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Protocol generates

new AES-128 key k.

Protocol encrypts message block

m1 as AESk (1)⊕m1,

m2 as AESk (2)⊕m2,

m3 as AESk (3)⊕m3,

etc. Also authenticates.

First block m1 is predictable:

GET / HTTP/1.1\r\n

Attacker learns AESk (1).

Can attacker deduce AESk (20)?

We constantly tell people: “No!

AES is secure! This is all safe!”
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for, say, 240 user keys k .

Attacker finds some user key

using feasible 288 computation.

Attacker decrypts, maybe forges,

data for that user.

Is this 2128 “security”?

See 2002 Biham “key collisions”.
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Attacker learns AESk (1)

for, say, 240 user keys k .

Attacker finds some user key

using feasible 288 computation.

Attacker decrypts, maybe forges,

data for that user.

Is this 2128 “security”?

See 2002 Biham “key collisions”.

Fragile fix: Complicate protocols

by trying to randomize everything.

Much simpler fix: 256-bit keys.

(Side discussion: Is 192 enough?)
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Another reason to be concerned

about 128-bit cipher keys:

quantum computing.

Grover finds k from AESk (1)

using 264 iterations

on a small quantum processor.

Parallelize: N2 processors,

each running 264=N iterations.

1999 Zalka claims this is optimal.

Multiple targets should allow

much better parallelization.

Related algos: 2009 Bernstein;

2004 Grover–Radhakrishnan.



Should MACs have nonces?

To authenticate (m1; m2; m3; m4):

Compute function with small

differential probabilities.

e.g., r4m1 + r3m2 + r2m3 + rm4,

where r is secret.

Generate a one-time key

sn = AESk (n) from master key k .

Add to obtain MAC:

r4m1 + r3m2 + r2m3 + rm4 + sn.

Widely deployed for speed:

consider, e.g., GCM.
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2006 Joux “forbidden attack”:

ntwice in GCM ⇒ repeated sn
⇒ attacker figures out r ,

can easily forge messages.

Joux’s suggested response:

AESk (r4m1 + r3m2 + r2m3 + rm4)

“seems a safe option”. (Also

suggested and analyzed in, e.g.,

2000 Bernstein; earlier refs?)

Is this 2128 “security”?

Forgery chance ≤ ‹ + › where

› is AES PRF insecurity and

‹ ≈ q2L=2128

for message lengths ≤L.
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› is at least q(q − 1)=2129.

Solution: better PRP/PRF switch

(2005 Bernstein), ok for q ≈ 264.

‹ is still unacceptably large.

(Show that this is tight? See,

e.g., 2005 Ferguson GCM attack.)

Fragile solution: “Switch keys!”

Much simpler: 256-bit blocks.

2014 Bernstein–Chou “Auth256”:

29 bit ops/message bit for

differential probability <2−255.

Or try EHC from 2013 Nandi?



Improving Tor

Tor wants “fast, proven, secure,

easy-to-implement, non-patent-

encumbered, side-channel-free”

509-byte blooock cipher.

(But current cipher is a disaster,

so can consider compromises.)

Also: secure chaining

from each blooock to the next.

Tor is considering deployment

of AEZ or HHFHFH in 2016.

See, e.g., Mathewson talks

from RWC 2013 and RWC 2016.
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Previous slide: HHFHFH

(Bernstein–Nandi–Sarkar).

H is purely combinatorial;

F is a stream cipher.

Ingredients: 4-round Feistel;

H at top (1996 Lucks),

bottom (1997 Naor–Reingold);

H2; H3 allow one-block nonces;

H1; H4 are stretched by 0-pad;

XCB/HCTR-style tweak, faster

than 2002 Liskov–Rivest–Wagner.

Allow one H1; H2; H3; H4 key;

unify H1; H2 hypotheses;

unify H3; H4 hypotheses.



One possibility for F :

permutation in EM in CTR.

Full-width permutation output

beats squeezing for long output;

and CTR is highly parallel.

Also choose highly parallel H.

We’re still optimizing choices.

Use single-block tweak w .

“chopTC”: chain by choosing

w as truncation of P ⊕ C.

HHFHFH reads each bit in array

twice, writes each bit once.

Something I’m working on now:

more locality inside permutation.
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Security loss of mode

compared to security of F :

basically q2=2128,

assuming 128-bit blocks

and typical choice of H.

Is this 2128 “security”?

Fragile fix: “beyond-birthday-

bound security.” Complicates

implementation, security analysis.

Simpler fix: “bigger-birthday-

bound security.” Use 256-bit

blocks, security q2=2256.

Is 256-bit n safe in ChaCha?
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Heavyweight ciphers

Interesting cipher-design space:

≥256 bits for all pipes.

≥256-bit keys, ≥256-bit outputs,

≥256-bit subkeys, etc.

Occasional designs: Rijndael,

OMD (SHA-2), Keccak, BLAKE2,

NORX, Simpira, : : : . This needs

far more attention, optimization.

Hash designs are usually overkill.

Is 256 fundamentally much slower,

or much less energy-efficient,

than 128? My guess: No!



Another optimization target:

PRF inside EdDSA signatures.

EdDSA generates per-signature

random number mod 256-bit ‘ as

truncated hash: H(s;m) mod ‘.

H is SHA-512; s is subkey.

2015 Bellare–Bernstein–Tessaro:

truncated prefixed MD hash is a

high-security multi-user MAC.

Even with the constraint of

reusing preimage-resistant hash,

surely can build better design

in both software and hardware.


