
1

The post-quantum Internet

Daniel J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

Includes joint work with:

Tanja Lange

Technische Universiteit Eindhoven

2

Risk management

“Combining congruences”:

state-of-the-art pre-quantum

attack against original DH,

RSA, and some lattice systems.

Long history, including

many major improvements:

1975, CFRAC;

1977, linear sieve (LS);

1982, quadratic sieve (QS);

1990, number-field sieve (NFS);

1994, function-field sieve (FFS);

2006, medium-prime FFS/NFS;

2013, xq − x FFS.



1

The post-quantum Internet

Daniel J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

Includes joint work with:

Tanja Lange

Technische Universiteit Eindhoven

2

Risk management

“Combining congruences”:

state-of-the-art pre-quantum

attack against original DH,

RSA, and some lattice systems.

Long history, including

many major improvements:

1975, CFRAC;

1977, linear sieve (LS);

1982, quadratic sieve (QS);

1990, number-field sieve (NFS);

1994, function-field sieve (FFS);

2006, medium-prime FFS/NFS;

2013, xq − x FFS.

3

Also many smaller improvements:

>100 scientific papers.

Costs of these algorithms for

breaking RSA-1024, RSA-2048:

≈2120, ≈2170, CFRAC;

≈2110, ≈2160, LS;

≈2100, ≈2150, QS;

≈280, ≈2112, NFS.

(FFS is not relevant to RSA.)



1

The post-quantum Internet

Daniel J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

Includes joint work with:

Tanja Lange

Technische Universiteit Eindhoven

2

Risk management

“Combining congruences”:

state-of-the-art pre-quantum

attack against original DH,

RSA, and some lattice systems.

Long history, including

many major improvements:

1975, CFRAC;

1977, linear sieve (LS);

1982, quadratic sieve (QS);

1990, number-field sieve (NFS);

1994, function-field sieve (FFS);

2006, medium-prime FFS/NFS;

2013, xq − x FFS.

3

Also many smaller improvements:

>100 scientific papers.

Costs of these algorithms for

breaking RSA-1024, RSA-2048:

≈2120, ≈2170, CFRAC;

≈2110, ≈2160, LS;

≈2100, ≈2150, QS;

≈280, ≈2112, NFS.

(FFS is not relevant to RSA.)



1

The post-quantum Internet

Daniel J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

Includes joint work with:

Tanja Lange

Technische Universiteit Eindhoven

2

Risk management

“Combining congruences”:

state-of-the-art pre-quantum

attack against original DH,

RSA, and some lattice systems.

Long history, including

many major improvements:

1975, CFRAC;

1977, linear sieve (LS);

1982, quadratic sieve (QS);

1990, number-field sieve (NFS);

1994, function-field sieve (FFS);

2006, medium-prime FFS/NFS;

2013, xq − x FFS.

3

Also many smaller improvements:

>100 scientific papers.

Costs of these algorithms for

breaking RSA-1024, RSA-2048:

≈2120, ≈2170, CFRAC;

≈2110, ≈2160, LS;

≈2100, ≈2150, QS;

≈280, ≈2112, NFS.

(FFS is not relevant to RSA.)



2

Risk management

“Combining congruences”:

state-of-the-art pre-quantum

attack against original DH,

RSA, and some lattice systems.

Long history, including

many major improvements:

1975, CFRAC;

1977, linear sieve (LS);

1982, quadratic sieve (QS);

1990, number-field sieve (NFS);

1994, function-field sieve (FFS);

2006, medium-prime FFS/NFS;

2013, xq − x FFS.

3

Also many smaller improvements:

>100 scientific papers.

Costs of these algorithms for

breaking RSA-1024, RSA-2048:

≈2120, ≈2170, CFRAC;

≈2110, ≈2160, LS;

≈2100, ≈2150, QS;

≈280, ≈2112, NFS.

(FFS is not relevant to RSA.)



2

Risk management

“Combining congruences”:

state-of-the-art pre-quantum

attack against original DH,

RSA, and some lattice systems.

Long history, including

many major improvements:

1975, CFRAC;

1977, linear sieve (LS);

1982, quadratic sieve (QS);

1990, number-field sieve (NFS);

1994, function-field sieve (FFS);

2006, medium-prime FFS/NFS;

2013, xq − x FFS.

3

Also many smaller improvements:

>100 scientific papers.

Costs of these algorithms for

breaking RSA-1024, RSA-2048:

≈2120, ≈2170, CFRAC;

≈2110, ≈2160, LS;

≈2100, ≈2150, QS;

≈280, ≈2112, NFS.

(FFS is not relevant to RSA.)

How much risk is there

of future breakthroughs?



2

Risk management

“Combining congruences”:

state-of-the-art pre-quantum

attack against original DH,

RSA, and some lattice systems.

Long history, including

many major improvements:

1975, CFRAC;

1977, linear sieve (LS);

1982, quadratic sieve (QS);

1990, number-field sieve (NFS);

1994, function-field sieve (FFS);

2006, medium-prime FFS/NFS;

2013, xq − x FFS.

3

Also many smaller improvements:

>100 scientific papers.

Costs of these algorithms for

breaking RSA-1024, RSA-2048:

≈2120, ≈2170, CFRAC;

≈2110, ≈2160, LS;

≈2100, ≈2150, QS;

≈280, ≈2112, NFS.

(FFS is not relevant to RSA.)

How much risk is there

of future breakthroughs?

How much risk is there

of secret breakthroughs?



2

Risk management

“Combining congruences”:

state-of-the-art pre-quantum

attack against original DH,

RSA, and some lattice systems.

Long history, including

many major improvements:

1975, CFRAC;

1977, linear sieve (LS);

1982, quadratic sieve (QS);

1990, number-field sieve (NFS);

1994, function-field sieve (FFS);

2006, medium-prime FFS/NFS;

2013, xq − x FFS.

3

Also many smaller improvements:

>100 scientific papers.

Costs of these algorithms for

breaking RSA-1024, RSA-2048:

≈2120, ≈2170, CFRAC;

≈2110, ≈2160, LS;

≈2100, ≈2150, QS;

≈280, ≈2112, NFS.

(FFS is not relevant to RSA.)

How much risk is there

of future breakthroughs?

How much risk is there

of secret breakthroughs?

4

If we put enough effort into

exploring Attack Mountain,

will we find the highest peak?

At least within ›?



2

Risk management

“Combining congruences”:

state-of-the-art pre-quantum

attack against original DH,

RSA, and some lattice systems.

Long history, including

many major improvements:

1975, CFRAC;

1977, linear sieve (LS);

1982, quadratic sieve (QS);

1990, number-field sieve (NFS);

1994, function-field sieve (FFS);

2006, medium-prime FFS/NFS;

2013, xq − x FFS.

3

Also many smaller improvements:

>100 scientific papers.

Costs of these algorithms for

breaking RSA-1024, RSA-2048:

≈2120, ≈2170, CFRAC;

≈2110, ≈2160, LS;

≈2100, ≈2150, QS;

≈280, ≈2112, NFS.

(FFS is not relevant to RSA.)

How much risk is there

of future breakthroughs?

How much risk is there

of secret breakthroughs?

4

If we put enough effort into

exploring Attack Mountain,

will we find the highest peak?

At least within ›?



2

Risk management

“Combining congruences”:

state-of-the-art pre-quantum

attack against original DH,

RSA, and some lattice systems.

Long history, including

many major improvements:

1975, CFRAC;

1977, linear sieve (LS);

1982, quadratic sieve (QS);

1990, number-field sieve (NFS);

1994, function-field sieve (FFS);

2006, medium-prime FFS/NFS;

2013, xq − x FFS.

3

Also many smaller improvements:

>100 scientific papers.

Costs of these algorithms for

breaking RSA-1024, RSA-2048:

≈2120, ≈2170, CFRAC;

≈2110, ≈2160, LS;

≈2100, ≈2150, QS;

≈280, ≈2112, NFS.

(FFS is not relevant to RSA.)

How much risk is there

of future breakthroughs?

How much risk is there

of secret breakthroughs?

4

If we put enough effort into

exploring Attack Mountain,

will we find the highest peak?

At least within ›?



3

Also many smaller improvements:

>100 scientific papers.

Costs of these algorithms for

breaking RSA-1024, RSA-2048:

≈2120, ≈2170, CFRAC;

≈2110, ≈2160, LS;

≈2100, ≈2150, QS;

≈280, ≈2112, NFS.

(FFS is not relevant to RSA.)

How much risk is there

of future breakthroughs?

How much risk is there

of secret breakthroughs?

4

If we put enough effort into

exploring Attack Mountain,

will we find the highest peak?

At least within ›?



3

Also many smaller improvements:

>100 scientific papers.

Costs of these algorithms for

breaking RSA-1024, RSA-2048:

≈2120, ≈2170, CFRAC;

≈2110, ≈2160, LS;

≈2100, ≈2150, QS;

≈280, ≈2112, NFS.

(FFS is not relevant to RSA.)

How much risk is there

of future breakthroughs?

How much risk is there

of secret breakthroughs?

4

If we put enough effort into

exploring Attack Mountain,

will we find the highest peak?

At least within ›?

Combining-Congruences Mountain

is a huge, foggy, high-dimensional

mountain with many paths up.

Scary: easy to imagine that

we’re not at the top yet.



3

Also many smaller improvements:

>100 scientific papers.

Costs of these algorithms for

breaking RSA-1024, RSA-2048:

≈2120, ≈2170, CFRAC;

≈2110, ≈2160, LS;

≈2100, ≈2150, QS;

≈280, ≈2112, NFS.

(FFS is not relevant to RSA.)

How much risk is there

of future breakthroughs?

How much risk is there

of secret breakthroughs?

4

If we put enough effort into

exploring Attack Mountain,

will we find the highest peak?

At least within ›?

Combining-Congruences Mountain

is a huge, foggy, high-dimensional

mountain with many paths up.

Scary: easy to imagine that

we’re not at the top yet.

18-year bet announced in 2014:

Joux wins if RSA-2048 is broken

first by pre-quantum algorithms;

I win if RSA-2048 is broken

first by quantum algorithms.



3

Also many smaller improvements:

>100 scientific papers.

Costs of these algorithms for

breaking RSA-1024, RSA-2048:

≈2120, ≈2170, CFRAC;

≈2110, ≈2160, LS;

≈2100, ≈2150, QS;

≈280, ≈2112, NFS.

(FFS is not relevant to RSA.)

How much risk is there

of future breakthroughs?

How much risk is there

of secret breakthroughs?

4

If we put enough effort into

exploring Attack Mountain,

will we find the highest peak?

At least within ›?

Combining-Congruences Mountain

is a huge, foggy, high-dimensional

mountain with many paths up.

Scary: easy to imagine that

we’re not at the top yet.

18-year bet announced in 2014:

Joux wins if RSA-2048 is broken

first by pre-quantum algorithms;

I win if RSA-2048 is broken

first by quantum algorithms.

5

Conservative cryptographers

prefer mountains that seem

less huge, less foggy,

more thoroughly explored.



3

Also many smaller improvements:

>100 scientific papers.

Costs of these algorithms for

breaking RSA-1024, RSA-2048:

≈2120, ≈2170, CFRAC;

≈2110, ≈2160, LS;

≈2100, ≈2150, QS;

≈280, ≈2112, NFS.

(FFS is not relevant to RSA.)

How much risk is there

of future breakthroughs?

How much risk is there

of secret breakthroughs?

4

If we put enough effort into

exploring Attack Mountain,

will we find the highest peak?

At least within ›?

Combining-Congruences Mountain

is a huge, foggy, high-dimensional

mountain with many paths up.

Scary: easy to imagine that

we’re not at the top yet.

18-year bet announced in 2014:

Joux wins if RSA-2048 is broken

first by pre-quantum algorithms;

I win if RSA-2048 is broken

first by quantum algorithms.

5

Conservative cryptographers

prefer mountains that seem

less huge, less foggy,

more thoroughly explored.



3

Also many smaller improvements:

>100 scientific papers.

Costs of these algorithms for

breaking RSA-1024, RSA-2048:

≈2120, ≈2170, CFRAC;

≈2110, ≈2160, LS;

≈2100, ≈2150, QS;

≈280, ≈2112, NFS.

(FFS is not relevant to RSA.)

How much risk is there

of future breakthroughs?

How much risk is there

of secret breakthroughs?

4

If we put enough effort into

exploring Attack Mountain,

will we find the highest peak?

At least within ›?

Combining-Congruences Mountain

is a huge, foggy, high-dimensional

mountain with many paths up.

Scary: easy to imagine that

we’re not at the top yet.

18-year bet announced in 2014:

Joux wins if RSA-2048 is broken

first by pre-quantum algorithms;

I win if RSA-2048 is broken

first by quantum algorithms.

5

Conservative cryptographers

prefer mountains that seem

less huge, less foggy,

more thoroughly explored.



4

If we put enough effort into

exploring Attack Mountain,

will we find the highest peak?

At least within ›?

Combining-Congruences Mountain

is a huge, foggy, high-dimensional

mountain with many paths up.

Scary: easy to imagine that

we’re not at the top yet.

18-year bet announced in 2014:

Joux wins if RSA-2048 is broken

first by pre-quantum algorithms;

I win if RSA-2048 is broken

first by quantum algorithms.

5

Conservative cryptographers

prefer mountains that seem

less huge, less foggy,

more thoroughly explored.



4

If we put enough effort into

exploring Attack Mountain,

will we find the highest peak?

At least within ›?

Combining-Congruences Mountain

is a huge, foggy, high-dimensional

mountain with many paths up.

Scary: easy to imagine that

we’re not at the top yet.

18-year bet announced in 2014:

Joux wins if RSA-2048 is broken

first by pre-quantum algorithms;

I win if RSA-2048 is broken

first by quantum algorithms.

5

Conservative cryptographers

prefer mountains that seem

less huge, less foggy,

more thoroughly explored.

1986 Miller “Use of

elliptic curves in cryptography”:

“It is extremely unlikely

that an ‘index calculus’ attack

[combining-congruences attack]

on the elliptic curve method

will ever be able to work.”



4

If we put enough effort into

exploring Attack Mountain,

will we find the highest peak?

At least within ›?

Combining-Congruences Mountain

is a huge, foggy, high-dimensional

mountain with many paths up.

Scary: easy to imagine that

we’re not at the top yet.

18-year bet announced in 2014:

Joux wins if RSA-2048 is broken

first by pre-quantum algorithms;

I win if RSA-2048 is broken

first by quantum algorithms.

5

Conservative cryptographers

prefer mountains that seem

less huge, less foggy,

more thoroughly explored.

1986 Miller “Use of

elliptic curves in cryptography”:

“It is extremely unlikely

that an ‘index calculus’ attack

[combining-congruences attack]

on the elliptic curve method

will ever be able to work.”

This is the core argument for

ECC. Exceptions: rare curves with

special structure—e.g., pairings.



4

If we put enough effort into

exploring Attack Mountain,

will we find the highest peak?

At least within ›?

Combining-Congruences Mountain

is a huge, foggy, high-dimensional

mountain with many paths up.

Scary: easy to imagine that

we’re not at the top yet.

18-year bet announced in 2014:

Joux wins if RSA-2048 is broken

first by pre-quantum algorithms;

I win if RSA-2048 is broken

first by quantum algorithms.

5

Conservative cryptographers

prefer mountains that seem

less huge, less foggy,

more thoroughly explored.

1986 Miller “Use of

elliptic curves in cryptography”:

“It is extremely unlikely

that an ‘index calculus’ attack

[combining-congruences attack]

on the elliptic curve method

will ever be able to work.”

This is the core argument for

ECC. Exceptions: rare curves with

special structure—e.g., pairings.

6

2015 Lange: “Would you

bet your kidneys on that?”



4

If we put enough effort into

exploring Attack Mountain,

will we find the highest peak?

At least within ›?

Combining-Congruences Mountain

is a huge, foggy, high-dimensional

mountain with many paths up.

Scary: easy to imagine that

we’re not at the top yet.

18-year bet announced in 2014:

Joux wins if RSA-2048 is broken

first by pre-quantum algorithms;

I win if RSA-2048 is broken

first by quantum algorithms.

5

Conservative cryptographers

prefer mountains that seem

less huge, less foggy,

more thoroughly explored.

1986 Miller “Use of

elliptic curves in cryptography”:

“It is extremely unlikely

that an ‘index calculus’ attack

[combining-congruences attack]

on the elliptic curve method

will ever be able to work.”

This is the core argument for

ECC. Exceptions: rare curves with

special structure—e.g., pairings.

6

2015 Lange: “Would you

bet your kidneys on that?”



4

If we put enough effort into

exploring Attack Mountain,

will we find the highest peak?

At least within ›?

Combining-Congruences Mountain

is a huge, foggy, high-dimensional

mountain with many paths up.

Scary: easy to imagine that

we’re not at the top yet.

18-year bet announced in 2014:

Joux wins if RSA-2048 is broken

first by pre-quantum algorithms;

I win if RSA-2048 is broken

first by quantum algorithms.

5

Conservative cryptographers

prefer mountains that seem

less huge, less foggy,

more thoroughly explored.

1986 Miller “Use of

elliptic curves in cryptography”:

“It is extremely unlikely

that an ‘index calculus’ attack

[combining-congruences attack]

on the elliptic curve method

will ever be able to work.”

This is the core argument for

ECC. Exceptions: rare curves with

special structure—e.g., pairings.

6

2015 Lange: “Would you

bet your kidneys on that?”



5

Conservative cryptographers

prefer mountains that seem

less huge, less foggy,

more thoroughly explored.

1986 Miller “Use of

elliptic curves in cryptography”:

“It is extremely unlikely

that an ‘index calculus’ attack

[combining-congruences attack]

on the elliptic curve method

will ever be able to work.”

This is the core argument for

ECC. Exceptions: rare curves with

special structure—e.g., pairings.

6

2015 Lange: “Would you

bet your kidneys on that?”



5

Conservative cryptographers

prefer mountains that seem

less huge, less foggy,

more thoroughly explored.

1986 Miller “Use of

elliptic curves in cryptography”:

“It is extremely unlikely

that an ‘index calculus’ attack

[combining-congruences attack]

on the elliptic curve method

will ever be able to work.”

This is the core argument for

ECC. Exceptions: rare curves with

special structure—e.g., pairings.

6

2015 Lange: “Would you

bet your kidneys on that?”

7

Risk of future attacker having

big universal quantum computer:

noticeable probability;

terrifying impact.



5

Conservative cryptographers

prefer mountains that seem

less huge, less foggy,

more thoroughly explored.

1986 Miller “Use of

elliptic curves in cryptography”:

“It is extremely unlikely

that an ‘index calculus’ attack

[combining-congruences attack]

on the elliptic curve method

will ever be able to work.”

This is the core argument for

ECC. Exceptions: rare curves with

special structure—e.g., pairings.

6

2015 Lange: “Would you

bet your kidneys on that?”

7

Risk of future attacker having

big universal quantum computer:

noticeable probability;

terrifying impact.



5

Conservative cryptographers

prefer mountains that seem

less huge, less foggy,

more thoroughly explored.

1986 Miller “Use of

elliptic curves in cryptography”:

“It is extremely unlikely

that an ‘index calculus’ attack

[combining-congruences attack]

on the elliptic curve method

will ever be able to work.”

This is the core argument for

ECC. Exceptions: rare curves with

special structure—e.g., pairings.

6

2015 Lange: “Would you

bet your kidneys on that?”

7

Risk of future attacker having

big universal quantum computer:

noticeable probability;

terrifying impact.



6

2015 Lange: “Would you

bet your kidneys on that?”

7

Risk of future attacker having

big universal quantum computer:

noticeable probability;

terrifying impact.



6

2015 Lange: “Would you

bet your kidneys on that?”

7

Risk of future attacker having

big universal quantum computer:

noticeable probability;

terrifying impact.

Fortunately, we already know

some confidence-inspiring

post-quantum systems, including

• hash-based signatures;

• McEliece public-key encryption;

• AES-256 etc.

https://pqcrypto.eu.org/docs/

initial-recommendations.pdf



6

2015 Lange: “Would you

bet your kidneys on that?”

7

Risk of future attacker having

big universal quantum computer:

noticeable probability;

terrifying impact.

Fortunately, we already know

some confidence-inspiring

post-quantum systems, including

• hash-based signatures;

• McEliece public-key encryption;

• AES-256 etc.

https://pqcrypto.eu.org/docs/

initial-recommendations.pdf

8

Application: software updates

Your computer downloads

new version of its OS.

Your computer checks

signature on the download

from the OS manufacturer.

Critical use of crypto!

Otherwise criminals could

insert malware into the OS.

e.g. OpenBSD updates are

signed using state-of-the-art

ECC signature system: Ed25519.



6

2015 Lange: “Would you

bet your kidneys on that?”

7

Risk of future attacker having

big universal quantum computer:

noticeable probability;

terrifying impact.

Fortunately, we already know

some confidence-inspiring

post-quantum systems, including

• hash-based signatures;

• McEliece public-key encryption;

• AES-256 etc.

https://pqcrypto.eu.org/docs/

initial-recommendations.pdf

8

Application: software updates

Your computer downloads

new version of its OS.

Your computer checks

signature on the download

from the OS manufacturer.

Critical use of crypto!

Otherwise criminals could

insert malware into the OS.

e.g. OpenBSD updates are

signed using state-of-the-art

ECC signature system: Ed25519.



6

2015 Lange: “Would you

bet your kidneys on that?”

7

Risk of future attacker having

big universal quantum computer:

noticeable probability;

terrifying impact.

Fortunately, we already know

some confidence-inspiring

post-quantum systems, including

• hash-based signatures;

• McEliece public-key encryption;

• AES-256 etc.

https://pqcrypto.eu.org/docs/

initial-recommendations.pdf

8

Application: software updates

Your computer downloads

new version of its OS.

Your computer checks

signature on the download

from the OS manufacturer.

Critical use of crypto!

Otherwise criminals could

insert malware into the OS.

e.g. OpenBSD updates are

signed using state-of-the-art

ECC signature system: Ed25519.



7

Risk of future attacker having

big universal quantum computer:

noticeable probability;

terrifying impact.

Fortunately, we already know

some confidence-inspiring

post-quantum systems, including

• hash-based signatures;

• McEliece public-key encryption;

• AES-256 etc.

https://pqcrypto.eu.org/docs/

initial-recommendations.pdf

8

Application: software updates

Your computer downloads

new version of its OS.

Your computer checks

signature on the download

from the OS manufacturer.

Critical use of crypto!

Otherwise criminals could

insert malware into the OS.

e.g. OpenBSD updates are

signed using state-of-the-art

ECC signature system: Ed25519.



7

Risk of future attacker having

big universal quantum computer:

noticeable probability;

terrifying impact.

Fortunately, we already know

some confidence-inspiring

post-quantum systems, including

• hash-based signatures;

• McEliece public-key encryption;

• AES-256 etc.

https://pqcrypto.eu.org/docs/

initial-recommendations.pdf

8

Application: software updates

Your computer downloads

new version of its OS.

Your computer checks

signature on the download

from the OS manufacturer.

Critical use of crypto!

Otherwise criminals could

insert malware into the OS.

e.g. OpenBSD updates are

signed using state-of-the-art

ECC signature system: Ed25519.

9

Pre-quantum signature system P

needs to be replaced with

post-quantum signature system Q.



7

Risk of future attacker having

big universal quantum computer:

noticeable probability;

terrifying impact.

Fortunately, we already know

some confidence-inspiring

post-quantum systems, including

• hash-based signatures;

• McEliece public-key encryption;

• AES-256 etc.

https://pqcrypto.eu.org/docs/

initial-recommendations.pdf

8

Application: software updates

Your computer downloads

new version of its OS.

Your computer checks

signature on the download

from the OS manufacturer.

Critical use of crypto!

Otherwise criminals could

insert malware into the OS.

e.g. OpenBSD updates are

signed using state-of-the-art

ECC signature system: Ed25519.

9

Pre-quantum signature system P

needs to be replaced with

post-quantum signature system Q.



7

Risk of future attacker having

big universal quantum computer:

noticeable probability;

terrifying impact.

Fortunately, we already know

some confidence-inspiring

post-quantum systems, including

• hash-based signatures;

• McEliece public-key encryption;

• AES-256 etc.

https://pqcrypto.eu.org/docs/

initial-recommendations.pdf

8

Application: software updates

Your computer downloads

new version of its OS.

Your computer checks

signature on the download

from the OS manufacturer.

Critical use of crypto!

Otherwise criminals could

insert malware into the OS.

e.g. OpenBSD updates are

signed using state-of-the-art

ECC signature system: Ed25519.

9

Pre-quantum signature system P

needs to be replaced with

post-quantum signature system Q.



8

Application: software updates

Your computer downloads

new version of its OS.

Your computer checks

signature on the download

from the OS manufacturer.

Critical use of crypto!

Otherwise criminals could

insert malware into the OS.

e.g. OpenBSD updates are

signed using state-of-the-art

ECC signature system: Ed25519.

9

Pre-quantum signature system P

needs to be replaced with

post-quantum signature system Q.



8

Application: software updates

Your computer downloads

new version of its OS.

Your computer checks

signature on the download

from the OS manufacturer.

Critical use of crypto!

Otherwise criminals could

insert malware into the OS.

e.g. OpenBSD updates are

signed using state-of-the-art

ECC signature system: Ed25519.

9

Pre-quantum signature system P

needs to be replaced with

post-quantum signature system Q.

Make auditors happier:

Replace P with P + Q.

P + Q public key concatenates

P public key, Q public key.

P + Q signature concatenates

P signature, Q signature.



8

Application: software updates

Your computer downloads

new version of its OS.

Your computer checks

signature on the download

from the OS manufacturer.

Critical use of crypto!

Otherwise criminals could

insert malware into the OS.

e.g. OpenBSD updates are

signed using state-of-the-art

ECC signature system: Ed25519.

9

Pre-quantum signature system P

needs to be replaced with

post-quantum signature system Q.

Make auditors happier:

Replace P with P + Q.

P + Q public key concatenates

P public key, Q public key.

P + Q signature concatenates

P signature, Q signature.

Want a tiny public key?

Replace public key with hash.

Include missing information

(≤ entire key) inside signature.



8

Application: software updates

Your computer downloads

new version of its OS.

Your computer checks

signature on the download

from the OS manufacturer.

Critical use of crypto!

Otherwise criminals could

insert malware into the OS.

e.g. OpenBSD updates are

signed using state-of-the-art

ECC signature system: Ed25519.

9

Pre-quantum signature system P

needs to be replaced with

post-quantum signature system Q.

Make auditors happier:

Replace P with P + Q.

P + Q public key concatenates

P public key, Q public key.

P + Q signature concatenates

P signature, Q signature.

Want a tiny public key?

Replace public key with hash.

Include missing information

(≤ entire key) inside signature.

10

e.g. Ed25519+SPHINCS-256.

SPHINCS-256 signature is 41KB;

≈50 million cycles to generate;

≈1 million cycles to verify.

Negligible cost to sign, transmit,

verify compared to OS update.



8

Application: software updates

Your computer downloads

new version of its OS.

Your computer checks

signature on the download

from the OS manufacturer.

Critical use of crypto!

Otherwise criminals could

insert malware into the OS.

e.g. OpenBSD updates are

signed using state-of-the-art

ECC signature system: Ed25519.

9

Pre-quantum signature system P

needs to be replaced with

post-quantum signature system Q.

Make auditors happier:

Replace P with P + Q.

P + Q public key concatenates

P public key, Q public key.

P + Q signature concatenates

P signature, Q signature.

Want a tiny public key?

Replace public key with hash.

Include missing information

(≤ entire key) inside signature.

10

e.g. Ed25519+SPHINCS-256.

SPHINCS-256 signature is 41KB;

≈50 million cycles to generate;

≈1 million cycles to verify.

Negligible cost to sign, transmit,

verify compared to OS update.



8

Application: software updates

Your computer downloads

new version of its OS.

Your computer checks

signature on the download

from the OS manufacturer.

Critical use of crypto!

Otherwise criminals could

insert malware into the OS.

e.g. OpenBSD updates are

signed using state-of-the-art

ECC signature system: Ed25519.

9

Pre-quantum signature system P

needs to be replaced with

post-quantum signature system Q.

Make auditors happier:

Replace P with P + Q.

P + Q public key concatenates

P public key, Q public key.

P + Q signature concatenates

P signature, Q signature.

Want a tiny public key?

Replace public key with hash.

Include missing information

(≤ entire key) inside signature.

10

e.g. Ed25519+SPHINCS-256.

SPHINCS-256 signature is 41KB;

≈50 million cycles to generate;

≈1 million cycles to verify.

Negligible cost to sign, transmit,

verify compared to OS update.



9

Pre-quantum signature system P

needs to be replaced with

post-quantum signature system Q.

Make auditors happier:

Replace P with P + Q.

P + Q public key concatenates

P public key, Q public key.

P + Q signature concatenates

P signature, Q signature.

Want a tiny public key?

Replace public key with hash.

Include missing information

(≤ entire key) inside signature.

10

e.g. Ed25519+SPHINCS-256.

SPHINCS-256 signature is 41KB;

≈50 million cycles to generate;

≈1 million cycles to verify.

Negligible cost to sign, transmit,

verify compared to OS update.



9

Pre-quantum signature system P

needs to be replaced with

post-quantum signature system Q.

Make auditors happier:

Replace P with P + Q.

P + Q public key concatenates

P public key, Q public key.

P + Q signature concatenates

P signature, Q signature.

Want a tiny public key?

Replace public key with hash.

Include missing information

(≤ entire key) inside signature.

10

e.g. Ed25519+SPHINCS-256.

SPHINCS-256 signature is 41KB;

≈50 million cycles to generate;

≈1 million cycles to verify.

Negligible cost to sign, transmit,

verify compared to OS update.

+Ed25519: unnoticeable cost.

Some extra system complexity,

but the system includes

Ed25519 code anyway.



9

Pre-quantum signature system P

needs to be replaced with

post-quantum signature system Q.

Make auditors happier:

Replace P with P + Q.

P + Q public key concatenates

P public key, Q public key.

P + Q signature concatenates

P signature, Q signature.

Want a tiny public key?

Replace public key with hash.

Include missing information

(≤ entire key) inside signature.

10

e.g. Ed25519+SPHINCS-256.

SPHINCS-256 signature is 41KB;

≈50 million cycles to generate;

≈1 million cycles to verify.

Negligible cost to sign, transmit,

verify compared to OS update.

+Ed25519: unnoticeable cost.

Some extra system complexity,

but the system includes

Ed25519 code anyway.

Auditor sees very easily

that Ed25519+SPHINCS-256

security ≥ Ed25519 security.



9

Pre-quantum signature system P

needs to be replaced with

post-quantum signature system Q.

Make auditors happier:

Replace P with P + Q.

P + Q public key concatenates

P public key, Q public key.

P + Q signature concatenates

P signature, Q signature.

Want a tiny public key?

Replace public key with hash.

Include missing information

(≤ entire key) inside signature.

10

e.g. Ed25519+SPHINCS-256.

SPHINCS-256 signature is 41KB;

≈50 million cycles to generate;

≈1 million cycles to verify.

Negligible cost to sign, transmit,

verify compared to OS update.

+Ed25519: unnoticeable cost.

Some extra system complexity,

but the system includes

Ed25519 code anyway.

Auditor sees very easily

that Ed25519+SPHINCS-256

security ≥ Ed25519 security.

11

Does deployment of P + Q

mean that we don’t trust Q?

On the contrary!

Pre-quantum situation:

Hash-based signatures are

even more confidence-inspiring

than ECC signatures.

But understanding this fact

takes extra work for auditor.



9

Pre-quantum signature system P

needs to be replaced with

post-quantum signature system Q.

Make auditors happier:

Replace P with P + Q.

P + Q public key concatenates

P public key, Q public key.

P + Q signature concatenates

P signature, Q signature.

Want a tiny public key?

Replace public key with hash.

Include missing information

(≤ entire key) inside signature.

10

e.g. Ed25519+SPHINCS-256.

SPHINCS-256 signature is 41KB;

≈50 million cycles to generate;

≈1 million cycles to verify.

Negligible cost to sign, transmit,

verify compared to OS update.

+Ed25519: unnoticeable cost.

Some extra system complexity,

but the system includes

Ed25519 code anyway.

Auditor sees very easily

that Ed25519+SPHINCS-256

security ≥ Ed25519 security.

11

Does deployment of P + Q

mean that we don’t trust Q?

On the contrary!

Pre-quantum situation:

Hash-based signatures are

even more confidence-inspiring

than ECC signatures.

But understanding this fact

takes extra work for auditor.



9

Pre-quantum signature system P

needs to be replaced with

post-quantum signature system Q.

Make auditors happier:

Replace P with P + Q.

P + Q public key concatenates

P public key, Q public key.

P + Q signature concatenates

P signature, Q signature.

Want a tiny public key?

Replace public key with hash.

Include missing information

(≤ entire key) inside signature.

10

e.g. Ed25519+SPHINCS-256.

SPHINCS-256 signature is 41KB;

≈50 million cycles to generate;

≈1 million cycles to verify.

Negligible cost to sign, transmit,

verify compared to OS update.

+Ed25519: unnoticeable cost.

Some extra system complexity,

but the system includes

Ed25519 code anyway.

Auditor sees very easily

that Ed25519+SPHINCS-256

security ≥ Ed25519 security.

11

Does deployment of P + Q

mean that we don’t trust Q?

On the contrary!

Pre-quantum situation:

Hash-based signatures are

even more confidence-inspiring

than ECC signatures.

But understanding this fact

takes extra work for auditor.



10

e.g. Ed25519+SPHINCS-256.

SPHINCS-256 signature is 41KB;

≈50 million cycles to generate;

≈1 million cycles to verify.

Negligible cost to sign, transmit,

verify compared to OS update.

+Ed25519: unnoticeable cost.

Some extra system complexity,

but the system includes

Ed25519 code anyway.

Auditor sees very easily

that Ed25519+SPHINCS-256

security ≥ Ed25519 security.

11

Does deployment of P + Q

mean that we don’t trust Q?

On the contrary!

Pre-quantum situation:

Hash-based signatures are

even more confidence-inspiring

than ECC signatures.

But understanding this fact

takes extra work for auditor.



10

e.g. Ed25519+SPHINCS-256.

SPHINCS-256 signature is 41KB;

≈50 million cycles to generate;

≈1 million cycles to verify.

Negligible cost to sign, transmit,

verify compared to OS update.

+Ed25519: unnoticeable cost.

Some extra system complexity,

but the system includes

Ed25519 code anyway.

Auditor sees very easily

that Ed25519+SPHINCS-256

security ≥ Ed25519 security.

11

Does deployment of P + Q

mean that we don’t trust Q?

On the contrary!

Pre-quantum situation:

Hash-based signatures are

even more confidence-inspiring

than ECC signatures.

But understanding this fact

takes extra work for auditor.

Long-term situation:

Users see quantum computers

easily breaking P . Simplify system

by switching from P + Q to Q.



10

e.g. Ed25519+SPHINCS-256.

SPHINCS-256 signature is 41KB;

≈50 million cycles to generate;

≈1 million cycles to verify.

Negligible cost to sign, transmit,

verify compared to OS update.

+Ed25519: unnoticeable cost.

Some extra system complexity,

but the system includes

Ed25519 code anyway.

Auditor sees very easily

that Ed25519+SPHINCS-256

security ≥ Ed25519 security.

11

Does deployment of P + Q

mean that we don’t trust Q?

On the contrary!

Pre-quantum situation:

Hash-based signatures are

even more confidence-inspiring

than ECC signatures.

But understanding this fact

takes extra work for auditor.

Long-term situation:

Users see quantum computers

easily breaking P . Simplify system

by switching from P + Q to Q.

12

IP: Internet Protocol

IP communicates “packets”:

limited-length byte strings.

Each computer on the Internet

has a 4-byte “IP address”.

e.g. www.pqcrypto.org has

address 131.155.70.11.

Your browser creates a packet

addressed to 131.155.70.11;

gives packet to the Internet.

Hopefully the Internet delivers

that packet to 131.155.70.11.



10

e.g. Ed25519+SPHINCS-256.

SPHINCS-256 signature is 41KB;

≈50 million cycles to generate;

≈1 million cycles to verify.

Negligible cost to sign, transmit,

verify compared to OS update.

+Ed25519: unnoticeable cost.

Some extra system complexity,

but the system includes

Ed25519 code anyway.

Auditor sees very easily

that Ed25519+SPHINCS-256

security ≥ Ed25519 security.

11

Does deployment of P + Q

mean that we don’t trust Q?

On the contrary!

Pre-quantum situation:

Hash-based signatures are

even more confidence-inspiring

than ECC signatures.

But understanding this fact

takes extra work for auditor.

Long-term situation:

Users see quantum computers

easily breaking P . Simplify system

by switching from P + Q to Q.

12

IP: Internet Protocol

IP communicates “packets”:

limited-length byte strings.

Each computer on the Internet

has a 4-byte “IP address”.

e.g. www.pqcrypto.org has

address 131.155.70.11.

Your browser creates a packet

addressed to 131.155.70.11;

gives packet to the Internet.

Hopefully the Internet delivers

that packet to 131.155.70.11.



10

e.g. Ed25519+SPHINCS-256.

SPHINCS-256 signature is 41KB;

≈50 million cycles to generate;

≈1 million cycles to verify.

Negligible cost to sign, transmit,

verify compared to OS update.

+Ed25519: unnoticeable cost.

Some extra system complexity,

but the system includes

Ed25519 code anyway.

Auditor sees very easily

that Ed25519+SPHINCS-256

security ≥ Ed25519 security.

11

Does deployment of P + Q

mean that we don’t trust Q?

On the contrary!

Pre-quantum situation:

Hash-based signatures are

even more confidence-inspiring

than ECC signatures.

But understanding this fact

takes extra work for auditor.

Long-term situation:

Users see quantum computers

easily breaking P . Simplify system

by switching from P + Q to Q.

12

IP: Internet Protocol

IP communicates “packets”:

limited-length byte strings.

Each computer on the Internet

has a 4-byte “IP address”.

e.g. www.pqcrypto.org has

address 131.155.70.11.

Your browser creates a packet

addressed to 131.155.70.11;

gives packet to the Internet.

Hopefully the Internet delivers

that packet to 131.155.70.11.



11

Does deployment of P + Q

mean that we don’t trust Q?

On the contrary!

Pre-quantum situation:

Hash-based signatures are

even more confidence-inspiring

than ECC signatures.

But understanding this fact

takes extra work for auditor.

Long-term situation:

Users see quantum computers

easily breaking P . Simplify system

by switching from P + Q to Q.

12

IP: Internet Protocol

IP communicates “packets”:

limited-length byte strings.

Each computer on the Internet

has a 4-byte “IP address”.

e.g. www.pqcrypto.org has

address 131.155.70.11.

Your browser creates a packet

addressed to 131.155.70.11;

gives packet to the Internet.

Hopefully the Internet delivers

that packet to 131.155.70.11.



11

Does deployment of P + Q

mean that we don’t trust Q?

On the contrary!

Pre-quantum situation:

Hash-based signatures are

even more confidence-inspiring

than ECC signatures.

But understanding this fact

takes extra work for auditor.

Long-term situation:

Users see quantum computers

easily breaking P . Simplify system

by switching from P + Q to Q.

12

IP: Internet Protocol

IP communicates “packets”:

limited-length byte strings.

Each computer on the Internet

has a 4-byte “IP address”.

e.g. www.pqcrypto.org has

address 131.155.70.11.

Your browser creates a packet

addressed to 131.155.70.11;

gives packet to the Internet.

Hopefully the Internet delivers

that packet to 131.155.70.11.

13

DNS: Domain Name System

You actually told your browser to

connect to www.pqcrypto.org.

Browser learns “131.155.70.11”

by asking a name server,

the pqcrypto.org name server.

Browser → 131.155.71.143:

“Where is www.pqcrypto.org?”



11

Does deployment of P + Q

mean that we don’t trust Q?

On the contrary!

Pre-quantum situation:

Hash-based signatures are

even more confidence-inspiring

than ECC signatures.

But understanding this fact

takes extra work for auditor.

Long-term situation:

Users see quantum computers

easily breaking P . Simplify system

by switching from P + Q to Q.

12

IP: Internet Protocol

IP communicates “packets”:

limited-length byte strings.

Each computer on the Internet

has a 4-byte “IP address”.

e.g. www.pqcrypto.org has

address 131.155.70.11.

Your browser creates a packet

addressed to 131.155.70.11;

gives packet to the Internet.

Hopefully the Internet delivers

that packet to 131.155.70.11.

13

DNS: Domain Name System

You actually told your browser to

connect to www.pqcrypto.org.

Browser learns “131.155.70.11”

by asking a name server,

the pqcrypto.org name server.

Browser → 131.155.71.143:

“Where is www.pqcrypto.org?”



11

Does deployment of P + Q

mean that we don’t trust Q?

On the contrary!

Pre-quantum situation:

Hash-based signatures are

even more confidence-inspiring

than ECC signatures.

But understanding this fact

takes extra work for auditor.

Long-term situation:

Users see quantum computers

easily breaking P . Simplify system

by switching from P + Q to Q.

12

IP: Internet Protocol

IP communicates “packets”:

limited-length byte strings.

Each computer on the Internet

has a 4-byte “IP address”.

e.g. www.pqcrypto.org has

address 131.155.70.11.

Your browser creates a packet

addressed to 131.155.70.11;

gives packet to the Internet.

Hopefully the Internet delivers

that packet to 131.155.70.11.

13

DNS: Domain Name System

You actually told your browser to

connect to www.pqcrypto.org.

Browser learns “131.155.70.11”

by asking a name server,

the pqcrypto.org name server.

Browser → 131.155.71.143:

“Where is www.pqcrypto.org?”



12

IP: Internet Protocol

IP communicates “packets”:

limited-length byte strings.

Each computer on the Internet

has a 4-byte “IP address”.

e.g. www.pqcrypto.org has

address 131.155.70.11.

Your browser creates a packet

addressed to 131.155.70.11;

gives packet to the Internet.

Hopefully the Internet delivers

that packet to 131.155.70.11.

13

DNS: Domain Name System

You actually told your browser to

connect to www.pqcrypto.org.

Browser learns “131.155.70.11”

by asking a name server,

the pqcrypto.org name server.

Browser → 131.155.71.143:

“Where is www.pqcrypto.org?”



12

IP: Internet Protocol

IP communicates “packets”:

limited-length byte strings.

Each computer on the Internet

has a 4-byte “IP address”.

e.g. www.pqcrypto.org has

address 131.155.70.11.

Your browser creates a packet

addressed to 131.155.70.11;

gives packet to the Internet.

Hopefully the Internet delivers

that packet to 131.155.70.11.

13

DNS: Domain Name System

You actually told your browser to

connect to www.pqcrypto.org.

Browser learns “131.155.70.11”

by asking a name server,

the pqcrypto.org name server.

Browser → 131.155.71.143:

“Where is www.pqcrypto.org?”

IP packet from browser also

includes a return address:

the address of your computer.

131.155.71.143 → browser:

“131.155.70.11”



12

IP: Internet Protocol

IP communicates “packets”:

limited-length byte strings.

Each computer on the Internet

has a 4-byte “IP address”.

e.g. www.pqcrypto.org has

address 131.155.70.11.

Your browser creates a packet

addressed to 131.155.70.11;

gives packet to the Internet.

Hopefully the Internet delivers

that packet to 131.155.70.11.

13

DNS: Domain Name System

You actually told your browser to

connect to www.pqcrypto.org.

Browser learns “131.155.70.11”

by asking a name server,

the pqcrypto.org name server.

Browser → 131.155.71.143:

“Where is www.pqcrypto.org?”

IP packet from browser also

includes a return address:

the address of your computer.

131.155.71.143 → browser:

“131.155.70.11”

14

Browser learns the name-server

address, “131.155.71.143”,

by asking the .org name server.

Browser → 199.19.54.1:

“Where is www.pqcrypto.org?”

199.19.54.1 → browser:

“Ask the pqcrypto.org

name server, 131.155.71.143”



12

IP: Internet Protocol

IP communicates “packets”:

limited-length byte strings.

Each computer on the Internet

has a 4-byte “IP address”.

e.g. www.pqcrypto.org has

address 131.155.70.11.

Your browser creates a packet

addressed to 131.155.70.11;

gives packet to the Internet.

Hopefully the Internet delivers

that packet to 131.155.70.11.

13

DNS: Domain Name System

You actually told your browser to

connect to www.pqcrypto.org.

Browser learns “131.155.70.11”

by asking a name server,

the pqcrypto.org name server.

Browser → 131.155.71.143:

“Where is www.pqcrypto.org?”

IP packet from browser also

includes a return address:

the address of your computer.

131.155.71.143 → browser:

“131.155.70.11”

14

Browser learns the name-server

address, “131.155.71.143”,

by asking the .org name server.

Browser → 199.19.54.1:

“Where is www.pqcrypto.org?”

199.19.54.1 → browser:

“Ask the pqcrypto.org

name server, 131.155.71.143”



12

IP: Internet Protocol

IP communicates “packets”:

limited-length byte strings.

Each computer on the Internet

has a 4-byte “IP address”.

e.g. www.pqcrypto.org has

address 131.155.70.11.

Your browser creates a packet

addressed to 131.155.70.11;

gives packet to the Internet.

Hopefully the Internet delivers

that packet to 131.155.70.11.

13

DNS: Domain Name System

You actually told your browser to

connect to www.pqcrypto.org.

Browser learns “131.155.70.11”

by asking a name server,

the pqcrypto.org name server.

Browser → 131.155.71.143:

“Where is www.pqcrypto.org?”

IP packet from browser also

includes a return address:

the address of your computer.

131.155.71.143 → browser:

“131.155.70.11”

14

Browser learns the name-server

address, “131.155.71.143”,

by asking the .org name server.

Browser → 199.19.54.1:

“Where is www.pqcrypto.org?”

199.19.54.1 → browser:

“Ask the pqcrypto.org

name server, 131.155.71.143”



13

DNS: Domain Name System

You actually told your browser to

connect to www.pqcrypto.org.

Browser learns “131.155.70.11”

by asking a name server,

the pqcrypto.org name server.

Browser → 131.155.71.143:

“Where is www.pqcrypto.org?”

IP packet from browser also

includes a return address:

the address of your computer.

131.155.71.143 → browser:

“131.155.70.11”

14

Browser learns the name-server

address, “131.155.71.143”,

by asking the .org name server.

Browser → 199.19.54.1:

“Where is www.pqcrypto.org?”

199.19.54.1 → browser:

“Ask the pqcrypto.org

name server, 131.155.71.143”



13

DNS: Domain Name System

You actually told your browser to

connect to www.pqcrypto.org.

Browser learns “131.155.70.11”

by asking a name server,

the pqcrypto.org name server.

Browser → 131.155.71.143:

“Where is www.pqcrypto.org?”

IP packet from browser also

includes a return address:

the address of your computer.

131.155.71.143 → browser:

“131.155.70.11”

14

Browser learns the name-server

address, “131.155.71.143”,

by asking the .org name server.

Browser → 199.19.54.1:

“Where is www.pqcrypto.org?”

199.19.54.1 → browser:

“Ask the pqcrypto.org

name server, 131.155.71.143”

Browser learns “199.19.54.1”,

the .org server address,

by asking the root name server.



13

DNS: Domain Name System

You actually told your browser to

connect to www.pqcrypto.org.

Browser learns “131.155.70.11”

by asking a name server,

the pqcrypto.org name server.

Browser → 131.155.71.143:

“Where is www.pqcrypto.org?”

IP packet from browser also

includes a return address:

the address of your computer.

131.155.71.143 → browser:

“131.155.70.11”

14

Browser learns the name-server

address, “131.155.71.143”,

by asking the .org name server.

Browser → 199.19.54.1:

“Where is www.pqcrypto.org?”

199.19.54.1 → browser:

“Ask the pqcrypto.org

name server, 131.155.71.143”

Browser learns “199.19.54.1”,

the .org server address,

by asking the root name server.

Browser learned root address

by consulting the Bible.



13

DNS: Domain Name System

You actually told your browser to

connect to www.pqcrypto.org.

Browser learns “131.155.70.11”

by asking a name server,

the pqcrypto.org name server.

Browser → 131.155.71.143:

“Where is www.pqcrypto.org?”

IP packet from browser also

includes a return address:

the address of your computer.

131.155.71.143 → browser:

“131.155.70.11”

14

Browser learns the name-server

address, “131.155.71.143”,

by asking the .org name server.

Browser → 199.19.54.1:

“Where is www.pqcrypto.org?”

199.19.54.1 → browser:

“Ask the pqcrypto.org

name server, 131.155.71.143”

Browser learns “199.19.54.1”,

the .org server address,

by asking the root name server.

Browser learned root address

by consulting the Bible.

15

TCP: Transmission Control Protocol

Packets are limited to 1280 bytes.

(Actually depends on network.

Oldest IP standards required

≥576. Usually 1492 is safe,

often 1500, sometimes more.)



13

DNS: Domain Name System

You actually told your browser to

connect to www.pqcrypto.org.

Browser learns “131.155.70.11”

by asking a name server,

the pqcrypto.org name server.

Browser → 131.155.71.143:

“Where is www.pqcrypto.org?”

IP packet from browser also

includes a return address:

the address of your computer.

131.155.71.143 → browser:

“131.155.70.11”

14

Browser learns the name-server

address, “131.155.71.143”,

by asking the .org name server.

Browser → 199.19.54.1:

“Where is www.pqcrypto.org?”

199.19.54.1 → browser:

“Ask the pqcrypto.org

name server, 131.155.71.143”

Browser learns “199.19.54.1”,

the .org server address,

by asking the root name server.

Browser learned root address

by consulting the Bible.

15

TCP: Transmission Control Protocol

Packets are limited to 1280 bytes.

(Actually depends on network.

Oldest IP standards required

≥576. Usually 1492 is safe,

often 1500, sometimes more.)



13

DNS: Domain Name System

You actually told your browser to

connect to www.pqcrypto.org.

Browser learns “131.155.70.11”

by asking a name server,

the pqcrypto.org name server.

Browser → 131.155.71.143:

“Where is www.pqcrypto.org?”

IP packet from browser also

includes a return address:

the address of your computer.

131.155.71.143 → browser:

“131.155.70.11”

14

Browser learns the name-server

address, “131.155.71.143”,

by asking the .org name server.

Browser → 199.19.54.1:

“Where is www.pqcrypto.org?”

199.19.54.1 → browser:

“Ask the pqcrypto.org

name server, 131.155.71.143”

Browser learns “199.19.54.1”,

the .org server address,

by asking the root name server.

Browser learned root address

by consulting the Bible.

15

TCP: Transmission Control Protocol

Packets are limited to 1280 bytes.

(Actually depends on network.

Oldest IP standards required

≥576. Usually 1492 is safe,

often 1500, sometimes more.)



14

Browser learns the name-server

address, “131.155.71.143”,

by asking the .org name server.

Browser → 199.19.54.1:

“Where is www.pqcrypto.org?”

199.19.54.1 → browser:

“Ask the pqcrypto.org

name server, 131.155.71.143”

Browser learns “199.19.54.1”,

the .org server address,

by asking the root name server.

Browser learned root address

by consulting the Bible.

15

TCP: Transmission Control Protocol

Packets are limited to 1280 bytes.

(Actually depends on network.

Oldest IP standards required

≥576. Usually 1492 is safe,

often 1500, sometimes more.)



14

Browser learns the name-server

address, “131.155.71.143”,

by asking the .org name server.

Browser → 199.19.54.1:

“Where is www.pqcrypto.org?”

199.19.54.1 → browser:

“Ask the pqcrypto.org

name server, 131.155.71.143”

Browser learns “199.19.54.1”,

the .org server address,

by asking the root name server.

Browser learned root address

by consulting the Bible.

15

TCP: Transmission Control Protocol

Packets are limited to 1280 bytes.

(Actually depends on network.

Oldest IP standards required

≥576. Usually 1492 is safe,

often 1500, sometimes more.)

The page you’re downloading

from pqcrypto.org doesn’t fit.



14

Browser learns the name-server

address, “131.155.71.143”,

by asking the .org name server.

Browser → 199.19.54.1:

“Where is www.pqcrypto.org?”

199.19.54.1 → browser:

“Ask the pqcrypto.org

name server, 131.155.71.143”

Browser learns “199.19.54.1”,

the .org server address,

by asking the root name server.

Browser learned root address

by consulting the Bible.

15

TCP: Transmission Control Protocol

Packets are limited to 1280 bytes.

(Actually depends on network.

Oldest IP standards required

≥576. Usually 1492 is safe,

often 1500, sometimes more.)

The page you’re downloading

from pqcrypto.org doesn’t fit.

Browser actually makes “TCP

connection” to pqcrypto.org.

Inside that connection: sends

HTTP request, receives response.



14

Browser learns the name-server

address, “131.155.71.143”,

by asking the .org name server.

Browser → 199.19.54.1:

“Where is www.pqcrypto.org?”

199.19.54.1 → browser:

“Ask the pqcrypto.org

name server, 131.155.71.143”

Browser learns “199.19.54.1”,

the .org server address,

by asking the root name server.

Browser learned root address

by consulting the Bible.

15

TCP: Transmission Control Protocol

Packets are limited to 1280 bytes.

(Actually depends on network.

Oldest IP standards required

≥576. Usually 1492 is safe,

often 1500, sometimes more.)

The page you’re downloading

from pqcrypto.org doesn’t fit.

Browser actually makes “TCP

connection” to pqcrypto.org.

Inside that connection: sends

HTTP request, receives response.

16

Browser → server:

“SYN 168bb5d9”

Server → browser:

“ACK 168bb5da, SYN 747bfa41”

Browser → server:

“ACK 747bfa42”

Server now allocates buffers

for this TCP connection.

Browser splits data into packets,

counting bytes from 168bb5da.

Server splits data into packets,

counting bytes from 747bfa42.



14

Browser learns the name-server

address, “131.155.71.143”,

by asking the .org name server.

Browser → 199.19.54.1:

“Where is www.pqcrypto.org?”

199.19.54.1 → browser:

“Ask the pqcrypto.org

name server, 131.155.71.143”

Browser learns “199.19.54.1”,

the .org server address,

by asking the root name server.

Browser learned root address

by consulting the Bible.

15

TCP: Transmission Control Protocol

Packets are limited to 1280 bytes.

(Actually depends on network.

Oldest IP standards required

≥576. Usually 1492 is safe,

often 1500, sometimes more.)

The page you’re downloading

from pqcrypto.org doesn’t fit.

Browser actually makes “TCP

connection” to pqcrypto.org.

Inside that connection: sends

HTTP request, receives response.

16

Browser → server:

“SYN 168bb5d9”

Server → browser:

“ACK 168bb5da, SYN 747bfa41”

Browser → server:

“ACK 747bfa42”

Server now allocates buffers

for this TCP connection.

Browser splits data into packets,

counting bytes from 168bb5da.

Server splits data into packets,

counting bytes from 747bfa42.



14

Browser learns the name-server

address, “131.155.71.143”,

by asking the .org name server.

Browser → 199.19.54.1:

“Where is www.pqcrypto.org?”

199.19.54.1 → browser:

“Ask the pqcrypto.org

name server, 131.155.71.143”

Browser learns “199.19.54.1”,

the .org server address,

by asking the root name server.

Browser learned root address

by consulting the Bible.

15

TCP: Transmission Control Protocol

Packets are limited to 1280 bytes.

(Actually depends on network.

Oldest IP standards required

≥576. Usually 1492 is safe,

often 1500, sometimes more.)

The page you’re downloading

from pqcrypto.org doesn’t fit.

Browser actually makes “TCP

connection” to pqcrypto.org.

Inside that connection: sends

HTTP request, receives response.

16

Browser → server:

“SYN 168bb5d9”

Server → browser:

“ACK 168bb5da, SYN 747bfa41”

Browser → server:

“ACK 747bfa42”

Server now allocates buffers

for this TCP connection.

Browser splits data into packets,

counting bytes from 168bb5da.

Server splits data into packets,

counting bytes from 747bfa42.



15

TCP: Transmission Control Protocol

Packets are limited to 1280 bytes.

(Actually depends on network.

Oldest IP standards required

≥576. Usually 1492 is safe,

often 1500, sometimes more.)

The page you’re downloading

from pqcrypto.org doesn’t fit.

Browser actually makes “TCP

connection” to pqcrypto.org.

Inside that connection: sends

HTTP request, receives response.

16

Browser → server:

“SYN 168bb5d9”

Server → browser:

“ACK 168bb5da, SYN 747bfa41”

Browser → server:

“ACK 747bfa42”

Server now allocates buffers

for this TCP connection.

Browser splits data into packets,

counting bytes from 168bb5da.

Server splits data into packets,

counting bytes from 747bfa42.



15

TCP: Transmission Control Protocol

Packets are limited to 1280 bytes.

(Actually depends on network.

Oldest IP standards required

≥576. Usually 1492 is safe,

often 1500, sometimes more.)

The page you’re downloading

from pqcrypto.org doesn’t fit.

Browser actually makes “TCP

connection” to pqcrypto.org.

Inside that connection: sends

HTTP request, receives response.

16

Browser → server:

“SYN 168bb5d9”

Server → browser:

“ACK 168bb5da, SYN 747bfa41”

Browser → server:

“ACK 747bfa42”

Server now allocates buffers

for this TCP connection.

Browser splits data into packets,

counting bytes from 168bb5da.

Server splits data into packets,

counting bytes from 747bfa42.

17

Main feature advertised by TCP:

“reliable data streams”.

Internet sometimes loses packets

or delivers packets out of order.

Doesn’t confuse TCP connections:

computer checks the counter

inside each TCP packet.

Computer retransmits data

if data is not acknowledged.

Complicated rules to decide

retransmission schedule,

avoiding network congestion.



15

TCP: Transmission Control Protocol

Packets are limited to 1280 bytes.

(Actually depends on network.

Oldest IP standards required

≥576. Usually 1492 is safe,

often 1500, sometimes more.)

The page you’re downloading

from pqcrypto.org doesn’t fit.

Browser actually makes “TCP

connection” to pqcrypto.org.

Inside that connection: sends

HTTP request, receives response.

16

Browser → server:

“SYN 168bb5d9”

Server → browser:

“ACK 168bb5da, SYN 747bfa41”

Browser → server:

“ACK 747bfa42”

Server now allocates buffers

for this TCP connection.

Browser splits data into packets,

counting bytes from 168bb5da.

Server splits data into packets,

counting bytes from 747bfa42.

17

Main feature advertised by TCP:

“reliable data streams”.

Internet sometimes loses packets

or delivers packets out of order.

Doesn’t confuse TCP connections:

computer checks the counter

inside each TCP packet.

Computer retransmits data

if data is not acknowledged.

Complicated rules to decide

retransmission schedule,

avoiding network congestion.



15

TCP: Transmission Control Protocol

Packets are limited to 1280 bytes.

(Actually depends on network.

Oldest IP standards required

≥576. Usually 1492 is safe,

often 1500, sometimes more.)

The page you’re downloading

from pqcrypto.org doesn’t fit.

Browser actually makes “TCP

connection” to pqcrypto.org.

Inside that connection: sends

HTTP request, receives response.

16

Browser → server:

“SYN 168bb5d9”

Server → browser:

“ACK 168bb5da, SYN 747bfa41”

Browser → server:

“ACK 747bfa42”

Server now allocates buffers

for this TCP connection.

Browser splits data into packets,

counting bytes from 168bb5da.

Server splits data into packets,

counting bytes from 747bfa42.

17

Main feature advertised by TCP:

“reliable data streams”.

Internet sometimes loses packets

or delivers packets out of order.

Doesn’t confuse TCP connections:

computer checks the counter

inside each TCP packet.

Computer retransmits data

if data is not acknowledged.

Complicated rules to decide

retransmission schedule,

avoiding network congestion.



16

Browser → server:

“SYN 168bb5d9”

Server → browser:

“ACK 168bb5da, SYN 747bfa41”

Browser → server:

“ACK 747bfa42”

Server now allocates buffers

for this TCP connection.

Browser splits data into packets,

counting bytes from 168bb5da.

Server splits data into packets,

counting bytes from 747bfa42.

17

Main feature advertised by TCP:

“reliable data streams”.

Internet sometimes loses packets

or delivers packets out of order.

Doesn’t confuse TCP connections:

computer checks the counter

inside each TCP packet.

Computer retransmits data

if data is not acknowledged.

Complicated rules to decide

retransmission schedule,

avoiding network congestion.



16

Browser → server:

“SYN 168bb5d9”

Server → browser:

“ACK 168bb5da, SYN 747bfa41”

Browser → server:

“ACK 747bfa42”

Server now allocates buffers

for this TCP connection.

Browser splits data into packets,

counting bytes from 168bb5da.

Server splits data into packets,

counting bytes from 747bfa42.

17

Main feature advertised by TCP:

“reliable data streams”.

Internet sometimes loses packets

or delivers packets out of order.

Doesn’t confuse TCP connections:

computer checks the counter

inside each TCP packet.

Computer retransmits data

if data is not acknowledged.

Complicated rules to decide

retransmission schedule,

avoiding network congestion.

18

Stream-level crypto

http://www.pqcrypto.org

uses HTTP over TCP.

https://www.pqcrypto.org

uses HTTP over TLS over TCP.

Your browser

• finds address 131.155.70.11;

• makes TCP connection;

• inside the TCP connection,

builds a TLS connection

by exchanging crypto keys;

• inside the TLS connection,

sends HTTP request etc.



16

Browser → server:

“SYN 168bb5d9”

Server → browser:

“ACK 168bb5da, SYN 747bfa41”

Browser → server:

“ACK 747bfa42”

Server now allocates buffers

for this TCP connection.

Browser splits data into packets,

counting bytes from 168bb5da.

Server splits data into packets,

counting bytes from 747bfa42.

17

Main feature advertised by TCP:

“reliable data streams”.

Internet sometimes loses packets

or delivers packets out of order.

Doesn’t confuse TCP connections:

computer checks the counter

inside each TCP packet.

Computer retransmits data

if data is not acknowledged.

Complicated rules to decide

retransmission schedule,

avoiding network congestion.

18

Stream-level crypto

http://www.pqcrypto.org

uses HTTP over TCP.

https://www.pqcrypto.org

uses HTTP over TLS over TCP.

Your browser

• finds address 131.155.70.11;

• makes TCP connection;

• inside the TCP connection,

builds a TLS connection

by exchanging crypto keys;

• inside the TLS connection,

sends HTTP request etc.



16

Browser → server:

“SYN 168bb5d9”

Server → browser:

“ACK 168bb5da, SYN 747bfa41”

Browser → server:

“ACK 747bfa42”

Server now allocates buffers

for this TCP connection.

Browser splits data into packets,

counting bytes from 168bb5da.

Server splits data into packets,

counting bytes from 747bfa42.

17

Main feature advertised by TCP:

“reliable data streams”.

Internet sometimes loses packets

or delivers packets out of order.

Doesn’t confuse TCP connections:

computer checks the counter

inside each TCP packet.

Computer retransmits data

if data is not acknowledged.

Complicated rules to decide

retransmission schedule,

avoiding network congestion.

18

Stream-level crypto

http://www.pqcrypto.org

uses HTTP over TCP.

https://www.pqcrypto.org

uses HTTP over TLS over TCP.

Your browser

• finds address 131.155.70.11;

• makes TCP connection;

• inside the TCP connection,

builds a TLS connection

by exchanging crypto keys;

• inside the TLS connection,

sends HTTP request etc.



17

Main feature advertised by TCP:

“reliable data streams”.

Internet sometimes loses packets

or delivers packets out of order.

Doesn’t confuse TCP connections:

computer checks the counter

inside each TCP packet.

Computer retransmits data

if data is not acknowledged.

Complicated rules to decide

retransmission schedule,

avoiding network congestion.

18

Stream-level crypto

http://www.pqcrypto.org

uses HTTP over TCP.

https://www.pqcrypto.org

uses HTTP over TLS over TCP.

Your browser

• finds address 131.155.70.11;

• makes TCP connection;

• inside the TCP connection,

builds a TLS connection

by exchanging crypto keys;

• inside the TLS connection,

sends HTTP request etc.



17

Main feature advertised by TCP:

“reliable data streams”.

Internet sometimes loses packets

or delivers packets out of order.

Doesn’t confuse TCP connections:

computer checks the counter

inside each TCP packet.

Computer retransmits data

if data is not acknowledged.

Complicated rules to decide

retransmission schedule,

avoiding network congestion.

18

Stream-level crypto

http://www.pqcrypto.org

uses HTTP over TCP.

https://www.pqcrypto.org

uses HTTP over TLS over TCP.

Your browser

• finds address 131.155.70.11;

• makes TCP connection;

• inside the TCP connection,

builds a TLS connection

by exchanging crypto keys;

• inside the TLS connection,

sends HTTP request etc.

19

What happens if attacker

forges a DNS packet

pointing to fake server?

Or a TCP packet

with bogus data?

DNS software is fooled.

TCP software is fooled.

TLS software sees that

something has gone wrong,

but has no way to recover.

Browser using TLS can

make a whole new connection,

but this is slow and fragile.

Huge damage from forged packet.



17

Main feature advertised by TCP:

“reliable data streams”.

Internet sometimes loses packets

or delivers packets out of order.

Doesn’t confuse TCP connections:

computer checks the counter

inside each TCP packet.

Computer retransmits data

if data is not acknowledged.

Complicated rules to decide

retransmission schedule,

avoiding network congestion.

18

Stream-level crypto

http://www.pqcrypto.org

uses HTTP over TCP.

https://www.pqcrypto.org

uses HTTP over TLS over TCP.

Your browser

• finds address 131.155.70.11;

• makes TCP connection;

• inside the TCP connection,

builds a TLS connection

by exchanging crypto keys;

• inside the TLS connection,

sends HTTP request etc.

19

What happens if attacker

forges a DNS packet

pointing to fake server?

Or a TCP packet

with bogus data?

DNS software is fooled.

TCP software is fooled.

TLS software sees that

something has gone wrong,

but has no way to recover.

Browser using TLS can

make a whole new connection,

but this is slow and fragile.

Huge damage from forged packet.



17

Main feature advertised by TCP:

“reliable data streams”.

Internet sometimes loses packets

or delivers packets out of order.

Doesn’t confuse TCP connections:

computer checks the counter

inside each TCP packet.

Computer retransmits data

if data is not acknowledged.

Complicated rules to decide

retransmission schedule,

avoiding network congestion.

18

Stream-level crypto

http://www.pqcrypto.org

uses HTTP over TCP.

https://www.pqcrypto.org

uses HTTP over TLS over TCP.

Your browser

• finds address 131.155.70.11;

• makes TCP connection;

• inside the TCP connection,

builds a TLS connection

by exchanging crypto keys;

• inside the TLS connection,

sends HTTP request etc.

19

What happens if attacker

forges a DNS packet

pointing to fake server?

Or a TCP packet

with bogus data?

DNS software is fooled.

TCP software is fooled.

TLS software sees that

something has gone wrong,

but has no way to recover.

Browser using TLS can

make a whole new connection,

but this is slow and fragile.

Huge damage from forged packet.



18

Stream-level crypto

http://www.pqcrypto.org

uses HTTP over TCP.

https://www.pqcrypto.org

uses HTTP over TLS over TCP.

Your browser

• finds address 131.155.70.11;

• makes TCP connection;

• inside the TCP connection,

builds a TLS connection

by exchanging crypto keys;

• inside the TLS connection,

sends HTTP request etc.

19

What happens if attacker

forges a DNS packet

pointing to fake server?

Or a TCP packet

with bogus data?

DNS software is fooled.

TCP software is fooled.

TLS software sees that

something has gone wrong,

but has no way to recover.

Browser using TLS can

make a whole new connection,

but this is slow and fragile.

Huge damage from forged packet.



18

Stream-level crypto

http://www.pqcrypto.org

uses HTTP over TCP.

https://www.pqcrypto.org

uses HTTP over TLS over TCP.

Your browser

• finds address 131.155.70.11;

• makes TCP connection;

• inside the TCP connection,

builds a TLS connection

by exchanging crypto keys;

• inside the TLS connection,

sends HTTP request etc.

19

What happens if attacker

forges a DNS packet

pointing to fake server?

Or a TCP packet

with bogus data?

DNS software is fooled.

TCP software is fooled.

TLS software sees that

something has gone wrong,

but has no way to recover.

Browser using TLS can

make a whole new connection,

but this is slow and fragile.

Huge damage from forged packet.

20

Modern trend (e.g., DNSCurve,

CurveCP; see also MinimaLT,

Google’s QUIC): Authenticate and

encrypt each packet separately.

Discard forged packet

immediately: no damage.

Retransmit packet if no

authenticated acknowledgment.



18

Stream-level crypto

http://www.pqcrypto.org

uses HTTP over TCP.

https://www.pqcrypto.org

uses HTTP over TLS over TCP.

Your browser

• finds address 131.155.70.11;

• makes TCP connection;

• inside the TCP connection,

builds a TLS connection

by exchanging crypto keys;

• inside the TLS connection,

sends HTTP request etc.

19

What happens if attacker

forges a DNS packet

pointing to fake server?

Or a TCP packet

with bogus data?

DNS software is fooled.

TCP software is fooled.

TLS software sees that

something has gone wrong,

but has no way to recover.

Browser using TLS can

make a whole new connection,

but this is slow and fragile.

Huge damage from forged packet.

20

Modern trend (e.g., DNSCurve,

CurveCP; see also MinimaLT,

Google’s QUIC): Authenticate and

encrypt each packet separately.

Discard forged packet

immediately: no damage.

Retransmit packet if no

authenticated acknowledgment.



18

Stream-level crypto

http://www.pqcrypto.org

uses HTTP over TCP.

https://www.pqcrypto.org

uses HTTP over TLS over TCP.

Your browser

• finds address 131.155.70.11;

• makes TCP connection;

• inside the TCP connection,

builds a TLS connection

by exchanging crypto keys;

• inside the TLS connection,

sends HTTP request etc.

19

What happens if attacker

forges a DNS packet

pointing to fake server?

Or a TCP packet

with bogus data?

DNS software is fooled.

TCP software is fooled.

TLS software sees that

something has gone wrong,

but has no way to recover.

Browser using TLS can

make a whole new connection,

but this is slow and fragile.

Huge damage from forged packet.

20

Modern trend (e.g., DNSCurve,

CurveCP; see also MinimaLT,

Google’s QUIC): Authenticate and

encrypt each packet separately.

Discard forged packet

immediately: no damage.

Retransmit packet if no

authenticated acknowledgment.



19

What happens if attacker

forges a DNS packet

pointing to fake server?

Or a TCP packet

with bogus data?

DNS software is fooled.

TCP software is fooled.

TLS software sees that

something has gone wrong,

but has no way to recover.

Browser using TLS can

make a whole new connection,

but this is slow and fragile.

Huge damage from forged packet.

20

Modern trend (e.g., DNSCurve,

CurveCP; see also MinimaLT,

Google’s QUIC): Authenticate and

encrypt each packet separately.

Discard forged packet

immediately: no damage.

Retransmit packet if no

authenticated acknowledgment.



19

What happens if attacker

forges a DNS packet

pointing to fake server?

Or a TCP packet

with bogus data?

DNS software is fooled.

TCP software is fooled.

TLS software sees that

something has gone wrong,

but has no way to recover.

Browser using TLS can

make a whole new connection,

but this is slow and fragile.

Huge damage from forged packet.

20

Modern trend (e.g., DNSCurve,

CurveCP; see also MinimaLT,

Google’s QUIC): Authenticate and

encrypt each packet separately.

Discard forged packet

immediately: no damage.

Retransmit packet if no

authenticated acknowledgment.

Engineering advantage:

Packet-level crypto

works for more protocols

than stream-level crypto.



19

What happens if attacker

forges a DNS packet

pointing to fake server?

Or a TCP packet

with bogus data?

DNS software is fooled.

TCP software is fooled.

TLS software sees that

something has gone wrong,

but has no way to recover.

Browser using TLS can

make a whole new connection,

but this is slow and fragile.

Huge damage from forged packet.

20

Modern trend (e.g., DNSCurve,

CurveCP; see also MinimaLT,

Google’s QUIC): Authenticate and

encrypt each packet separately.

Discard forged packet

immediately: no damage.

Retransmit packet if no

authenticated acknowledgment.

Engineering advantage:

Packet-level crypto

works for more protocols

than stream-level crypto.

Disadvantage:

Crypto must fit into packet.



19

What happens if attacker

forges a DNS packet

pointing to fake server?

Or a TCP packet

with bogus data?

DNS software is fooled.

TCP software is fooled.

TLS software sees that

something has gone wrong,

but has no way to recover.

Browser using TLS can

make a whole new connection,

but this is slow and fragile.

Huge damage from forged packet.

20

Modern trend (e.g., DNSCurve,

CurveCP; see also MinimaLT,

Google’s QUIC): Authenticate and

encrypt each packet separately.

Discard forged packet

immediately: no damage.

Retransmit packet if no

authenticated acknowledgment.

Engineering advantage:

Packet-level crypto

works for more protocols

than stream-level crypto.

Disadvantage:

Crypto must fit into packet.

21

The KEM+AE philosophy

Original view of RSA:

Message m is encrypted

as me mod pq.
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aim for full AE security goal.

More complicated alternative:

Use KEM+DEM to encrypt an

n-time secret key m; reuse m.
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Confidentiality:

Attacker can’t guess k,

can’t decrypt Ek (0; q); Ek (1; r).
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Server never signs anything,
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Attacker can send new queries

but can’t forge q or r .

Attacker can replay request.

Availability:

Client discards forgery,

continues waiting for reply,

eventually retransmits request.
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What if Ek (0; q) doesn’t fit

into same packet as Sc + e?

Client sends short Ek (0; q′)

containing a cookie request q′.

Server sends Ek (1; r ′) containing
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Server can now forget state.

Client sends packet r ′; Ek (2; q).

Server recovers state, decrypts.

Server sends Ek (3; r).
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for protecting connections.

C → S, S → C data flow

isn’t special; reuse k for

many packets each direction.
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Slice McEliece public key

so that each slice of encryption

produces separate small output.

Client sends slices (in parallel),

receives outputs as cookies,

sends cookies (in parallel).

Server combines cookies.

Continue up through tree.

Server generates randomness

as secret function of key hash.

Statelessly verifies key hash.


