The post-quantum Internet
Daniel J. Bernstein

University of lllinois at Chicago &
Technische Universiteit Eindhoven

Includes joint work with:
Tanja Lange

Technische Universiteit Eindhoven

Risk management

“Combining congruences' :
state-of-the-art pre-quantum
attack against original DH,
RSA, and some lattice systems.

Long history, including
many major improvements:
1975, CFRAC;

1977, linear sieve (LS);
1982, quadratic sieve (QS);
1990, number-field sieve (NFS);
1994, function-field sieve (FFS);
2006, medium-prime FFS/NFS;
2013, x9 — x FFS.

t-quantum Internet
. Bernstein

ty of lllinois at Chicago &
he Universiteit Eindhoven

joint work with:
inge

he Universiteit Eindhoven

Risk management

“Combining congruences’ :

state-of-the-art pre-quantum

attack against original DH,

RSA, and some lattice systems.

Long history, including

many major improvements:

1975,
1977,
1932,
1990,
1994,
2006,
2013,

CFRAC;

linear sieve (LS);
quadratic sieve (QS);

number-field sieve (NFS);
function-field sieve (FFS);
medium-prime FFS/NFS;
x9 — x FFS.

Also ma
>100 sc

Costs of

breaking
%2120 -

r

~2110
~2100

1 Internet
N

is at Chicago &
siteit Eindhoven

< With:

siteit Eindhoven

Risk management

“Combining congruences' :

state-of-the-art pre-quantum

attack against original DH,

RSA, and some lattice systems.

Long history, including

many major improvements:

1975,
1977,
1932,
1990,
1994,
2006,
2013,

CFRAC;
linear sieve (LS);

quadratic sieve (QS);

number-field sieve (NFS);
function-field sieve (FFS);
medium-prime FFS/NFS;
x9 — x FFS.

Also many smaller
>100 scientific pa

Costs of these alg:
breaking RSA-102
~2120 22170 CF
~21H0 ~2100 1 s,
%21007 %2150, QS
~280 ~212 NF
(FFS is not releva

g0 &
hoven

hoven

Risk management

“Combining congruences’ :

state-of-the-art pre-quantum

attack against original DH,

RSA, and some lattice systems.

Long history, including

many major improvements:

1975,
1977,
1932,
1990,
1994,
2006,
2013,

CFRAC;

linear sieve (LS);
quadratic sieve (QS);

number-field sieve (NFS);
function-field sieve (FFS);
medium-prime FFS/NFS;
x9 — x FFS.

Also many smaller improven
>100 scientific papers.

Costs of these algorithms fo
breaking RSA-1024, RSA-2(
~2120 2170 CFRAC;
%2110’ %21607 LS:

%21007 %21507 QS:

~280 2112 NFS.

(FFS is not relevant to RSA

Risk

management

“Combining congruences' :

state-of-the-art pre-quantum

attack against original DH,

RSA,

and some lattice systems.

Long history, including

many major improvements:

1975
1977
1932

1990,

1994

2006,

2013

- CFRAC;
. linear sieve (LS);
, quadratic sieve (QS);

number-field sieve (NFS);
, function-field sieve (FFS);
medium-prime FFS/NFS;
x99 — x FFS.

Also many smaller improvements:
>100 scientific papers.

Costs of these algorithms for
breaking RSA-1024, RSA-2048:
~2120 2170 CFRAC;

%2110, %2160’ LS:

%21007 %2150, QS:

~280 2112 NFS.

(FFS is not relevant to RSA.)

Risk management

“Combining congruences' :
state-of-the-art pre-quantum
attack against original DH,
RSA, and some lattice systems.

Long history, including

many major improvements:
1975, CFRAC;

1977, linear sieve (LS);

1982, quadratic sieve (QS);
1990, number-field sieve (NFS);
1994, function-field sieve (FFS);
2006, medium-prime FFS/NFS;
2013, x9 — x FFS.

Also many smaller improvements:
>100 scientific papers.

Costs of these algorithms for
breaking RSA-1024, RSA-2048:
~2120 2170 CFRAC;

%2110, %2160’ LS:

%21007 %2150, QS:

~280, ~2112 NFS.

(FFS is not relevant to RSA.)

How much risk is there

of future breakthroughs?

Risk management

“Combining congruences' :
state-of-the-art pre-quantum
attack against original DH,
RSA, and some lattice systems.

Long history, including
many major improvements:
1975, CFRAC:

1977, linear sieve (LS);
1982, quadratic sieve (QS);

1990, number-field sieve (NFS);
1994, function-field sieve (FFS);

2006, medium-prime FFS/NFS;
2013, x9 — x FFS.

Also many smaller improvements:
>100 scientific papers.

Costs of these algorithms for
breaking RSA-1024, RSA-2048:
~2120 2170 CFRAC;

%2110, %2160’ LS:

%21007 %2150, QS:

~280, ~2112 NFS.

(FFS is not relevant to RSA.)

How much risk is there

of future breakthroughs?

How much risk 1s there

of secret breakthroughs?

hagement

Ing congruences’ :
the-art pre-quantum
gainst original DH,

d some lattice systems.

tory, including

ajor Improvements:
-RAC;

ear sieve (LS);

1adratic sieve (QS);
imber-field sieve (NFS);
nction-field sieve (FFS);
edium-prime FFS/NFS;
I — x FFS.

Also many smaller improvements:

>100 scientific papers.

Costs of these algorithms for
breaking RSA-1024, RSA-2048:
~2120 2170 CFRAC;

%2110, %21607 LS:

%21007 %21507 QS:

~280 2112 NFS.

(FFS is not relevant to RSA.)

How much risk is there

of future breakthroughs?

How much risk is there

of secret breakthroughs?

If we pu
exploring
will we f
At least

uences :

e-quantum
rinal DH,
ttice systems.

ding

vements:

(LS);
eve (QS);

| sieve (NFS);
d sieve (FFS);

ne FFS/NFS;

Also many smaller improvements:

>100 scientific papers.

Costs of these algorithms for
breaking RSA-1024, RSA-2048:
~2120 2170 CFRAC;

%2110, %2160’ LS:

%21007 %2150, QS:

~280 2112 NFS.

(FFS is not relevant to RSA.)

How muc
of future

How muc
of secret

N risk 1s there

oreakthroughs?

N risk Is there

oreakthroughs?

If we put enough «
exploring Attack N
will we find the hi.
At least within €7

=S);

FS:

Also many smaller improvements:

>100 scientific papers.

Costs of these algorithms for
breaking RSA-1024, RSA-2048:
~2120 2170 CFRAC;

~2H0 22100 1 s

%21007 %21507 QS:

~280 ~

2112 "NFS.

(FFS is not relevant to RSA.)

How muc
of future

How muc
of secret

1 risk 1s there

oreakthroughs?

N risk Is there

oreakthroughs?

If we put enough effort into
exploring Attack Mountain,
will we find the highest peal
At least within €7

Also many smaller improvements:

>100 scientific papers.

Costs of these algorithms for
breaking RSA-1024, RSA-2048:
~2120 2170 CFRAC;

%2110, %2160’ LS:

%21007 %2150, QS:

~280 2112 NFS.

(FFS is not relevant to RSA.)

How muc
of future

How muc
of secret

N risk 1s there

oreakthroughs?

N risk Is there

oreakthroughs?

If we put enough effort into
exploring Attack Mountain,
will we find the highest peak?
At least within €7

Also many smaller improvements:

>100 scientific papers.

Costs of these algorithms for
breaking RSA-1024, RSA-2048:
~2120 2170 CFRAC;

%2110, %2160’ LS:

%21007 %2150, QS:

~280 2112 NFS.

(FFS is not relevant to RSA.)

How much risk is there

of future breakthroughs?

How much risk 1s there

of secret breakthroughs?

If we put enough effort into
exploring Attack Mountain,
will we find the highest peak?
At least within €7

Combining-Congruences Mountain
is a huge, foggy, high-dimensional
mountain with many paths up.
Scary: easy to imagine that

we're not at the top yet.

Also many smaller improvements:

>100 scientific papers.

Costs of these algorithms for
breaking RSA-1024, RSA-2048:
~2120 2170 CFRAC;

%2110, %2160’ LS:

%21007 %2150, QS:

~280 2112 NFS.

(FFS is not relevant to RSA.)

How muc
of future

How muc
of secret

N risk 1s there

oreakthroughs?

N risk Is there

oreakthroughs?

If we put enough effort into
exploring Attack Mountain,
will we find the highest peak?
At least within €7

Combining-Congruences Mountain
is a huge, foggy, high-dimensional
mountain with many paths up.
Scary: easy to imagine that

we're not at the top yet.

18-year bet announced in 2014:
Joux wins if RSA-2048 is broken
first by pre-quantum algorithms;
| win if RSA-2048 is broken

first by quantum algorithms.

ny smaller improvements:

ientific papers.

‘these algorithms for

- RSA-1024, RSA-2048:
22170 CFRAC;

w2160 | S.

22190 @QS:

w2112 NFS.

not relevant to RSA.)

ch risk Is there

> breakthroughs?

ch risk Is there

- breakthroughs?

If we put enough effort into
exploring Attack Mountain,
will we find the highest peak?
At least within €7

Combining-Congruences Mountain
is a huge, foggy, high-dimensional
mountain with many paths up.
Scary: easy to imagine that

we're not at the top yet.

18-year bet announced in 2014:
Joux wins if RSA-2048 is broken
first by pre-quantum algorithms;
| win if RSA-2048 is broken

first by quantum algorithms.

Conserv;
prefer m
less hug
more the

“Improvements:

pers.

orithms for
4 RSA-2048:
RAC:

nt to RSA.)

there
oughs?

there
ughs?

If we put enough effort into
exploring Attack Mountain,
will we find the highest peak?
At least within €7

Combining-Congruences Mountain
is a huge, foggy, high-dimensional
mountain with many paths up.
Scary: easy to imagine that

we're not at the top yet.

18-year bet announced in 2014:
Joux wins if RSA-2048 is broken
first by pre-quantum algorithms;
| win if RSA-2048 is broken

first by quantum algorithms.

Conservative crypt
prefer mountains t
less huge, less fog;
more thoroughly e

1ents:

143

If we put enough effort into
exploring Attack Mountain,
will we find the highest peak?
At least within €7

Combining-Congruences Mountain
is a huge, foggy, high-dimensional
mountain with many paths up.
Scary: easy to imagine that

we're not at the top yet.

18-year bet announced in 2014:
Joux wins if RSA-2048 is broken
first by pre-quantum algorithms;
| win if RSA-2048 is broken

first by quantum algorithms.

Conservative cryptographers
prefer mountains that seem
less huge, less foggy,

more thoroughly explored.

If we put enough effort into
exploring Attack Mountain,
will we find the highest peak?
At least within €7

Combining-Congruences Mountain
is a huge, foggy, high-dimensional
mountain with many paths up.
Scary: easy to imagine that

we're not at the top yet.

18-year bet announced in 2014:
Joux wins if RSA-2048 is broken
first by pre-quantum algorithms;
| win if RSA-2048 is broken

first by quantum algorithms.

Conservative cryptographers
prefer mountains that seem
less huge, less foggy,

more thoroughly explored.

If we put enough effort into
exploring Attack Mountain,
will we find the highest peak?
At least within €7

Combining-Congruences Mountain
is a huge, foggy, high-dimensional
mountain with many paths up.
Scary: easy to imagine that

we're not at the top yet.

18-year bet announced in 2014:
Joux wins if RSA-2048 is broken
first by pre-quantum algorithms;
| win if RSA-2048 is broken

first by quantum algorithms.

Conservative cryptographers
prefer mountains that seem
less huge, less foggy,

more thoroughly explored.

1986 Miller “Use of

elliptic curves in cryptography’:
"It 1s extremely unlikely

that an ‘index calculus’ attack
[combining-congruences attack]
on the elliptic curve method
will ever be able to work.”

If we put enough effort into
exploring Attack Mountain,
will we find the highest peak?
At least within €7

Combining-Congruences Mountain
is a huge, foggy, high-dimensional
mountain with many paths up.
Scary: easy to imagine that

we're not at the top yet.

18-year bet announced in 2014:
Joux wins if RSA-2048 is broken
first by pre-quantum algorithms;
| win if RSA-2048 is broken

first by quantum algorithms.

Conservative cryptographers
prefer mountains that seem
less huge, less foggy,

more thoroughly explored.

1986 Miller “Use of

elliptic curves in cryptography’:
"It 1s extremely unlikely

that an ‘index calculus’ attack
[combining-congruences attack]
on the elliptic curve method
will ever be able to work.”

This is the core argument for
ECC. Exceptions: rare curves with
special structure—e.g., pairings.

t enough effort into
r Attack Mountain,
ind the highest peak?

within €7

ng-Congruences Mountain
e, foggy, high-dimensional
n with many paths up.
asy to imagine that

t at the top yet.

bet announced In 2014
1s if RSA-2048 is broken
re-quantum algorithms;
RSA-2048 is broken

juantum algorithms.

Conservative cryptographers
prefer mountains that seem
less huge, less foggy,

more thoroughly explored.

1986 Miller “Use of

elliptic curves In cryptography’:
"It 1s extremely unlikely

that an ‘index calculus’ attack
[combining-congruences attack]
on the elliptic curve method
will ever be able to work.”

This is the core argument for
ECC. Exceptions: rare curves with
special structure—e.g., pairings.

2015 La
bet your

The setting

It's 2050. G

Evil Party A
practically z
vaccinations
the past 70
by law, but
2020. Your
doctor's pul
public-key a

Organs are
if they can |
presented w
Statement.

(This is me:
trust. Let's

>ffort Into
Aountain,
ochest peak?

lences Mountain
igh-dimensional
ny paths up.
1gine that

Op yet.

nced in 2014:
2048 s broken
im algorithms;
Is broken
Igorithms.

Conservative cryptographers
prefer mountains that seem
less huge, less foggy,

more thoroughly explored.

1986 Miller “Use of

elliptic curves in cryptography’:
"It 1s extremely unlikely

that an ‘index calculus’ attack
[combining-congruences attack]
on the elliptic curve method
will ever be able to work.”

This is the core argument for
ECC. Exceptions: rare curves with
special structure—e.g., pairings.

2015 Lange: “Wo
bet your kidneys ¢

The setting

It's 2050. Quantum computers w

Evil Party A now runs the countn
practically all 21st-century Interne
vaccinations are bad and jails any
the past 70 years. Doctor-patient
by law, but your health record fro
2020. Your health record is prote
doctor’s public key, using our rec
public-key and authenticated sym

Organs are a scarce resource. Ho:
if they can identify the donor (DR
presented with the donor’s digital
Statement. They use our 2015 re

(This is meant to scare you, so th
trust. Let's make sure that this d

untain

sional
1p.

)14
oken

1mMs;

Conservative cryptographers
prefer mountains that seem
less huge, less foggy,

more thoroughly explored.

1986 Miller “Use of

elliptic curves In cryptography’:
"It 1s extremely unlikely

that an ‘index calculus’ attack
[combining-congruences attack]
on the elliptic curve method
will ever be able to work.”

This is the core argument for
ECC. Exceptions: rare curves with
special structure—e.g., pairings.

2015 Lange: "Would you
bet your kidneys on that?”

The setting

It's 2050. Quantum computers were built years ago.

Evil Party A now runs the country and has access to re
practically all 21st-century Internet traffic. Evil Party A
vaccinations are bad and jails anybody who was vaccin:
the past 70 years. Doctor-patient confidentiality is still
by law, but your health record from birth has been onli
2020. Your health record is protected only by encryptio
doctor’s public key, using our recommendation from 20
public-key and authenticated symmetric encryption.

Organs are a scarce resource. Hospitals pay high prices
if they can identify the donor (DNA tests are cheap) ar
presented with the donor’s digitally signed Donor Volur
Statement. They use our 2015 recommended signature

(This is meant to scare you, so that you recommend or
trust. Let's make sure that this dystopia will not happe

Conservative cryptographers
prefer mountains that seem
less huge, less foggy,

more thoroughly explored.

1986 Miller “Use of

elliptic curves in cryptography’:
"It 1s extremely unlikely

that an ‘index calculus’ attack
[combining-congruences attack]
on the elliptic curve method
will ever be able to work.”

This is the core argument for
ECC. Exceptions: rare curves with
special structure—e.g., pairings.

2015 Lange: "Would you
bet your kidneys on that?”

The setting

It's 2050. Quantum computers were built years ago.

Evil Party A now runs the country and has access to records of
practically all 21st-century Internet traffic. Evil Party A thinks
vaccinations are bad and jails anybody who was vaccinated during
the past 70 years. Doctor-patient confidentiality is still protected
by law, but your health record from birth has been online since
2020. Your health record is protected only by encryption to your
doctor’s public key, using our recommendation from 2015 of
public-key and authenticated symmetric encryption.

Organs are a scarce resource. Hospitals pay high prices for organs
if they can identify the donor (DNA tests are cheap) and are
presented with the donor’s digitally signed Donor Volunteer
Statement. They use our 2015 recommended signature system.

(This is meant to scare you, so that you recommend only what you
trust. Let's make sure that this dystopia will not happen.)

ative cryptographers
ountains that seem
o, less foggy,
roughly explored.

ller “Use of
urves In cryptography’ :
tremely unlikely

'Index calculus’ attack
ng-congruences attack|
lliptic curve method

be able to work."

he core argument for
ceptions: rare curves with
tructure—e.g., pairings.

2015 Lange: "Would you
bet your kidneys on that?”

The setting

It's 2050. Quantum computers were built years ago.

Evil Party A now runs the country and has access to records of
practically all 21st-century Internet traffic. Evil Party A thinks
vaccinations are bad and jails anybody who was vaccinated during
the past 70 years. Doctor-patient confidentiality is still protected
by law, but your health record from birth has been online since
2020. Your health record is protected only by encryption to your
doctor's public key, using our recommendation from 2015 of
public-key and authenticated symmetric encryption.

Organs are a scarce resource. Hospitals pay high prices for organs
if they can identify the donor (DNA tests are cheap) and are
presented with the donor’s digitally signed Donor Volunteer
Statement. They use our 2015 recommended signature system.

(This is meant to scare you, so that you recommend only what you
trust. Let's make sure that this dystopia will not happen.)

Risk of 1
big univ
noticeab
terrifyin,

ographers
hat seem

3
xplored.

of
ryptography’ :
likely

ulus’ attack
ences attack]
/e method

o work."

gument for
rare curves with
-e.g., palrings.

2015 Lange: "Would you
bet your kidneys on that?”

The setting

It's 2050. Quantum computers were built years ago.

Evil Party A now runs the country and has access to records of
practically all 21st-century Internet traffic. Evil Party A thinks
vaccinations are bad and jails anybody who was vaccinated during
the past 70 years. Doctor-patient confidentiality is still protected
by law, but your health record from birth has been online since
2020. Your health record is protected only by encryption to your
doctor’s public key, using our recommendation from 2015 of
public-key and authenticated symmetric encryption.

Organs are a scarce resource. Hospitals pay high prices for organs
if they can identify the donor (DNA tests are cheap) and are
presented with the donor’s digitally signed Donor Volunteer
Statement. They use our 2015 recommended signature system.

(This is meant to scare you, so that you recommend only what you
trust. Let's make sure that this dystopia will not happen.)

Risk of future atte
big universal quan
noticeable probabi
terrifying impact.

1y

1ck]

¥
s with
ngs.

2015 Lange: "Would you
bet your kidneys on that?”

The setting

It's 2050. Quantum computers were built years ago.

Evil Party A now runs the country and has access to records of
practically all 21st-century Internet traffic. Evil Party A thinks
vaccinations are bad and jails anybody who was vaccinated during
the past 70 years. Doctor-patient confidentiality is still protected
by law, but your health record from birth has been online since
2020. Your health record is protected only by encryption to your
doctor's public key, using our recommendation from 2015 of
public-key and authenticated symmetric encryption.

Organs are a scarce resource. Hospitals pay high prices for organs
if they can identify the donor (DNA tests are cheap) and are
presented with the donor’s digitally signed Donor Volunteer
Statement. They use our 2015 recommended signature system.

(This is meant to scare you, so that you recommend only what you
trust. Let's make sure that this dystopia will not happen.)

Risk of future attacker havir
big universal quantum comg
noticeable probability;
terrifying impact.

2015 Lange: “Would you Risk of future attacker having

bet your kidneys on that?” big universal quantum computer:
noticeable probability;

The setting
It's 2050. Quantum computers were built years ago. terrlfyl ng | m pa Ct

Evil Party A now runs the country and has access to records of
practically all 21st-century Internet traffic. Evil Party A thinks
vaccinations are bad and jails anybody who was vaccinated during
the past 70 years. Doctor-patient confidentiality is still protected
by law, but your health record from birth has been online since
2020. Your health record is protected only by encryption to your
doctor’s public key, using our recommendation from 2015 of
public-key and authenticated symmetric encryption.

Organs are a scarce resource. Hospitals pay high prices for organs
if they can identify the donor (DNA tests are cheap) and are
presented with the donor’s digitally signed Donor Volunteer
Statement. They use our 2015 recommended signature system.

(This is meant to scare you, so that you recommend only what you
trust. Let's make sure that this dystopia will not happen.)

2015 Lange: “Would you Risk of future attacker having

bet your kidneys on that?” big universal quantum computer:

noticeable probability;

The setting

It's 2050. Quantum computers were built years ago.

Evil Party A now runs the country and has access to records of
practically all 21st-century Internet traffic. Evil Party A thinks
vaccinations are bad and jails anybody who was vaccinated during
the past 70 years. Doctor-patient confidentiality is still protected
by law, but your health record from birth has been online since
2020. Your health record is protected only by encryption to your
doctor’s public key, using our recommendation from 2015 of
public-key and authenticated symmetric encryption.

Organs are a scarce resource. Hospitals pay high prices for organs
if they can identify the donor (DNA tests are cheap) and are
presented with the donor’s digitally signed Donor Volunteer
Statement. They use our 2015 recommended signature system.

(This is meant to scare you, so that you recommend only what you
trust. Let's make sure that this dystopia will not happen.)

terrifying impact.

Fortunately, we already know
some confidence-inspiring
post-quantum systems, including
e hash-based signatures;

e McEliece public-key encryption:;
o AES-256 etc.

https://pgcrypto.eu.org/docs/

initial-recommendations.pdf

nge: "Would you
kidneys on that?”

Juantum computers were built years ago.

. now runs the country and has access to records of

Il 21st-century Internet traffic. Evil Party A thinks

, are bad and jails anybody who was vaccinated during
years. Doctor-patient confidentiality is still protected
your health record from birth has been online since
health record is protected only by encryption to your
olic key, using our recommendation from 2015 of

nd authenticated symmetric encryption.

a scarce resource. Hospitals pay high prices for organs
dentify the donor (DNA tests are cheap) and are

ith the donor’s digitally signed Donor Volunteer

They use our 2015 recommended signature system,

int to scare you, so that you recommend only what you
make sure that this dystopia will not happen.)

Risk of future attacker having
big universal quantum computer:
noticeable probability;

terrifying impact.

Fortunately, we already know
some confidence-inspiring
post-quantum systems, including
e hash-based signatures;

e McEliece public-key encryption:;
o AES-256 etc.

https://pgcrypto.eu.org/docs/

initial-recommendations.pdf

Applicat

Your col

NEW VEIr:

Your col
signatur
from the

Critical |
Otherwi:

Insert m

e.g. Ope
signed u
ECC sig

uld you
n that?”

ere built years ago.

/ and has access to records of

ot traffic. Evil Party A thinks
body who was vaccinated during
confidentiality is still protected
m birth has been online since
cted only by encryption to your
ymmendation from 2015 of
metric encryption.

spitals pay high prices for organs
|A tests are cheap) and are

ly signed Donor Volunteer
commended signature system.

at you recommend only what you
ystopia will not happen.)

Risk of future attacker having
big universal quantum computer:
noticeable probability;

terrifying impact.

Fortunately, we already know
some confidence-inspiring
post-quantum systems, including
e hash-based signatures;

e McEliece public-key encryption:;
o AES-256 etc.

https://pgcrypto.eu.org/docs/
initial-recommendations.pdf

Application: softw

Your computer do
new version of its

Your computer ch
signature on the d
from the OS mant

Critical use of cryj
Otherwise crimina
Insert malware int

e.g. OpenBSD up
signed using state
ECC signature sys

cords of
thinks
ated during
protected
ne since

n to your

15 of

for organs
d are
teer
system.

ly what you

:n.)

Risk of future attacker having
big universal quantum computer:
noticeable probability;

terrifying impact.

Fortunately, we already know
some confidence-inspiring
post-quantum systems, including
e hash-based signatures;

e McEliece public-key encryption:;
o AES-256 etc.

https://pgcrypto.eu.org/docs/

initial-recommendations.pdf

Application: software updat

Your computer downloads
new version of its OS.

Your computer checks
signature on the download
from the OS manufacturer.

Critical use of crypto!
Otherwise criminals could
insert malware into the OS.

e.g. OpenBSD updates are
signed using state-of-the-art
ECC signature system: Ed2!

Risk of future attacker having
big universal quantum computer:
noticeable probability;

terrifying impact.

Fortunately, we already know
some confidence-inspiring
post-quantum systems, including
e hash-based signatures;

e McEliece public-key encryption:;
o AES-256 etc.

https://pgcrypto.eu.org/docs/

initial-recommendations.pdf

Application: software updates

Your computer downloads
new version of its OS.

Your computer checks
signature on the download
from the OS manufacturer.

Critical use of crypto!
Otherwise criminals could
insert malware into the OS.

e.g. OpenBSD updates are
signed using state-of-the-art
ECC signature system: Ed25519.

uture attacker having
ersal quantum computer:
le probability;

> Impact.

ely, we already know
nfidence-inspiring

ntum systems, including
ased signatures;

2ce public-key encryption;
56 etc.

'/pqcrypto.eu.org/docs/
—recommendations.pdf

Application: software updates

Your computer downloads
new version of its OS.

Your computer checks
signature on the download
from the OS manufacturer.

Critical use of crypto!
Otherwise criminals could
insert malware into the OS.

e.g. OpenBSD updates are
signed using state-of-the-art
ECC signature system: Ed255109.

Pre-qual
needs to
post-qus

cker having

tum computer:

lity;

eady know
1Spiring

ems, Including
ytures;

key encryption;

20.eu.org/docs/

endations.pdt

Application: software updates

Your computer downloads
new version of its OS.

Your computer checks
signature on the download
from the OS manufacturer.

Critical use of crypto!
Otherwise criminals could
insert malware into the OS.

e.g. OpenBSD updates are
signed using state-of-the-art
ECC signature system: Ed25519.

Pre-quantum sign.
needs to be replac
post-quantum sigr

18
uter:

iding

ption;

y/docs/
5. pdt

Application: software updates

Your computer downloads
new version of its OS.

Your computer checks
signature on the download
from the OS manufacturer.

Critical use of crypto!
Otherwise criminals could
insert malware into the OS.

e.g. OpenBSD updates are
signed using state-of-the-art

ECC signature system: Ed255109.

Pre-quantum signature syste
needs to be replaced with
post-quantum signature syst

Application: software updates

Your computer downloads
new version of its OS.

Your computer checks
signature on the download
from the OS manufacturer.

Critical use of crypto!
Otherwise criminals could
insert malware into the OS.

e.g. OpenBSD updates are
signed using state-of-the-art
ECC signature system: Ed25519.

Pre-quantum signature system P
needs to be replaced with
post-quantum signature system Q.

Application: software updates Pre-quantum signature system P

needs to be replaced with
Your computer downloads P

. . ost-quantum signature system .
new version of its OS. POst-g 2] y @

Make auditors happier:

Your computer checks |
Replace P with P + Q.

signature on the download
from the OS manufacturer. P + Q public key concatenates
P public key, Q public key.

Critical use of crypto!

. o P signature concatenates
Otherwise criminals could +Q sig

. : P signature,) signhature.
insert malware into the OS. 5 @ sig

e.g. OpenBSD updates are
signed using state-of-the-art
ECC signature system: Ed25519.

Application: software updates

Your computer downloads
new version of its OS.

Your computer checks
signature on the download
from the OS manufacturer.

Critical use of crypto!
Otherwise criminals could
insert malware into the OS.

e.g. OpenBSD updates are
signed using state-of-the-art

ECC signature system: Ed25519.

Pre-quantum signature system P
needs to be replaced with

post-quantum signature system Q.

Make auditors happier:
Replace P with P + Q.

P + @ public key concatenates
P public key, Q public key.

P + @ signature concatenates
P signature, signature.

Want a tiny public key?
Replace public key with hash.
Include missing information

(< entire key) inside signature.

ion: software updates

nputer downloads
sion of its OS.

nputer checks
> on the download
» OS manufacturer.

use of crypto!
se criminals could
alware into the OS.

nBSD updates are
sing state-of-the-art

nature system: Ed255109.

Pre-quantum signature system P
needs to be replaced with
post-quantum signature system Q.

Make auditors happier:
Replace P with P + Q.

P + @ public key concatenates
P public key, Q public key.

P + @ signature concatenates
P signature, Q signature.

Want a tiny public key?
Replace public key with hash.
Include missing information

(< entire key) inside signature.

e.g. Ed2

SPHINC
~50 mil

~1 mill

Negligib
verify cc

are updates

wnloads

OS.

ecks
ownload

ifacturer.

ytol!
Is could

o the OS.

lates are
of-the-art

tem: Ed25519.

Pre-quantum signature system P
needs to be replaced with
post-quantum signature system Q.

Make auditors happier:
Replace P with P + Q.

P + @ public key concatenates
P public key, Q public key.

P + @ signature concatenates
P signature, signature.

Want a tiny public key?
Replace public key with hash.
Include missing information

(< entire key) inside signature.

e.g. Ed25519+SP

SPHINCS-256 sigt
~50 million cycles
~1 million cycles
Negligible cost to
verify compared tc

»519.

Pre-quantum signature system P
needs to be replaced with
post-quantum signature system Q.

Make auditors happier:
Replace P with P + Q.

P + @ public key concatenates
P public key, Q public key.

P + @ signature concatenates
P signature, Q signature.

Want a tiny public key?
Replace public key with hash.
Include missing information

(< entire key) inside signature.

e.g. Ed25519+SPHINCS-25

SPHINCS-256 signature is 4
~b0 million cycles to gener:
~1 million cycles to verity.

Negligible cost to sign, tran:
verify compared to OS upda

Pre-quantum signature system P
needs to be replaced with
post-quantum signature system Q.

Make auditors happier:
Replace P with P + Q.

P + @ public key concatenates
P public key, Q public key.

P + @ signature concatenates
P signature, signature.

Want a tiny public key?
Replace public key with hash.
Include missing information

(< entire key) inside signature.

10
e.g. Ed25519+SPHINCS-256.

SPHINCS-256 signature is 41KB;
~50 million cycles to generate;
~1 million cycles to verity.

Negligible cost to sign, transmit,
verify compared to OS update.

Pre-quantum signature system P
needs to be replaced with
post-quantum signature system Q.

Make auditors happier:
Replace P with P + Q.

P + @ public key concatenates
P public key, Q public key.

P + @ signature concatenates
P signature, signature.

Want a tiny public key?
Replace public key with hash.
Include missing information

(< entire key) inside signature.

10
e.g. Ed25519+SPHINCS-256.

SPHINCS-256 signature is 41KB;

~50 million cycles to generate;
~1 million cycles to verity.

Negligible cost to sign, transmit,
verify compared to OS update.

Ed25519: unnoticeable cost.
Some extra system complexity,

but the system includes
Ed25519 code anyway.

Pre-quantum signature system P
needs to be replaced with
post-quantum signature system Q.

Make auditors happier:
Replace P with P + Q.

P + @ public key concatenates
P public key, Q public key.

P + @ signature concatenates
P signature, signature.

Want a tiny public key?
Replace public key with hash.
Include missing information

(< entire key) inside signature.

10

e.g. Ed25519+SPHINCS-256.

SPHINCS-256 signature is 41KB;
~50 million cycles to generate;

~1 mil

Neglig

lon cycles to verity.

ole cost to sign, transmit,

verify compared to OS update.

Ed25519: unnoticeable cost.

Some extra system complexity,

but the system includes
Ed25519 code anyway.

Auditor sees very easily

that Ed25519+SPHINCS-256
security > Ed25519 security.

1tum signature system P
 be replaced with
ntum signature system Q.

iditors happier:
P with P + Q.

ublic key concatenates
- key, Q public key.
ignature concatenates
ure,) signature.

tiny public key?

public key with hash.
missing information

e key) inside signature.

e.g. Ed25519+SPHINCS-256.

SPHINCS-256 signature is 41KB;

~50 million cycles to generate;

~1 mil

Negligi

ion cycles to verity.

ole cost to sign, transmit,

verify compared to OS update.

EJd25519: unnoticeable cost.

Some extra system complexity,

but the system includes
Ed25519 code anyway.

Auditor sees very easily

that Ed25519+SPHINCS-256
security > Ed25519 security.

10

Does de
mean th

On the «

Pre-qual
Hash-ba
even mo
than EC
But und
takes ex

ature system P
ed with
1ature system Q.

)pIer:

+ Q.

concatenates
1blic key.
oncatenates
nature.

- key?

- with hash.
‘formation

de signature.

e.g. Ed25519+SPHINCS-256.

SPHINCS-256 signature is 41KB;
~50 million cycles to generate;
~1 million cycles to verity.
Negligible cost to sign, transmit,
verify compared to OS update.

Ed25519: unnoticeable cost.
Some extra system complexity,

but the system includes
Ed25519 code anyway.

Auditor sees very easily

that Ed25519+SPHINCS-256
security > Ed25519 security.

10

Does deployment
mean that we don
On the contrary!

Pre-quantum situz
Hash-based signat
even more confide
than ECC signatul
But understanding
takes extra work f:

m P

em Q.

tes

€S

ITE.

e.g. Ed25519+SPHINCS-256.

SPHINCS-256 signature is 41KB;

~50 million cycles to generate;
~1 million cycles to verity.
Negligible cost to sign, transmit,
verify compared to OS update.

Ed25519: unnoticeable cost.
Some extra system complexity,

but the system includes
Ed25519 code anyway.

Auditor sees very easily

that Ed25519+SPHINCS-256
security > Ed25519 security.

10

Does deployment of P + @
mean that we don't trust Q
On the contrary!

Pre-quantum situation:
Hash-based signatures are
even more confidence-inspiri
than ECC signatures.

But understanding this fact
takes extra work for auditor.

e.g. Ed25519+SPHINCS-256.

SPHINCS-256 signature is 41KB;

~50 million cycles to generate;

~1 mil

Negligi

lon cycles to verity.

ole cost to sign, transmit,

verify compared to OS update.

Ed25519: unnoticeable cost.

Some extra system complexity,

but the system includes
Ed25519 code anyway.

Auditor sees very easily
that Ed25519-+SPHINCS-256

security > Ed25519 security.

10

11
Does deployment of P + @

mean that we don't trust Q7
On the contrary!

Pre-quantum situation:
Hash-based signatures are
even more confidence-inspiring
than ECC signatures.

But understanding this fact
takes extra work for auditor.

e.g. Ed25519+SPHINCS-256.

SPHINCS-256 signature is 41KB;
~50 million cycles to generate;
~1 million cycles to verity.

Negligible cost to sign, transmit,
verify compared to OS update.

Ed25519: unnoticeable cost.
Some extra system complexity,

but the system includes
Ed25519 code anyway.

Auditor sees very easily
that Ed25519-+SPHINCS-256

security > Ed25519 security.

10

Does deployment of P + @
mean that we don't trust Q7
On the contrary!

Pre-quantum situation:
Hash-based signatures are
even more confidence-inspiring
than ECC signatures.

But understanding this fact
takes extra work for auditor.

Long-term situation:

Users see quantum computers
easily breaking P. Simplify system
by switching from P + Q to Q.

11

5519+SPHINCS-256.

S-256 signature is 41KB;
lion cycles to generate;
on cycles to verity.

le cost to sign, transmit,
mpared to OS update.

19: unnoticeable cost.
tra system complexity,
system includes

) code anyway.

sees very easily
255194+SPHINCS-256

> Ed25519 security.

10

Does deployment of P 4+ @
mean that we don't trust Q7
On the contrary!

Pre-quantum situation:
Hash-based signatures are
even more confidence-inspiring
than ECC signatures.

But understanding this fact
takes extra work for auditor.

Long-term situation:

Users see quantum computers
easily breaking P. Simplify system
by switching from P + Q to Q.

11

IP: Inter

|IP comn
limited-|

Each co
has a 4-
e.g. WWwW

address

Your brc
addresse
gives pa
Hopefull
that pac

HINCS-256.

1ature is 41KB:
- To generate;
to verity.

sign, transmit,
y OS update.

iceable cost.
1 complexity,
ludes

way.

casily
HINCS-256
9 security.

10

Does deployment of P + @
mean that we don't trust Q7
On the contrary!

Pre-quantum situation:
Hash-based signatures are
even more confidence-inspiring
than ECC signatures.

But understanding this fact
takes extra work for auditor.

Long-term situation:

Users see quantum computers
easily breaking P. Simplify system
by switching from P + Q to Q.

11

|P: Internet Proto

IP communicates
limited-length byte

Each computer on
has a 4-byte “IP a

€.g. WWww.pqcrypt
address 131.155.

Your browser crea
addressed to 131.
gives packet to th
Hopefully the Inte
that packet to 13:

1KB:
te;

sMit,
te.

St.
ty,

0

Does deployment of P 4+ @
mean that we don't trust Q7
On the contrary!

Pre-quantum situation:
Hash-based signatures are
even more confidence-inspiring
than ECC signatures.

But understanding this fact
takes extra work for auditor.

Long-term situation:

Users see quantum computers
easily breaking P. Simplify system
by switching from P + Q to Q.

11

|P: Internet Protocol

IP communicates “packets’
limited-length byte strings.

Each computer on the Interi
has a 4-byte “IP address".
e.g. Www.pqcrypto.org has
address 131.155.70.11.

Your browser creates a pack
addressed to 131.155.70.1
gives packet to the Internet.
Hopefully the Internet delive
that packet to 131.155.70

Does deployment of P 4+ @
mean that we don't trust Q7
On the contrary!

Pre-quantum situation:
Hash-based signatures are
even more confidence-inspiring
than ECC signatures.

But understanding this fact
takes extra work for auditor.

Long-term situation:

Users see quantum computers
easily breaking P. Simplify system
by switching from P + Q to Q.

11

IP: Internet Protocol

IP communicates “packets’:
limited-length byte strings.

Each computer on the Internet
has a 4-byte “IP address".

e.g. Wwww.pqcrypto.org has
address 131.155.70.11.

Your browser creates a packet
addressed to 131.155.70.11;
gives packet to the Internet.
Hopefully the Internet delivers
that packet to 131.155.70.11.

12

ployment of P+ Q
at we don't trust Q7
“ontrary!

1tum situation:

sed signatures are

re confidence-inspiring
C signatures.
erstanding this fact
tra work for auditor.

'm situation:

e quantum computers
eaking P. Simplify system
hing from P+ @ to Q.

11

|P: Internet Protocol

IP communicates “packets’:
limited-length byte strings.

Each computer on the Internet
has a 4-byte “IP address".

e.g. Www.pqcrypto.org has
address 131.155.70.11.

Your browser creates a packet
addressed to 131.155.70.11;
gives packet to the Internet.
Hopefully the Internet delivers
that packet to 131.155.70.11.

12

DNS: D

You actl
connect

Browser
by askin
the pqc:

Browser
“Where

of P+ @
't trust Q7

tion:

ures are
nce-inspiring
es.

- this fact

or auditor.

n:

1 computers
Simplify system
P+ Q to Q.

11

IP: Internet Protocol

IP communicates “packets’:
limited-length byte strings.

Each computer on the Internet
has a 4-byte “IP address’.

e.g. Www.pqcrypto.org has
address 131.155.70.11.

Your browser creates a packet
addressed to 131.155.70.11;
gives packet to the Internet.
Hopefully the Internet delivers
that packet to 131.155.70.11.

12

DNS: Domain Nat

You actually told
connect to www. pe«

Browser learns "1:
by asking a name
the pgcrypto.or,

Browser — 131.1

"Where is www.p

ng

IS
system

11

|P: Internet Protocol

IP communicates “packets’:
limited-length byte strings.

Each computer on the Internet
has a 4-byte “IP address’.

e.g. Www.pqcrypto.org has
address 131.155.70.11.

Your browser creates a packet
addressed to 131.155.70.11;
gives packet to the Internet.
Hopefully the Internet delivers
that packet to 131.155.70.11.

12

DNS: Domain Name Systen

You actually told your brow:
connect to www.pqcrypto.:

Browser learns “131.155.7
by asking a name server,
the pgcrypto.org name se

Browser — 131.155.71.14

"Where is www.pqcrypto.

12 13

|IP: Internet Protocol DNS: Domain Name System

IP communicates “packets’: You actually told your browser to
limited-length byte strings. connect to www.pqcrypto.org.
Each computer on the Internet Browser learns “131.155.70.11"
has a 4-byte “IP address’. by asking a name server,

e.g. Www.pqcrypto.org has the pgcrypto.org name server.

address 131.155.70.11. Browser — 131.155.71.143:

Your browser creates a packet "Where is www.pgcrypto.org?’
addressed to 131.155.70.11;
gives packet to the Internet.
Hopefully the Internet delivers
that packet to 131.155.70.11.

12 13

|IP: Internet Protocol DNS: Domain Name System

IP communicates “packets’: You actually told your browser to
limited-length byte strings. connect to www.pqcrypto.org.
Each computer on the Internet Browser learns “131.155.70.11"
has a 4-byte “IP address’. by asking a name server,

e.g. Www.pqcrypto.org has the pgcrypto.org name server.

address 131.155.70.11. Browser — 131.155.71.143:

Your browser creates a packet "Where is www.pgcrypto.org?’
addressed to 131.155.70.11;

| IP packet from browser also
gives packet to the Internet.

| Includes a return address:
Hopefully the Internet delivers

the address of your computer.
that packet to 131.155.70.11.

131.155.71.143 — browser:
"131.155.70.11"7

12 13

net Protocol DNS: Domain Name System Browser
- [N N dd !
unicates “packets’: You actually told your browser to Z reljs
ength byte strings. connect to www.pqcrypto.org. y askin
B

mputer on the Internet Browser learns “131.155.70.11" FOWSET
¥ " . “Where

byte “IP address™. by asking a name server,

.pgcrypto.org has the pgcrypto.org name server. 199.19.
131.155.70.11. "Ask th
3 0. 10 Browser — 131.155.71.143: SK T

y . , name se
wser creates a packet Where is www.pgcrypto.org?

d to 131.155.70.11;

IP packet from browser also
cket to the Internet.

| includes a return address:
y the Internet delivers

the address of your computer.
ket to 131.155.70.11.

131.155.71.143 — browser:
"131.155.70.11"7

col

“packets’ :
> strings.

the Internet
ddress’ .

o.org has
70.11.

tes a packet
155.70.11;

e [nternet.
rnet delivers

[.165.70.11.

12

DNS: Domain Name System

You actually told your browser to
connect to www.pqcrypto.org.

Browser learns “131.155.70.11"
by asking a name server,

the pgcrypto.org name server.

Browser — 131.155.71.143:

"Where is www.pqcrypto.org?’

|IP packet from browser also
iIncludes a return address:
the address of your computer.

131.155.71.143 — browser:
"131.155.70.11"7

13

Browser learns the
address, “131.15°¢
by asking the .or

Browser — 199.1

"Where is www.p

199.19.54.1 — |
"Ask the pqcryp

name server, 13

net

et

IS

.11,

12

DNS: Domain Name System

You actually told your browser to

connect to www.pqcrypto.org.

Browser learns “131.155.70.11"
by asking a name server,

the pgcrypto.org name server.

Browser — 131.155.71.143:

"Where is www.pqcrypto.org?’

IP packet from browser also
includes a return address:

the address of your computer.

131.155.71.143 — browser:
"131.155.70.11"7

13

Browser learns the name-ser
address, “131.155.71.143
by asking the .org name se

Browser — 199.19.54.1:

"Where is www.pqgcrypto.

199.19.54.1 — browser:
"Ask the pqcrypto.org

name server, 131.155.71

DNS: Domain Name System

You actually told your browser to

connect to www.pqcrypto.org.

Browser learns “131.155.70.11"
by asking a name server,

the pgcrypto.org name server.

Browser — 131.155.71.143:

"Where is www.pgcrypto.org?’

|IP packet from browser also
iIncludes a return address:
the address of your computer.

131.155.71.143 — browser:
"131.155.70.117

13

Browser learns the name-server
address, “131.155.71.143"

by asking the .org name server.

Browser — 199.19.54.1:

"Where is www.pqcrypto.org?’

199.19.54.1 — browser:

"Ask the pqcrypto.org
name server, 131.155.71.143"

14

DNS: Domain Name System

You actually told your browser to

connect to www.pqcrypto.org.

Browser learns “131.155.70.11"
by asking a name server,

the pgcrypto.org name server.

Browser — 131.155.71.143:

"Where is www.pgcrypto.org?’

|IP packet from browser also
iIncludes a return address:
the address of your computer.

131.155.71.143 — browser:
"131.155.70.117

13

Browser learns the name-server
address, “131.155.71.143"

by asking the .org name server.

Browser — 199.19.54.1:

"Where is www.pqcrypto.org?’

199.19.54.1 — browser:

"Ask the pqcrypto.org
name server, 131.155.71.143"

Browser learns “199.19.54.1",
the .org server address,
by asking the root name server.

14

DNS: Domain Name System

You actually told your browser to

connect to www.pqcrypto.org.

Browser learns “131.155.70.11"
by asking a name server,

the pgcrypto.org name server.

Browser — 131.155.71.143:

"Where is www.pgcrypto.org?’

|IP packet from browser also
iIncludes a return address:
the address of your computer.

131.155.71.143 — browser:
"131.155.70.117

13

Browser learns the name-server
address, “131.155.71.143"

by asking the .org name server.

Browser — 199.19.54.1:

"Where is www.pqcrypto.org?’

199.19.54.1 — browser:

"Ask the pqcrypto.org
name server, 131.155.71.143"

Browser learns “199.19.54.1",
the .org server address,
by asking the root name server.

Browser learned root address
by consulting the Bible.

14

omain Name System

jally told your browser to
to www.pqcrypto.org.

learns “131.155.70.11"
g a name server,

rypto.org name server.

— 131.155.71.143:

is www.pgcrypto.org?’

t from browser also
a return address:
ess of your computer.

. 71.143 — browser:
5.70.11"

13

Browser learns the name-server
address, “131.155.71.143"
by asking the .org name server.

Browser — 199.19.54.1:

"Where is www.pqcrypto.org?’

199.19.54.1 — browser:
"Ask the pqcrypto.org
name server, 131.155.71.143"

Browser learns “199.19.54.1",
the .org server address,
by asking the root name server.

Browser learned root address
by consulting the Bible.

14

TCP: Tr

Packets

(Actuall
Oldest |
>576. L
often 15

ne System

your browser to
jcrypto.org.

31.155.70.11"
server,

T name server.

55.71.143:
gqcrypto.org?”

wser also
yddress:
r computer.

— browser:

13

Browser learns the name-server
address, “131.155.71.143"
by asking the .org name server.

Browser — 199.19.54.1:

"Where is www.pqcrypto.org?’

199.19.54.1 — browser:
"Ask the pqcrypto.org
name server, 131.155.71.143"

Browser learns “199.19.54.1",
the .org server address,
by asking the root name server.

Browser learned root address
by consulting the Bible.

14

TCP: Transmissiol

Packets are [imite

(Actually depends
Oldest IP standarc
>576. Usually 14
often 1500, somet

ser to

oTrg.

0.11"

rver.

13

Browser learns the name-server
address, “131.155.71.143"
by asking the .org name server.

Browser — 199.19.54.1:

"Where is www.pqcrypto.org?’

199.19.54.1 — browser:
"Ask the pqcrypto.org
name server, 131.155.71.143"

Browser learns “199.19.54.1",
the .org server address,
by asking the root name server.

Browser learned root address
by consulting the Bible.

14

TCP: Transmission Control

Packets are limited to 1280

(Actually depends on netwo
Oldest |IP standards requirec

>576. Usually 1492 is safe,
often 1500, sometimes more

14 15
Browser learns the name-server TCP: Transmission Control Protocol

address, “131.155.71.143"
by asking the .org name server.

Packets are limited to 1280 bytes.

(Actually depends on network.
Oldest |IP standards required
>576. Usually 1492 is safe,

199.19.54.1 — browser: often 1500, sometimes more.)

Browser — 199.19.54.1:

"Where is www.pqcrypto.org?’

"Ask the pqcrypto.org
name server, 131.155.71.143"

Browser learns “199.19.54.1",
the .org server address,
by asking the root name server.

Browser learned root address
by consulting the Bible.

Browser learns the name-server
address, “131.155.71.143"
by asking the .org name server.

Browser — 199.19.54.1:

"Where is www.pqcrypto.org?’

199.19.54 .1 — browser:

"Ask the pqcrypto.org
name server, 131.155.71.143"

Browser learns “199.19.54.1",
the .org server address,
by asking the root name server.

Browser learned root address
by consulting the Bible.

14

15
TCP: Transmission Control Protocol

Packets are limited to 1280 bytes.

(Actually depends on network.
Oldest |IP standards required

>576. Usually 1492 is safe,
often 1500, sometimes more.)

The page you're downloading
from pgcrypto.org doesn't fit.

Browser learns the name-server
address, “131.155.71.143"
by asking the .org name server.

Browser — 199.19.54.1:

"Where is www.pqcrypto.org?’

199.19.54.1 — browser:
"Ask the pqcrypto.org
name server, 131.155.71.143"

Browser learns “199.19.54.1",
the .org server address,
by asking the root name server.

Browser learned root address
by consulting the Bible.

14

15
TCP: Transmission Control Protocol

Packets are limited to 1280 bytes.

(Actually depends on network.
Oldest |IP standards required
>576. Usually 1492 is safe,

often 1500, sometimes more.)

The page you're downloading
from pgcrypto.org doesn't fit.

Browser actually makes “TCP
connection’ to pgcrypto.org.
Inside that connection: sends

HT TP request, receives response.

learns the name-server
“131.155.71.143",
g the .org name server.

— 199.19.54.1:

is www.pqcrypto.org?”

54 .1 — browser:

e pgcrypto.org
rver, 131.155.71.143"

learns “199.19.54.1"
> server address,
g the root name server.

learned root address
llting the Bible.

14

15
TCP: Transmission Control Protocol

Packets are limited to 1280 bytes.

(Actually depends on network.
Oldest |IP standards required
>576. Usually 1492 is safe,

often 1500, sometimes more.)

The page you're downloading
from pgcrypto.org doesn't fit.

Browser actually makes “TCP
connection’ to pgcrypto.org.
Inside that connection: sends

HT TP request, receives response.

Browser
“SYN 16

Server —
“ACK 16

Browser
“ACK 74

Server n
for this

Browser
counting

Server s
counting

' name-server
5.71.143",
o name server.

9.54.1:
gcrypto.org?’

Drowser:

to.org
1.155.71.143"

09.19.54 .17
ldress,
name server.

yot address
Bible.

14

15
TCP: Transmission Control Protocol

Packets are limited to 1280 bytes.

(Actually depends on network.
Oldest |IP standards required

>576. Usually 1492 is safe,
often 1500, sometimes more.)

The page you're downloading
from pgcrypto.org doesn't fit.

Browser actually makes “TCP
connection’ to pgcrypto.org.
Inside that connection: sends

HT TP request, receives response.

Browser — server:
“SYN 168bb5d9o”

Server — browser:
“ACK 168bbbda,

Browser — server:
“ACK 747bfad2"”

Server now allocat
for this TCP conn

Browser splits dat
counting bytes fro

Server splits data
counting bytes fro

ver

rver.

org?’

.143"

.1”,

Ver.

14

15
TCP: Transmission Control Protocol

Packets are limited to 1280 bytes.

(Actually depends on network.
Oldest |IP standards required
>576. Usually 1492 is safe,

often 1500, sometimes more.)

The page you're downloading
from pgcrypto.org doesn't fit.

Browser actually makes “TCP
connection’ to pgcrypto.org.
Inside that connection: sends

HT TP request, receives response.

Browser — server:
“SYN 168bbb5d9”

Server — browser:
“ACK 168bbbda, SYN 747Db1

Browser — server:
“ACK T747bfad2"”

Server now allocates buffers
for this TCP connection.

Browser splits data into pac
counting bytes from 168bbt

Server splits data into packe
counting bytes from 747bfa

15

TCP: Transmission Control Protocol

Packets are limited to 1280 bytes.

(Actually depends on network.
Oldest |IP standards required

>576. Usually 1492 is safe,
often 1500, sometimes more.)

The page you're downloading
from pgcrypto.org doesn't fit.

Browser actually makes “TCP
connection’ to pgcrypto.org.
Inside that connection: sends

HT TP request, receives response.

Browser — server:
“SYN 168bb5d9o”

Server — browser:
“ACK 168bbbda, SYN 747bfadl”

Browser — server:
“ACK 747bfad2"”

Server now allocates buffers
for this TCP connection.

Browser splits data into packets,
counting bytes from 168bbbda.

Server splits data into packets,
counting bytes from 747bfa42.

16

15
ansmission Control Protocol

are limited to 1280 bytes.

y depends on network.
P standards required

Jsually 1492 is safe,
00, sometimes more.)

e you re downloading
crypto.org doesn't fit.

actually makes “TCP
on’ to pgcrypto.org.
at connection: sends
equest, receives response.

Browser — server:
“SYN 168bbb5d9”

Server — browser:
“ACK 168bbbda, SYN 747bfadl”

Browser — server:
“ACK T7T47bfad2"”

Server now allocates buffers
for this TCP connection.

Browser splits data into packets,
counting bytes from 168bbbda.

Server splits data into packets,
counting bytes from 747bfa42.

16

Main fe:
“reliable

Internet
or delive
Doesn't
compute
Inside ec

Comput
if data I
Complic
retransn
avoiding

15

1 Control Protocol

] to 1280 bytes.

on network.
Is required
)2 Is safe,
imes more.)

ownloading
rg doesn't fit.

nakes “TCP
crypto.org.
tion: sends

Celves response.

Browser — server:
“SYN 168bb5d9o”

Server — browser:
“ACK 168bbbda, SYN 747bfadl”

Browser — server:
“ACK 747bfad2"”

Server now allocates buffers
for this TCP connection.

Browser splits data into packets,
counting bytes from 168bbbda.

Server splits data into packets,
counting bytes from 747bfa42.

16

Main feature adve
“reliable data stre

Internet sometime
or delivers packets
Doesn’'t confuse T

computer checks t
inside each TCP ¢

Computer retranst
if data is not ackn
Complicated rules
retransmission sch
avoiding network «

15
Protocol

bytes.

k.
|

)ONSE.

16
Browser — server:

"SYN 168bb5d9”

Server — browser:
“ACK 168bbbda, SYN 747bfadl”

Browser — server:
“ACK T7T47bfad2"”

Server now allocates buffers
for this TCP connection.

Browser splits data into packets,
counting bytes from 168bbbda.

Server splits data into packets,
counting bytes from 747bfa42.

Main feature advertised by °
“reliable data streams’ .

Internet sometimes loses pat
or delivers packets out of or
Doesn't confuse TCP conne
computer checks the counte
inside each TCP packet.

Computer retransmits data

if data is not acknowledged.
Complicated rules to decide
retransmission schedule,

avolding network congestion

Browser — server:
“SYN 168bb5d9o”

Server — browser:
“ACK 168bbbda, SYN 747bfadl”

Browser — server:
“ACK 747bfad2"”

Server now allocates buffers
for this TCP connection.

Browser splits data into packets,
counting bytes from 168bbbda.

Server splits data into packets,
counting bytes from 747bfa42.

16

Main feature advertised by TCP:
“reliable data streams’.

Internet sometimes loses packets
or delivers packets out of order.

Doesn’t confuse TCP connections:

computer checks the counter
inside each TCP packet.

Computer retransmits data

if data is not acknowledged.
Complicated rules to decide
retransmission schedule,
avoliding network congestion.

17

— server:
8bb5d9”

5 browser:
8bbbda, SYN 747bfadl”

— server:
Tbfad?2"

ow allocates buffers
TCP connection.

splits data into packets,
- bytes from 168bbbda.

plits data into packets,
- bytes from 747bfa4?2.

16

Main feature advertised by TCP:
“reliable data streams’ .

Internet sometimes loses packets
or delivers packets out of order.

Doesn’t confuse TCP connections:

computer checks the counter
inside each TCP packet.

Computer retransmits data

if data is not acknowledged.
Complicated rules to decide
retransmission schedule,
avoiding network congestion.

17

Stream-|

http:/,
uses HT

https:,
uses HT

Your brc
o'ﬁndSE

e makes
e inside
huilds

Dy eXC
® Inside

SENAS

SYN 747bfadl”

es buffers
ection.

2 Into packets,
m 168bbbda.

into packets,
m 747bfad?2.

16

Main feature advertised by TCP:
“reliable data streams’.

Internet sometimes loses packets
or delivers packets out of order.

Doesn’t confuse TCP connections:

computer checks the counter
inside each TCP packet.

Computer retransmits data

if data is not acknowledged.
Complicated rules to decide
retransmission schedule,

avoliding network congestion.

17

Stream-level crypt

http://www.pgca
uses HT TP over 1

https://www.pq
uses HT TP over 1

Your browser
e finds address 13
e makes TCP con
e inside the TCP
builds a TLS co
oy exchanging ¢
e inside the TLS ¢
sends HT TP rec

“adl’”

16

Main feature advertised by TCP:
“reliable data streams’ .

Internet sometimes loses packets
or delivers packets out of order.

Doesn’t confuse TCP connections:

computer checks the counter
inside each TCP packet.

Computer retransmits data

if data is not acknowledged.
Complicated rules to decide
retransmission schedule,

avoiding network congestion.

17

Stream-level crypto

http://www.pqcrypto.or;
uses HT TP over TCP.

https://www.pqcrypto.o:
uses HTTP over TLS over

Your browser

e finds address 131.155.70
e makes TCP connection:;

e inside the TCP connectior
ouilds a TLS connection

oy exchanging crypto keys
e inside the TLS connection

sends HT TP request etc.

Main feature advertised by TCP:
“reliable data streams’.

Internet sometimes loses packets
or delivers packets out of order.

Doesn’t confuse TCP connections:

computer checks the counter
inside each TCP packet.

Computer retransmits data

if data is not acknowledged.
Complicated rules to decide
retransmission schedule,

avoliding network congestion.

17

18

Stream-level crypto

http://www.pqcrypto.org
uses HT TP over TCP.

https://www.pqcrypto.org
uses HTTP over TLS over TCP.

Your browser
e finds address 131.155.70.11;
e makes TCP connection:

e inside the TCP connection,

ouilds a TLS connection
oy exchanging crypto keys;

e inside the TLS connection,

SENC

s HT TP request etc.

1ture advertised by TCP:
data streams’.

sometimes loses packets
rs packets out of order.

confuse TCP connections:

r checks the counter
ch TCP packet.

or retransmits data

s not acknowledged.
ated rules to decide
1ission schedule,

‘network congestion.

17

Stream-level crypto

http://www.pqcrypto.org
uses HT TP over TCP.

https://www.pgcrypto.org
uses HTTP over TLS over TCP.

Your browser

e finds address 131.155.70.11;
e makes TCP connection:;

e inside the TCP connection,
ouilds a TLS connection

oy exchanging crypto keys;
e inside the TLS connection,

sends HT TP request etc.

18

What h:

forges a
pointing
Ora TC
with bog

DNS sof
TCP sof
TLS sof
somethii
but has

Browser
make a
but this
Huge da

rtised by TCP:

dMms .

s loses packets
out of order.

CP connections:

he counter
acket.

nits data

owledged.
to decide
edule,
“ongestion.

17

Stream-level crypto

http://www.pqcrypto.org
uses HT TP over TCP.

https://www.pqcrypto.org
uses HTTP over TLS over TCP.

Your browser

e finds address 131.155.70.11;
e makes TCP connection;

e inside the TCP connection,
obuilds a TLS connection

oy exchanging crypto keys;
e inside the TLS connection,

sends HT TP request etc.

18

What happens if ¢
forges a DNS pacl
pointing to fake se
Or a TCP packet

with bogus data?

DNS software is fc
TCP software is fc
TLS software sees
something has gor
but has no way to

Browser using TL:
make a whole new
but this is slow an
Huge damage fror

[CP:

~kets
der.

ctions:

r

17

Stream-level crypto

http://www.pqcrypto.org
uses HT TP over TCP.

https://www.pgcrypto.org
uses HTTP over TLS over TCP.

Your browser

e finds address 131.155.70.11;
e makes TCP connection:;

e inside the TCP connection,
ouilds a TLS connection

oy exchanging crypto keys;
e inside the TLS connection,

sends HT TP request etc.

18

What happens if attacker
forges a DNS packet

pointing to fake server?
Or a TCP packet
with bogus data?

DNS software is fooled.

TCP software is fooled.
TLS software sees that

something has gone wrong,
but has no way to recover.

Browser using TLS can
make a whole new connectic
but this is slow and fragile.
Huge damage from forged p

Stream-level crypto

http://www.pqcrypto.org
uses HT TP over TCP.

https://www.pqcrypto.org
uses HTTP over TLS over TCP.

Your browser

e finds address 131.155.70.11;
e makes TCP connection;

e inside the TCP connection,
obuilds a TLS connection

oy exchanging crypto keys;
e inside the TLS connection,

sends HT TP request etc.

18

What happens if attacker
forges a DNS packet
pointing to fake server?
Or a TCP packet

with bogus data?

DNS software is fooled.

TCP software is fooled.
TLS software sees that
something has gone wrong,

but has no way to recover.

Browser using TLS can

make a whole new connection,
but this is slow and fragile.

Huge damage from forged packet.

19

evel crypto

'WWw.pgcrypto.org
TP over TCP.

'/www.pgcrypto.org
TP over TLS over TCP.

WSEr

\ddress 131.155.70.11;
TCP connection:

the TCP connection,

a TLS connection
hanging crypto keys;
the TLS connection,

HT TP request etc.

18

What happens if attacker
forges a DNS packet

pointing to fake server?
Or a TCP packet
with bogus data?

DNS software is fooled.

TCP software is fooled.
TLS software sees that

something has gone wrong,
but has no way to recover.

Browser using TLS can

make a whole new connection,
but this is slow and fragile.

Huge damage from forged packet.

19

Modern
CurveCF
Google's
encrypt

Discard

Immedia
Retranst
authenti

Y

"ypto.org
CP.

rypto.org
LS over TCP.

1.155.70.11;
nection;
connection,
nnection

rypto keys;
‘onnection,
juest etc.

18

What happens if attacker
forges a DNS packet

pointing to fake server?
Or a TCP packet
with bogus data?

DNS software is fooled.

TCP software is fooled.
TLS software sees that

something has gone wrong,
but has no way to recover.

Browser using TLS can

make a whole new connection,
but this is slow and fragile.

Huge damage from forged packet.

19

Modern trend (e.g
CurveCP; see also
Google's QUIC): £
encrypt each pack

Discard forged pac
immediately: no d
Retransmit packet
authenticated ack

U™

-8
CP.

.11

18

What happens if attacker
forges a DNS packet
pointing to fake server?
Or a TCP packet

with bogus data?

DNS software is fooled.

TCP software is fooled.
TLS software sees that

something has gone wrong,
but has no way to recover.

Browser using TLS can
make a whole new connection,
but this is slow and fragile.

Huge damage from forged packet.

19

Modern trend (e.g., DNSCu
CurveCP; see also Minimal
Google's QUIC): Authentica
encrypt each packet separat

Discard forged packet
immediately: no damage.
Retransmit packet if no
authenticated acknowledgm

What happens if attacker
forges a DNS packet
pointing to fake server?
Or a TCP packet

with bogus data?

DNS software is fooled.

TCP software is fooled.
TLS software sees that

something has gone wrong,
but has no way to recover.

Browser using TLS can

make a whole new connection,
but this is slow and fragile.

Huge damage from forged packet.

19

20
Modern trend (e.g., DNSCurve,

CurveCP: see also MinimalT,
Google's QUIC): Authenticate and
encrypt each packet separately.

Discard forged packet
immediately: no damage.
Retransmit packet if no
authenticated acknowledgment.

What happens if attacker
forges a DNS packet
pointing to fake server?
Or a TCP packet

with bogus data?

DNS software is fooled.

TCP software is fooled.
TLS software sees that

something has gone wrong,
but has no way to recover.

Browser using TLS can

make a whole new connection,
but this is slow and fragile.

Huge damage from forged packet.

19

20
Modern trend (e.g., DNSCurve,

CurveCP: see also MinimalT,
Google's QUIC): Authenticate and
encrypt each packet separately.

Discard forged packet
immediately: no damage.
Retransmit packet if no
authenticated acknowledgment.

Engineering advantage:
Packet-level crypto

works for more protocols

than stream-level crypto.

What happens if attacker
forges a DNS packet

pointing to fake server?
Or a TCP packet
with bogus data?

DNS software is fooled.

TCP software is fooled.
TLS software sees that

something has gone wrong,
but has no way to recover.

Browser using TLS can
make a whole new connection,
but this is slow and fragile.

Huge damage from forged packet.

19

20
Modern trend (e.g., DNSCurve,

CurveCP: see also MinimalT,
Google's QUIC): Authenticate and
encrypt each packet separately.

Discard forged packet
immediately: no damage.
Retransmit packet if no
authenticated acknowledgment.

Engineering advantage:
Packet-level crypto

works for more protocols
than stream-level crypto.

Disadvantage:
Crypto must fit into packet.

ppens if attacker
DNS packet

to fake server?
P packet
rus data?

tware Is fooled.

tware is fooled.
fware sees that

1g has gone wrong,
no way to recover.

using TLS can
whole new connection,
is slow and fragile.

mage from forged packet.

19

Modern trend (e.g., DNSCurve,
CurveCP: see also MinimalT,

Google's QUIC)

- Authenticate and

encrypt each packet separately.

Discard forged packet

immediately: no damage.

Retransmit packet if no

authenticated acknowledgment.

Engineering advantage:

Packet-level cry
works for more

DTo

yrotocols

than stream-level crypto.

Disadvantage:
Crypto must fit

Into packet.

20

The KE

Original
Message

as m® m

ttacker
et

srver’?

)OIEd.

yoled.
that

1e wrong,
recover.

> can
' connection,
d fragile.

n forged packet.

19

Modern trend (e.g., DNSCurve,
CurveCP: see also MinimalT,

Google's QUIC)

- Authenticate and

encrypt each packet separately.

Discard forged packet

immediately: no damage.

Retransmit packet if no

authenticated acknowledgment.

Engineering advantage:

Packet-level cry
works for more

DTOo

brotocols

than stream-level crypto.

Disadvantage:
Crypto must fit

into packet.

20

The KEM+AE ph

Original view of R
Message m Is encr
as m® mod pq.

n,

acket.

Modern trend (e.g., DNSCurve,
CurveCP: see also MinimalT,
Google's QUIC): Authenticate and
encrypt each packet separately.

Discard forged packet
immediately: no damage.
Retransmit packet if no
authenticated acknowledgment.

Engineering advantage:
Packet-level crypto

works for more protocols
than stream-level crypto.

Disadvantage:
Crypto must fit into packet.

20

The KEM+AE philosophy

Original view of RSA:

Message m is encrypted
as m® mod pq.

Modern trend (e.g., DNSCurve,
CurveCP: see also MinimalT,
Google's QUIC): Authenticate and
encrypt each packet separately.

Discard forged packet
immediately: no damage.
Retransmit packet if no
authenticated acknowledgment.

Engineering advantage:
Packet-level crypto

works for more protocols
than stream-level crypto.

Disadvantage:
Crypto must fit into packet.

20

The KEM-+AE philosophy

Original view of RSA:

Message m is encrypted
as m® mod pq.

21

Modern trend (e.g., DNSCurve,
CurveCP: see also MinimalT,
Google's QUIC): Authenticate and
encrypt each packet separately.

Discard forged packet
immediately: no damage.
Retransmit packet if no
authenticated acknowledgment.

Engineering advantage:
Packet-level crypto

works for more protocols
than stream-level crypto.

Disadvantage:
Crypto must fit into packet.

20

The KEM-+AE philosophy

Original view of RSA:

Message m is encrypted
as m® mod pq.

“Hybrid” view of RSA,
including random padding:

Choose random AES-GCM key k.

Randomly pad k as r.
Encrypt r as r® mod pq.
Encrypt m under k.

21

Modern trend (e.g., DNSCurve,
CurveCP: see also MinimalT,
Google's QUIC): Authenticate and
encrypt each packet separately.

Discard forged packet
immediately: no damage.
Retransmit packet if no
authenticated acknowledgment.

Engineering advantage:
Packet-level crypto

works for more protocols

than stream-level crypto.

Disadvantage:
Crypto must fit into packet.

20

The KEM-+AE philosophy

Original view of RSA:

Message m is encrypted
as m® mod pq.

“Hybrid” view of RSA,
including random padding:

Choose random AES-GCM key k.

Randomly pad k as r.
Encrypt r as r® mod pq.
Encrypt m under k.

Fragile, many problems:
e.g., Coppersmith attack,
Bleichenbacher attack,
bogus OAEP security proof.

21

trend (e.g., DNSCurve,
- see also MinimalT,

 QUIC): Authenticate and
each packet separately.

forged packet

tely: no damage.

nit packet if no

cated acknowledgment.

ing advantage:
evel crypto

r more protocols
cam-level crypto.

ntage:
nust fit into packet.

20

The KEM+AE philosophy

Original view of RSA:

Message m is encrypted
as m® mod pq.

“Hybrid” view of RSA,

including random padding:
Choose random AES-GCM key k.
Randomly pad k as r.

Encrypt r as r® mod pq.

Encrypt m under k.

Fragile, many problems:
e.g., Coppersmith attack,
Bleichenbacher attack,
bogus OAEP security proof.

21

Shoup's

"Key en
Choose

Encrypt
Define k

“Data e
Encrypt

m under

Authent
any moc

Much ec:
Also ger

P 4+ Q:

., DNSCurve,
MinimalT,
\uthenticate and
et separately.

ket
amage.
If no

nowledgment.

tage:
9
ytocols
crypto.

to packet.

20

The KEM+AE philosophy

Original view of RSA:

Message m is encrypted
as m® mod pq.

“Hybrid” view of RSA,

including random padding:
Choose random AES-GCM key k.
Randomly pad k as r.

Encrypt r as r® mod pq.

Encrypt m under k.

Fragile, many problems:
e.g., Coppersmith attack,
Bleichenbacher attack,
bogus OAEP security proof.

21

Shoup’'s “KEM+L

"Key encapsulatio
Choose random r

Encrypt r as r¢* m
Define k = H(r, r

“Data encapsulati

Encrypt and authe
m under AES-GCI

Authenticator catc
any modification c

Much easier to ge
Also generalizes ni
P + @Q: hash conc

rve,

te and
ely.

ent.

20

The KEM+AE philosophy

Original view of RSA:

Message m is encrypted
as m® mod pq.

“Hybrid” view of RSA,
including random padding:

Choose random AES-GCM key k.

Randomly pad k as r.
Encrypt r as r® mod pq.
Encrypt m under k.

Fragile, many problems:
e.g., Coppersmith attack,
Bleichenbacher attack,
bogus OAEP security proof.

21

Shoup’'s "KEM+DEM" view

"Key encapsulation mechani
Choose random r mod pq.

Encrypt r as r® mod pg.
Define k = H(r, r¢ mod pq)

“Data encapsulation mechar

Encrypt and authenticate
m under AES-GCM key k.

Authenticator catches
any modification of r¢ mod

Much easier to get right.
Also generalizes nicely.
P 4+ @: hash concatenation.

The KEM-+AE philosophy

Original view of RSA:
Message m is encrypted
as m® mod pq.

“Hybrid” view of RSA,

including random padding:
Choose random AES-GCM key k.
Randomly pad k as r.

Encrypt r as r® mod pq.

Encrypt m under k.

Fragile, many problems:
e.g., Coppersmith attack,
Bleichenbacher attack,
bogus OAEP security proof.

21

22
Shoup’'s "KEM-+DEM" view:

"Key encapsulation mechanism”:
Choose random r mod pq.

Encrypt r as r® mod pg.
Define k = H(r, r¢ mod pq).

“Data encapsulation mechanism™:

Encrypt and authenticate
m under AES-GCM key k.

Authenticator catches
any modification of r¢ mod pq.

Much easier to get right.
Also generalizes nicely.
P 1+ @Q: hash concatenation.

VI+AE philosophy

view of RSA:
' m Is encrypted

od pq.

" view of RSA,

r random padding:
random AES-GCM key k.
ly pad k as r.

r as r® mod pq.

m under k.

many problems:
ypersmith attack,
bacher attack,
AEP security proof.

21

Shoup’'s "KEM-+DEM" view:

"Key encapsulation mechanism”:

Choose random r mod pq.

Encrypt r as r® mod pg.
Define k = H(r, r® mod pq).

"Data encapsulation mechanism™:

Encrypt and authenticate
m under AES-GCM key k.

Authenticator catches
any modification of r¢ mod pq.

Much easier to get right.
Also generalizes nicely.
P 4+ @: hash concatenation.

22

DEM se
weak sin
of securi
authenti

Chou: s
for mult

Answer:
KEM-+A
(But ne¢
AES-GC

aim for

More co
Use KEI

n-time s

llosophy

SA:
ypted

RSA,
padding:
ES-GCM key k.

S .

od pq.
k.

lems:
attack,
rack,

rity proof.

21

Shoup’'s "KEM-+DEM" view:

"Key encapsulation mechanism”:

Choose random r mod pq.

Encrypt r as r® mod pg.
Define k = H(r, r¢ mod pq).

“Data encapsulation mechanism™:

Encrypt and authenticate
m under AES-GCM key k.

Authenticator catches
any modification of r¢ mod pq.

Much easier to get right.
Also generalizes nicely.
P + @Q: hash concatenation.

22

DEM security hyp
weak single-messa
of security for sect
authenticated enci

Chou: Is it safe tc
for multiple messa

Answer: KEM+-Al
KEM+AE = KEN
(But need literatu

AES-GCM, Salsa?2
aim for full AE sec

More complicated
Use KEM+DEM t
n-time secret key

ey K.

21

Shoup’'s "KEM-+DEM" view:

"Key encapsulation mechanism”:

Choose random r mod pq.

Encrypt r as r® mod pg.
Define k = H(r, r® mod pq).

"Data encapsulation mechanism™:

Encrypt and authenticate
m under AES-GCM key k.

Authenticator catches
any modification of r¢ mod pq.

Much easier to get right.
Also generalizes nicely.
P 4+ @: hash concatenation.

22

DEM security hypothesis:
weak single-message version
of security for secret-key
authenticated encryption.

Chou: Is i1t safe to reuse k
for multiple messages?

Answer: KEM+-AE is safe:
KEM+AE = KEM+ “nDEM
(But need literature on this!

AES-GCM, Salsa20-Poly130
aim for full AE security goal

More complicated alternativ
Use KEM+DEM to encrypt

n-time secret key m; reuse r

Shoup’'s "KEM-+DEM" view:

"Key encapsulation mechanism”:

Choose random r mod pq.

Encrypt r as r® mod pg.
Define k = H(r, r¢ mod pq).

“Data encapsulation mechanism™:

Encrypt and authenticate
m under AES-GCM key k.

Authenticator catches
any modification of r¢ mod pq.

Much easier to get right.
Also generalizes nicely.
P + @Q: hash concatenation.

22

23
DEM security hypothesis:

weak single-message version
of security for secret-key
authenticated encryption.

Chou: Is it safe to reuse k
for multiple messages?

Answer: KEM--AE is safe:
KEM+AE = KEM+ “nDEM" .
(But need literature on this!)
AES-GCM, Salsa20-Poly1305, etc.
aim for full AE security goal.

More complicated alternative:
Use KEM+DEM to encrypt an

n-time secret key m; reuse m.

"KEM+DEM" view:

capsulation mechanism:

random r mod pq.
r as r€ mod pq.
= H(r, r® mod pq).

ncapsulation mechanism™:

and authenticate
-AES-GCM key k.

icator catches
lification of r€ mod pgq.

sier to get right.
eralizes nicely.
hash concatenation.

22

DEM security hypothesis:
weak single-message version
of security for secret-key
authenticated encryption.

Chou: Is i1t safe to reuse k
for multiple messages?

Answer: KEM+-AE is safe:
KEM+AE = KEM+ “nDEM".
(But need literature on this!)

AES-GCM, Salsa20-Poly1305, etc.

aim for full AE security goal.

More complicated alternative:
Use KEM+DEM to encrypt an

n-time secret key m; reuse m.

23

DNSCur

Server k

Client ki
server's

Client —
packet ¢
where k
E 1s aut
g 1s DN:

Server —
packet
where r

EM" view:

n mechanism':

mod pg.

od pg.
" 'mod pq).

on mechanism’ :

nticate
VI key k.

“hes
f r€ mod pqg.

t right.
cely.
atenation.

22

DEM security hypothesis:
weak single-message version
of security for secret-key
authenticated encryption.

Chou: lIs it safe to reuse k
for multiple messages?

Answer: KEM--AE is safe:
KEM+AE = KEM+ “nDEM".
(But need literature on this!)

AES-GCM, Salsa20-Poly1305, etc.

aim for full AE security goal.

More complicated alternative:
Use KEM+DEM to encrypt an
n-time secret key m; reuse m.

23

DNSCurve: ECDFE

Server knows ECL

Client knows ECD
server's public key

Client — server:
packet containing
where k = H(cS);
E is authenticatec
g is DNS query.

Server — client:
packet containing
where r is DNS re

sm

1Ism’”

22

DEM security hypothesis:
weak single-message version
of security for secret-key
authenticated encryption.

Chou: Is i1t safe to reuse k
for multiple messages?

Answer: KEM+-AE is safe:
KEM+AE = KEM+ “nDEM".
(But need literature on this!)

AES-GCM, Salsa20-Poly1305, etc.

aim for full AE security goal.

More complicated alternative:
Use KEM+DEM to encrypt an

n-time secret key m; reuse m.

23

DNSCurve: ECDH for DNS

Server knows ECDH secret |

Client knows ECDH secret |
server’'s public key S = sG.

Client — server:

packet containing cG, E, (O,
where k = H(cS);

E is authenticated cipher;
g is DNS query.

Server — client:
packet containing E,(1, r)
where r is DNS response.

DEM security hypothesis:
weak single-message version
of security for secret-key
authenticated encryption.

Chou: Is it safe to reuse k
for multiple messages?

Answer: KEM--AE is safe:
KEM+AE = KEM+ “nDEM".
(But need literature on this!)

AES-GCM, Salsa20-Poly1305, etc.

aim for full AE security goal.

More complicated alternative:
Use KEM+DEM to encrypt an
n-time secret key m; reuse m.

23

24

DNSCurve: ECDH for DNS

Server knows ECDH secret key s.

Client knows ECDH secret key c,
server’'s public key S = sG.

Client — server:

packet containing cG, E,(0, q)
where k = H(cS);

E i1s authenticated cipher;

g is DNS query.

Server — client:
packet containing Ex(1, r)
where r is DNS response.

curity hypothesis:
gle-message version
ty for secret-key
cated encryption.

5 1t safe to reuse k
iple messages?

KEM4-AE is safe:
E = KEM+"“"nDEM".

d literature on this!)

M, Salsa20-Poly1305, etc.

full AE security goal.

mplicated alternative:
VI+-DEM to encrypt an
ecret key m; reuse m.

23

DNSCurve: ECDH for DNS

Server knows ECDH secret key s.

Client knows ECDH secret key c,
server’'s public key S = sG.

Client — server:

packet containing cG, E,(0, q)
where k = H(cS);

E is authenticated cipher;

g is DNS query.

Server — client:
packet containing E,(1, r)
where r is DNS response.

24

Client c:
across I
but this
Let's ass

othesis:
ge version
et-key
yption.

 reuse k
ges’?

~ |s safe:
N+ "“"nDEM" .
re on this!)

0-Poly1305, etc.

—urity goal.

alternative:
0 encrypt an

m: reuse m.

23

24

DNSCurve: ECDH for DNS

Server knows ECDH secret key s.

Client knows ECDH secret key c,
server’'s public key S = sG.

Client — server:

packet containing cG, E,(0, q)
where k = H(cS);

E i1s authenticated cipher;

g is DNS query.

Server — client:
packet containing Ex(1, r)
where r is DNS response.

Client can reuse ¢
across multiple qu
but this leaks met
Let's assume one-

23

24

DNSCurve: ECDH for DNS

Server knows ECDH secret key s.

Client knows ECDH secret key c,
server’'s public key S = sG.

Client — server:

packet containing cG, E,(0, q)
where k = H(cS);

E is authenticated cipher;

g is DNS query.

Server — client:
packet containing E,(1, r)
where r is DNS response.

Client can reuse c¢
across multiple queries,
but this leaks metadata.

|l et's assume one-time c.

DNSCurve: ECDH for DNS

Server knows ECDH secret key s.

Client knows ECDH secret key c,
server’'s public key S = sG.

Client — server:

packet containing cG, E,(0, q)
where k = H(cS);

E is authenticated cipher;

g is DNS query.

Server — client:
packet containing E,(1, r)
where r is DNS response.

24

Client can reuse ¢
across multiple queries,
but this leaks metadata.
Let's assume one-time c.

25

DNSCurve: ECDH for DNS

Server knows ECDH secret key s.

Client knows ECDH secret key c,
server’'s public key S = sG.

Client — server:

packet containing cG, E,(0, q)
where k = H(cS);

E is authenticated cipher;

g is DNS query.

Server — client:
packet containing E,(1, r)
where r is DNS response.

24

Client can reuse ¢
across multiple queries,
but this leaks metadata.
Let's assume one-time c.

KEM-4-AE view:

Client is sending k = H(cS)
encapsulated as cG.
This is an "ECDH KEM".

25

DNSCurve: ECDH for DNS

Server knows ECDH secret key s.

Client knows ECDH secret key c,
server’'s public key S = sG.

Client — server:

packet containing cG, E,(0, q)
where k = H(cS);

E is authenticated cipher;

g is DNS query.

Server — client:
packet containing E,(1, r)
where r is DNS response.

24

Client can reuse ¢
across multiple queries,
but this leaks metadata.
Let's assume one-time c.

KEM-4-AE view:

Client is sending k = H(cS)
encapsulated as cG.
This is an "ECDH KEM".

Client then uses k
to authenticate+encrypt.

Server also uses k
to authenticate+f-encrypt.

25

ve: ECDH for DNS

nows ECDH secret key s.

1ows ECDH secret key c,
public key S = sG.

> Server:

ontaining cG, E,(0, q)
= H(cS);

henticated cipher;

> query.

+ client:
ontaining E (1, r)
s DNS response.

24

Client can reuse ¢
across multiple queries,
but this leaks metadata.
Let's assume one-time c.

KEM-4AE view:

Client is sending k = H(cS)
encapsulated as cG.
This is an “"ECDH KEM".

Client then uses k
to authenticate+encrypt.

Server also uses k
to authenticate+-encrypt.

25

Post-qu:

“McElie
Client se
encapsul

Random

ranaom

public ke

| for DNS

)H secret key s.

H secret key c,

S =sG.

CG, Ek(O, q)

cipher;

Ek(]_, r)
SPONSE.

24

Client can reuse ¢
across multiple queries,
but this leaks metadata.
Let's assume one-time c.

KEM-4-AE view:

Client is sending k = H(cS)
encapsulated as cG.
This is an "ECDH KEM"..

Client then uses k
to authenticate+encrypt.

Server also uses k
to authenticate+f-encrypt.

25

Post-quantum enc

“McEliece KEM" :
Client sends kK = |
encapsulated as S

Random ¢ &€ FS“E
random small e &

: 6]
public key S € F;

ey S.

ey C,

24

Client can reuse ¢
across multiple queries,
but this leaks metadata.
Let's assume one-time c.

KEM-4AE view:

Client is sending k = H(cS)
encapsulated as cG.
This is an “"ECDH KEM".

Client then uses k
to authenticate+encrypt.

Server also uses k
to authenticate+-encrypt.

25

Post-quantum encrypted DI

“McEliece KEM":
Client sends k = H(c, e, Sc
encapsulated as Sc + e.

Random ¢ & Fg413;
random small e € Fg%o;

: 6960x 5413
public key S € F>7°°~ .

Client can reuse ¢
across multiple queries,
but this leaks metadata.
Let's assume one-time c.

KEM-4-AE view:

Client is sending k = H(cS)
encapsulated as cG.
This is an "ECDH KEM".

Client then uses k
to authenticate+encrypt.

Server also uses k
to authenticate+f-encrypt.

25

Post-quantum encrypted DNS

“McEliece KEM"
Client sends k = H(c, e, Sc + €)
encapsulated as Sc + e.

Random ¢ & Fg4l3;

ranc

pub

om small e € |:€23960;
ickey S € F8960X5413.

26

Client can reuse ¢
across multiple queries,
but this leaks metadata.
Let's assume one-time c.

KEM-4-AE view:

Client is sending k = H(cS)
encapsulated as cG.
This is an "ECDH KEM".

Client then uses k
to authenticate+encrypt.

Server also uses k
to authenticate+f-encrypt.

25

Post-quantum encrypted DNS

“McEliece KEM"
Client sends k = H(c, e, Sc + €)
encapsulated as Sc + e.

Random ¢ &€

ranc

pub

5413.
F5";

om small e € |:€2396O;

ickey S € F8960X5413.

S has secret Goppa structure

allowing server to decrypt.

26

Client can reuse ¢
across multiple queries,
but this leaks metadata.
Let's assume one-time c.

KEM-4-AE view:

Client is sending k = H(cS)
encapsulated as cG.
This is an "ECDH KEM".

Client then uses k
to authenticate+encrypt.

Server also uses k
to authenticate+f-encrypt.

25

Post-quantum encrypted DNS

“McEliece KEM"
Client sends k = H(c, e, Sc + €)
encapsulated as Sc + e.

Random ¢ &€ Fg4l3;
random small e & |:€2396O;

: 6960x 5413
public key S € F77°°7°>"2,

S has secret Goppa structure
allowing server to decrypt.

“Niederreiter KEM" , smaller:

Client sends k = H(e, S'e)

encapsulated as S’e € F3>47.

26

)N reuse ¢
wltiple queries,

leaks metadata.
sume one-time c.

\E view:

sending k = H(cS)
ated as cG.
n "ECDH KEM" .

1en uses k
nticate+encrypt.

Iso uses k
nticate+encrypt.

25

Post-quantum encrypted DNS

“McEliece KEM" :

Client sends k = H(c, e, Sc + €)
encapsulated as Sc¢ + e.

Fg413;

random small e & Fg%o;
public key S € F8960X5413.

Random ¢ &€

S has secret Goppa structure
allowing server to decrypt.

“Niederreiter KEM" , smaller:

Client sends k = H(e, S'e)

encapsulated as S’e € F3>*47.

26

"NTRU
obviousl

Client se
encapsul

eries,
adata.
time C.

= H(cS)

KEM™.

ncrypt.

ncrypt.

25

Post-quantum encrypted DNS

“McEliece KEM"
Client sends k = H(c, e, Sc + €)
encapsulated as Sc + e.

Random ¢ &€ Fg4l3;
random small e & |:€2396O;

: 6960x 5413
public key S € F77°°7°"2,

S has secret Goppa structure
allowing server to decrypt.

“Niederreiter KEM" , smaller:

Client sends k = H(e, S'e)

encapsulated as S’e € F3>47.

26

"NTRU KEM",

obviously totally u
Client sends k = |
encapsulated as S

25

Post-quantum encrypted DNS

“McEliece KEM":
Client sends k = H(c, e, Sc + €)
encapsulated as Sc + e.

Random c¢ &€ Fg413;
random small e € Fg%o;

: 6960x 5413
public key S € F>7°°~ .

S has secret Goppa structure
allowing server to decrypt.

“Niederreiter KEM" , smaller:

Client sends k = H(e, S'e)

encapsulated as S’e € F3>47.

26

"‘NTRU KEM",

obviously totally unrelated:
Client sends kK = H(c, e, Sc
encapsulated as Sc¢ + e.

Post-quantum encrypted DNS

“McEliece KEM"
Client sends k = H(c, e, Sc + €)
encapsulated as Sc + e.

Random ¢ &€ Fg4l3;
random small e € |:€2396O;

: 6960x 5413
public key S € F77°°7°"2,

S has secret Goppa structure
allowing server to decrypt.

“Niederreiter KEM" , smaller:

Client sends k = H(e, S'e)

encapsulated as S’e € F3>47.

26

"NTRU KEM",

obviously totally unrelated:
Client sends k = H(c, e, Sc + €)
encapsulated as Sc + e.

27

Post-quantum encrypted DNS

“McEliece KEM"
Client sends k = H(c, e, Sc + €)
encapsulated as Sc + e.

Random ¢ &€ Fg4l3;

random small e € |:€2396O;

public key S € F896OX5413.

S has secret Goppa structure
allowing server to decrypt.

“Niederreiter KEM" , smaller:
Client sends k = H(e, S'e)
encapsulated as S’e € F3>47.

26

"NTRU KEM",

obviously totally unrelated:
Client sends k = H(c, e, Sc + €)
encapsulated as Sc + e.

Random small
c,e € (Z/q)[x]/(x" —1);

public key S € (Z/q)|x]/(x" — 1).

Secretly S = 3s/t; small s, t.
Server recovers 3sc + te,
then te mod 3, then e, then c.

27

Post-quantum encrypted DNS

“McEliece KEM"
Client sends k = H(c, e, Sc + €)
encapsulated as Sc + e.

Random ¢ &€ Fg4l3;
random small e € |:€2396O;

: 6960x 5413
public key S € F77°°7°"2,

S has secret Goppa structure
allowing server to decrypt.

“Niederreiter KEM" , smaller:
Client sends k = H(e, S'e)
encapsulated as S’e € F3>47.

26

"NTRU KEM",
obviously totally unrelated:

Client sends k = H(c, e, Sc + €)
encapsulated as Sc¢ + e.

Random small

c,e € (Z/q)lx]/(x" =1);
public key S € (Z/q)|x]/(x" — 1).

Secretly S = 3s/t; small s, t.
Server recovers 3sc + te,
then te mod 3, then e, then c.

Can imitate Niederreiter in the
NTRU context: e.g. “"Ring-LWR".

27

intum encrypted DNS

ce KEM':
nds k = H(c, e, Sc + €)
ated as Sc + e.

5413.
c € F5",

small e € F$7%0;
sy S € F896O><5413_

cret Goppa structure
server to decrypt.

eiter KEM" | smaller:
nds kK = H(e, S'e)
ated as S'e € F%547.

26

"NTRU KEM",

obviously totally unrelated:
Client sends kK = H(c, e, Sc + €)
encapsulated as 5S¢ + e.

Random small
c,e € (Z/q)[x]/(x" —1);

public key S € (Z/q)[x]/(x" — 1).

Secretly S = 3s/t; small s, t.
Server recovers 3sc + te,
then te mod 3, then e, then c.

Can imitate Niederreiter in the

NTRU context: e.g. “Ring-LWR" .

27

Client —

packet ¢
(Combir

Server —
packet

rypted DNS

1(c, e, Sc + €)
C + €.

.

F896O;
960><5413.

a structure
decrypt.

1" smaller:

26

O

Client sends k = H(c, e, Sc + €)

"NTRU KEM",

oviously totally unrelated:

encapsulated as Sc + e.

Random small

C

public key S € (Z/q)|x]/(x" — 1).

Secretly $ = 3s/t; small s, t.

S

then te mod 3, then e, then c.

Can imitate Niederreiter in the
NTRU context: e.g. “"Ring-LWR".

e €(Z/q)[x]/(x" = 1),

erver recovers 3sc + te,

21

Client — server:

packet containing
(Combine with EC

Server — client:
packet containing

+ e)

26

"NTRU KEM",

obviously totally unrelated:
Client sends kK = H(c, e, Sc + €)
encapsulated as Sc¢ + e.

Random small

c,e € (Z/q)[x]/(x" —1);
public key S € (Z/q)[x]/(x" — 1).

Secretly S = 3s/t; small s, t.
Server recovers 3sc + te,
then te mod 3, then e, then c.

Can imitate Niederreiter in the
NTRU context: e.g. “Ring-LWR".

27

Client — server:
packet containing Sc+e, E;
(Combine with ECDH KEM

Server — client:
packet containing E.(1, r).

"NTRU KEM",

obviously totally unrelated:
Client sends k = H(c, e, Sc + €)
encapsulated as Sc + e.

Random small

c,e € (Z/q)lx]/(x" =1);
public key S € (Z/q)[x]/(x" — 1).

Secretly $ = 3s/t; small s, t.
Server recovers 3sc + te,
then te mod 3, then e, then c.

Can imitate Niederreiter in the
NTRU context: e.g. “"Ring-LWR".

21

Client — server:
packet containing Sc+e, E(0, q).
(Combine with ECDH KEM.)

Server — client:
packet containing E,(1, r).

23

"NTRU KEM",

obviously totally unrelated:
Client sends k = H(c, e, Sc + €)
encapsulated as Sc + e.

Random small

c,e € (Z/q)lx]/(x" =1);
public key S € (Z/q)[x]/(x" — 1).

Secretly $ = 3s/t; small s, t.
Server recovers 3sc + te,
then te mod 3, then e, then c.

Can imitate Niederreiter in the
NTRU context: e.g. “"Ring-LWR".

21

28
Client — server:

packet containing Sc+e, E(0, q).
(Combine with ECDH KEM.)

Server — client:
packet containing E,(1, r).

r states a server address

and the server's public key.
What if the key is too long
to fit into a single packet?

One simple answer:
Client separately requests

each block of public key.

Can do many requests in parallel.

KEM",

y totally unrelated:

nds kK = H(c,e, Sc + e)
ated as Sc + e.

small

/)] (x" — 1)
y S € (Z/q)X]/(x" — 1),

S =3s/t; small s, t.
acovers 3sc + te,
mod 3, then e, then c.

-ate Niederreiter in the
ontext: e.g. "Ring-LWR".

27

28
Client — server:

packet containing Sc+e, E(0, q).
(Combine with ECDH KEM.)

Server — client:
packet containing E,(1, r).

r states a server address

and the server's public key.
What if the key is too long
to fit into a single packet?

One simple answer:
Client separately requests
each block of public key.

Can do many requests in parallel.

Confider
Attacker
can't de

Integrity
Server n
but Ey |
Attacker
but can’
Attacker

Availabil
Client di
continue
eventual

nrelated:
1(c, e, Sc + €)
C + e.

M —1);
/q)[x]/(x" —1).
- small s, t.

c + te,
en e, then c.

rreiter in the
g. "Ring-LWR" .

21

28
Client — server:

packet containing Sc+e, E,(0, q).
(Combine with ECDH KEM.)

Server — client:
packet containing E,(1, r).

r states a server address

and the server's public key.
What if the key is too long
to fit into a single packet?

One simple answer:
Client separately requests
each block of public key.

Can do many requests in parallel.

Confidentiality:
Attacker can't gue
can't decrypt Ej((

Integrity:

Server never signs
but E4 includes at
Attacker can send
but can't forge g ¢
Attacker can repla

Availability:

Client discards for
continues waiting
eventually retranst

he

WR".

27

28
Client — server:

packet containing Sc+e, E(0, q).
(Combine with ECDH KEM.)

Server — client:
packet containing E,(1, r).

r states a server address

and the server's public key.
What if the key is too long
to fit into a single packet?

One simple answer:
Client separately requests
each block of public key.

Can do many requests in parallel.

Confidentiality:
Attacker can't guess k,
can't decrypt E.(0, q), Ex(1

Integrity:

Server never signs anything,
but E, includes authenticat
Attacker can send new quer
but can't forge g or r.
Attacker can replay request.

Availability:

Client discards forgery,
continues waiting for reply,
eventually retransmits reque

Client — server:

packet containing Sc+e, E(0, q).

(Combine with ECDH KEM.)

Server — client:
packet containing E,(1, r).

r states a server address

and the server's public key.
What if the key is too long
to fit into a single packet?

One simple answer:
Client separately requests

each block of public key.

Can do many requests in parallel.

23

29
Confidentiality:

Attacker can't guess k,
can't decrypt E(0, q), Ex(1,r).

Integrity:

Server never signs anything,
but E; includes authentication.
Attacker can send new queries
but can't forge g or r.
Attacker can replay request.

Availability:

Client discards forgery,
continues waiting for reply,
eventually retransmits request.

> SEerver:

ontaining Sc+e, E4(0, q).

e with ECDH KEM.)

+ client:
ontaining E,(1,r).

a server address

server's public key.
the key is too long
0 a single packet?

ple answer:
parately requests
ck of public key.

many requests in parallel.

28

Confidentiality:
Attacker can't guess k,

can't decrypt E(0, q), Ex(1,r).

Integrity:
Server never signs anything,

but E;, includes authentication.

Attacker can send new queries
but can't forge g or r.
Attacker can replay request.

Availability:

Client discards forgery,
continues waiting for reply,
eventually retransmits request.

29

Cookies

What it
INto san

Client se
containii

Server s
cookie |
k) encry
Server ¢

Client se
Server r

Server s

Sc+te, Ek(O, q).

DH KEM.)

Ek(]_, r).

ddress

ublic key.
too long
packet?

g
equests
Ic key.
ests In parallel.

23

Confidentiality:
Attacker can't guess k,

can't decrypt E(0, q), Ex(1,r).

Integrity:
Server never signs anything,

but E; includes authentication.

Attacker can send new queries
but can't forge g or r.
Attacker can replay request.

Availability:

Client discards forgery,
continues waiting for reply,
eventually retransmits request.

29

Cookies

What if E4(0, q) c
Into same packet

Client sends short
containing a cook

Server sends E(1
cookie r': server
k) encrypted from
Server can now fo

Client sends packe
Server recovers st:

Server sends E (3

rallel.

28

Confidentiality:
Attacker can't guess k,

can't decrypt E(0, q), Ex(1,r).

Integrity:
Server never signs anything,

but E;, includes authentication.

Attacker can send new queries
but can't forge g or r.
Attacker can replay request.

Availability:

Client discards forgery,
continues waiting for reply,
eventually retransmits request.

29

Cookies

What if E,(0, g) doesn't fit
iInto same packet as Sc + €

Client sends short E,(0, q)
containing a cookie reques

Server sends E, (1, r') conta
cookie r': server state (incl
k) encrypted from server to
Server can now forget state.

Client sends packet r/, Ex(2
Server recovers state, decryy

Server sends E,(3, r).

Confidentiality:
Attacker can't guess k,

can't decrypt E,(0, q), Ex(1, r).

Integrity:
Server never signs anything,

but E; includes authentication.

Attacker can send new queries
but can't forge g or r.
Attacker can replay request.

Availability:

Client discards forgery,
continues waiting for reply,
eventually retransmits request.

29

Cookies

What if E,(0, g) doesn't fit
into same packet as Sc + €7

Client sends short E,(0, ¢')
containing a cookie request q’.

Server sends E, (1, r') containing
cookie r': server state (including

k) encrypted from server to itself.

Server can now forget state.

Client sends packet r', Ex(2, q).
Server recovers state, decrypts.

Server sends E;(3, r).

30

1tiality:
- can't guess Kk,

crypt Ex(0, q), Ex(1,r).

ever signs anything,

ncludes authentication.

- can send new queries
t forge q or r.
- can replay request.

Ity:

scards forgery,

s waiting for reply,

ly retransmits request.

29

Cookies

What if E,(0, g) doesn't fit
into same packet as Sc + €7

Client sends short E,(0, ¢)
containing a cookie request q’.

Server sends E, (1, r') containing
cookie r': server state (including

k) encrypted from server to itself.

Server can now forget state.

Client sends packet r', Ex(2, q).
Server recovers state, decrypts.

Server sends E,(3, r).

30

Client ai

Same st
for prote
C — S5,
Isn't spe
many pa

ss K,

), q), Ek(l, r).

anything,

ithentication.

new queries
or r.

Yy request.

oery,
for reply,

nits request.

29

Cookies

What if E,(0, g) doesn't fit
into same packet as Sc + €7

Client sends short E,(0, ¢')
containing a cookie request q’.

Server sends E, (1, r') containing
cookie r': server state (including

k) encrypted from server to itself.

Server can now forget state.

Client sends packet r', Ex(2, q).
Server recovers state, decrypts.

Server sends E;(3, r).

30

Client authenticat

Same strategy wol
for protecting con
C—S5 5—Cde
Isn't special; reuse
many packets eacl

on.

es

29

Cookies

What if E,(0, g) doesn't fit
into same packet as Sc + €7

Client sends short E,(0, ¢)
containing a cookie request q’.

Server sends E, (1, r') containing
cookie r': server state (including

k) encrypted from server to itself.

Server can now forget state.

Client sends packet r', Ex(2, q).
Server recovers state, decrypts.

Server sends E;(3, r).

30

Client authentication

Same strategy works

for protecting connections.
C >S5, 5— C data flow
isn't special; reuse k for
many packets each direction

Cookies

What if E,(0, g) doesn't fit
into same packet as Sc + €7

Client sends short E,(0, ¢')
containing a cookie request q’.

Server sends E, (1, r') containing
cookie r': server state (including
k) encrypted from server to itself.
Server can now forget state.

Client sends packet r', Ex(2, q).
Server recovers state, decrypts.

Server sends E;(3, r).

30

Client authentication

Same strategy works
for protecting connections.

C =-S5 S — C data flow
Isn't special; reuse k for

many packets each direction.

31

Cookies

What if E,(0, g) doesn't fit
into same packet as Sc + €7

Client sends short E,(0, ¢')
containing a cookie request q’.

Server sends E, (1, r') containing
cookie r': server state (including
k) encrypted from server to itself.
Server can now forget state.

Client sends packet r', Ex(2, q).
Server recovers state, decrypts.

Server sends E;(3, r).

30

Client authentication

Same strategy works

for protecting connections.
C —>S5,5— C data flow
Isn't special; reuse k for
many packets each direction.

Another TCP availability problem:

server allocates buffers for each
connection; runs out of memory.

31

Cookies

What if E,(0, g) doesn't fit
into same packet as Sc + €7

Client sends short E,(0, ¢')
containing a cookie request q’.

Server sends E, (1, r') containing
cookie r': server state (including

k) encrypted from server to itself.

Server can now forget state.

Client sends packet r', Ex(2, q).
Server recovers state, decrypts.

Server sends E;(3, r).

30

Client authentication

Same strategy works

for protecting connections.
C —>S5,5— C data flow
Isn't special; reuse k for
many packets each direction.

Another TCP availability problem:

server allocates buffers for each
connection; runs out of memory.

Semi-solution: Allocate buffers
only after client sends r'’.

31

Cookies

What if E,(0, g) doesn't fit
into same packet as Sc + €7

Client sends short E,(0, ¢')
containing a cookie request q’.

Server sends E, (1, r') containing
cookie r': server state (including

k) encrypted from server to itself.

Server can now forget state.

Client sends packet r', Ex(2, q).
Server recovers state, decrypts.

Server sends E;(3, r).

30

Client authentication

Same strategy works

for protecting connections.
C —>S5,5— C data flow
Isn't special; reuse k for
many packets each direction.

Another TCP availability problem:

server allocates buffers for each
connection; runs out of memory.

Semi-solution: Allocate buffers
only after client sends r'’.

Solution 1: Hashcash from client.

31

E. (0, g) doesn't fit
e packet as Sc + €7

nds short E,(0, q')
g a cookie request ¢’

ends Ex (1, r') containing

. server state (including

pted from server to itself.

an now forget state.

nds packet r', E,(2, q).
acovers state, decrypts.

ends Ex (3, r).

30

Client authentication

Same strategy works

for protecting connections.
C —>5,5— C data flow
isn't special; reuse k for
many packets each direction.

Another TCP availability prob
server allocates buffers for eac

N

connection; runs out of memory.

Semi-solution: Allocate buffers

only after client sends r’.

Solution 1: Hashcash from client.

eEm.

31

Solution
to avoid

Imitate |

loesn't fit
s Sc + e?

E«(0,q")
ie request ¢’

') containing
state (including

server to itself.

rget state.

t r', El (2, q).
1te, decrypts.

1),

30

Client authentication

Same strategy works

for protecting connections.
C —>S5,5 — C data flow
Isn't special; reuse k for
many packets each direction.

Another TCP availability problem:

server allocates buffers for each
connection; runs out of memory.

Semi-solution: Allocate buffers
only after client sends r'’.

Solution 1: Hashcash from client.

31

Solution 2: Redo
to avoid state on

Imitate NFS, not |

ts.

30

Client authentication

Same strategy works

for protecting connections.
C —>5,5S— C data flow
isn't special; reuse k for
many packets each direction.

Another TCP availability problem:

server allocates buffers for each
connection; runs out of memory.

Semi-solution: Allocate buffers
only after client sends r’.

Solution 1: Hashcash from client.

31

Solution 2: Redo protocols
to avoid state on server.

Imitate NFS, not HTTP.

31
Client authentication Solution 2: Redo protocols

to avoid state on server.
Same strategy works

for protecting connections. Imitate NFS, not HTTP.
C — 5,5 — C data flow
Isn't special; reuse k for
many packets each direction.

Another TCP availability problem:
server allocates buffers for each

connection; runs out of memory.

Semi-solution: Allocate buffers
only after client sends r'’.

Solution 1: Hashcash from client.

Client authentication

Same strategy works

for protecting connections.
C —>S5,5— C data flow
Isn't special; reuse k for
many packets each direction.

Another TCP availability problem:

server allocates buffers for each
connection; runs out of memory.

Semi-solution: Allocate buffers
only after client sends r'’.

Solution 1: Hashcash from client.

31

Solution 2: Redo protocols
to avoid state on server.

Imitate NFS, not HTTP.

Solution 3 for, e.g., SSH:
Authenticate client.

Server can authenticate client
without signatures, same way
client authenticates server:

e Send to client’s public key

encapsulation of new key k'.

e Hash k' into shared secret.

32

Jthentication

rategy works

cting connections.

S — C data flow
cial: reuse k for
ckets each direction.

TCP availability problem:

locates buffers for each
on; runs out of memory.

ution: Allocate buffers
r client sends r’.

1: Hashcash from client.

31

Solution 2: Redo protocols
to avoid state on server.

Imitate NFS, not HTTP.

Solution 3 for, e.g., SSH:
Authenticate client.

Server can authenticate client
without signatures, same way
client authenticates server:

e Send to client’'s public key

encapsulation of new key k'.

e Hash k' into shared secret.

32

Big keys

McEliec
for long-

Is this si
Do we n
lower-co
such as

Size of ¢
In Alexa

Web pag
public ke
but pub|
can ber

ks
nections.
ta flow

-k for

1 direction.

lability problem:

ffers for each
ut of memory.

ocate buffers
nds r’.

ash from client.

31

Solution 2: Redo protocols
to avoid state on server.

Imitate NFS, not HTTP.

Solution 3 for, e.g., SSH:
Authenticate client.

Server can authenticate client

without signatures, same way

client authenticates server:

e Send to client’s public key
encapsulation of new key k'.

e Hash k' into shared secret.

32

Big keys

McEliece public ke
for long-term conf

Is this size a probl
Do we need to sw

lower-confidence 3
such as NTRU or

Size of average we
in Alexa Top 1000

Web page often n
public keys for sev
but public key for
can be reused for

b
ac

eEm.

ory.

ers

“lient.

31

Solution 2: Redo protocols
to avoid state on server.

Imitate NFS, not HTTP.

Solution 3 for, e.g., SSH:
Authenticate client.

Server can authenticate client
without signatures, same way
client authenticates server:

e Send to client’s public key

encapsulation of new key k'.

e Hash k' into shared secret.

32

Big keys

McEliece public key i1s 1IMB
for long-term confidence toc

Is this size a problem?
Do we need to switch to

lower-confidence approaches
such as NTRU or QC-MDP

Size of average web page
in Alexa Top 1000000: 1.8\

Web page often needs
public keys for several servel
but public key for a server
can be reused for many pag;

Solution 2: Redo protocols
to avoid state on server.

Imitate NFS, not HTTP.

Solution 3 for, e.g., SSH:
Authenticate client.

Server can authenticate client
without signatures, same way
client authenticates server:

e Send to client’s public key

encapsulation of new key k'.

e Hash k' into shared secret.

32

33
Big keys

McEliece public key i1s 1IMB
for long-term confidence today.

Is this size a problem?
Do we need to switch to

lower-confidence approaches
such as NTRU or QC-MDPC?

Size of average web page
in Alexa Top 1000000: 1.8MB.

Web page often needs

public keys for several servers,
but public key for a server
can be reused for many pages.

2: Redo protocols
state on server.

NFS, not HTTP.

3 for, e.g., SSH:
icate client.

an authenticate client
signatures, same way
thenticates server:

o client’s public key
sulation of new key k'.
k" into shared secret.

32

Big keys

McEliece public key i1s 1IMB

for long-term confidence today.

Is this size a problem?
Do we need to switch to

lower-confidence approaches
such as NTRU or QC-MDPC?

Size of average web page

in Alexa Top 1000000: 1.8MB.

Web page often needs

public keys for several servers,
but public key for a server
can be reused for many pages.

33

Most 1m
ON reuse
switchin
and pro!

Rational
subsequ
doesn't

e.g. Mic
switches

Safer: n

Easier tc
new key

protocols

>Erver.

HTTP.

., SSH:
t.

ticate client
, Same way
S Server:
public key

‘new key k’.

red secret.

32

Big keys

McEliece public key i1s 1IMB

for long-term confidence today.

Is this size a problem?
Do we need to switch to

lower-confidence approaches
such as NTRU or QC-MDPC?

Size of average web page

in Alexa Top 1000000: 1.8MB.

Web page often needs

public keys for several servers,
but public key for a server
can be reused for many pages.

33

Most important it
on reuse of public
switching to new |
and promptly era

Rationale: “forwal
subsequent theft ¢
doesn't allow decr

e.g. Microsoft SCt
switches keys ever

Safer: new key ev

Easier to impleme
new key every con

32

Big keys

McEliece public key i1s 1IMB

for long-term confidence today.

Is this size a problem?
Do we need to switch to

lower-confidence approaches
such as NTRU or QC-MDPC?

Size of average web page

in Alexa Top 1000000: 1.8MB.

Web page often needs

public keys for several servers,
but public key for a server
can be reused for many pages.

33

Most important limitation
on reuse of public keys:
switching to new keys

and promptly erasing old |

Rationale: “forward secrecy’
subsequent theft of compute
doesn't allow decryption.

e.g. Microsoft SChannel
switches keys every two hou

Safer: new key every minute

Easier to implement:

new key every connection.

Big keys

McEliece public key i1s 1IMB

for long-term confidence today.

Is this size a problem?
Do we need to switch to

lower-confidence approaches
such as NTRU or QC-MDPC?

Size of average web page

in Alexa Top 1000000: 1.8MB.

Web page often needs

public keys for several servers,
but public key for a server
can be reused for many pages.

33

34
Most important limitation

on reuse of public keys:
switching to new keys
and promptly erasing old keys.

Rationale: “forward secrecy’ —
subsequent theft of computer
doesn't allow decryption.

e.g. Microsoft SChannel
switches keys every two hours.

Safer: new key every minute.

Easier to implement:
new key every connection.

> public key 1Is 1IMB

term confidence today.

ze a problem?
eed to switch to

nfidence approaches
NTRU or QC-MDPC?

wverage web page

Top 1000000: 1.8MB.

re often needs

ys for several servers,
ic key for a server
eused for many pages.

33

Most important limitation
on reuse of public keys:
switching to new keys

and promptly erasing old keys.

Rationale: “forward secrecy’ —
subsequent theft of computer
doesn't allow decryption.

e.g. Microsoft SChannel
switches keys every two hours.

Safer: new key every minute.

Easier to implement:
new key every connection.

34

What is
a new ke

If server
key gen,
client en
server de

y 1s 1IMB

idence today.

em?’
itch to

pproaches
QC-MDPC?

b page

000: 1.8MB.

ceds
eral servers,
a server

many pages.

33

Most important limitation
on reuse of public keys:
switching to new keys

and promptly erasing old keys.

Rationale: “forward secrecy’ —
subsequent theft of computer
doesn't allow decryption.

e.g. Microsoft SChannel
switches keys every two hours.

Safer: new key every minute.

Easier to implement:

new key every connection.

34

What is the perfor
a new key every mr

If server makes ne
key gen, <1 per n
client encrypts to
server decrypts.

lay.

33

Most important limitation
on reuse of public keys:
switching to new keys

and promptly erasing old keys.

Rationale: “forward secrecy’ —
subsequent theft of computer
doesn't allow decryption.

e.g. Microsoft SChannel
switches keys every two hours.

Safer: new key every minute.

Easier to implement:

new key every connection.

34

What is the performance of
a new key every minute?

If server makes new key:
key gen, <1 per minute;
client encrypts to new key;
server decrypts.

Most important limitation
on reuse of public keys:
switching to new keys

and promptly erasing old keys.

Rationale: “forward secrecy’ —
subsequent theft of computer
doesn't allow decryption.

e.g. Microsoft SChannel
switches keys every two hours.

Safer: new key every minute.

Easier to implement:

new key every connection.

34

What is the performance of
a new key every minute?

If server makes new key:
key gen, <1 per minute;
client encrypts to new key;
server decrypts.

35

Most important limitation
on reuse of public keys:
switching to new keys

and promptly erasing old keys.

Rationale: “forward secrecy’ —
subsequent theft of computer
doesn't allow decryption.

e.g. Microsoft SChannel
switches keys every two hours.

Safer: new key every minute.

Easier to implement:

new key every connection.

34

35
What is the performance of

a new key every minute?

If server makes new key:
key gen, <1 per minute;
client encrypts to new key;
server decrypts.

If client makes new key:
client has key-gen cost;
server has encryption cost;
client has decryption cost.

Either way:
one key transmission for each
active client-server pair.

portant limitation
of public keys:
g to new keys

mptly erasing old keys.

e: “forward secrecy’ —
2nt theft of computer
allow decryption.

rosoft SChannel
keys every two hours.

ew key every minute.

) Implement:
every connection.

34

What is the performance of
a new key every minute?

If server makes new key:
key gen, <1 per minute;
client encrypts to new key;
server decrypts.

If client makes new key:
client has key-gen cost;
server has encryption cost;
client has decryption cost.

Either way:
one key transmission for each
active client-server pair.

35

How doce
encrypt
without

mitation
keys:
€ys

sing old keys.

‘d secrecy’ —
f computer
yption.

1annel

y two hours.
ery minute.

Nt:
nection.

34

What is the performance of
a new key every minute?

If server makes new key:
key gen, <1 per minute;
client encrypts to new key;
server decrypts.

If client makes new key:
client has key-gen cost;
server has encryption cost;
client has decryption cost.

Either way:
one key transmission for each
active client-server pair.

35

How does a statel
encrypt to a new ¢
without storing th

\v

34

What is the performance of
a new key every minute?

If server makes new key:
key gen, <1 per minute;
client encrypts to new key;
server decrypts.

If client makes new key:
client has key-gen cost;
server has encryption cost;
client has decryption cost.

Either way:
one key transmission for each
active client-server pair.

35

How does a stateless server
encrypt to a new client key
without storing the key?

What is the performance of
a new key every minute?

If server makes new key:
key gen, <1 per minute;
client encrypts to new key;
server decrypts.

If client makes new key:
client has key-gen cost;
server has encryption cost;
client has decryption cost.

Either way:
one key transmission for each
active client-server pair.

35

How does a stateless server
encrypt to a new client key
without storing the key?

36

What is the performance of
a new key every minute?

If server makes new key:
key gen, <1 per minute;
client encrypts to new key;
server decrypts.

If client makes new key:
client has key-gen cost;
server has encryption cost;
client has decryption cost.

Either way:
one key transmission for each
active client-server pair.

35

36
How does a stateless server

encrypt to a new client key
without storing the key?

Slice McEliece public key
so that each slice of encryption

produces separate small output.

Client sends slices (in parallel),
recelves outputs as cookies,
sends cookies (in parallel).
Server combines cookies.
Continue up through tree.

Server generates randomness
as secret function of key hash.
Statelessly verifies key hash.

