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How does a stateless server

encrypt to a new client key
without storing the key?

Slice McEliece public key
so that each slice of encryption

produces separate small output.

Client sends slices (in parallel),
recelves outputs as cookies,
sends cookies (in parallel).
Server combines cookies.
Continue up through tree.

Server generates randomness
as secret function of key hash.
Statelessly verifies key hash.



