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IP: Internet Protocol

IP communicates “packets’:
limited-length byte strings.

Each computer on the Internet
has a 4-byte “IP address’.

e.g. Www.pqcrypto.org has
address 131.155.70.11.

Your browser creates a packet
addressed to 131.155.70.11;
gives packet to the Internet.

Hopefully the Internet delivers
that packet to 131.155.70.11.
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How does a stateless server

encrypt to a new client key
without storing the key?

Slice McEliece public key
so that each slice of encryption

produces separate small output.

Client sends slices (in parallel),
recelves outputs as cookies,
sends cookies (in parallel).
Server combines cookies.
Continue up through tree.

Server generates randomness
as secret function of key hash.
Statelessly verifies key hash.



