The post-quantum Internet
Daniel J. Bernstein

University of lllinois at Chicago &
Technische Universiteit Eindhoven

Includes joint work with:
Tanja Lange

Technische Universiteit Eindhoven

IP: Internet Protocol

IP communicates “packets’:
limited-length byte strings.

Each computer on the Internet
has a 4-byte “IP address’.

e.g. Www.pqcrypto.org has
address 131.155.70.11.

Your browser creates a packet
addressed to 131.155.70.11;
gives packet to the Internet.

Hopefully the Internet delivers
that packet to 131.155.70.11.

t-quantum Internet
. Bernstein

ty of lllinois at Chicago &
he Universiteit Eindhoven

joint work with:
inge

he Universiteit Eindhoven

|P: Internet Protocol

IP communicates “packets’:
limited-length byte strings.

Each computer on the Internet
has a 4-byte “IP address’.

e.g. Www.pqcrypto.org has
address 131.155.70.11.

Your browser creates a packet
addressed to 131.155.70.11;
gives packet to the Internet.
Hopefully the Internet delivers
that packet to 131.155.70.11.

DNS: D

You actl
connect

Browser
by askin
the pqc:

Browser
“Where

1 Internet
N

is at Chicago &
siteit Eindhoven

< With:

siteit Eindhoven

IP: Internet Protocol

IP communicates “packets’:
limited-length byte strings.

Each computer on the Internet
has a 4-byte “IP address’.

e.g. Www.pqcrypto.org has
address 131.155.70.11.

Your browser creates a packet
addressed to 131.155.70.11;
gives packet to the Internet.
Hopefully the Internet delivers
that packet to 131.155.70.11.

DNS: Domain Nat

You actually told
connect to www. pe«

Browser learns "1:
by asking a name
the pgcrypto.or,

Browser — 131.1

"Where is www.p

g0 &
hoven

hoven

|P: Internet Protocol

IP communicates “packets’:
limited-length byte strings.

Each computer on the Internet
has a 4-byte “IP address’.

e.g. Www.pqcrypto.org has
address 131.155.70.11.

Your browser creates a packet
addressed to 131.155.70.11;
gives packet to the Internet.
Hopefully the Internet delivers
that packet to 131.155.70.11.

DNS: Domain Name Systen

You actually told your brow:
connect to www.pqcrypto.:

Browser learns “131.155.7
by asking a name server,
the pgcrypto.org name se

Browser — 131.155.71.14

"Where is www.pqcrypto.

IP: Internet Protocol

IP communicates “packets’:
limited-length byte strings.

Each computer on the Internet
has a 4-byte “IP address’.

e.g. Www.pqcrypto.org has
address 131.155.70.11.

Your browser creates a packet
addressed to 131.155.70.11;
gives packet to the Internet.
Hopefully the Internet delivers
that packet to 131.155.70.11.

DNS: Domain Name System

You actually told your browser to
connect to www.pqcrypto.org.

Browser learns “131.155.70.11"
by asking a name server,
the pgcrypto.org name server.

Browser — 131.155.71.143:

"Where is www.pgcrypto.org?’

IP: Internet Protocol

IP communicates “packets’:
limited-length byte strings.

Each computer on the Internet
has a 4-byte “IP address’.

e.g. Www.pqcrypto.org has
address 131.155.70.11.

Your browser creates a packet
addressed to 131.155.70.11;
gives packet to the Internet.

Hopefully the Internet delivers

that packet to 131.155.70.11.

DNS: Domain Name System

You actually told your browser to
connect to www.pqcrypto.org.

Browser learns “131.155.70.11"
by asking a name server,
the pgcrypto.org name server.

Browser — 131.155.71.143:

"Where is www.pgcrypto.org?’

|IP packet from browser also
iIncludes a return address:
the address of your computer.

131.155.71.143 — browser:
"131.155.70.117

net Protocol DNS: Domain Name System Browser
- [N N dd !
unicates “packets’: You actually told your browser to Z reljs
ength byte strings. connect to www.pqcrypto.org. y askin
B

mputer on the Internet Browser learns “131.155.70.11" FOWSET
¥ " . “Where

byte “IP address™. by asking a name server,

.pgcrypto.org has the pgcrypto.org name server. 199.19.
131.155.70.11. "Ask th
3 0. 10 Browser — 131.155.71.143: SK T

y . , name se
wser creates a packet Where is www.pgcrypto.org?

d to 131.155.70.11;

IP packet from browser also
cket to the Internet.

| includes a return address:
y the Internet delivers

the address of your computer.
ket to 131.155.70.11.

131.155.71.143 — browser:
"131.155.70.11"7

col

“packets’ :
> strings.

the Internet
ddress’ .

o.org has
70.11.

tes a packet
155.70.11;
e [nternet.

rnet delivers

| .155.70.11.

DNS: Domain Name System

You actually told your browser to
connect to www.pqcrypto.org.

Browser learns “131.155.70.11"
by asking a name server,

the pgcrypto.org name server.

Browser — 131.155.71.143:

"Where is www.pqcrypto.org?’

|IP packet from browser also
iIncludes a return address:
the address of your computer.

131.155.71.143 — browser:
"131.155.70.11"7

Browser learns the
address, “131.15°¢
by asking the .or

Browser — 199.1

"Where is www.p

199.19.54.1 — |
"Ask the pqcryp

name server, 13

net

et

IS

.11,

DNS: Domain Name System

You actually told your browser to

connect to www.pqcrypto.org.

Browser learns “131.155.70.11"
by asking a name server,

the pgcrypto.org name server.

Browser — 131.155.71.143:

"Where is www.pqcrypto.org?’

IP packet from browser also
includes a return address:

the address of your computer.

131.155.71.143 — browser:
"131.155.70.11"7

Browser learns the name-ser
address, “131.155.71.143
by asking the .org name se

Browser — 199.19.54.1:

"Where is www.pqgcrypto.

199.19.54.1 — browser:
"Ask the pqcrypto.org

name server, 131.155.71

DNS: Domain Name System

You actually told your browser to

connect to www.pqcrypto.org.

Browser learns “131.155.70.11"
by asking a name server,

the pgcrypto.org name server.

Browser — 131.155.71.143:

"Where is www.pgcrypto.org?’

|IP packet from browser also
iIncludes a return address:
the address of your computer.

131.155.71.143 — browser:
"131.155.70.117

Browser learns the name-server
address, “131.155.71.143"

by asking the .org name server.

Browser — 199.19.54.1:

"Where is www.pqcrypto.org?’

199.19.54.1 — browser:

"Ask the pqcrypto.org
name server, 131.155.71.143"

DNS: Domain Name System

You actually told your browser to

connect to www.pqcrypto.org.

Browser learns “131.155.70.11"
by asking a name server,

the pgcrypto.org name server.

Browser — 131.155.71.143:

"Where is www.pgcrypto.org?’

|IP packet from browser also
iIncludes a return address:
the address of your computer.

131.155.71.143 — browser:
"131.155.70.117

Browser learns the name-server
address, “131.155.71.143"

by asking the .org name server.

Browser — 199.19.54.1:

"Where is www.pqcrypto.org?’

199.19.54.1 — browser:

"Ask the pqcrypto.org
name server, 131.155.71.143"

Browser learns “199.19.54.1",
the .org server address,
by asking the root name server.

DNS: Domain Name System

You actually told your browser to

connect to www.pqcrypto.org.

Browser learns “131.155.70.11"
by asking a name server,

the pgcrypto.org name server.

Browser — 131.155.71.143:

"Where is www.pgcrypto.org?’

|IP packet from browser also
iIncludes a return address:
the address of your computer.

131.155.71.143 — browser:
"131.155.70.117

Browser learns the name-server
address, “131.155.71.143"

by asking the .org name server.

Browser — 199.19.54.1:

"Where is www.pqcrypto.org?’

199.19.54.1 — browser:

"Ask the pqcrypto.org
name server, 131.155.71.143"

Browser learns “199.19.54.1",
the .org server address,
by asking the root name server.

Browser learned root address
by consulting the Bible.

omain Name System

jally told your browser to
to www.pqcrypto.org.

learns “131.155.70.11"
g a name server,

rypto.org name server.

— 131.155.71.143:

is www.pgcrypto.org?’

t from browser also
a return address:
ess of your computer.

. 71.143 — browser:
5.70.11"

Browser learns the name-server
address, “131.155.71.143"
by asking the .org name server.

Browser — 199.19.54.1:

"Where is www.pqcrypto.org?’

199.19.54.1 — browser:
"Ask the pqcrypto.org
name server, 131.155.71.143"

Browser learns “199.19.54.1",
the .org server address,
by asking the root name server.

Browser learned root address
by consulting the Bible.

TCP: Tr

Packets

(Actuall
Oldest |
>576. L
often 15

ne System

your browser to
jcrypto.org.

31.155.70.11"
server,

T name server.

55.71.143:
gqcrypto.org?”

wser also
yddress:
r computer.

— browser:

Browser learns the name-server
address, “131.155.71.143"
by asking the .org name server.

Browser — 199.19.54.1:

"Where is www.pqcrypto.org?’

199.19.54.1 — browser:
"Ask the pqcrypto.org
name server, 131.155.71.143"

Browser learns “199.19.54.1",
the .org server address,
by asking the root name server.

Browser learned root address
by consulting the Bible.

TCP: Transmissiol

Packets are [imite

(Actually depends
Oldest IP standarc
>576. Usually 14
often 1500, somet

ser to

oTrg.

0.11"

rver.

Browser learns the name-server
address, “131.155.71.143"
by asking the .org name server.

Browser — 199.19.54.1:

"Where is www.pqcrypto.org?’

199.19.54.1 — browser:
"Ask the pqcrypto.org
name server, 131.155.71.143"

Browser learns “199.19.54.1",
the .org server address,
by asking the root name server.

Browser learned root address
by consulting the Bible.

TCP: Transmission Control

Packets are limited to 1280

(Actually depends on netwo
Oldest |IP standards requirec

>576. Usually 1492 is safe,
often 1500, sometimes more

Browser learns the name-server
address, “131.155.71.143"
by asking the .org name server.

Browser — 199.19.54.1:

"Where is www.pqcrypto.org?’

199.19.54.1 — browser:
"Ask the pqcrypto.org
name server, 131.155.71.143"

Browser learns “199.19.54.1",
the .org server address,
by asking the root name server.

Browser learned root address
by consulting the Bible.

TCP: Transmission Control Protocol

Packets are limited to 1280 bytes.

(Actually depends on network.
Oldest |IP standards required

>576. Usually 1492 is safe,
often 1500, sometimes more.)

Browser learns the name-server
address, “131.155.71.143"
by asking the .org name server.

Browser — 199.19.54.1:

"Where is www.pqcrypto.org?’

199.19.54 .1 — browser:

"Ask the pqcrypto.org
name server, 131.155.71.143"

Browser learns “199.19.54.1",
the .org server address,
by asking the root name server.

Browser learned root address
by consulting the Bible.

TCP: Transmission Control Protocol

Packets are limited to 1280 bytes.

(Actually depends on network.
Oldest |IP standards required

>576. Usually 1492 is safe,
often 1500, sometimes more.)

The page you're downloading
from pgcrypto.org doesn't fit.

5

Browser learns the name-server
address, “131.155.71.143"
by asking the .org name server.

Browser — 199.19.54.1:

"Where is www.pqcrypto.org?’

199.19.54.1 — browser:
"Ask the pqcrypto.org
name server, 131.155.71.143"

Browser learns “199.19.54.1",
the .org server address,
by asking the root name server.

Browser learned root address
by consulting the Bible.

5
TCP: Transmission Control Protocol

Packets are limited to 1280 bytes.

(Actually depends on network.
Oldest |IP standards required
>576. Usually 1492 is safe,

often 1500, sometimes more.)

The page you're downloading
from pgcrypto.org doesn't fit.

Browser actually makes “TCP
connection’ to pgcrypto.org.
Inside that connection: sends

HT TP request, receives response.

learns the name-server
“131.155.71.143",
g the .org name server.

— 199.19.54.1:

is www.pqcrypto.org?”

54 .1 — browser:

e pgcrypto.org
rver, 131.155.71.143"

learns “199.19.54.1"
> server address,
g the root name server.

learned root address
llting the Bible.

TCP: Transmission Control Protocol

Packets are limited to 1280 bytes.

(Actually depends on network.
Oldest |IP standards required
>576. Usually 1492 is safe,

often 1500, sometimes more.)

The page you're downloading
from pgcrypto.org doesn't fit.

Browser actually makes “TCP
connection’ to pgcrypto.org.
Inside that connection: sends

HT TP request, receives response.

5

Browser
“SYN 16

Server —
“ACK 16

Browser
“ACK 74

Server n
for this

Browser
counting

Server s
counting

' name-server
5.71.143",
o name server.

9.54.1:
gcrypto.org?’

Drowser:

to.org
1.155.71.143"

09.19.54 .17
ldress,
name server.

yot address
Bible.

TCP: Transmission Control Protocol

Packets are limited to 1280 bytes.

(Actually depends on network.
Oldest |IP standards required

>576. Usually 1492 is safe,
often 1500, sometimes more.)

The page you're downloading
from pgcrypto.org doesn't fit.

Browser actually makes “TCP
connection’ to pgcrypto.org.
Inside that connection: sends

HT TP request, receives response.

5

Browser — server:
“SYN 168bb5d9”

Server — browser:
“ACK 168bbbda,

Browser — server:
“ACK 747bfad2"”

Server now allocat
for this TCP conn

Browser splits dat
counting bytes fro

Server splits data
counting bytes fro

ver

rver.

org?’

.143"

.1”,

Ver.

TCP: Transmission Control Protocol

Packets are limited to 1280 bytes.

(Actually depends on network.
Oldest |IP standards required
>576. Usually 1492 is safe,

often 1500, sometimes more.)

The page you're downloading
from pgcrypto.org doesn't fit.

Browser actually makes “TCP
connection’ to pgcrypto.org.
Inside that connection: sends

HT TP request, receives response.

5

Browser — server:
“SYN 168bbb5d9”

Server — browser:
“ACK 168bbbda, SYN 747Db1

Browser — server:
“ACK T7T47bfad2"”

Server now allocates buffers
for this TCP connection.

Browser splits data into pac
counting bytes from 168bbt

Server splits data into packe
counting bytes from 747bfa

TCP: Transmission Control Protocol

Packets are limited to 1280 bytes.

(Actually depends on network.
Oldest |IP standards required

>576. Usually 1492 is safe,
often 1500, sometimes more.)

The page you're downloading
from pgcrypto.org doesn't fit.

Browser actually makes “TCP
connection’ to pgcrypto.org.
Inside that connection: sends

HT TP request, receives response.

5

Browser — server:
“SYN 168bb5d9o”

Server — browser:
“ACK 168bbbda, SYN 747bfadl”

Browser — server:
“ACK 747bfad2"”

Server now allocates buffers
for this TCP connection.

Browser splits data into packets,
counting bytes from 168bbbda.

Server splits data into packets,
counting bytes from 747bfa42.

ansmission Control Protocol

are limited to 1280 bytes.

y depends on network.
P standards required

Jsually 1492 is safe,
00, sometimes more.)

e you re downloading
crypto.org doesn't fit.

actually makes “TCP
on’ to pgcrypto.org.
at connection: sends
equest, receives response.

5

Browser — server:
“SYN 168bbb5d9”

Server — browser:
“ACK 168bbbda, SYN 747bfadl”

Browser — server:
“ACK T7T47bfad2"”

Server now allocates buffers
for this TCP connection.

Browser splits data into packets,
counting bytes from 168bbbda.

Server splits data into packets,
counting bytes from 747bfa42.

Main fe:
“reliable

Internet
or delive
Doesn't
compute
Inside ec

Comput
if data I
Complic
retransn
avoiding

1 Control Protocol

] to 1280 bytes.

on network.
Is required
)2 Is safe,
imes more.)

ownloading
rg doesn't fit.

nakes “TCP
crypto.org.
tion: sends

Celves response.

Browser — server:
“SYN 168bb5d9o”

Server — browser:
“ACK 168bbbda, SYN 747bfadl”

Browser — server:
“ACK 747bfad2"”

Server now allocates buffers
for this TCP connection.

Browser splits data into packets,
counting bytes from 168bbbda.

Server splits data into packets,
counting bytes from 747bfa42.

Main feature adve
“reliable data stre

Internet sometime
or delivers packets
Doesn’'t confuse T

computer checks t
inside each TCP ¢

Computer retranst
if data is not ackn
Complicated rules
retransmission sch
avoiding network

Protocol

bytes.

k.
|

)ONSE.

5

Browser — server:
“SYN 168bb5d9”

Server — browser:
“ACK 168bbbda, SYN 747bfadl”

Browser — server:
“ACK T7T47bfad2"”

Server now allocates buffers
for this TCP connection.

Browser splits data into packets,
counting bytes from 168bbbda.

Server splits data into packets,
counting bytes from 747bfa42.

Main feature advertised by -
“reliable data streams’ .

Internet sometimes loses pat
or delivers packets out of or
Doesn't confuse TCP conne
computer checks the counte
inside each TCP packet.

Computer retransmits data

if data is not acknowledged.
Complicated rules to decide
retransmission schedule,

avolding network congestion

Browser — server:
“SYN 168bb5d9o”

Server — browser:
“ACK 168bbbda, SYN 747bfadl”

Browser — server:
“ACK 747bfad2"”

Server now allocates buffers
for this TCP connection.

Browser splits data into packets,
counting bytes from 168bbbda.

Server splits data into packets,
counting bytes from 747bfa42.

Main feature advertised by TCP:
“reliable data streams’.

Internet sometimes loses packets
or delivers packets out of order.
Doesn’t confuse TCP connections:
computer checks the counter
inside each TCP packet.

Computer retransmits data

if data is not acknowledged.
Complicated rules to decide
retransmission schedule,
avoiding network congestion.

— server:
8bb5d9”

5 browser:
8bbbda, SYN 747bfadl”

— server:
Tbfad?2"

ow allocates buffers
TCP connection.

splits data into packets,
- bytes from 168bbbda.

plits data into packets,
- bytes from 747bfa4?2.

Main feature advertised by TCP:
“reliable data streams’ .

Internet sometimes loses packets
or delivers packets out of order.

Doesn’t confuse TCP connections:

computer checks the counter
inside each TCP packet.

Computer retransmits data

if data is not acknowledged.
Complicated rules to decide
retransmission schedule,
avoiding network congestion.

Stream-|

http:/,
uses HT

https:,
uses HT

Your brc
o'ﬁndSE

e makes
e inside
huilds

Dy eXC
® Inside

SENAS

SYN 747bfadl”

es buffers
ection.

2 Into packets,
m 168bbbda.

into packets,
m 747bfad?2.

Main feature advertised by TCP:
“reliable data streams’.

Internet sometimes loses packets
or delivers packets out of order.

Doesn’t confuse TCP connections:

computer checks the counter
inside each TCP packet.

Computer retransmits data

if data is not acknowledged.
Complicated rules to decide
retransmission schedule,

avoliding network congestion.

Stream-level crypt

http://www.pgca
uses HT TP over 1

https://www.pq
uses HT TP over 1

Your browser
e finds address 13
e makes TCP con
e inside the TCP
builds a TLS co
oy exchanging ¢
e inside the TLS ¢
sends HT TP rec

“adl’”

Main feature advertised by TCP:
“reliable data streams’ .

Internet sometimes loses packets
or delivers packets out of order.

Doesn’t confuse TCP connections:

computer checks the counter
inside each TCP packet.

Computer retransmits data

if data is not acknowledged.
Complicated rules to decide
retransmission schedule,

avoiding network congestion.

Stream-level crypto

http://www.pqcrypto.or;
uses HT TP over TCP.

https://www.pqcrypto.o:
uses HTTP over TLS over

Your browser

e finds address 131.155.70
e makes TCP connection:;

e inside the TCP connectior
ouilds a TLS connection

oy exchanging crypto keys
e inside the TLS connection

sends HT TP request etc.

Main feature advertised by TCP:
“reliable data streams’.

Internet sometimes loses packets
or delivers packets out of order.

Doesn’t confuse TCP connections:

computer checks the counter
inside each TCP packet.

Computer retransmits data

if data is not acknowledged.
Complicated rules to decide
retransmission schedule,

avoliding network congestion.

Stream-level crypto

http://www.pqcrypto.org
uses HT TP over TCP.

https://www.pqcrypto.org
uses HTTP over TLS over TCP.

Your browser

e finds address 131.155.70.11;
e makes TCP connection;

e inside the TCP connection,
obuilds a TLS connection

oy exchanging crypto keys;
e inside the TLS connection,

sends HT TP request etc.

1ture advertised by TCP:
data streams’.

sometimes loses packets
rs packets out of order.

confuse TCP connections:

r checks the counter
ch TCP packet.

or retransmits data

s not acknowledged.
ated rules to decide
1ission schedule,

‘network congestion.

Stream-level crypto

http://www.pqcrypto.org
uses HT TP over TCP.

https://www.pgcrypto.org
uses HTTP over TLS over TCP.

Your browser

e finds address 131.155.70.11;
e makes TCP connection;

e inside the TCP connection,
ouilds a TLS connection

oy exchanging crypto keys;
e inside the TLS connection,

sends HT TP request etc.

What h:

forges a
pointing
Ora TC
with bog

DNS sof
TCP sof
TLS sof
somethii
but has

Browser
make a
but this
Huge da

rtised by TCP:

dMms .

s loses packets
out of order.

CP connections:

he counter
acket.

nits data

owledged.
to decide
edule,
“ongestion.

Stream-level crypto

http://www.pqcrypto.org
uses HT TP over TCP.

https://www.pqcrypto.org
uses HTTP over TLS over TCP.

Your browser

e finds address 131.155.70.11;
e makes TCP connection;

e inside the TCP connection,
obuilds a TLS connection

oy exchanging crypto keys;
e inside the TLS connection,

sends HT TP request etc.

What happens if ¢
forges a DNS pacl
pointing to fake se
Or a TCP packet

with bogus data?

DNS software is fc
TCP software is fc
TLS software sees
something has gor
but has no way to

Browser using TL:
make a whole new
but this is slow an
Huge damage fror

[CP:

~kets
der.

ctions:

r

Stream-level crypto

http://www.pqcrypto.org
uses HT TP over TCP.

https://www.pgcrypto.org
uses HTTP over TLS over TCP.

Your browser

e finds address 131.155.70.11;
e makes TCP connection:;

e inside the TCP connection,
ouilds a TLS connection

oy exchanging crypto keys;
e inside the TLS connection,

sends HT TP request etc.

What happens if attacker
forges a DNS packet

pointing to fake server?
Or a TCP packet
with bogus data?

DNS software is fooled.

TCP software is fooled.
TLS software sees that

something has gone wrong,
but has no way to recover.

Browser using TLS can
make a whole new connectic
but this is slow and fragile.
Huge damage from forged p

Stream-level crypto What happens if attacker

http://www.pqcrypto.org forges a DNS packet

o ,
uses HT TP over TCP. pointing to fake server:

Or a TCP packet

https://www.pqcrypto.org with bogus data?

uses HTTP over TLS over TCP.
DNS software is fooled.

Your browser TCP software is fooled.
e finds address 131.155.70.11; TLS software sees that
e makes TCP connection; something has gone wrong,
e inside the TCP connection, but has no way to recover.

huilds a TLS connection

. Browser using TLS can
oy exchanging crypto keys;

o . make a whole new connection,
e inside the TLS connection,

but this is slow and fragile.

sends HT TP request etc.
Huge damage from forged packet.

evel crypto

'WWw.pgcrypto.org
TP over TCP.

'/www.pgcrypto.org
TP over TLS over TCP.

WSEr

\ddress 131.155.70.11;
TCP connection:

the TCP connection,

a TLS connection
hanging crypto keys;
the TLS connection,

HT TP request etc.

What happens if attacker
forges a DNS packet

pointing to fake server?
Or a TCP packet
with bogus data?

DNS software is fooled.

TCP software is fooled.
TLS software sees that

something has gone wrong,
but has no way to recover.

Browser using TLS can

make a whole new connection,
but this is slow and fragile.

Huge damage from forged packet.

Modern
CurveCF
Google's
encrypt

Discard

Immedia
Retranst
authenti

Y

"ypto.org
CP.

rypto.org
LS over TCP.

1.155.70.11;
nection;
connection,
nnection

rypto keys;
onhnection,
juest etc.

What happens if attacker
forges a DNS packet

pointing to fake server?
Or a TCP packet
with bogus data?

DNS software is fooled.

TCP software is fooled.
TLS software sees that

something has gone wrong,
but has no way to recover.

Browser using TLS can
make a whole new connection,
but this is slow and fragile.

Huge damage from forged packet.

Modern trend (e.g
CurveCP; see also
Google's QUIC): £
encrypt each pack

Discard forged pac
immediately: no d
Retransmit packet
authenticated ack

U™

-8
CP.

.11

What happens if attacker
forges a DNS packet
pointing to fake server?
Or a TCP packet

with bogus data?

DNS software is fooled.

TCP software is fooled.
TLS software sees that

something has gone wrong,
but has no way to recover.

Browser using TLS can

make a whole new connection,
but this is slow and fragile.

Huge damage from forged packet.

Modern trend (e.g., DNSCu
CurveCP; see also Minimal
Google's QUIC): Authentica
encrypt each packet separat

Discard forged packet
immediately: no damage.
Retransmit packet if no
authenticated acknowledgm

What happens if attacker
forges a DNS packet
pointing to fake server?
Or a TCP packet

with bogus data?

DNS software is fooled.

TCP software is fooled.
TLS software sees that

something has gone wrong,
but has no way to recover.

Browser using TLS can

make a whole new connection,
but this is slow and fragile.

Huge damage from forged packet.

10
Modern trend (e.g., DNSCurve,

CurveCP: see also MinimalT,
Google's QUIC): Authenticate and
encrypt each packet separately.

Discard forged packet
immediately: no damage.
Retransmit packet if no
authenticated acknowledgment.

What happens if attacker
forges a DNS packet
pointing to fake server?
Or a TCP packet

with bogus data?

DNS software is fooled.

TCP software is fooled.
TLS software sees that

something has gone wrong,
but has no way to recover.

Browser using TLS can

make a whole new connection,
but this is slow and fragile.

Huge damage from forged packet.

10
Modern trend (e.g., DNSCurve,

CurveCP: see also MinimalT,
Google's QUIC): Authenticate and
encrypt each packet separately.

Discard forged packet
immediately: no damage.
Retransmit packet if no
authenticated acknowledgment.

Engineering advantage:
Packet-level crypto

works for more protocols
than stream-level crypto.

What happens if attacker
forges a DNS packet

pointing to fake server?
Or a TCP packet
with bogus data?

DNS software is fooled.

TCP software is fooled.
TLS software sees that

something has gone wrong,
but has no way to recover.

Browser using TLS can
make a whole new connection,
but this is slow and fragile.

Huge damage from forged packet.

10
Modern trend (e.g., DNSCurve,

CurveCP: see also MinimalT,
Google's QUIC): Authenticate and
encrypt each packet separately.

Discard forged packet
immediately: no damage.
Retransmit packet if no
authenticated acknowledgment.

Engineering advantage:
Packet-level crypto

works for more protocols
than stream-level crypto.

Disadvantage:
Crypto must fit into packet.

ppens if attacker
DNS packet

to fake server?
P packet
rus data?

tware Is fooled.

tware is fooled.
fware sees that

1g has gone wrong,
no way to recover.

using TLS can
whole new connection,
is slow and fragile.

mage from forged packet.

Modern trend (e.g., DNSCurve,
CurveCP: see also MinimalT,

Google's QUIC)

- Authenticate and

encrypt each packet separately.

Discard forged packet

immediately: no damage.

Retransmit packet if no

authenticated acknowledgment.

Engineering advantage:

Packet-level cry
works for more

DTo

yrotocols

than stream-level crypto.

Disadvantage:
Crypto must fit

Into packet.

10

The KE

Original
Message

as m® m

ttacker
et

srver’?

)OIEd.

yoled.
that

1e wrong,
recover.

> can
' connection,
d fragile.

n forged packet.

Modern trend (e.g., DNSCurve,
CurveCP: see also MinimalT,

Google's QUIC)

- Authenticate and

encrypt each packet separately.

Discard forged packet

immediately: no damage.

Retransmit packet if no

authenticated acknowledgment.

Engineering advantage:

Packet-level cry
works for more

DTOo

brotocols

than stream-level crypto.

Disadvantage:
Crypto must fit

into packet.

10

The KEM+AE ph

Original view of R
Message m Is encr
as m® mod pq.

n,

acket.

Modern trend (e.g., DNSCurve,
CurveCP: see also MinimalT,
Google's QUIC): Authenticate and
encrypt each packet separately.

Discard forged packet
immediately: no damage.
Retransmit packet if no
authenticated acknowledgment.

Engineering advantage:
Packet-level crypto

works for more protocols
than stream-level crypto.

Disadvantage:
Crypto must fit into packet.

10

The KEM+AE philosophy

Original view of RSA:

Message m is encrypted
as m® mod pq.

Modern trend (e.g., DNSCurve,
CurveCP: see also MinimalT,
Google's QUIC): Authenticate and
encrypt each packet separately.

Discard forged packet
immediately: no damage.
Retransmit packet if no
authenticated acknowledgment.

Engineering advantage:
Packet-level crypto

works for more protocols
than stream-level crypto.

Disadvantage:
Crypto must fit into packet.

10

The KEM-+AE philosophy

Original view of RSA:

Message m is encrypted
as m® mod pq.

11

Modern trend (e.g., DNSCurve,
CurveCP: see also MinimalT,
Google's QUIC): Authenticate and
encrypt each packet separately.

Discard forged packet
immediately: no damage.
Retransmit packet if no
authenticated acknowledgment.

Engineering advantage:
Packet-level crypto

works for more protocols
than stream-level crypto.

Disadvantage:
Crypto must fit into packet.

10

The KEM-+AE philosophy

Original view of RSA:

Message m is encrypted
as m® mod pq.

“Hybrid” view of RSA,
including random padding:

Choose random AES-GCM key k.

Randomly pad k as r.
Encrypt r as r® mod pq.
Encrypt m under k.

11

Modern trend (e.g., DNSCurve,
CurveCP: see also MinimalT,
Google's QUIC): Authenticate and
encrypt each packet separately.

Discard forged packet
immediately: no damage.
Retransmit packet if no
authenticated acknowledgment.

Engineering advantage:
Packet-level crypto

works for more protocols

than stream-level crypto.

Disadvantage:
Crypto must fit into packet.

10

The KEM-+AE philosophy

Original view of RSA:

Message m is encrypted
as m® mod pq.

“Hybrid” view of RSA,
including random padding:

Choose random AES-GCM key k.

Randomly pad k as r.
Encrypt r as r® mod pq.
Encrypt m under k.

Fragile, many problems:
e.g., Coppersmith attack,
Bleichenbacher attack,
bogus OAEP security proof.

11

trend (e.g., DNSCurve,
- see also MinimalT,

 QUIC): Authenticate and
each packet separately.

forged packet

tely: no damage.

nit packet if no

cated acknowledgment.

ing advantage:
evel crypto

r more protocols
cam-level crypto.

ntage:
nust fit into packet.

10

11
The KEM+AE philosophy

Original view of RSA:

Message m is encrypted
as m® mod pq.

“Hybrid” view of RSA,

including random padding:
Choose random AES-GCM key k.
Randomly pad k as r.

Encrypt r as r® mod pq.

Encrypt m under k.

Fragile, many problems:
e.g., Coppersmith attack,
Bleichenbacher attack,
bogus OAEP security proof.

Shoup's

"Key en
Choose

Encrypt
Define k

“Data e
Encrypt

m under

Authent
any moc

Much ec:
Also ger

Can mix

., DNSCurve,
MinimalT,
\uthenticate and
et separately.

ket
amage.
If no

nowledgment.

tage:
9
ytocols
crypto.

to packet.

10

The KEM+AE philosophy

Original view of RSA:
Message m is encrypted
as m® mod pq.

“Hybrid” view of RSA,

including random padding:
Choose random AES-GCM key k.
Randomly pad k as r.

Encrypt r as r® mod pq.

Encrypt m under k.

Fragile, many problems:
e.g., Coppersmith attack,
Bleichenbacher attack,
bogus OAEP security proof.

11

Shoup’'s “KEM+L

"Key encapsulatio
Choose random r

Encrypt r as r¢* m
Define k = H(r, r

“Data encapsulati

Encrypt and authe
m under AES-GCI

Authenticator catc
any modification c

Much easier to ge
Also generalizes ni
Can mix multiple

rve,

te and
ely.

ent.

10

The KEM+AE philosophy

Original view of RSA:

Message m is encrypted
as m® mod pq.

“"Hybrid” view of RSA,

including random padding:
Choose random AES-GCM key k.
Randomly pad k as r.

Encrypt r as r® mod pq.

Encrypt m under k.

Fragile, many problems:
e.g., Coppersmith attack,
Bleichenbacher attack,
bogus OAEP security proof.

11

Shoup’'s "KEM+DEM" view

"Key encapsulation mechani
Choose random r mod pq.

Encrypt r as r® mod pg.
Define k = H(r, r¢ mod pq)

“Data encapsulation mechar

Encrypt and authenticate
m under AES-GCM key k.

Authenticator catches
any modification of r¢ mod

Much easier to get right.
Also generalizes nicely.
Can mix multiple hashes.

The KEM-+AE philosophy

Original view of RSA:

Message m is encrypted
as m® mod pq.

“Hybrid” view of RSA,

including random padding:
Choose random AES-GCM key k.
Randomly pad k as r.

Encrypt r as r® mod pq.

Encrypt m under k.

Fragile, many problems:
e.g., Coppersmith attack,
Bleichenbacher attack,
bogus OAEP security proof.

11

12
Shoup’'s "KEM-+DEM" view:

"Key encapsulation mechanism”:
Choose random r mod pq.

Encrypt r as r® mod pg.
Define k = H(r, r¢ mod pq).

“Data encapsulation mechanism™:

Encrypt and authenticate
m under AES-GCM key k.

Authenticator catches
any modification of r¢ mod pq.

Much easier to get right.
Also generalizes nicely.
Can mix multiple hashes.

VI+AE philosophy

view of RSA:
' m Is encrypted

od pq.

" view of RSA,

r random padding:
random AES-GCM key k.
ly pad k as r.

r as r® mod pq.

m under k.

many problems:
ypersmith attack,
bacher attack,
AEP security proof.

11

Shoup’'s "KEM-+DEM" view:

"Key encapsulation mechanism”:

Choose random r mod pq.

Encrypt r as r® mod pg.
Define k = H(r, r® mod pq).

"Data encapsulation mechanism™:

Encrypt and authenticate
m under AES-GCM key k.

Authenticator catches
any modification of r¢ mod pq.

Much easier to get right.
Also generalizes nicely.
Can mix multiple hashes.

12

DEM se
weak sin
of securi
authenti

Chou: s
for mult

Answer:
KEM-+A
(But ne¢
AES-GC

aim for

More co
Use KEI

n-time s

llosophy

SA:
ypted

RSA,
padding:
ES-GCM key k.

S .

od pq.
k.

lems:
attack,
rack,

rity proof.

11

Shoup’'s "KEM-+DEM" view:

"Key encapsulation mechanism”:

Choose random r mod pq.

Encrypt r as r® mod pg.
Define k = H(r, r¢ mod pq).

“Data encapsulation mechanism™:

Encrypt and authenticate
m under AES-GCM key k.

Authenticator catches
any modification of r¢ mod pq.

Much easier to get right.
Also generalizes nicely.
Can mix multiple hashes.

12

DEM security hyp
weak single-messa
of security for sect
authenticated enci

Chou: Is it safe tc
for multiple messa

Answer: KEM+-Al
KEM+AE = KEN
(But need literatu

AES-GCM, Salsa?2
aim for full AE sec

More complicated
Use KEM+DEM t
n-time secret key

ey K.

11

Shoup’'s "KEM-+DEM" view:

"Key encapsulation mechanism”:

Choose random r mod pq.

Encrypt r as r® mod pg.
Define k = H(r, r® mod pq).

"Data encapsulation mechanism™:

Encrypt and authenticate
m under AES-GCM key k.

Authenticator catches
any modification of r¢ mod pq.

Much easier to get right.
Also generalizes nicely.
Can mix multiple hashes.

12

DEM security hypothesis:
weak single-message version
of security for secret-key
authenticated encryption.

Chou: Is i1t safe to reuse k
for multiple messages?

Answer: KEM+-AE is safe:
KEM+AE = KEM+ “nDEM
(But need literature on this!

AES-GCM, Salsa20-Poly130
aim for full AE security goal

More complicated alternativ
Use KEM+DEM to encrypt

n-time secret key m; reuse r

Shoup’'s "KEM-+DEM" view:

"Key encapsulation mechanism”:
Choose random r mod pq.

Encrypt r as r® mod pg.
Define k = H(r, r¢ mod pq).

“Data encapsulation mechanism™:

Encrypt and authenticate
m under AES-GCM key k.

Authenticator catches
any modification of r¢ mod pq.

Much easier to get right.
Also generalizes nicely.
Can mix multiple hashes.

12

13
DEM security hypothesis:

weak single-message version
of security for secret-key
authenticated encryption.

Chou: Is it safe to reuse k
for multiple messages?

Answer: KEM--AE is safe:
KEM+AE = KEM+ “nDEM" .
(But need literature on this!)
AES-GCM, Salsa20-Poly1305, etc.
aim for full AE security goal.

More complicated alternative:
Use KEM+DEM to encrypt an

n-time secret key m; reuse m.

"KEM+DEM" view:

capsulation mechanism:

random r mod pq.
r as r€ mod pq.
= H(r, r® mod pq).

ncapsulation mechanism™:

and authenticate
-AES-GCM key k.

icator catches
lification of r€ mod pgq.

sier to get right.
eralizes nicely.
“multiple hashes.

12

DEM security hypothesis:
weak single-message version
of security for secret-key
authenticated encryption.

Chou: Is i1t safe to reuse k
for multiple messages?

Answer: KEM+-AE is safe:
KEM+AE = KEM+ “nDEM".
(But need literature on this!)

AES-GCM, Salsa20-Poly1305, etc.

aim for full AE security goal.

More complicated alternative:
Use KEM+DEM to encrypt an

n-time secret key m; reuse m.

13

DNSCur

Server k

Client ki
server's

Client —
packet ¢
where k
E 1s aut
g 1s DN:

Server —
packet
where r

EM" view:

n mechanism':

mod pg.

od pg.
" 'mod pq).

on mechanism’ :

nticate
VI key k.

“hes
f r€ mod pqg.

t right.
cely.
hashes.

12

DEM security hypothesis:
weak single-message version
of security for secret-key
authenticated encryption.

Chou: lIs it safe to reuse k
for multiple messages?

Answer: KEM--AE is safe:
KEM+AE = KEM+ “nDEM".
(But need literature on this!)

AES-GCM, Salsa20-Poly1305, etc.

aim for full AE security goal.

More complicated alternative:
Use KEM+DEM to encrypt an
n-time secret key m; reuse m.

13

DNSCurve: ECDFE

Server knows ECL

Client knows ECD
server's public key

Client — server:
packet containing
where k = H(cS);
E is authenticatec
g is DNS query.

Server — client:
packet containing
where r is DNS re

sm

1Ism’”

12

DEM security hypothesis:
weak single-message version
of security for secret-key
authenticated encryption.

Chou: Is i1t safe to reuse k
for multiple messages?

Answer: KEM+-AE is safe:
KEM+AE = KEM+ “nDEM".
(But need literature on this!)

AES-GCM, Salsa20-Poly1305, etc.

aim for full AE security goal.

More complicated alternative:
Use KEM+DEM to encrypt an

n-time secret key m; reuse m.

13

DNSCurve: ECDH for DNS

Server knows ECDH secret |

Client knows ECDH secret |
server’'s public key S = sG.

Client — server:

packet containing cG, E, (O,
where k = H(cS);

E is authenticated cipher;
g is DNS query.

Server — client:
packet containing E,(1, r)
where r is DNS response.

DEM security hypothesis:
weak single-message version
of security for secret-key
authenticated encryption.

Chou: Is it safe to reuse k
for multiple messages?

Answer: KEM--AE is safe:
KEM+AE = KEM+ “nDEM".
(But need literature on this!)

AES-GCM, Salsa20-Poly1305, etc.

aim for full AE security goal.

More complicated alternative:
Use KEM+DEM to encrypt an
n-time secret key m; reuse m.

13

14

DNSCurve: ECDH for DNS

Server knows ECDH secret key s.

Client knows ECDH secret key c,
server’'s public key S = sG.

Client — server:

packet containing cG, E,(0, q)
where k = H(cS);

E i1s authenticated cipher;

g is DNS query.

Server — client:
packet containing Ex(1, r)
where r is DNS response.

curity hypothesis:
gle-message version
ty for secret-key
cated encryption.

5 1t safe to reuse k
iple messages?

KEM4-AE is safe:
E = KEM+"“"nDEM".

d literature on this!)

M, Salsa20-Poly1305, etc.

full AE security goal.

mplicated alternative:
VI+-DEM to encrypt an
ecret key m; reuse m.

13

DNSCurve: ECDH for DNS

Server knows ECDH secret key s.

Client knows ECDH secret key c,
server’'s public key S = sG.

Client — server:

packet containing cG, E,(0, q)
where k = H(cS);

E is authenticated cipher;

g is DNS query.

Server — client:
packet containing E,(1, r)
where r is DNS response.

14

Client c:
across I
but this
Let's ass

othesis:
ge version
et-key
yption.

 reuse k
ges’?

~ |s safe:
N+ "“"nDEM" .
re on this!)

0-Poly1305, etc.

—urity goal.

alternative:
0 encrypt an

m: reuse m.

13

14

DNSCurve: ECDH for DNS

Server knows ECDH secret key s.

Client knows ECDH secret key c,
server’'s public key S = sG.

Client — server:

packet containing cG, E,(0, q)
where k = H(cS);

E i1s authenticated cipher;

g is DNS query.

Server — client:
packet containing Ex(1, r)
where r is DNS response.

Client can reuse ¢
across multiple qu
but this leaks met
Let's assume one-

13

14

DNSCurve: ECDH for DNS

Server knows ECDH secret key s.

Client knows ECDH secret key c,
server’'s public key S = sG.

Client — server:

packet containing cG, E,(0, q)
where k = H(cS);

E is authenticated cipher;

g is DNS query.

Server — client:
packet containing E,(1, r)
where r is DNS response.

Client can reuse c¢
across multiple queries,
but this leaks metadata.

|l et's assume one-time c.

DNSCurve: ECDH for DNS

Server knows ECDH secret key s.

Client knows ECDH secret key c,
server’'s public key S = sG.

Client — server:

packet containing cG, E,(0, q)
where k = H(cS);

E is authenticated cipher;

g is DNS query.

Server — client:
packet containing E,(1, r)
where r is DNS response.

14

Client can reuse ¢
across multiple queries,
but this leaks metadata.
Let's assume one-time c.

15

DNSCurve: ECDH for DNS

Server knows ECDH secret key s.

Client knows ECDH secret key c,
server’'s public key S = sG.

Client — server:

packet containing cG, E,(0, q)
where k = H(cS);

E is authenticated cipher;

g is DNS query.

Server — client:
packet containing E,(1, r)
where r is DNS response.

14

Client can reuse ¢
across multiple queries,
but this leaks metadata.
Let's assume one-time c.

KEM-4-AE view:

Client is sending k = H(cS)
encapsulated as cG.
This is an "ECDH KEM".

15

DNSCurve: ECDH for DNS

Server knows ECDH secret key s.

Client knows ECDH secret key c,
server’'s public key S = sG.

Client — server:

packet containing cG, E,(0, q)
where k = H(cS);

E is authenticated cipher;

g is DNS query.

Server — client:
packet containing E,(1, r)
where r is DNS response.

14

Client can reuse ¢
across multiple queries,
but this leaks metadata.
Let's assume one-time c.

KEM-4-AE view:

Client is sending k = H(cS)
encapsulated as cG.
This is an "ECDH KEM".

Client then uses k
to authenticate+encrypt.

Server also uses k
to authenticate+f-encrypt.

15

ve: ECDH for DNS

nows ECDH secret key s.

1ows ECDH secret key c,
public key S = sG.

> Server:

ontaining cG, E,(0, q)
= H(cS);

henticated cipher;

> query.

+ client:
ontaining E (1, r)
s DNS response.

14

Client can reuse ¢
across multiple queries,
but this leaks metadata.
Let's assume one-time c.

KEM-4AE view:

Client is sending k = H(cS)
encapsulated as cG.
This is an “"ECDH KEM".

Client then uses k
to authenticate+encrypt.

Server also uses k
to authenticate+-encrypt.

15

Post-qu:

“McElie
Client se
encapsul

Random

ranaom

public ke

| for DNS

)H secret key s.

H secret key c,

S =sG.

CG, Ek(O, q)

cipher;

Ek(]_, r)
SPONSE.

14

Client can reuse ¢
across multiple queries,
but this leaks metadata.
Let's assume one-time c.

KEM-4-AE view:

Client is sending k = H(cS)
encapsulated as cG.
This is an "ECDH KEM"..

Client then uses k
to authenticate+encrypt.

Server also uses k
to authenticate+f-encrypt.

15

Post-quantum enc

“McEliece KEM" :
Client sends kK = |
encapsulated as S

Random ¢ &€ FS“E
random small e &

: 6]
public key S € F;

ey S.

ey C,

14

Client can reuse ¢
across multiple queries,
but this leaks metadata.
Let's assume one-time c.

KEM-4AE view:

Client is sending k = H(cS)
encapsulated as cG.
This is an “"ECDH KEM".

Client then uses k
to authenticate+encrypt.

Server also uses k
to authenticate+-encrypt.

15

Post-quantum encrypted DI

“McEliece KEM":
Client sends k = H(c, e, Sc
encapsulated as Sc + e.

Random ¢ & Fg413;
random small e € Fg%o;

: 6960x 5413
public key S € F>7°°~ .

Client can reuse ¢
across multiple queries,
but this leaks metadata.
Let's assume one-time c.

KEM-4-AE view:

Client is sending k = H(cS)
encapsulated as cG.
This is an "ECDH KEM".

Client then uses k
to authenticate+encrypt.

Server also uses k
to authenticate+f-encrypt.

15

Post-quantum encrypted DNS

“McEliece KEM"
Client sends k = H(c, e, Sc + €)
encapsulated as Sc + e.

Random ¢ & Fg4l3;

ranc

pub

om small e € |:€23960;
ickey S € F8960X5413.

16

Client can reuse ¢
across multiple queries,
but this leaks metadata.
Let's assume one-time c.

KEM-4-AE view:

Client is sending k = H(cS)
encapsulated as cG.
This is an "ECDH KEM".

Client then uses k
to authenticate+encrypt.

Server also uses k
to authenticate+f-encrypt.

15

Post-quantum encrypted DNS

“McEliece KEM"
Client sends k = H(c, e, Sc + €)
encapsulated as Sc + e.

Random ¢ &€

ranc

pub

5413.
F5";

om small e € |:€2396O;

ickey S € F8960X5413.

S has secret Goppa structure

allowing server to decrypt.

16

Client can reuse ¢
across multiple queries,
but this leaks metadata.
Let's assume one-time c.

KEM-4-AE view:

Client is sending k = H(cS)
encapsulated as cG.
This is an "ECDH KEM".

Client then uses k
to authenticate+encrypt.

Server also uses k
to authenticate+f-encrypt.

15

Post-quantum encrypted DNS

“McEliece KEM"
Client sends k = H(c, e, Sc + €)
encapsulated as Sc + e.

Random ¢ &€ Fg4l3;
random small e & |:€2396O;

: 6960x 5413
public key S € F77°°7°>"2,

S has secret Goppa structure
allowing server to decrypt.

“Niederreiter KEM" , smaller:

Client sends k = H(e, S'e)

encapsulated as S’e € F3>47.

16

)N reuse ¢
wltiple queries,

leaks metadata.
sume one-time c.

\E view:

sending k = H(cS)
ated as cG.
n "ECDH KEM" .

1en uses k
nticate+encrypt.

Iso uses k
nticate+encrypt.

15

Post-quantum encrypted DNS

“McEliece KEM":
Client sends k = H(c, e, Sc + €)
encapsulated as Sc + e.

Random c¢ &€ Fg413;
random small e & Fg%o;

: 6960x 5413
public key S € F>7°°~ .

S has secret Goppa structure
allowing server to decrypt.

“Niederreiter KEM" , smaller:

Client sends k = H(e, S'e)

encapsulated as S’e € F3>*47.

16

Client —

packet ¢
(Combir

Server —
packet

eries,
adata.
time C.

= H(cS)

KEM™.

ncrypt.

ncrypt.

15

Post-quantum encrypted DNS

“McEliece KEM"
Client sends k = H(c, e, Sc + €)
encapsulated as Sc + e.

Random ¢ &€ Fg4l3;
random small e & |:€2396O;

: 6960x5413
public key S € F; .

S has secret Goppa structure
allowing server to decrypt.

“Niederreiter KEM" , smaller:

Client sends k = H(e, S'e)

encapsulated as S’e € F3>47.

16

Client — server:

packet containing
(Combine with EC

Server — client:
packet containing

15

Post-quantum encrypted DNS

“McEliece KEM":
Client sends k = H(c, e, Sc + €)
encapsulated as Sc + e.

Random c¢ &€ Fg413;
random small e & Fg%o;

: 6960x 5413
public key S € F; .

S has secret Goppa structure
allowing server to decrypt.

“Niederreiter KEM" , smaller:

Client sends k = H(e, S'e)

encapsulated as S’e € F3>47.

16

Client — server:

packet containing Sc+e, E;
(Combine with ECDH KEM

Server — client:
packet containing E.(1, r).

Post-quantum encrypted DNS

“McEliece KEM"
Client sends k = H(c, e, Sc + €)
encapsulated as Sc + e.

Random ¢ & Fg4l3;

random small e € |:€23960;
public key S € F896OX5413.

S has secret Goppa structure
allowing server to decrypt.

“Niederreiter KEM" , smaller:
Client sends k = H(e, S'e)
encapsulated as S’e € F3>47.

16

Client — server:
packet containing Sc+e, E(0, q).
(Combine with ECDH KEM.)

Server — client:
packet containing E,(1, r).

17

Post-quantum encrypted DNS

“McEliece KEM"
Client sends k = H(c, e, Sc + €)
encapsulated as Sc + e.

Random ¢ & Fg4l3;

ranc

pub

om small e € |:€23960;
ickey S € F8960X5413.

S has secret Goppa structure

allowing server to decrypt.

“Niederreiter KEM" , smaller:
Client sends k = H(e, S'e)

encapsulated as S'e €

1547
F5>".

16

Client — server:

packet containing Sc+e, E(0, q).

(Combine with ECDH KEM.)

Server — client:
packet containing E,(1, r).

r states a server address

and the server's public key.
What if the key is too long
to fit into a single packet?

One simple answer:
Client separately requests
each block of public key.

Can do many requests in parallel.

17

intum encrypted DNS

ce KEM':
nds k = H(c, e, Sc + €)
ated as Sc + e.

5413.
c € F5",

small e € F$7%0;
sy S € F896O><5413_

cret Goppa structure
server to decrypt.

eiter KEM" | smaller:
nds kK = H(e, S'e)
ated as S'e € F%547.

16

17
Client — server:

packet containing Sc+e, E(0, q).
(Combine with ECDH KEM.)

Server — client:
packet containing E,(1, r).

r states a server address

and the server's public key.
What if the key is too long
to fit into a single packet?

One simple answer:
Client separately requests

each block of public key.

Can do many requests in parallel.

Confider
Attacker
can't de

Integrity
Server n
but Ey |
Attacker
but can’
Attacker

Availabil
Client di
continue
eventual

rypted DNS

1(c, e, Sc + e)
C + €.

.

6960.
F57°;
)60 %5413

a structure
decrypt.

1" smaller:

1(e, S'e)
1547

‘e € 3>

16

17
Client — server:

packet containing Sc+e, E,(0, q).
(Combine with ECDH KEM.)

Server — client:
packet containing E,(1, r).

r states a server address

and the server's public key.
What if the key is too long
to fit into a single packet?

One simple answer:
Client separately requests
each block of public key.

Can do many requests in parallel.

Confidentiality:
Attacker can't gue
can't decrypt Ej((

Integrity:

Server never signs
but E4 includes at
Attacker can send
but can't forge g ¢
Attacker can repla

Availability:

Client discards for
continues waiting
eventually retranst

+ e)

16

17
Client — server:

packet containing Sc+e, E(0, q).
(Combine with ECDH KEM.)

Server — client:
packet containing E,(1, r).

r states a server address

and the server's public key.
What if the key is too long
to fit into a single packet?

One simple answer:
Client separately requests
each block of public key.

Can do many requests in parallel.

Confidentiality:
Attacker can't guess k,
can't decrypt E.(0, q), Ex(1

Integrity:

Server never signs anything,
but E, includes authenticat
Attacker can send new quer
but can't forge g or r.
Attacker can replay request.

Availability:

Client discards forgery,
continues waiting for reply,
eventually retransmits reque

Client — server:

packet containing Sc+e, E(0, q).

(Combine with ECDH KEM.)

Server — client:
packet containing E,(1, r).

r states a server address

and the server's public key.
What if the key is too long
to fit into a single packet?

One simple answer:
Client separately requests

each block of public key.

Can do many requests in parallel.

17

18
Confidentiality:

Attacker can't guess k,
can't decrypt E(0, q), Ex(1,r).

Integrity:

Server never signs anything,
but E; includes authentication.
Attacker can send new queries
but can't forge g or r.
Attacker can replay request.

Availability:

Client discards forgery,
continues waiting for reply,
eventually retransmits request.

> SEerver:

ontaining Sc+e, E4(0, q).

e with ECDH KEM.)

+ client:
ontaining E,(1,r).

a server address

server's public key.
the key is too long
0 a single packet?

ple answer:
parately requests
ck of public key.

many requests in parallel.

17

Confidentiality:
Attacker can't guess k,

can't decrypt E(0, q), Ex(1,r).

Integrity:
Server never signs anything,

but E;, includes authentication.

Attacker can send new queries
but can't forge g or r.
Attacker can replay request.

Availability:

Client discards forgery,
continues waiting for reply,
eventually retransmits request.

18

Big keys

McEliec
for long-

Is this si
Do we n
lower-co
such as

Size of ¢
In Alexa

Web pag
public ke
but pub|
can ber

Sc+te, Ek(O, q).

DH KEM.)

Ek(]_, r).

ddress

ublic key.
too long
packet?

g
equests
Ic key.
ests In parallel.

17

Confidentiality:
Attacker can't guess k,

can't decrypt E(0, q), Ex(1,r).

Integrity:
Server never signs anything,

but E; includes authentication.

Attacker can send new queries
but can't forge g or r.
Attacker can replay request.

Availability:

Client discards forgery,
continues waiting for reply,
eventually retransmits request.

18

Big keys

McEliece public ke
for long-term conf

Is this size a probl
Do we need to sw

lower-confidence 3
such as NTRU or

Size of average we
in Alexa Top 1000

Web page often n
public keys for sev
but public key for
can be reused for

rallel.

17

Confidentiality:
Attacker can't guess k,

can't decrypt E(0, q), Ex(1,r).

Integrity:
Server never signs anything,

but E;, includes authentication.

Attacker can send new queries
but can't forge g or r.
Attacker can replay request.

Availability:

Client discards forgery,
continues waiting for reply,
eventually retransmits request.

18

Big keys

McEliece public key i1s 1IMB
for long-term confidence toc

Is this size a problem?
Do we need to switch to

lower-confidence approaches
such as NTRU or QC-MDP

Size of average web page
in Alexa Top 1000000: 1.8\

Web page often needs
public keys for several servel
but public key for a server
can be reused for many pag;

Confidentiality:
Attacker can't guess k,

can't decrypt E,(0, q), Ex(1, r).

Integrity:
Server never signs anything,

but E; includes authentication.

Attacker can send new queries
but can't forge g or r.
Attacker can replay request.

Availability:

Client discards forgery,
continues waiting for reply,
eventually retransmits request.

18

Big keys

McEliece public key i1s 1IMB

for long-term confidence today.

Is this size a problem?
Do we need to switch to

lower-confidence approaches
such as NTRU or QC-MDPC?

Size of average web page

in Alexa Top 1000000: 1.8MB.

Web page often needs

public keys for several servers,
but public key for a server
can be reused for many pages.

19

1tiality:
- can't guess Kk,

crypt Ex(0, q), Ex(1,r).

ever signs anything,

ncludes authentication.

- can send new queries
t forge q or r.
- can replay request.

Ity:

scards forgery,

s waiting for reply,

ly retransmits request.

18

Big keys

McEliece public key i1s 1IMB

for long-term confidence today.

Is this size a problem?
Do we need to switch to

lower-confidence approaches
such as NTRU or QC-MDPC?

Size of average web page

in Alexa Top 1000000: 1.8MB.

Web page often needs

public keys for several servers,
but public key for a server
can be reused for many pages.

19

Most 1m
ON reuse
switchin
and pro!

Rational
subsequ
doesn't

e.g. Mic
switches

Safer: n

Easier tc
new key

ss K,

), q), Ek(l, r).

anything,

ithentication.

new queries
or r.

Yy request.

oery,
for reply,

nits request.

18

Big keys

McEliece public key i1s 1IMB

for long-term confidence today.

Is this size a problem?
Do we need to switch to

lower-confidence approaches
such as NTRU or QC-MDPC?

Size of average web page

in Alexa Top 1000000: 1.8MB.

Web page often needs

public keys for several servers,
but public key for a server
can be reused for many pages.

19

Most important it
on reuse of public
switching to new |
and promptly era

Rationale: “forwal

subsequent theft ¢
doesn't allow decr

e.g. Microsoft SCt
switches keys ever

Safer: new key ev

Easier to impleme
new key every con

on.

es

18

Big keys

McEliece public key i1s 1IMB

for long-term confidence today.

Is this size a problem?
Do we need to switch to

lower-confidence approaches
such as NTRU or QC-MDPC?

Size of average web page

in Alexa Top 1000000: 1.8MB.

Web page often needs

public keys for several servers,
but public key for a server
can be reused for many pages.

19

Most important limitation
on reuse of public keys:
switching to new keys

and promptly erasing old |

Rationale: “forward secrecy’
subsequent theft of compute
doesn't allow decryption.

e.g. Microsoft SChannel
switches keys every two hou

Safer: new key every minute

Easier to implement:

new key every connection.

Big keys

McEliece public key i1s 1IMB

for long-term confidence today.

Is this size a problem?
Do we need to switch to

lower-confidence approaches
such as NTRU or QC-MDPC?

Size of average web page

in Alexa Top 1000000: 1.8MB.

Web page often needs

public keys for several servers,
but public key for a server
can be reused for many pages.

19

20
Most important limitation

on reuse of public keys:
switching to new keys
and promptly erasing old keys.

Rationale: “forward secrecy’ —
subsequent theft of computer
doesn't allow decryption.

e.g. Microsoft SChannel
switches keys every two hours.

Safer: new key every minute.

Easier to implement:
new key every connection.

> public key 1Is 1IMB

term confidence today.

ze a problem?
eed to switch to

nfidence approaches
NTRU or QC-MDPC?

wverage web page

Top 1000000: 1.8MB.

re often needs

ys for several servers,
ic key for a server
eused for many pages.

19

20
Most important limitation

on reuse of public keys:
switching to new keys
and promptly erasing old keys.

Rationale: “forward secrecy’ —
subsequent theft of computer
doesn't allow decryption.

e.g. Microsoft SChannel
switches keys every two hours.

Safer: new key every minute.

Easier to implement:
new key every connection.

What is
a new ke

If server
key gen,
client en
server de

y 1s 1IMB

idence today.

em?’
itch to

pproaches
QC-MDPC?

b page

000: 1.8MB.

ceds
eral servers,
a server

many pages.

19

Most important limitation
on reuse of public keys:
switching to new keys

and promptly erasing old keys.

Rationale: “forward secrecy’ —
subsequent theft of computer
doesn't allow decryption.

e.g. Microsoft SChannel
switches keys every two hours.

Safer: new key every minute.

Easier to implement:

new key every connection.

20

What is the perfor
a new key every mr

If server makes ne
key gen, <1 per n
client encrypts to
server decrypts.

lay.

19

Most important limitation
on reuse of public keys:
switching to new keys

and promptly erasing old keys.

Rationale: “forward secrecy’ —
subsequent theft of computer
doesn't allow decryption.

e.g. Microsoft SChannel
switches keys every two hours.

Safer: new key every minute.

Easier to implement:

new key every connection.

20

What is the performance of
a new key every minute?

If server makes new key:
key gen, <1 per minute;
client encrypts to new key;
server decrypts.

Most important limitation
on reuse of public keys:
switching to new keys

and promptly erasing old keys.

Rationale: “forward secrecy’ —
subsequent theft of computer
doesn't allow decryption.

e.g. Microsoft SChannel
switches keys every two hours.

Safer: new key every minute.

Easier to implement:

new key every connection.

20

What is the performance of
a new key every minute?

If server makes new key:
key gen, <1 per minute;
client encrypts to new key;
server decrypts.

21

Most important limitation
on reuse of public keys:
switching to new keys

and promptly erasing old keys.

Rationale: “forward secrecy’ —
subsequent theft of computer
doesn't allow decryption.

e.g. Microsoft SChannel
switches keys every two hours.

Safer: new key every minute.

Easier to implement:

new key every connection.

20

What is the performance of
a new key every minute?

If server makes new key:
key gen, <1 per minute;
client encrypts to new key;
server decrypts.

If client makes new key:
client has key-gen cost;
server has encryption cost;
client has decryption cost.

Either way:
one key transmission for each
active client-server pair.

21

portant limitation
of public keys:
g to new keys

mptly erasing old keys.

e: “forward secrecy’ —
2nt theft of computer
allow decryption.

rosoft SChannel
keys every two hours.

ew key every minute.

) Implement:
every connection.

20

What is the performance of
a new key every minute?

If server makes new key:
key gen, <1 per minute;
client encrypts to new key;
server decrypts.

If client makes new key:
client has key-gen cost;
server has encryption cost;
client has decryption cost.

Either way:
one key transmission for each
active client-server pair.

21

How doce
encrypt
without

mitation
keys:
€ys

sing old keys.

‘d secrecy’ —
f computer
yption.

1annel

y two hours.
ery minute.

Nt:
nection.

20

What is the performance of
a new key every minute?

If server makes new key:
key gen, <1 per minute;
client encrypts to new key;
server decrypts.

If client makes new key:
client has key-gen cost;
server has encryption cost;
client has decryption cost.

Either way:
one key transmission for each
active client-server pair.

21

How does a statel
encrypt to a new ¢
without storing th

\v

20

What is the performance of
a new key every minute?

If server makes new key:
key gen, <1 per minute;
client encrypts to new key;
server decrypts.

If client makes new key:
client has key-gen cost;
server has encryption cost;
client has decryption cost.

Either way:
one key transmission for each
active client-server pair.

21

How does a stateless server
encrypt to a new client key
without storing the key?

What is the performance of
a new key every minute?

If server makes new key:
key gen, <1 per minute;
client encrypts to new key;
server decrypts.

If client makes new key:
client has key-gen cost;
server has encryption cost;
client has decryption cost.

Either way:
one key transmission for each
active client-server pair.

21

How does a stateless server
encrypt to a new client key
without storing the key?

22

What is the performance of
a new key every minute?

If server makes new key:
key gen, <1 per minute;
client encrypts to new key;
server decrypts.

If client makes new key:
client has key-gen cost;
server has encryption cost;
client has decryption cost.

Either way:
one key transmission for each
active client-server pair.

21

22
How does a stateless server

encrypt to a new client key
without storing the key?

Slice McEliece public key
so that each slice of encryption

produces separate small output.

Client sends slices (in parallel),
recelves outputs as cookies,
sends cookies (in parallel).
Server combines cookies.
Continue up through tree.

Server generates randomness
as secret function of key hash.
Statelessly verifies key hash.

