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a strengthened version of
RIPEMD": “lt 1s anticipated that
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perhaps also for RIPEMD. This

will probably require an additional

effort, but it no longer seems as
far away as it was a year ago.”

1996 Robshaw: Collisions “should
be expected’; upgrade “when
practical and convenient”.



'rime
. Bernstein

ty of lllinois at Chicago &
he Universiteit Eindhoven

Can we predict future attacks?

>0/papers.html
~ime Is joint work with:

10k Chuengsatiansup
Inge
> van Vredendaal

‘he Universiteit Eindhoven

- this talk: motivation.

1996 Dobbertin—Bosselaers—
Preneel "RIPEMD-160:

a strengthened version of
RIPEMD": “lt 1s anticipated that
these techniques can be used to
produce collisions for MD5 and
perhaps also for RIPEMD. This

will probably require an additional

effort, but it no longer seems as
far away as it was a year ago.”

1996 Robshaw: Collisions “should
be expected’; upgrade “when
practical and convenient”.

Imagine
“This is
The attz
not brea
MD5, sc
point of
speculat
IS contrc
and crea
state of
alternati
the very



N

is at Chicago &
siteit Eindhoven

Can we predict future attacks?

5. html
nt work with:

gsatiansup

lendaal

siteit Eindhoven

motivation.

1996 Dobbertin—Bosselaers—
Preneel "RIPEMD-160:

a strengthened version of
RIPEMD": “lt 1s anticipated that
these techniques can be used to
produce collisions for MD5 and

perhaps also for RIPEMD. This
will probably require an additional

effort, but it no longer seems as
far away as it was a year ago.”

1996 Robshaw: Collisions “should
be expected’; upgrade “when
practical and convenient”.

Imagine someone

“This 1s completel
The attack by Dol
not break any nor
MD5, so what exa
point of preventin,
speculation about
Is controversial an
and creates confus
state of the art. F
alternative hash fu
the very least quit



g0 &
hoven

Can we predict future attacks?

ith:

hoven

n.

1996 Dobbertin—Bosselaers—
Preneel "RIPEMD-160:

a strengthened version of
RIPEMD": “lt 1s anticipated that
these techniques can be used to
produce collisions for MD5 and
perhaps also for RIPEMD. This

will probably require an additional

effort, but it no longer seems as
far away as it was a year ago.”

1996 Robshaw: Collisions “should
be expected’; upgrade “when
practical and convenient”.

Imagine someone responding
“This is completely out of i
The attack by Dobbertin do
not break any normal usage
MD?5, so what exactly is the
point of preventing it? This
speculation about MDb5 colli
Is controversial and non-scie
and creates confusion on the
state of the art. Recommen
alternative hash functions is
the very least quite prematu



Can we predict future attacks?

1996 Dobbertin—Bosselaers—
Preneel "RIPEMD-160:

a strengthened version of
RIPEMD": “lt 1s anticipated that
these techniques can be used to
produce collisions for MD5 and

perhaps also for RIPEMD. This
will probably require an additional

effort, but it no longer seems as
far away as it was a year ago.”

1996 Robshaw: Collisions “should
be expected’; upgrade “when
practical and convenient”.

Imagine someone responding:
“This i1s completely out of line.
The attack by Dobbertin does
not break any normal usage of
MD?5, so what exactly is the
point of preventing it? This

speculation about MD5 collisions
Is controversial and non-scientific,
and creates confusion on the
state of the art. Recommending
alternative hash functions is at
the very least quite premature.”



Can we predict future attacks?

1996 Dobbertin—Bosselaers—
Preneel "RIPEMD-160:

a strengthened version of
RIPEMD": “lt 1s anticipated that
these techniques can be used to
produce collisions for MD5 and
perhaps also for RIPEMD. This

will probably require an additional

effort, but it no longer seems as
far away as it was a year ago.”

1996 Robshaw: Collisions “should

be expected’; upgrade “when
practical and convenient”.

Imagine someone responding:
“This i1s completely out of line.
The attack by Dobbertin does
not break any normal usage of
MD?5, so what exactly is the
point of preventing it? This

speculation about MD5 collisions
Is controversial and non-scientific,
and creates confusion on the
state of the art. Recommending
alternative hash functions is at
the very least quite premature.”

Clearly not a real cryptographer.

Maybe a standards organization.



predict future attacks?

bbertin—Bosselaers—
"RIPEMD-160:

thened version of

)" "It I1s anticipated that
chniques can be used to
collisions for MD5 and

also for RIPEMD. This
ably require an additional

ut it no longer seems as
‘as It was a year ago.”

bshaw: Collisions “should
ted”; upgrade “when
and convenient’ .

Imagine someone responding:
“This is completely out of line.
The attack by Dobbertin does
not break any normal usage of
MD?5, so what exactly Is the
point of preventing it? This
speculation about MDb collisions
Is controversial and non-scientific,
and creates confusion on the
state of the art. Recommending
alternative hash functions is at
the very least quite premature.”

Clearly not a real cryptographer.

Maybe a standards organization.

Now Im:
saying tl
are wors
cryptogr



ure attacks? Imagine someone responding: Now imagine a rel
, “This is completely out of line. saying that all of t
osselaers— | )

160 The attack by Dobbertin does are worse than “pi
<ion -of not break any normal usage of cryptographic hasl

MD?5, so what exactly is the

inticipated that | o |
point of preventing it? This

an be used to
for MD5 and
IPEMD. This

re an additional

speculation about MD5 collisions
Is controversial and non-scientific,
and creates confusion on the

state of the art. Recommending
nger seems as

. alternative hash functions is at
a year ago. | )
the very least quite premature.

ollisions “should

rade “when Clearly not a real cryptographer.

— Maybe a standards organization.
enient .




s7

| that
d to
nd
“his
tional
S as

should

N

Imagine someone responding:
“This is completely out of line.
The attack by Dobbertin does
not break any normal usage of
MD?5, so what exactly Is the
point of preventing it? This
speculation about MDb5 collisions
Is controversial and non-scientific,
and creates confusion on the
state of the art. Recommending
alternative hash functions is at
the very least quite premature.”

Clearly not a real cryptographer.

Maybe a standards organization.

Now imagine a religious fan:
saying that all of these func
are worse than “provably sec
cryptographic hash function:



Imagine someone responding: Now imagine a religious fanatic
“This is completely out of line. saying that all of these functions
The attack by Dobbertin does are worse than “provably secure”
not break any normal usage of cryptographic hash functions.

MD?5, so what exactly is the
point of preventing it? This
speculation about MD5 collisions
Is controversial and non-scientific,
and creates confusion on the
state of the art. Recommending
alternative hash functions is at
the very least quite premature.”

Clearly not a real cryptographer.

Maybe a standards organization.




Imagine someone responding:
“This i1s completely out of line.
The attack by Dobbertin does
not break any normal usage of
MD?5, so what exactly is the
point of preventing it? This

speculation about MD5 collisions
Is controversial and non-scientific,
and creates confusion on the
state of the art. Recommending
alternative hash functions is at
the very least quite premature.”

Clearly not a real cryptographer.

Maybe a standards organization.

Now imagine a religious fanatic

saying that all of these functions

are worse than “provably secure”

cryptographic hash functions.

1991 “provably secure” example,

Chaum—-van Helijst—Pfitzmann:

Choose p sensibly.
Define C(x, y) = 49 moc

for suitable ranges of x anc

p
V.

Simple, beautiful, structured.

Very easy security reduction:

finding C collision implies

computing a discrete logarithm.



someone responding:
completely out of line.
ick by Dobbertin does

k any normal usage of

) what exactly Is the
preventing it? This

ion about MD5 collisions
ywversial and non-scientific,
tes confusion on the

the art. Recommending
ve hash functions is at
least quite premature.”

1ot a real cryptographer.
 standards organization.

Now imagine a religious fanatic
saying that all of these functions
are worse than “provably secure”
cryptographic hash functions.

1991 “provably secure”™ example,
Chaum—-van Heljst—Pfitzmann:

Choose p sensibly.
Define C(x, y) = 49 mod p
for suitable ranges of x and y.

Simple, beautiful, structured.
Very easy security reduction:
finding C collision implies
computing a discrete logarithm.

CvHP is
Horrible
Far wors
standarc
compres

Security
1922 Kr
1986 Co
Schroep
1993 Go
1993 Sc
1994 Sh



responding:

y out of line.
obertin does
mal usage of
ctly i1s the

o 1t? This
MD5 collisions
d non-scientific,
sion on the
'ecommending
Inctions Is at

e premature.”

cryptographer.
s organization.

Now imagine a religious fanatic
saying that all of these functions
are worse than “provably secure”
cryptographic hash functions.

1991 “provably secure”™ example,
Chaum—-van Heljst—Pfitzmann:

Choose p sensibly.
Define C(x, y) = 49 mod p
for suitable ranges of x and y.

Simple, beautiful, structured.
Very easy security reduction:
finding C collision implies
computing a discrete logarithm.

CvHP is very bad

Horrible security fi
Far worse security
standard “unstruc
compression-funct

Security losses in
1922 Kraitchik (in

1986 Coppersmith
Schroeppel (NFS |
1993 Gordon (gen
1993 Schirokauer
1994 Shor (quantt



sions
*ntific,

o)

ding
at

re.

Yher.
tion.

Now imagine a religious fanatic
saying that all of these functions
are worse than “provably secure”
cryptographic hash functions.

1991 “provably secure”™ example,
Chaum—-van Heljst—Pfitzmann:

Choose p sensibly.
Define C(x, y) = 49 mod p
for suitable ranges of x and y.

Simple, beautiful, structured.
Very easy security reduction:
finding C collision implies
computing a discrete logarithm.

CvHP is very bad cryptogra,
Horrible security for its spee
Far worse security record th:

standard “unstructurec

compression-function design

Security losses in C include
1922 Kraitchik (index calcul

1986 Coppersmith—Odlyzko-
Schroeppel (NFS predecessc
1993 Gordon (general DL N
1993 Schirokauer (faster NF
1994 Shor (quantum poly ti



Now imagine a religious fanatic
saying that all of these functions
are worse than “provably secure”
cryptographic hash functions.

1991 “provably secure”™ example,
Chaum—-van Heljst—Pfitzmann:

Choose p sensibly.
Define C(x, y) = 49 mod p
for suitable ranges of x and y.

Simple, beautiful, structured.
Very easy security reduction:
finding C collision implies
computing a discrete logarithm.

CvHP is very bad cryptography.
Horrible security for its speed.
Far worse security record than

standard “unstructurec

compression-function designs.

Security losses in C include
1922 Kraitchik (index calculus);
1986 Coppersmith—Odlyzko—
Schroeppel (NFS predecessor);
1993 Gordon (general DL NFS);

1993 Schirokauer (faster NFS);
1994 Shor (quantum poly time).



Now imagine a religious fanatic
saying that all of these functions
are worse than “provably secure”
cryptographic hash functions.

1991 “provably secure”™ example,
Chaum—-van Heljst—Pfitzmann:

Choose p sensibly.
Define C(x, y) = 49 mod p
for suitable ranges of x and y.

Simple, beautiful, structured.
Very easy security reduction:
finding C collision implies
computing a discrete logarithm.

CvHP is very bad cryptography.
Horrible security for its speed.
Far worse security record than

standard “unstructurec

compression-function designs.

Security losses in C include
1922 Kraitchik (index calculus);
1986 Coppersmith—Odlyzko—
Schroeppel (NFS predecessor);
1993 Gordon (general DL NFS);

1993 Schirokauer (faster NFS);
1994 Shor (quantum poly time).

Imagine someone in 1991 saying
"DL security is well understood” .



gine a religious fanatic
1at all of these functions
e than “provably secure”
aphic hash functions.

rovably secure” example,
van Heljst=Pfitzmann:

p sensibly.
(x,y) =4%9Y mod p

ble ranges of x and y.

beautiful, structured.

y security reduction:

_ collision implies

ng a discrete logarithm.

CvHP is very bad cryptography.
Horrible security for its speed.
Far worse security record than

standard “unstructurec

compression-function designs.

Security losses in C include
1922 Kraitchik (index calculus);
1986 Coppersmith—Odlyzko—
Schroeppel (NFS predecessor);
1993 Gordon (general DL NFS);

1993 Schirokauer (faster NFS);
1994 Shor (quantum poly time).

Imagine someone in 1991 saying

"DL security is well understood”.

We still
pre-quar
Which L



igious fanatic
hese functions
-ovably secure”
1 functions.

cure’ example,

—Pfitzmann:

197 mod p

of x and y.

structured.
reduction:
implies

ote logarithm.

CvHP is very bad cryptography.
Horrible security for its speed.
Far worse security record than

standard “unstructurec

compression-function designs.

Security losses in C include
1922 Kraitchik (index calculus);
1986 Coppersmith—Odlyzko—
Schroeppel (NFS predecessor);
1993 Gordon (general DL NFS);
1993 Schirokauer (faster NFS);

1994 Shor (quantum poly time).

Imagine someone in 1991 saying

"DL security is well understood” .

We still use discre

pre-guantum publ
Which DL groups



atic
tions

“ure’

nple,

1N

hm.

CvHP is very bad cryptography.
Horrible security for its speed.
Far worse security record than

standard “unstructurec

compression-function designs.

Security losses in C include
1922 Kraitchik (index calculus);

1986 Coppersmith—Odlyzko-—
Schroeppel (NFS predecessor);
1993 Gordon (general DL NFS);

1993 Schirokauer (faster NFS);
1994 Shor (quantum poly time).

Imagine someone in 1991 saying

"DL security is well understood”.

We still use discrete logs for
pre-quantum public-key cryj
Which DL groups are best?



CvHP is very bad cryptography.

Horrible security for its speed.

Far worse security record than

standard “unstructured”

compression-function ¢

esigns.

Security losses in C include
1922 Kraitchik (index calculus);

1986 Coppersmith—OdI

yzko—

Schroeppel (NFS predecessor);
1993 Gordon (general DL NFS);
1993 Schirokauer (faster NFS);

1994 Shor (quantum poly time).

Imagine someone in 19

"DL security is well understood” .

91 saying

We still use discrete logs for
pre-quantum public-key crypto.
Which DL groups are best?



CvHP is very bad cryptography.

Horrible security for its speed.

Far worse security record than

standard “unstructurec

compression-function ¢

esigns.

Security losses in C include
1922 Kraitchik (index calculus);
1986 Coppersmith—Odlyzko—
Schroeppel (NFS predecessor);
1993 Gordon (general DL NFS);

1993 Schirokauer (faster NFS);
1994 Shor (quantum poly time).

Imagine someone in 1991 saying

"DL security is well understood” .

We still use discrete logs for

pre-quantum public-key crypto.
Which DL groups are best?

1986 Miller proposes ECC.

Gives detai
iIndex calcu
to work on

ed arguments that

us “Is not likely
elliptic curves.”



CvHP is very bad cryptography.
Horrible security for its speed.
Far worse security record than

standard “unstructurec

compression-function designs.

Security losses in C include
1922 Kraitchik (index calculus);
1986 Coppersmith—Odlyzko—
Schroeppel (NFS predecessor);
1993 Gordon (general DL NFS);

1993 Schirokauer (faster NFS);
1994 Shor (quantum poly time).

Imagine someone in 1991 saying

"DL security is well understood” .

We still use discrete logs for
pre-quantum public-key crypto.
Which DL groups are best?

1986 Miller proposes ECC.
Gives detailed arguments that

index calculus “is not likely
to work on elliptic curves.”

1997 Rivest: “Over time, this
may change, but for now trying to
get an evaluation of the security
of an elliptic-curve cryptosystem
Is a bit like trying to get an
evaluation of some recently
discovered Chaldean poetry.”



very bad cryptography.
security for its speed.
e security record than

| “unstructuread

sion-function designs.

losses in C include
aitchik (index calculus);
ppersmith—Odlyzko—

pel (NFS predecessor);
rdon (general DL NFS);

hirokauer (faster NFS);
or (quantum poly time).

someone In 1991 saying

urity 1s well understood" .

We still use discrete logs for
pre-quantum public-key crypto.
Which DL groups are best?

1986 Miller proposes ECC.
Gives detailed arguments that

index calculus “is not likely
to work on elliptic curves.”

1997 Rivest: “Over time, this
may change, but for now trying to
get an evaluation of the security
of an elliptic-curve cryptosystem
Is a bit like trying to get an
evaluation of some recently
discovered Chaldean poetry.”

Are RS/
These sy

enabling
Many oy
Attacks
>100 sc
Still mai

How ma
the stat



cryptography.
or Its speed.
record than

turec

jon designs.

C include

dex calculus);
—QOdlyzko—
predecessor);
eral DL NFS);

(faster NFS);
im poly time).

in 1991 saying

|| understood’' .

We still use discrete logs for
pre-quantum public-key crypto.
Which DL groups are best?

1986 Miller proposes ECC.
Gives detailed arguments that

index calculus “Is not likely
to work on elliptic curves.”

1997 Rivest: “Over time, this
may change, but for now trying to
get an evaluation of the security
of an elliptic-curve cryptosystem
Is a bit like trying to get an
evaluation of some recently
discovered Chaldean poetry.”

Are RSA, DSA, et
These systems hay
enabling attacks s
Many optimizatior
Attacks keep getti
>100 scientific pa
Still many unexplc

How many people
the state of the ar



ohy.

AN

We still use discrete logs for
pre-quantum public-key crypto.
Which DL groups are best?

1986 Miller proposes ECC.
Gives detailed arguments that

index calculus “is not likely
to work on elliptic curves.”

1997 Rivest: “Over time, this
may change, but for now trying to
get an evaluation of the security
of an elliptic-curve cryptosystem
Is a bit like trying to get an
evaluation of some recently
discovered Chaldean poetry.”

Are RSA, DSA, etc. less sca
These systems have structur
enabling attacks such as NF
Many optimization avenues.
Attacks keep getting better.
>100 scientific papers.

Still many unexplored avenu

How many people understar
the state of the art?



We still use discrete logs for

pre-quantum public-key crypto.

Which DL groups are best?

1986 Miller proposes ECC.
Gives detailed arguments that

index calculus “Is not likely
to work on elliptic curves.”

1997 Rivest: “Over time, this

may change, but for now trying to
get an evaluation of the security
of an elliptic-curve cryptosystem

Is a bit like trying to get an
evaluation of some recently
discovered Chaldean poetry.”

Are RSA, DSA, etc. less scary?
These systems have structure
enabling attacks such as NFS.
Many optimization avenues.
Attacks keep getting better.
>100 scientific papers.

Still many unexplored avenues.

How many people understand
the state of the art?



We still use discrete logs for
pre-quantum public-key crypto.
Which DL groups are best?

1986 Miller proposes ECC.
Gives detailed arguments that

index calculus “Is not likely
to work on elliptic curves.”

1997 Rivest: “Over time, this
may change, but for now trying to
get an evaluation of the security
of an elliptic-curve cryptosystem
Is a bit like trying to get an
evaluation of some recently
discovered Chaldean poetry.”

Are RSA, DSA, etc. less scary?
These systems have structure
enabling attacks such as NFS.
Many optimization avenues.
Attacks keep getting better.
>100 scientific papers.

Still many unexplored avenues.

How many people understand
the state of the art?

Recurring themes in attacks:
factorizations of ring elements;
ring automorphisms; subfields;

extending applicability (even to
some curves!) via group maps.



use discrete logs for
1itum public-key crypto.
)L groups are best?

ller proposes ECC.
tailed arguments that

lculus “is not likely
on elliptic curves.”

rest: “Over time, this
nge, but for now trying to
valuation of the security
Iptic-curve cryptosystem
Ike trying to get an

on of some recently

ed Chaldean poetry.”

Are RSA, DSA, etc. less scary?
These systems have structure
enabling attacks such as NFS.
Many optimization avenues.
Attacks keep getting better.
>100 scientific papers.

Still many unexplored avenues.

How many people understand
the state of the art?

Recurring themes in attacks:
factorizations of ring elements;
ring automorphisms; subfields;

extending applicability (even to
some curves!) via group maps.

Which E

2005 Be
“have tf
the num
for ellipt

2005 EC
“Some ¢
exist abe
attacks

recommit

fields.”



te logs for
ic-key crypto.
are best?

ses ECC.
iments that
not likely
curves."

r time, this

or now trying to
of the security

> Cryptosystem
to get an

> recently

an poetry.”

Are RSA, DSA, etc. less scary?
These systems have structure
enabling attacks such as NFS.
Many optimization avenues.
Attacks keep getting better.
>100 scientific papers.

Still many unexplored avenues.

How many people understand
the state of the art?

Recurring themes in attacks:
factorizations of ring elements;
ring automorphisms; subfields;

extending applicability (even to
some curves!) via group maps.

Which ECC fields

2005 Bernstein: p
“have the virtue o
the number of sec
for elliptic-curve c

2005 ECRYPT ke

“Some general col
exist about possib
attacks ... Asaf
recommend curves
fields.” No extra :



to.

at

IS

Ing to
urity
stem

Are RSA, DSA, etc. less scary?
These systems have structure
enabling attacks such as NFS.
Many optimization avenues.
Attacks keep getting better.
>100 scientific papers.

Still many unexplored avenues.

How many people understand
the state of the art?

Recurring themes in attacks:
factorizations of ring elements;
ring automorphisms; subfields;

extending applicability (even to
some curves!) via group maps.

Which ECC fields do we use

2005 Bernstein: prime fields
“have the virtue of minimizi
the number of security conc
for elliptic-curve cryptograpl

2005 ECRYPT key-sizes rep

“Some general concerns
exist about possible future
attacks ... As a first choice
recommend curves over prin
flelds.” No extra automorph



Are RSA, DSA, etc. less scary?
These systems have structure
enabling attacks such as NFS.
Many optimization avenues.
Attacks keep getting better.
>100 scientific papers.

Still many unexplored avenues.

How many people understand
the state of the art?

Recurring themes in attacks:
factorizations of ring elements;
ring automorphisms; subfields;

extending applicability (even to
some curves!) via group maps.

Which ECC fields do we use?

2005 Bernstein: prime fields
“have the virtue of minimizing
the number of security concerns
for elliptic-curve cryptography.”

2005 ECRYPT key-sizes report:
“Some general concerns

exist about possible future
attacks ... As a first choice, we
recommend curves over prime
flelds.” No extra automorphisms.



Are RSA, DSA, etc. less scary?
These systems have structure
enabling attacks such as NFS.
Many optimization avenues.
Attacks keep getting better.
>100 scientific papers.

Still many unexplored avenues.

How many people understand
the state of the art?

Recurring themes in attacks:
factorizations of ring elements;
ring automorphisms; subfields;

extending applicability (even to
some curves!) via group maps.

Which ECC fields do we use?

2005 Bernstein: prime fields
“have the virtue of minimizing
the number of security concerns
for elliptic-curve cryptography.”

2005 ECRYPT key-sizes report:
“Some general concerns

exist about possible future
attacks ... As a first choice, we
recommend curves over prime
flelds.” No extra automorphisms.

Imagine a response: “That's
premature! E(Fon) isn't broken!”



\, DSA, etc. less scary?
/stems have structure
“attacks such as NFS.
ytimization avenues.
keep getting better.
lentific papers.

1y unexplored avenues.

ny people understand
> of the art?

g themes in attacks:
tions of ring elements;
omorphisms; subfields;

g applicability (even to
rves!) via group maps.

Which ECC fields do we use?

2005 Bernstein: prime fields
“have the virtue of minimizing
the number of security concerns
for elliptic-curve cryptography.”

2005 ECRYPT key-sizes report:
“Some general concerns

exist about possible future
attacks ... As a first choice, we
recommend curves over prime

flelds.” No extra automorphisms.

Imagine a response: “That's

premature! E(Fon) isn't broken!”

Last exa
Halevi—F
“Candid
obfuscat
encrypti

UCLA p
to Sahai
techniqu
presente
forcing :
effort, p.
to revers
The new
an ‘iron
in the fis



c. less scary?
/e structure
uch as NFS.
1 avenues.
ng better.
pers.

red avenues.

understand
t7

In attacks:
ng elements;
1s: subfields:
ility (even to
group maps.

Which ECC fields do we use?

2005 Bernstein: prime fields
“have the virtue of minimizing
the number of security concerns
for elliptic-curve cryptography.”

2005 ECRYPT key-sizes report:
“Some general concerns

exist about possible future
attacks ... As a first choice, we
recommend curves over prime

flelds.” No extra automorphisms.

Imagine a response: “That's

premature! E(Fpn) isn't broken!”

Last example: 201
Halevi—Raykova—S
“Candidate indisti
obfuscation and ft
encryption for all

UCLA press releas
to Sahai, previous|
techniques for obf
presented only a
forcing an attacke
effort, perhaps a f:
to reverse-enginee
The new system, |
an ‘iron wall" ... :

in the field of cryg



ry’?

d

tS;
Is:
| tO

0S.

Which ECC fields do we use?

2005 Bernstein: prime fields
“have the virtue of minimizing
the number of security concerns
for elliptic-curve cryptography.”

2005 ECRYPT key-sizes report:
“Some general concerns

exist about possible future
attacks ... As a first choice, we
recommend curves over prime

flelds.” No extra automorphisms.

Imagine a response: “That's

premature! E(Fon) isn't broken!”

Last example: 2013 Garg—G
Halevi—Raykova—Sahai—\Wat:
“Candidate indistinguishabil
obfuscation and functional
encryption for all circuits”.

UCLA press release: “Accor
to Sahai, previously develop
techniques for obfuscation

presented only a ‘speed bumn
forcing an attacker to spend
effort, perhaps a few days, t
to reverse-engineer the softv
The new system, he said, pt
an ‘iron wall' ... a game-ch
in the field of cryptography.



Which ECC fields do we use?

2005 Bernstein: prime fields
“have the virtue of minimizing
the number of security concerns
for elliptic-curve cryptography.”

2005 ECRYPT key-sizes report:
“Some general concerns

exist about possible future
attacks ... As a first choice, we
recommend curves over prime

flelds.” No extra automorphisms.

Imagine a response: “That's

premature! E(Fyn) isn't broken!”

Last example: 2013 Garg—Gentry—
Halevi—Raykova—Sahai—\Waters
“Candidate indistinguishability
obfuscation and functional
encryption for all circuits”.

UCLA press release: “According
to Sahai, previously developed
techniques for obfuscation
presented only a ‘speed bump,’
forcing an attacker to spend some
effort, perhaps a few days, trying
to reverse-engineer the software.
The new system, he said, puts up
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in the field of cryptography.”
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“A subfield lattice attack on

overstretched NTRU assumptions:

Cryptanalysis of some FHE and
Graded Encoding Schemes” use
norms go(g), and independently
2016 Cheon—Jeong—Lee (“The
main technique of our algorithm
is the reduction of a problem on

a field to one in a subfield”) use

traces g + o(g), where o is

an order-2 automorphism.
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