differences.

And we improve network traffic.

30

What you find in paper

Streamlined NTRU Prime:

an optimized cryptosystem.

The design space of

lattice-based encryption.

Security of Streamlined NTRU

Prime: meet-in-the-middle

attacks, lattice attacks, etc.

Parameters.

Public-key encryption vs.

unauthenticated key exchange.

And more!



29

Conventional wisdom:

Rings (Z=q)[x ]=Φ2k

with q mod 2k+1 = 1 allow

extremely fast FFT-based mults.

NTRU Prime rings will be

several times slower.

Is this affordable? etc.

But we have shown that

an optimized combination of

Karatsuba and Toom is also

extremely fast at crypto sizes.

Hard to find any applications

that will notice the differences.

And we improve network traffic.

30

What you find in paper

Streamlined NTRU Prime:

an optimized cryptosystem.

The design space of

lattice-based encryption.

Security of Streamlined NTRU

Prime: meet-in-the-middle

attacks, lattice attacks, etc.

Parameters.

Public-key encryption vs.

unauthenticated key exchange.

And more!


