Some challenges in heavyweight cipher design

Daniel J. Bernstein

University of Illinois at Chicago & Technische Universiteit Eindhoven

Protocol generates new AES-128 key k.

Protocol encrypts message block m_1 as $\text{AES}_k(1) \oplus m_1$, m_2 as $\text{AES}_k(2) \oplus m_2$, m_3 as $\text{AES}_k(3) \oplus m_3$, etc. Also authenticates.

First block m_1 is predictable: GET / HTTP/1.1\r\n Attacker learns AES_k(1).

Can attacker deduce $AES_k(20)$? We constantly tell people: "No! AES is secure! This is all safe!" allenges in ight cipher design

. Bernstein

ty of Illinois at Chicago & che Universiteit Eindhoven

Protocol generates new AES-128 key k.

Protocol encrypts message block m_1 as $AES_k(1) \oplus m_1$, m_2 as $AES_k(2) \oplus m_2$, m_3 as $AES_k(3) \oplus m_3$, etc. Also authenticates.

First block m_1 is predictable:

GET / HTTP/1.1\r\n
Attacker learns $AES_k(1)$.

Can attacker deduce $AES_k(20)$? We constantly tell people: "No! AES is secure! This is all safe!"

Attacker for, say,

Attacker using feather Attacker data for

Is this 2 See 2002 r design

is at Chicago & siteit Eindhoven

Protocol generates new AES-128 key k.

Protocol encrypts message block m_1 as $AES_k(1) \oplus m_1$, m_2 as $AES_k(2) \oplus m_2$, m_3 as $AES_k(3) \oplus m_3$, etc. Also authenticates.

First block m_1 is predictable:

GET / HTTP/1.1\r\n
Attacker learns $AES_k(1)$.

Can attacker deduce $AES_k(20)$? We constantly tell people: "No! AES is secure! This is all safe!"

Attacker learns AE for, say, 2⁴⁰ user k

Attacker finds son using feasible 2⁸⁸
Attacker decrypts, data for that user.

Is this 2^{128} "secur See 2002 Biham "

ago &

hoven

Protocol encrypts message block m_1 as $\text{AES}_k(1) \oplus m_1$, m_2 as $\text{AES}_k(2) \oplus m_2$, m_3 as $\text{AES}_k(3) \oplus m_3$, etc. Also authenticates.

First block m_1 is predictable: GET / HTTP/1.1\r\n

Attacker learns $AES_k(1)$.

Can attacker deduce $AES_k(20)$? We constantly tell people: "No! AES is secure! This is all safe!"

Attacker learns $AES_k(1)$ for, say, 2^{40} user keys k.

Attacker finds *some* user key using feasible 2⁸⁸ computation.

Attacker decrypts, maybe for data for that user.

Is this 2¹²⁸ "security"?
See 2002 Biham "key collisie

Protocol encrypts message block m_1 as $\text{AES}_k(1) \oplus m_1$, m_2 as $\text{AES}_k(2) \oplus m_2$, m_3 as $\text{AES}_k(3) \oplus m_3$, etc. Also authenticates.

First block m_1 is predictable: GET / HTTP/1.1\r\n Attacker learns AES_k(1).

Can attacker deduce $AES_k(20)$? We constantly tell people: "No! AES is secure! This is all safe!"

Attacker learns $AES_k(1)$ for, say, 2^{40} user keys k.

Attacker finds *some* user key using feasible 2⁸⁸ computation.
Attacker decrypts, maybe forges, data for that user.

Is this 2^{128} "security"? See 2002 Biham "key collisions".

Protocol encrypts message block m_1 as $\text{AES}_k(1) \oplus m_1$, m_2 as $\text{AES}_k(2) \oplus m_2$, m_3 as $\text{AES}_k(3) \oplus m_3$, etc. Also authenticates.

First block m_1 is predictable: GET / HTTP/1.1\r\n Attacker learns $AES_k(1)$.

Can attacker deduce $AES_k(20)$? We constantly tell people: "No! AES is secure! This is all safe!"

Attacker learns $AES_k(1)$ for, say, 2^{40} user keys k.

Attacker finds *some* user key using feasible 2⁸⁸ computation.
Attacker decrypts, maybe forges, data for that user.

Is this 2^{128} "security"? See 2002 Biham "key collisions".

Fragile fix: Complicate protocols by trying to randomize everything.

Protocol encrypts message block m_1 as $\text{AES}_k(1) \oplus m_1$, m_2 as $\text{AES}_k(2) \oplus m_2$, m_3 as $\text{AES}_k(3) \oplus m_3$, etc. Also authenticates.

First block m_1 is predictable: GET / HTTP/1.1\r\n Attacker learns AES_k(1).

Can attacker deduce $AES_k(20)$? We constantly tell people: "No! AES is secure! This is all safe!"

Attacker learns $AES_k(1)$ for, say, 2^{40} user keys k.

Attacker finds *some* user key using feasible 2⁸⁸ computation.
Attacker decrypts, maybe forges, data for that user.

Is this 2^{128} "security"? See 2002 Biham "key collisions".

Fragile fix: Complicate protocols by trying to randomize everything.

Much simpler fix: 256-bit keys. (Side discussion: Is 192 enough?)

generates

5-128 key k.

encrypts message block

 $\mathsf{ES}_k(1) \oplus m_1$,

 $\mathsf{ES}_k(2) \oplus m_2$,

 $\mathsf{ES}_k(3) \oplus m_3$,

o authenticates.

ck m_1 is predictable:

 $TTP/1.1\r\n$

learns $AES_k(1)$.

acker deduce $AES_k(20)$?

stantly tell people: "No!

secure! This is all safe!"

Attacker learns $AES_k(1)$ for, say, 2^{40} user keys k.

Attacker finds *some* user key using feasible 2⁸⁸ computation.

Attacker decrypts, maybe forges, data for that user.

Is this 2^{128} "security"? See 2002 Biham "key collisions".

Fragile fix: Complicate protocols by trying to randomize everything.

Much simpler fix: 256-bit keys. (Side discussion: Is 192 enough?)

Another about 12 quantum

Grover for using 26

Grover for using 2^6 on a small

k.

message block m_1 , m_2 , m_3 , cates.

oredictable:

 $\ \mathsf{S}_k(1).$

ce $AES_k(20)$?
people: "No!
is is all safe!"

Attacker learns $AES_k(1)$ for, say, 2^{40} user keys k.

Attacker finds *some* user key using feasible 2⁸⁸ computation. Attacker decrypts, maybe forges, data for that user.

Is this 2^{128} "security"? See 2002 Biham "key collisions".

Fragile fix: Complicate protocols by trying to randomize everything.

Much simpler fix: 256-bit keys. (Side discussion: Is 192 enough?)

Another reason to about 128-bit ciph quantum computing

Grover finds k from using 2^{64} iteration on a small quantu

Attacker finds *some* user key using feasible 2⁸⁸ computation.
Attacker decrypts, maybe forges, data for that user.

Is this 2^{128} "security"? See 2002 Biham "key collisions".

Fragile fix: Complicate protocols by trying to randomize everything.

Much simpler fix: 256-bit keys. (Side discussion: Is 192 enough?)

Another reason to be concerabout 128-bit cipher keys: quantum computing.

Grover finds k from $AES_k(1 \text{ using } 2^{64} \text{ iterations}$ on a small quantum process

olock

<u>.</u>

20)? 'No!

fe!"

Attacker finds *some* user key using feasible 2⁸⁸ computation.
Attacker decrypts, maybe forges, data for that user.

Is this 2^{128} "security"? See 2002 Biham "key collisions".

Fragile fix: Complicate protocols by trying to randomize everything.

Much simpler fix: 256-bit keys.

(Side discussion: Is 192 enough?)

Another reason to be concerned about 128-bit cipher keys: quantum computing.

Grover finds k from $AES_k(1)$ using 2^{64} iterations on a small quantum processor.

Attacker finds *some* user key using feasible 2⁸⁸ computation.
Attacker decrypts, maybe forges, data for that user.

Is this 2^{128} "security"? See 2002 Biham "key collisions".

Fragile fix: Complicate protocols by trying to randomize everything.

Much simpler fix: 256-bit keys.

(Side discussion: Is 192 enough?)

Another reason to be concerned about 128-bit cipher keys: quantum computing.

Grover finds k from $AES_k(1)$ using 2^{64} iterations on a small quantum processor.

Parallelize: N^2 processors, each running $2^{64}/N$ iterations. 1999 Zalka claims this is optimal.

Attacker finds *some* user key using feasible 2⁸⁸ computation. Attacker decrypts, maybe forges, data for that user.

Is this 2^{128} "security"? See 2002 Biham "key collisions".

Fragile fix: Complicate protocols by trying to randomize everything.

Much simpler fix: 256-bit keys. (Side discussion: Is 192 enough?)

Another reason to be concerned about 128-bit cipher keys: quantum computing.

Grover finds k from $AES_k(1)$ using 2^{64} iterations on a small quantum processor.

Parallelize: N^2 processors, each running $2^{64}/N$ iterations. 1999 Zalka claims this is optimal.

Multiple targets should allow much better parallelization.
Related algos: 2009 Bernstein; 2004 Grover–Radhakrishnan.

- learns $AES_k(1)$ 2^{40} user keys k.
- finds *some* user key asible 2⁸⁸ computation.
- decrypts, maybe forges, that user.
- ¹²⁸ "security"?
- 2 Biham "key collisions".
- ix: Complicate protocols to randomize everything.
- mpler fix: 256-bit keys.
- scussion: Is 192 enough?)

Another reason to be concerned about 128-bit cipher keys: quantum computing.

Grover finds k from $AES_k(1)$ using 2^{64} iterations on a small quantum processor.

Parallelize: N^2 processors, each running $2^{64}/N$ iterations. 1999 Zalka claims this is optimal.

Multiple targets should allow much better parallelization.
Related algos: 2009 Bernstein; 2004 Grover–Radhakrishnan.

Should I

To auth

different e.g., $r^4 n$

where *r*

Comput

Generate $s_n = AE$

Add to $r^4m_1 +$

Widely of consider

 $\mathsf{ES}_k(1)$ $\mathsf{keys}\ k$

ne user key computation. maybe forges,

ity"?

key collisions".

icate protocols mize everything.

256-bit keys. s 192 enough?)

Another reason to be concerned about 128-bit cipher keys: quantum computing.

Grover finds k from $AES_k(1)$ using 2^{64} iterations on a small quantum processor.

Parallelize: N^2 processors, each running $2^{64}/N$ iterations. 1999 Zalka claims this is optimal.

Multiple targets should allow much better parallelization.
Related algos: 2009 Bernstein; 2004 Grover–Radhakrishnan.

Should MACs hav

To authenticate (r

Compute function differential probable. e.g., $r^4m_1 + r^3m_2$ where r is secret.

Generate a **one-ti** $s_n = AES_k(n) \text{ from } s_n = AES_k(n) \text{ from } s_n = AES_k(n) \text{ from } s_n = a_n + a_n +$

Add to obtain MA $r^4m_1 + r^3m_2 + r^2$

Widely deployed for consider, e.g., GCI

y on. rges,

ons".

ocols thing.

eys.

ugh?)

Another reason to be concerned about 128-bit cipher keys: quantum computing.

Grover finds k from $AES_k(1)$ using 2^{64} iterations on a small quantum processor.

Parallelize: N^2 processors, each running $2^{64}/N$ iterations. 1999 Zalka claims this is optimal.

Multiple targets should allow much better parallelization.
Related algos: 2009 Bernstein; 2004 Grover–Radhakrishnan.

Should MACs have nonces?

To authenticate (m_1, m_2, m_3)

Compute function with sma differential probabilities.

e.g., $r^4m_1 + r^3m_2 + r^2m_3 + r^4m_1 + r^3m_2 + r^2m_3 + r^4m_1 + r^3m_2 + r^2m_3 + r^2m$

Generate a **one-time** key $s_n = AES_k(n)$ from master

Add to obtain MAC:

$$r^4m_1 + r^3m_2 + r^2m_3 + rm_4$$

Widely deployed for speed: consider, e.g., GCM.

Another reason to be concerned about 128-bit cipher keys: quantum computing.

Grover finds k from $AES_k(1)$ using 2^{64} iterations on a small quantum processor.

Parallelize: N^2 processors, each running $2^{64}/N$ iterations. 1999 Zalka claims this is optimal.

Multiple targets should allow much better parallelization.
Related algos: 2009 Bernstein; 2004 Grover–Radhakrishnan.

Should MACs have nonces?

To authenticate (m_1, m_2, m_3, m_4) :

Compute function with small differential probabilities.

e.g., $r^4m_1 + r^3m_2 + r^2m_3 + rm_4$, where r is secret.

Generate a **one-time** key $s_n = AES_k(n)$ from master key k.

Add to obtain MAC:

$$r^4m_1 + r^3m_2 + r^2m_3 + rm_4 + s_n$$
.

Widely deployed for speed: consider, e.g., GCM.

reason to be concerned 28-bit cipher keys:

n computing.

inds k from $AES_k(1)$ 4 iterations
all quantum processor.

ze: N^2 processors, uning $2^{64}/N$ iterations. Ika claims this is optimal.

targets should allow etter parallelization. algos: 2009 Bernstein; over–Radhakrishnan.

Should MACs have nonces?

To authenticate (m_1, m_2, m_3, m_4) :

Compute function with small differential probabilities.

e.g., $r^4m_1 + r^3m_2 + r^2m_3 + rm_4$, where r is secret.

Generate a **one-time** key $s_n = AES_k(n)$ from master key k.

Add to obtain MAC: $r^4m_1 + r^3m_2 + r^2m_3 + rm_4 + s_n$.

Widely deployed for speed: consider, e.g., GCM.

2006 Jo
ntwice in
⇒ attac
can easi

be concerned er keys: ng.

m $AES_k(1)$

S

m processor.

N iterations.
this is optimal.

nould allow lelization.

)9 Bernstein; lakrishnan.

Should MACs have nonces?

To authenticate (m_1, m_2, m_3, m_4) :

Compute function with small differential probabilities.

e.g., $r^4m_1 + r^3m_2 + r^2m_3 + rm_4$, where r is secret.

Generate a **one-time** key $s_n = AES_k(n)$ from master key k.

Add to obtain MAC:

$$r^4m_1 + r^3m_2 + r^2m_3 + rm_4 + s_n$$
.

Widely deployed for speed: consider, e.g., GCM.

2006 Joux "forbid ntwice in GCM \Rightarrow attacker figures can easily forge m

ned

)

or.

ns.

timal.

V

ein;

Should MACs have nonces?

To authenticate (m_1, m_2, m_3, m_4) :

Compute function with small differential probabilities.

e.g., $r^4m_1 + r^3m_2 + r^2m_3 + rm_4$, where r is secret.

Generate a **one-time** key $s_n = AES_k(n)$ from master key k.

Add to obtain MAC:

$$r^4m_1 + r^3m_2 + r^2m_3 + rm_4 + s_n$$
.

Widely deployed for speed: consider, e.g., GCM.

2006 Joux "forbidden attack ntwice in GCM \Rightarrow repeated \Rightarrow attacker figures out r, can easily forge messages.

To authenticate (m_1, m_2, m_3, m_4) :

Compute function with small differential probabilities.

e.g., $r^4m_1 + r^3m_2 + r^2m_3 + rm_4$, where r is secret.

Generate a **one-time** key $s_n = AES_k(n)$ from master key k.

Add to obtain MAC:

$$r^4m_1 + r^3m_2 + r^2m_3 + rm_4 + s_n$$
.

Widely deployed for speed: consider, e.g., GCM.

2006 Joux "forbidden attack": ntwice in GCM \Rightarrow repeated s_n \Rightarrow attacker figures out r, can easily forge messages.

To authenticate (m_1, m_2, m_3, m_4) :

Compute function with small differential probabilities.

e.g.,
$$r^4m_1 + r^3m_2 + r^2m_3 + rm_4$$
, where r is secret.

Generate a **one-time** key $s_n = AES_k(n)$ from master key k.

Add to obtain MAC:

$$r^4m_1 + r^3m_2 + r^2m_3 + rm_4 + s_n$$
.

Widely deployed for speed: consider, e.g., GCM.

2006 Joux "forbidden attack": ntwice in GCM \Rightarrow repeated s_n \Rightarrow attacker figures out r, can easily forge messages.

Joux's suggested response: $AES_k(r^4m_1 + r^3m_2 + r^2m_3 + rm_4)$ "seems a safe option". (Also suggested and analyzed in, e.g., 2000 Bernstein; earlier refs?)

To authenticate (m_1, m_2, m_3, m_4) :

Compute function with small differential probabilities.

e.g.,
$$r^4m_1 + r^3m_2 + r^2m_3 + rm_4$$
, where r is secret.

Generate a **one-time** key $s_n = AES_k(n)$ from master key k.

Add to obtain MAC:

$$r^4m_1 + r^3m_2 + r^2m_3 + rm_4 + s_n$$
.

Widely deployed for speed: consider, e.g., GCM.

2006 Joux "forbidden attack": ntwice in GCM \Rightarrow repeated s_n \Rightarrow attacker figures out r, can easily forge messages.

Joux's suggested response: $AES_k(r^4m_1 + r^3m_2 + r^2m_3 + rm_4)$ "seems a safe option". (Also suggested and analyzed in, e.g., 2000 Bernstein; earlier refs?)

Is this 2¹²⁸ "security"?

To authenticate (m_1, m_2, m_3, m_4) :

Compute function with small differential probabilities.

e.g.,
$$r^4m_1 + r^3m_2 + r^2m_3 + rm_4$$
, where r is secret.

Generate a **one-time** key $s_n = AES_k(n)$ from master key k.

Add to obtain MAC:

$$r^4m_1 + r^3m_2 + r^2m_3 + rm_4 + s_n$$
.

Widely deployed for speed: consider, e.g., GCM.

2006 Joux "forbidden attack": ntwice in GCM \Rightarrow repeated s_n \Rightarrow attacker figures out r, can easily forge messages.

Joux's suggested response: $AES_k(r^4m_1 + r^3m_2 + r^2m_3 + rm_4)$ "seems a safe option". (Also suggested and analyzed in, e.g., 2000 Bernstein; earlier refs?)

Is this 2^{128} "security"? Forgery chance $\leq \delta + \epsilon$ where ϵ is AES PRF insecurity and $\delta \approx q^2 L/2^{128}$ for message lengths $\leq L$.

MACs have nonces?

enticate (m_1, m_2, m_3, m_4) :

e function with small ial probabilities.

$$m_1 + r^3 m_2 + r^2 m_3 + r m_4$$
, is secret.

e a **one-time** key

 $S_k(n)$ from master key k.

obtain MAC:

$$r^3m_2 + r^2m_3 + rm_4 + s_n$$
.

deployed for speed:

2006 Joux "forbidden attack": ntwice in GCM \Rightarrow repeated s_n \Rightarrow attacker figures out r, can easily forge messages.

Joux's suggested response: $AES_k(r^4m_1 + r^3m_2 + r^2m_3 + rm_4)$ "seems a safe option". (Also suggested and analyzed in, e.g., 2000 Bernstein; earlier refs?)

Is this 2^{128} "security"? Forgery chance $\leq \delta + \epsilon$ where ϵ is AES PRF insecurity and $\delta \approx q^2 L/2^{128}$ for message lengths $\leq L$.

 ϵ is at least solution (2005 B

e nonces?

 m_1, m_2, m_3, m_4):

with small ilities.

$$+r^2m_3+rm_4$$
,

me key n master key *k*.

C:

$$m_3 + rm_4 + s_n$$
.

or speed:

M.

2006 Joux "forbidden attack": ntwice in GCM \Rightarrow repeated s_n \Rightarrow attacker figures out r, can easily forge messages.

Joux's suggested response: $AES_k(r^4m_1 + r^3m_2 + r^2m_3 + rm_4)$ "seems a safe option". (Also suggested and analyzed in, e.g., 2000 Bernstein; earlier refs?)

Is this 2^{128} "security"? Forgery chance $\leq \delta + \epsilon$ where ϵ is AES PRF insecurity and $\delta \approx q^2 L/2^{128}$ for message lengths $\leq L$.

 ϵ is at least q(q - 1)Solution: better P (2005 Bernstein), (m_4) :

- *rm*4,

key k.

 $+s_n$.

2006 Joux "forbidden attack": ntwice in GCM \Rightarrow repeated s_n \Rightarrow attacker figures out r, can easily forge messages.

Joux's suggested response: $AES_k(r^4m_1 + r^3m_2 + r^2m_3 + rm_4)$ "seems a safe option". (Also suggested and analyzed in, e.g., 2000 Bernstein; earlier refs?)

Is this 2^{128} "security"? Forgery chance $\leq \delta + \epsilon$ where ϵ is AES PRF insecurity and $\delta \approx q^2 L/2^{128}$ for message lengths $\leq L$.

 ϵ is at least $q(q-1)/2^{129}$. Solution: better PRP/PRF solution (2005 Bernstein), ok for $q \approx$

Joux's suggested response: $AES_k(r^4m_1 + r^3m_2 + r^2m_3 + rm_4)$ "seems a safe option". (Also suggested and analyzed in, e.g., 2000 Bernstein; earlier refs?)

Is this 2^{128} "security"? Forgery chance $\leq \delta + \epsilon$ where ϵ is AES PRF insecurity and $\delta \approx q^2 L/2^{128}$ for message lengths $\leq L$.

 ϵ is at least $q(q-1)/2^{129}$. Solution: better PRP/PRF switch (2005 Bernstein), ok for $q\approx 2^{64}$.

Joux's suggested response: $AES_k(r^4m_1 + r^3m_2 + r^2m_3 + rm_4)$ "seems a safe option". (Also suggested and analyzed in, e.g., 2000 Bernstein; earlier refs?)

Is this 2^{128} "security"? Forgery chance $\leq \delta + \epsilon$ where ϵ is AES PRF insecurity and $\delta \approx q^2 L/2^{128}$ for message lengths $\leq L$.

 ϵ is at least $q(q-1)/2^{129}$. Solution: better PRP/PRF switch (2005 Bernstein), ok for $q\approx 2^{64}$.

 δ is still unacceptably large. (Show that this is tight? See, e.g., 2005 Ferguson GCM attack.)

Joux's suggested response: $AES_k(r^4m_1 + r^3m_2 + r^2m_3 + rm_4)$ "seems a safe option". (Also suggested and analyzed in, e.g., 2000 Bernstein; earlier refs?)

Is this 2^{128} "security"? Forgery chance $\leq \delta + \epsilon$ where ϵ is AES PRF insecurity and $\delta \approx q^2 L/2^{128}$ for message lengths $\leq L$.

 ϵ is at least $q(q-1)/2^{129}$. Solution: better PRP/PRF switch (2005 Bernstein), ok for $q\approx 2^{64}$.

 δ is still unacceptably large. (Show that this is tight? See, e.g., 2005 Ferguson GCM attack.)

Fragile solution: "Switch keys!"

Joux's suggested response: $AES_k(r^4m_1 + r^3m_2 + r^2m_3 + rm_4)$ "seems a safe option". (Also suggested and analyzed in, e.g., 2000 Bernstein; earlier refs?)

Is this 2^{128} "security"? Forgery chance $\leq \delta + \epsilon$ where ϵ is AES PRF insecurity and $\delta \approx q^2 L/2^{128}$ for message lengths $\leq L$.

 ϵ is at least $q(q-1)/2^{129}$. Solution: better PRP/PRF switch (2005 Bernstein), ok for $q\approx 2^{64}$.

 δ is still unacceptably large. (Show that this is tight? See, e.g., 2005 Ferguson GCM attack.)

Fragile solution: "Switch keys!"

Much simpler: 256-bit blocks.

2014 Bernstein-Chou "Auth256": 29 bit ops/message bit for differential probability <2⁻²⁵⁵. Or try EHC from 2013 Nandi?

"" "forbidden attack":

"" GCM \Rightarrow repeated s_n ker figures out r,

ly forge messages.

"" uggested response:

 $m_1 + r^3 m_2 + r^2 m_3 + r m_4$ a safe option". (Also and analyzed in, e.g., rnstein; earlier refs?)

128 "security"?

chance $\leq \delta + \epsilon$ where

PRF insecurity and $/2^{128}$ age lengths $\leq L$.

 ϵ is at least $q(q-1)/2^{129}$. Solution: better PRP/PRF switch (2005 Bernstein), ok for $q\approx 2^{64}$.

 δ is still unacceptably large. (Show that this is tight? See, e.g., 2005 Ferguson GCM attack.)

Fragile solution: "Switch keys!"

Much simpler: 256-bit blocks.

2014 Bernstein-Chou "Auth256": 29 bit ops/message bit for differential probability <2⁻²⁵⁵. Or try EHC from 2013 Nandi?

<u>Improvir</u>

Tor wan easy-to-in encumber 509-byte (But cur so can c

Also: se from each

Tor is co

See, e.g. from RV

den attack": repeated s_n sout r, essages.

response:

 $(2+r^2m_3+rm_4)$

on". (Also

lyzed in, e.g.,

arlier refs?)

ity"?

 $\delta + \epsilon$ where

curity and

 $1s \leq L$.

 ϵ is at least $q(q-1)/2^{129}$.

Solution: better PRP/PRF switch (2005 Bernstein), ok for $q \approx 2^{64}$.

 δ is still unacceptably large. (Show that this is tight? See, e.g., 2005 Ferguson GCM attack.)

Fragile solution: "Switch keys!"

Much simpler: 256-bit blocks.

2014 Bernstein-Chou "Auth256": 29 bit ops/message bit for differential probability <2⁻²⁵⁵. Or try EHC from 2013 Nandi?

Improving Tor

Tor wants "fast, peasy-to-implement encumbered, side-source blooock (But current ciphes so can consider conside

Also: secure chain from each blooock

Tor is considering of AEZ or HHFHF

See, e.g., Mathews from RWC 2013 a

Sn $+rm_4$ e.g., re

 ϵ is at least $q(q-1)/2^{129}$. Solution: better PRP/PRF switch (2005 Bernstein), ok for $q \approx 2^{64}$. δ is still unacceptably large. (Show that this is tight? See, e.g., 2005 Ferguson GCM attack.) Fragile solution: "Switch keys!" Much simpler: 256-bit blocks. 2014 Bernstein-Chou "Auth256": 29 bit ops/message bit for differential probability $< 2^{-255}$.

Or try EHC from 2013 Nandi?

Improving Tor

Tor wants "fast, proven, secently easy-to-implement, non-patern encumbered, side-channel-fres 509-byte blooock cipher.

(But current cipher is a disa so can consider compromises

Also: secure chaining from each blooock to the ne

Tor is considering deployment of AEZ or HHFHFH in 2016

See, e.g., Mathewson talks from RWC 2013 and RWC 2

 ϵ is at least $q(q-1)/2^{129}$. Solution: better PRP/PRF switch (2005 Bernstein), ok for $q\approx 2^{64}$.

 δ is still unacceptably large. (Show that this is tight? See, e.g., 2005 Ferguson GCM attack.)

Fragile solution: "Switch keys!"

Much simpler: 256-bit blocks.

2014 Bernstein–Chou "Auth256": 29 bit ops/message bit for differential probability $<2^{-255}$. Or try EHC from 2013 Nandi?

Improving Tor

Tor wants "fast, proven, secure, easy-to-implement, non-patent-encumbered, side-channel-free" 509-byte blooock cipher.
(But current cipher is a disaster, so can consider compromises.)

Also: secure chaining from each blooock to the next.

Tor is considering deployment of AEZ or HHFHFH in 2016.

See, e.g., Mathewson talks from RWC 2013 and RWC 2016.

east $q(q-1)/2^{129}$.

: better PRP/PRF switch ernstein), ok for $q \approx 2^{64}$.

unacceptably large.

hat this is tight? See,

95 Ferguson GCM attack.)

solution: "Switch keys!"

mpler: 256-bit blocks.

rnstein-Chou "Auth256":

ps/message bit for

ial probability $< 2^{-255}$.

HC from 2013 Nandi?

Improving Tor

Tor wants "fast, proven, secure, easy-to-implement, non-patent-encumbered, side-channel-free" 509-byte blooock cipher.
(But current cipher is a disaster, so can consider compromises.)

Also: secure chaining from each blooock to the next.

Tor is considering deployment of AEZ or HHFHFH in 2016.

See, e.g., Mathewson talks from RWC 2013 and RWC 2016.

Feis

stream (strong

SCTE HHFH $1)/2^{129}$.

RP/PRF switch ok for $q \approx 2^{64}$.

ably large.
tight? See,
on GCM attack.)

Switch keys!"

6-bit blocks.

nou "Auth256":

ge bit for ility $< 2^{-255}$.

2013 Nandi?

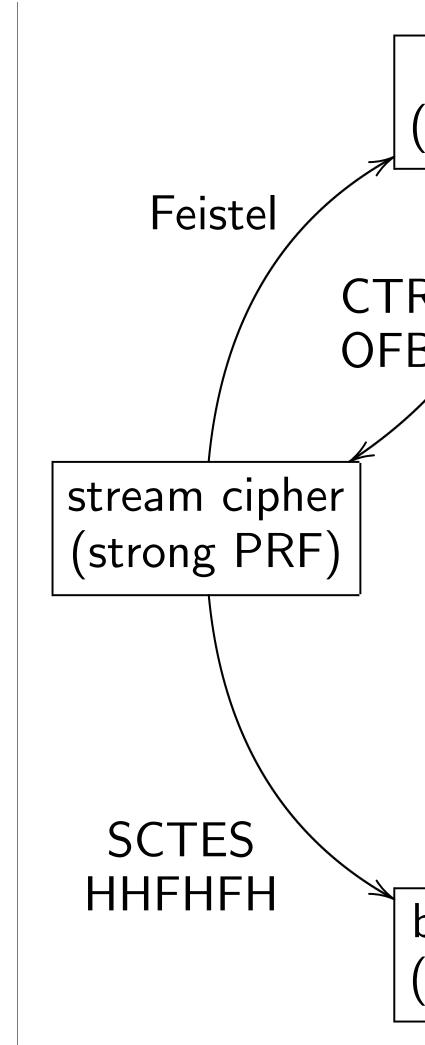
Improving Tor

Tor wants "fast, proven, secure, easy-to-implement, non-patent-encumbered, side-channel-free" 509-byte blooock cipher.
(But current cipher is a disaster, so can consider compromises.)

Also: secure chaining from each blooock to the next.

Tor is considering deployment of AEZ or HHFHFH in 2016.

See, e.g., Mathewson talks from RWC 2013 and RWC 2016.



switch 2^{64} .

e, :tack.)

ys!"

S.

256":

55.

di?

Improving Tor

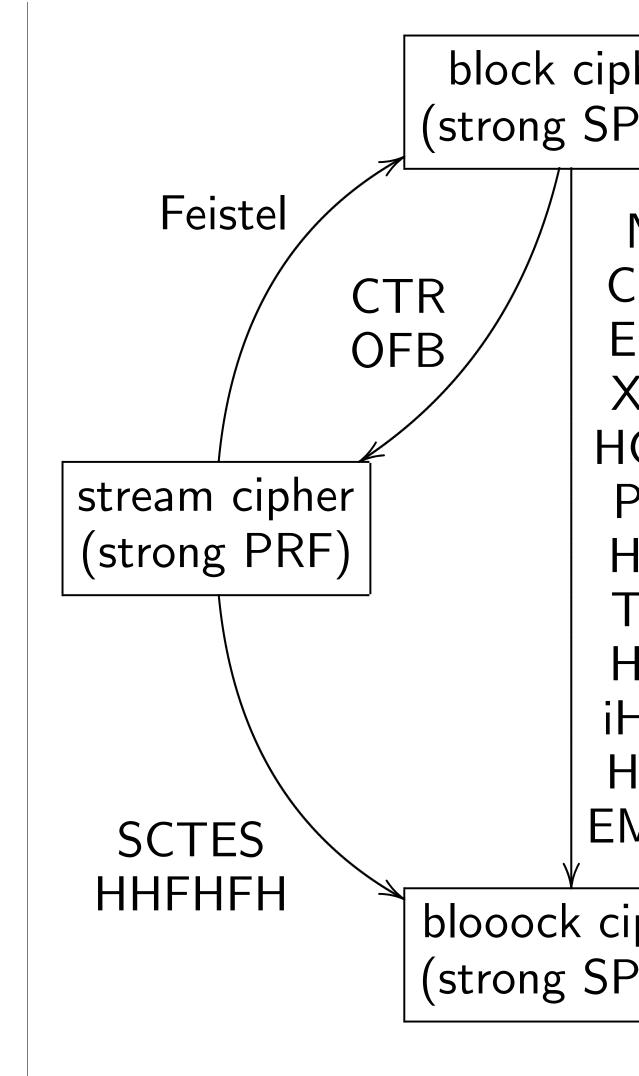
Tor wants "fast, proven, secure, easy-to-implement, non-patent-encumbered, side-channel-free" 509-byte blooock cipher.

(But current cipher is a disaster, so can consider compromises.)

Also: secure chaining from each blooock to the next.

Tor is considering deployment of AEZ or HHFHFH in 2016.

See, e.g., Mathewson talks from RWC 2013 and RWC 2016.



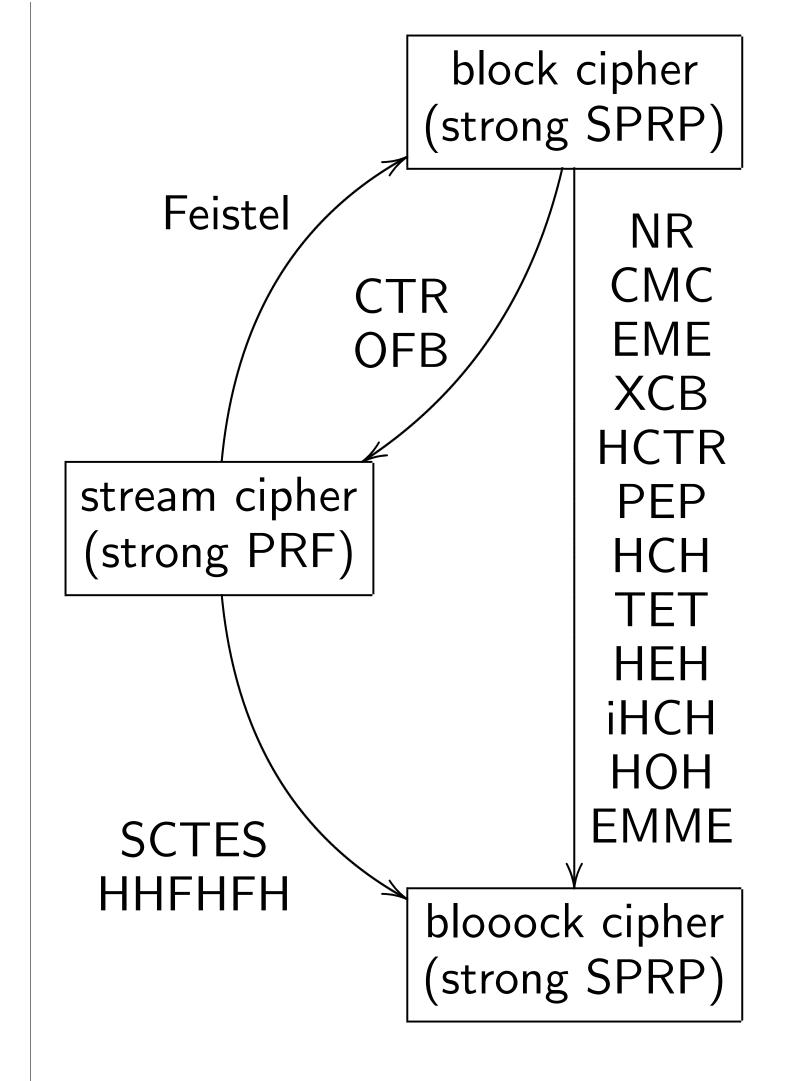
Improving Tor

Tor wants "fast, proven, secure, easy-to-implement, non-patent-encumbered, side-channel-free" 509-byte blooock cipher.
(But current cipher is a disaster, so can consider compromises.)

Also: secure chaining from each blooock to the next.

Tor is considering deployment of AEZ or HHFHFH in 2016.

See, e.g., Mathewson talks from RWC 2013 and RWC 2016.



g Tor

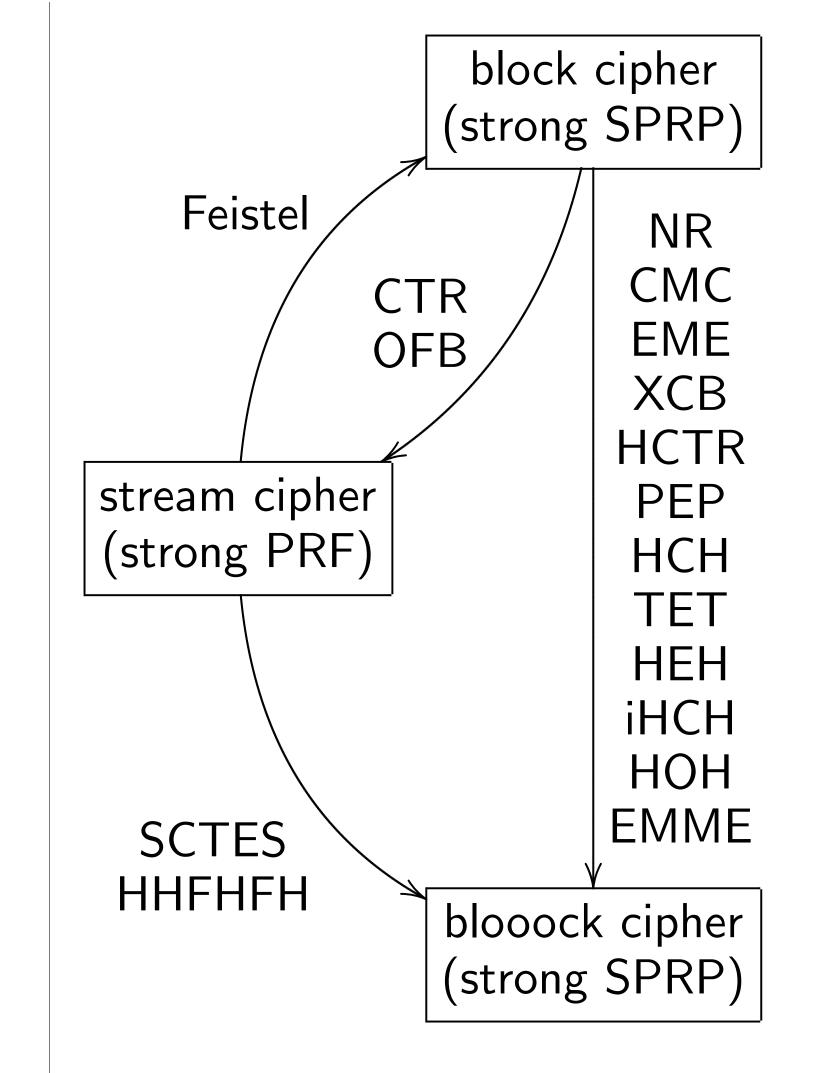
implement, non-patentered, side-channel-free" blooock cipher. erent cipher is a disaster,

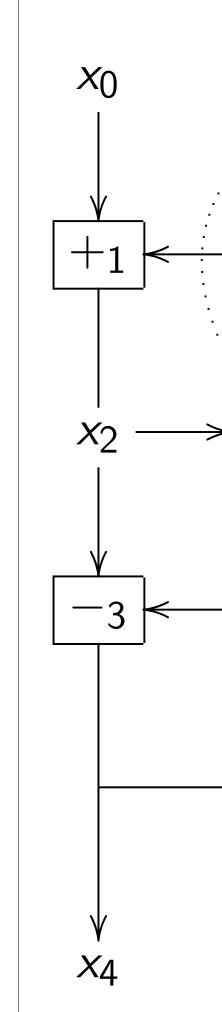
cure chaining the chaining the chaining the chaining the chaining the chaining the chain in the

onsider compromises.)

onsidering deployment or HHFHFH in 2016.

, Mathewson talks VC 2013 and RWC 2016.





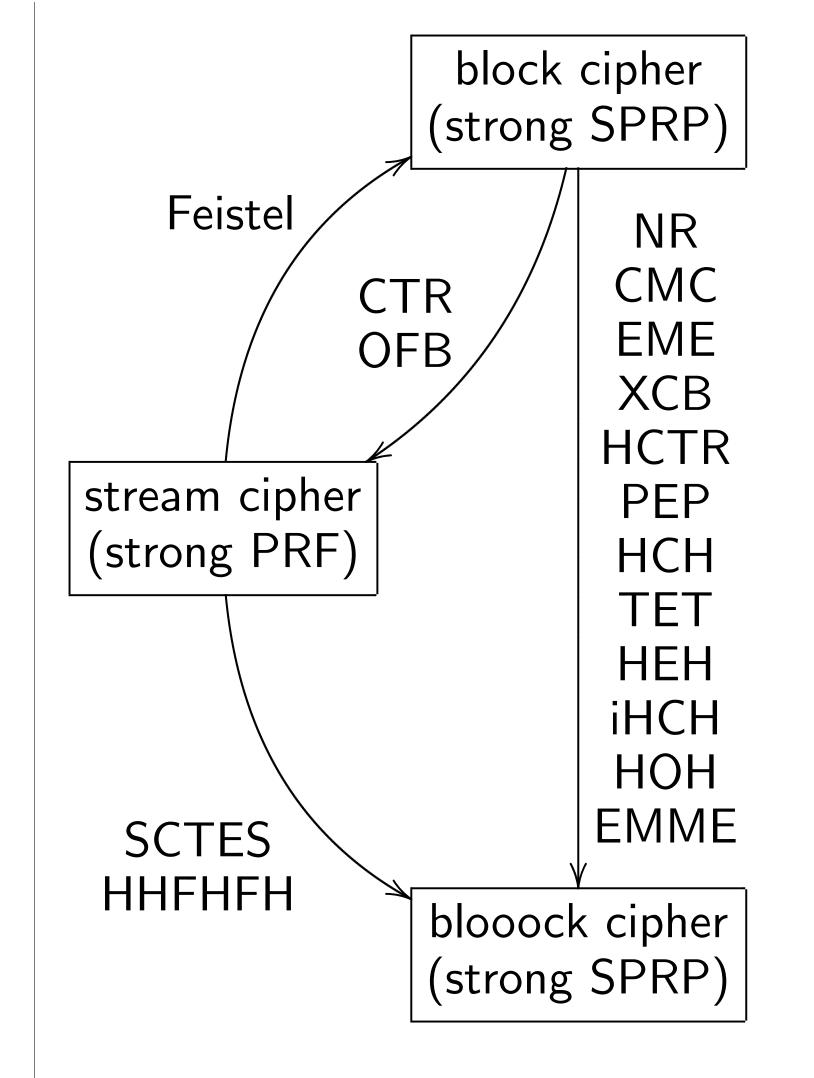
roven, secure, , non-patentchannel-free" cipher.

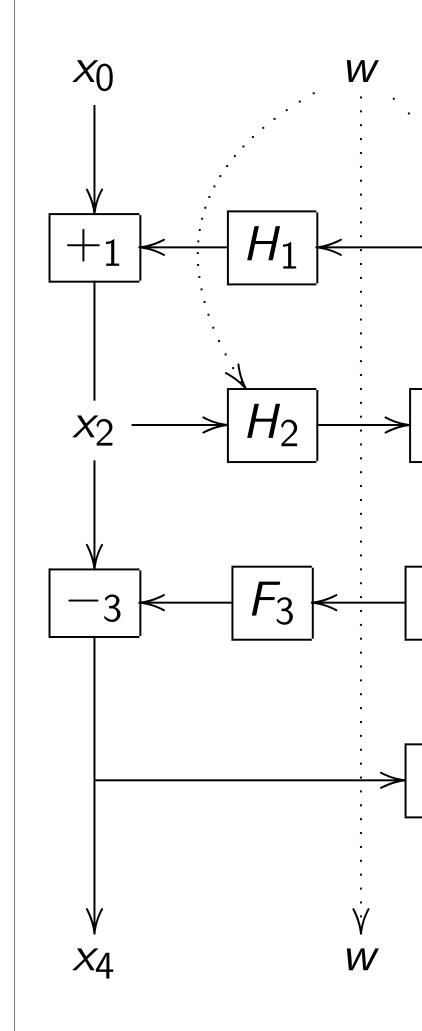
er is a disaster, empromises.)

ing to the next.

deployment H in 2016.

son talks nd RWC 2016.



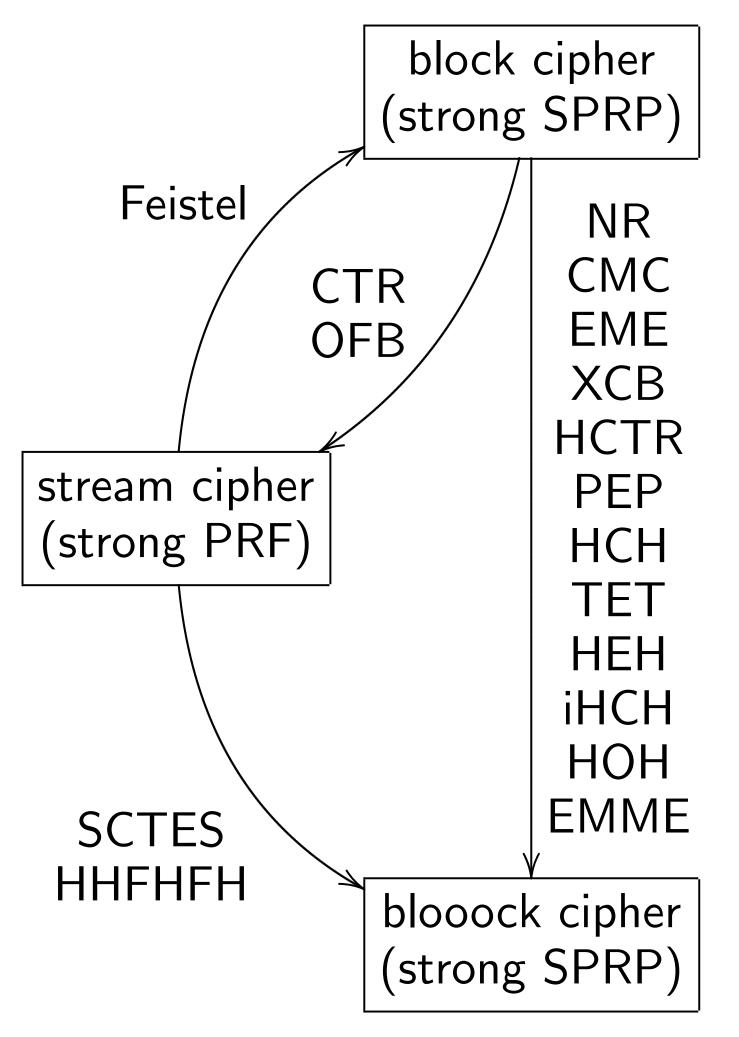


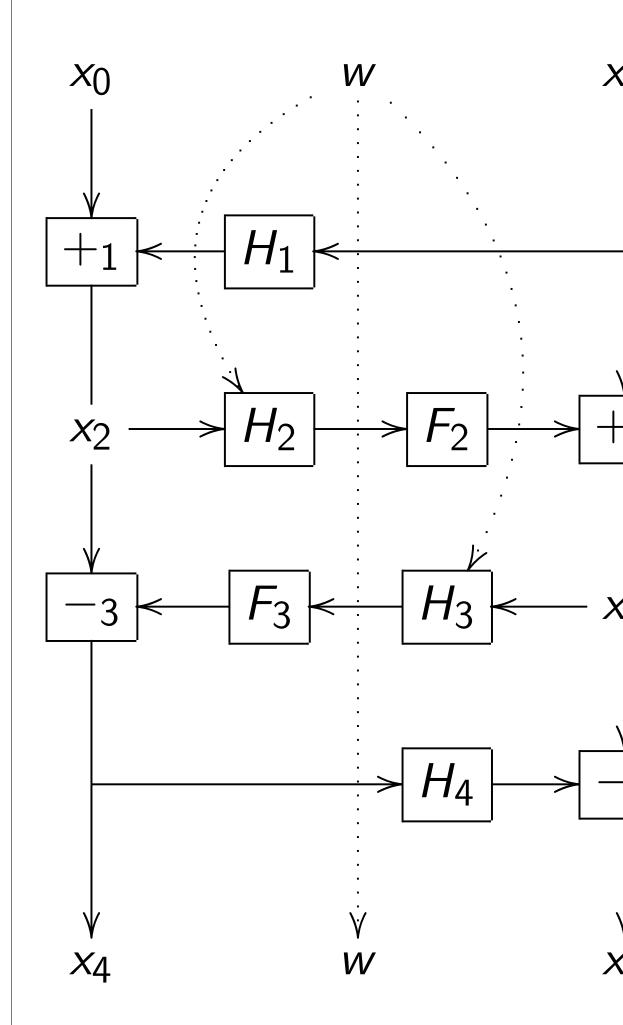
ure, entee"

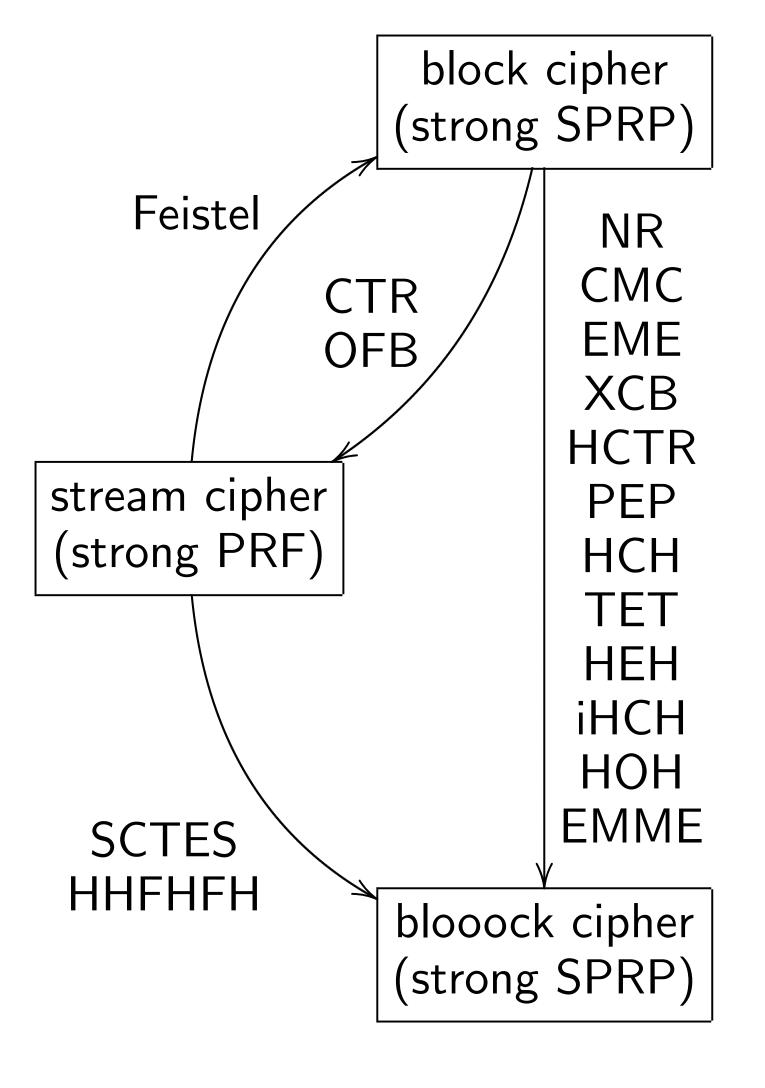
ext.

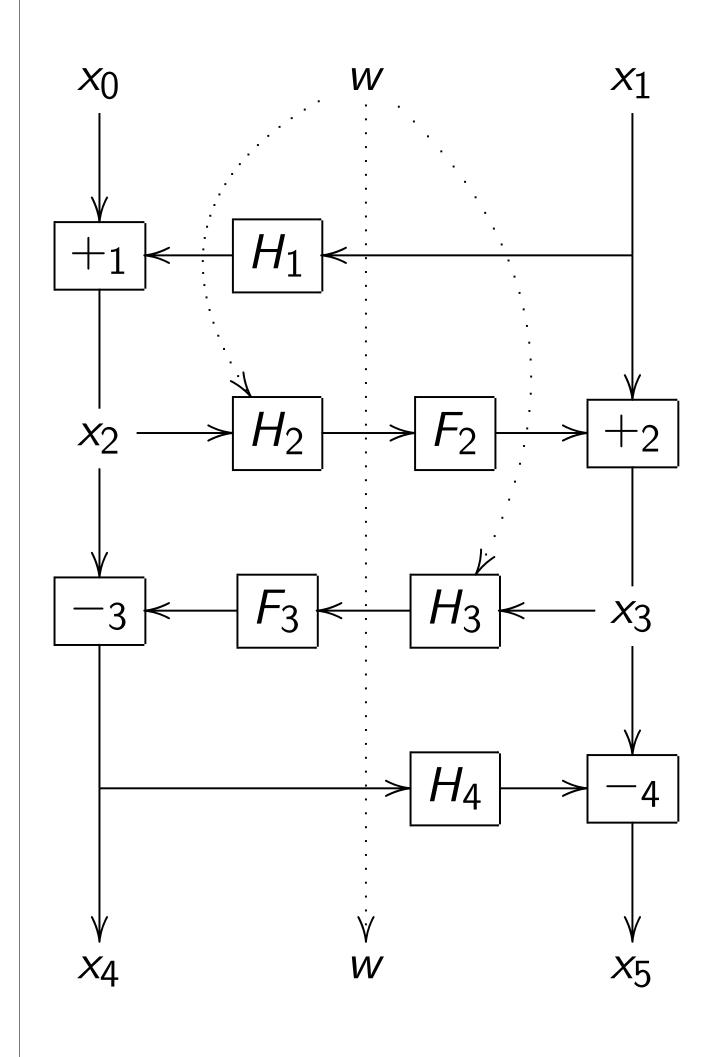
nt

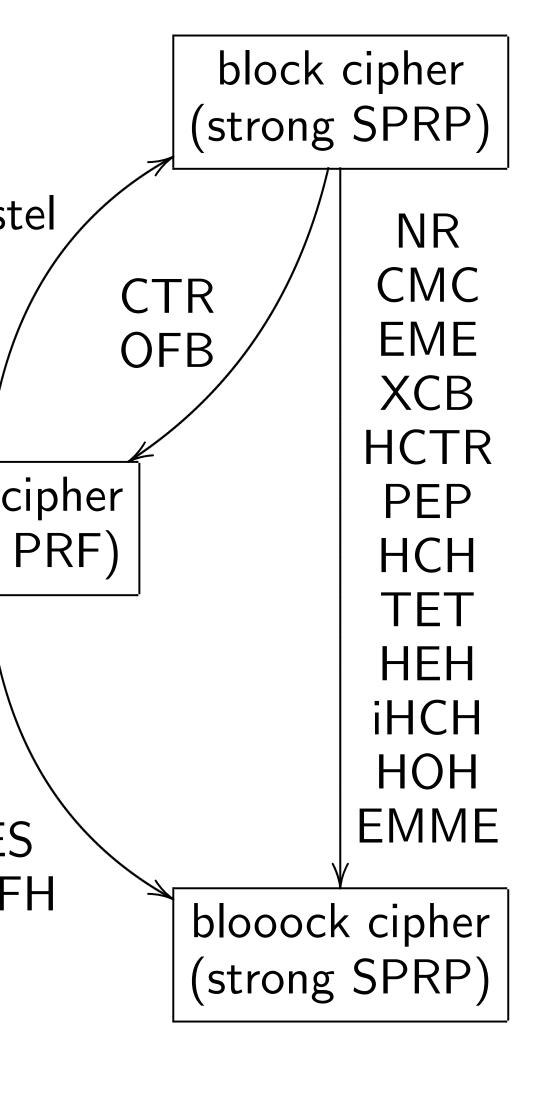
2016.

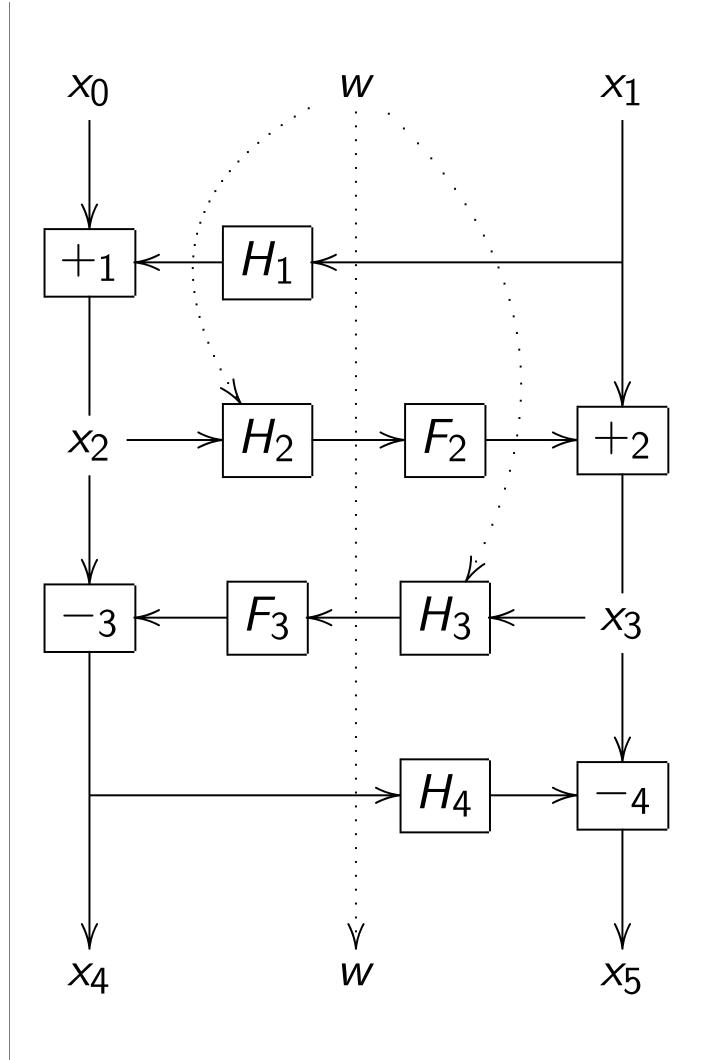












Previous
(Bernste
H is pur
F is a st

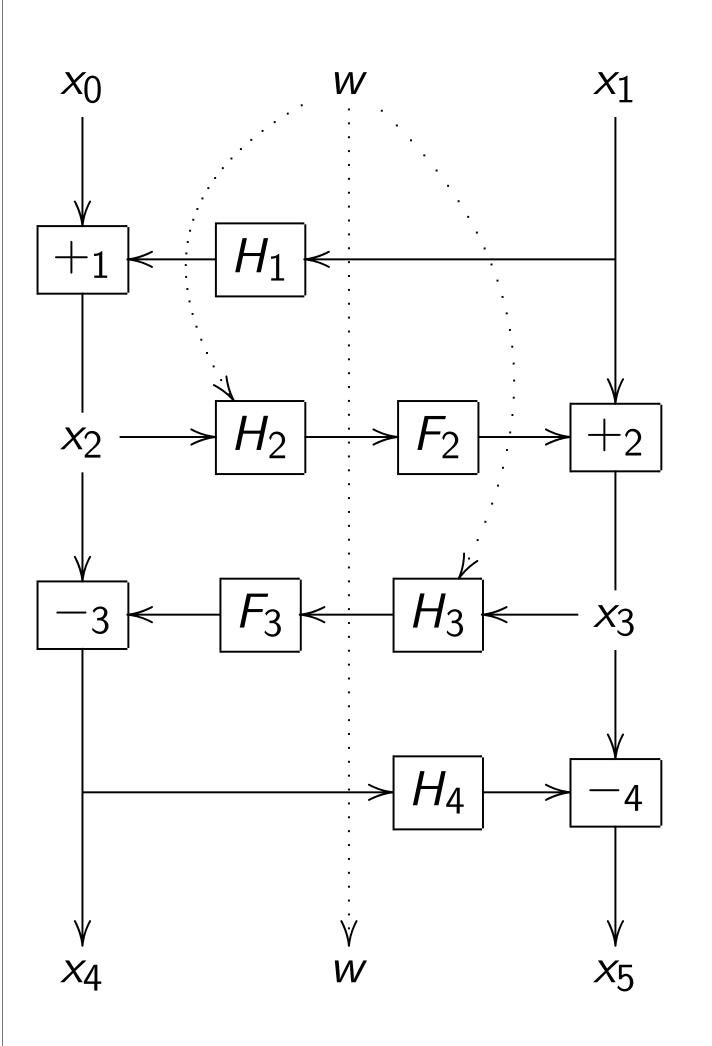
Ingredient H at top bottom H_2 , H_3 at H_1 , H_4 at H_1 , H_2 , H_3 at H_1 , H_4 at H_2 , H_3 at H_1 , H_4 at H_1 , H_2 at H_1 , H_3 at H_1 , H_4 at H_2 , H_3 at H_1 , H_4 at H_1 , H_2 at H_1 , H_3 at H_1 , H_4 at H_1 , H_2 at H_1 , H_3 at H_1 , H_4 at H_1 , H_2 at H_1 , H_3 at H_1 , H_4 at H_1 , H_2 at H_1 , H_3 at H_1 , H_4 at H_1 , H_2 at H_1 , H_3 at H_1 , H_3 at H_1 , H_4 at H_1 , H_2 at H_1 , H_3 at H_1 , H_2 at H_1 , H

Allow or unify H_1 unify H_3

than 200

block cipher strong SPRP) NR CMC **EME** XCB **HCTR** PEP **HCH** HEH **iHCH** HOH **EMME** plooock cipher

strong SPRP)



Previous slide: HF (Bernstein-Nandi-H is purely combine F is a stream ciph

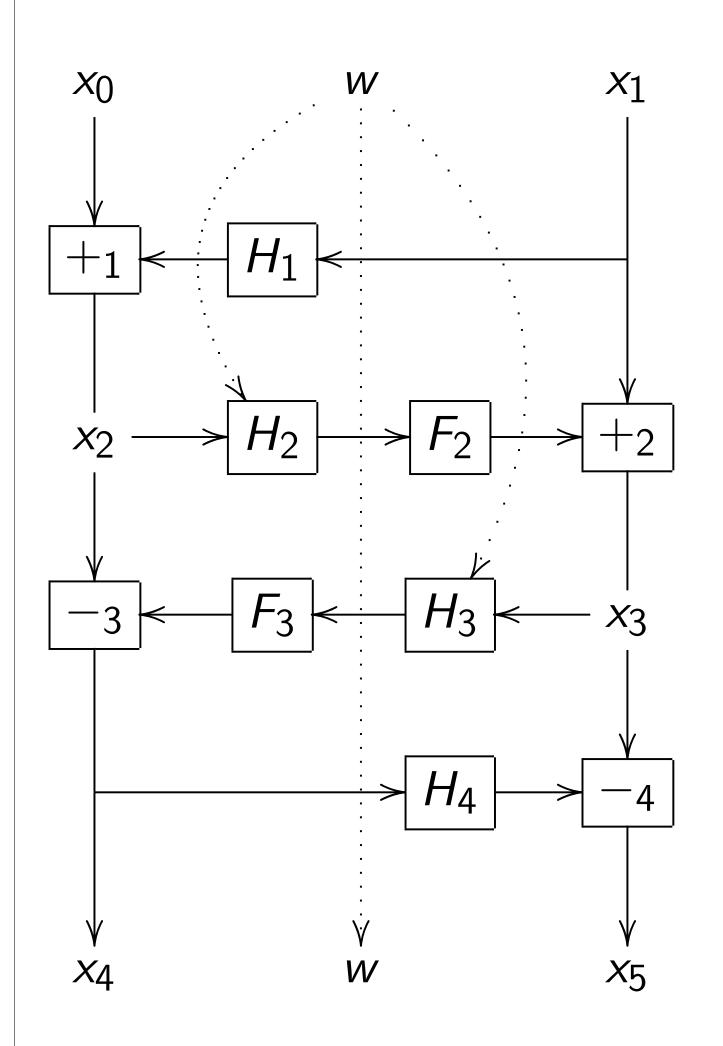
Ingredients: 4-rou H at top (1996 Lu bottom (1997 Nac H_2 , H_3 allow one- H_1 , H_4 are stretch XCB/HCTR-style than 2002 Liskov-

Allow one H_1 , H_2 , unify H_1 , H_2 hypo unify H_3 , H_4 hypo

ner RP)

NR MC ME CB CTR EP CH ΈT EH ICH OH **IME**

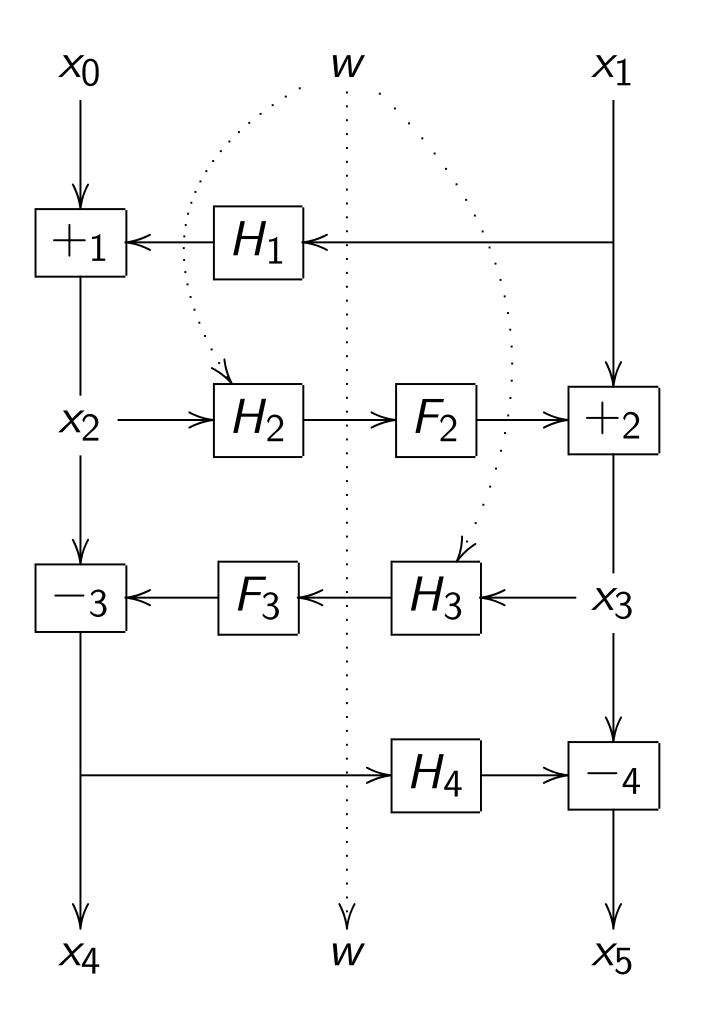
pher RP)



Previous slide: HHFHFH (Bernstein–Nandi–Sarkar). *H* is purely combinatorial; *F* is a stream cipher.

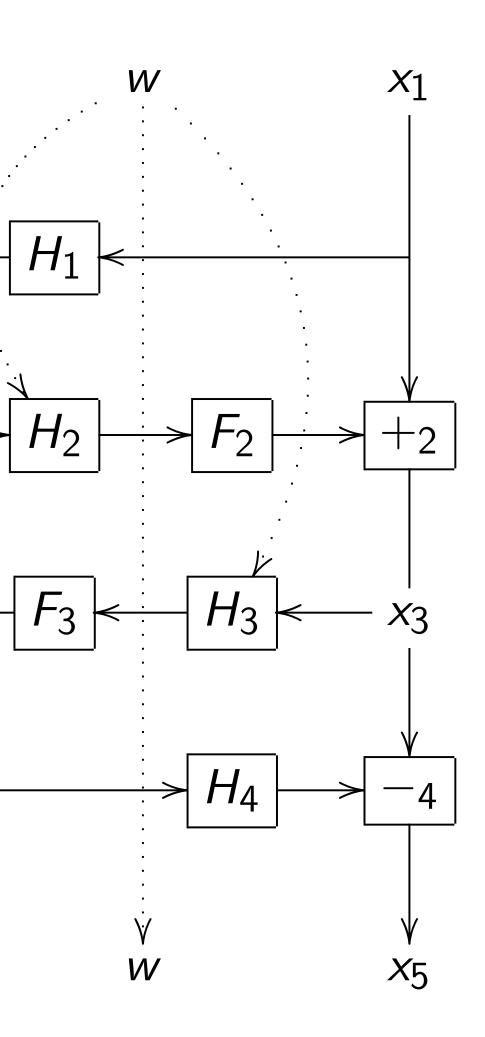
Ingredients: 4-round Feistel; H at top (1996 Lucks), bottom (1997 Naor-Reingol H_2 , H_3 allow one-block none H_1 , H_4 are stretched by 0-pa XCB/HCTR-style tweak, fast than 2002 Liskov-Rivest-Ware

Allow one H_1 , H_2 , H_3 , H_4 ke unify H_1 , H_2 hypotheses; unify H_3 , H_4 hypotheses.



Ingredients: 4-round Feistel; H at top (1996 Lucks), bottom (1997 Naor-Reingold); H_2 , H_3 allow one-block nonces; H_1 , H_4 are stretched by 0-pad; XCB/HCTR-style tweak, faster than 2002 Liskov-Rivest-Wagner.

Allow one H_1 , H_2 , H_3 , H_4 key; unify H_1 , H_2 hypotheses; unify H_3 , H_4 hypotheses.



Ingredients: 4-round Feistel; H at top (1996 Lucks), bottom (1997 Naor-Reingold); H_2 , H_3 allow one-block nonces; H_1 , H_4 are stretched by 0-pad; XCB/HCTR-style tweak, faster than 2002 Liskov-Rivest-Wagner.

Allow one H_1 , H_2 , H_3 , H_4 key; unify H_1 , H_2 hypotheses; unify H_3 , H_4 hypotheses.

One pos permuta

Full-wid beats sq and CTI

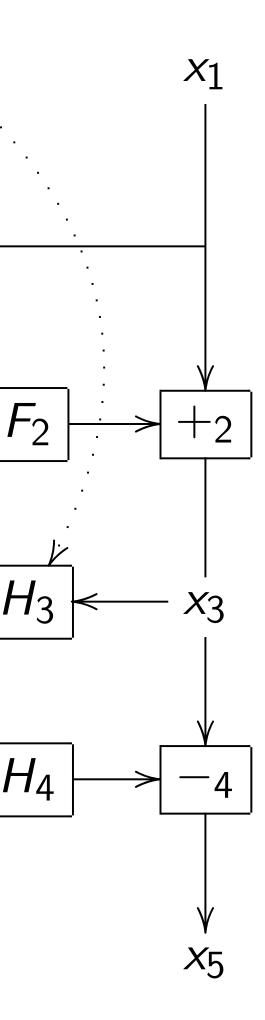
Also cho We're st

Use sing "chopT(w as tru

HHFHF twice, w

Somethi

more loc



Ingredients: 4-round Feistel; H at top (1996 Lucks), bottom (1997 Naor-Reingold); H_2 , H_3 allow one-block nonces; H_1 , H_4 are stretched by 0-pad; XCB/HCTR-style tweak, faster than 2002 Liskov-Rivest-Wagner.

Allow one H_1 , H_2 , H_3 , H_4 key; unify H_1 , H_2 hypotheses; unify H_3 , H_4 hypotheses. One possibility for permutation in EN

Full-width permut beats squeezing for and CTR is highly

Also choose highly We're still optimiz

Use single-block to "chopTC": chain was truncation of

HHFHFH reads each twice, writes each Something I'm wo more locality insid

Ingredients: 4-round Feistel; H at top (1996 Lucks), bottom (1997 Naor-Reingold); H_2 , H_3 allow one-block nonces; H_1 , H_4 are stretched by 0-pad; XCB/HCTR-style tweak, faster than 2002 Liskov-Rivest-Wagner.

Allow one H_1 , H_2 , H_3 , H_4 key; unify H_1 , H_2 hypotheses; unify H_3 , H_4 hypotheses. One possibility for F: permutation in EM in CTR.

Full-width permutation outpleats squeezing for long out and CTR is highly parallel.

Also choose highly parallel *H* We're still optimizing choice

Use single-block tweak w. "chopTC": chain by choosin w as truncation of $P \oplus C$.

HHFHFH reads each bit in a twice, writes each bit once. Something I'm working on more locality inside permutations.

2

3

4

\ آح

Ingredients: 4-round Feistel; H at top (1996 Lucks), bottom (1997 Naor-Reingold); H_2 , H_3 allow one-block nonces; H_1 , H_4 are stretched by 0-pad; XCB/HCTR-style tweak, faster than 2002 Liskov-Rivest-Wagner.

Allow one H_1 , H_2 , H_3 , H_4 key; unify H_1 , H_2 hypotheses; unify H_3 , H_4 hypotheses. One possibility for *F*: permutation in EM in CTR.

Full-width permutation output beats squeezing for long output; and CTR is highly parallel.

Also choose highly parallel H. We're still optimizing choices.

Use single-block tweak w. "chopTC": chain by choosing w as truncation of $P \oplus C$.

HHFHFH reads each bit in array twice, writes each bit once.

Something I'm working on now: more locality inside permutation.

slide: HHFHFH ein-Nandi-Sarkar). ely combinatorial; cream cipher.

nts: 4-round Feistel;

(1996 Lucks), (1997 Naor-Reingold); allow one-block nonces; are stretched by 0-pad; CTR-style tweak, faster (2) Liskov-Rivest-Wagner.

he H_1 , H_2 , H_3 , H_4 key; , H_2 hypotheses; , H_4 hypotheses. One possibility for F: permutation in EM in CTR.

Full-width permutation output beats squeezing for long output; and CTR is highly parallel.

Also choose highly parallel *H*. We're still optimizing choices.

Use single-block tweak w. "chopTC": chain by choosing w as truncation of $P \oplus C$.

HHFHFH reads each bit in array twice, writes each bit once.

Something I'm working on now: more locality inside permutation.

Security compare basically assuming and typi

HFHFH -Sarkar). natorial; er.

nd Feistel;
ucks),
or-Reingold);
olock nonces;
ed by 0-pad;
tweak, faster
Rivest-Wagner.

 H_3 , H_4 key; theses; theses. One possibility for F: permutation in EM in CTR.

Full-width permutation output beats squeezing for long output; and CTR is highly parallel.

Also choose highly parallel *H*. We're still optimizing choices.

Use single-block tweak w. "chopTC": chain by choosing w as truncation of $P \oplus C$.

HHFHFH reads each bit in array twice, writes each bit once.

Something I'm working on now: more locality inside permutation.

Security loss of more compared to secur basically $q^2/2^{128}$, assuming 128-bit land typical choice ls this 2^{128} "secur

Full-width permutation output beats squeezing for long output; and CTR is highly parallel.

Also choose highly parallel H. We're still optimizing choices.

Use single-block tweak w. "chopTC": chain by choosing w as truncation of $P \oplus C$.

HHFHFH reads each bit in array twice, writes each bit once.

Something I'm working on now: more locality inside permutation.

Security loss of mode compared to security of F: basically $q^2/2^{128}$, assuming 128-bit blocks and typical choice of H.

Is this 2^{128} "security"?

d);

ces; ad;

ster

agner.

y;

Full-width permutation output beats squeezing for long output; and CTR is highly parallel.

Also choose highly parallel *H*. We're still optimizing choices.

Use single-block tweak w. "chopTC": chain by choosing w as truncation of $P \oplus C$.

HHFHFH reads each bit in array twice, writes each bit once.

Something I'm working on now: more locality inside permutation.

Security loss of mode compared to security of F: basically $q^2/2^{128}$, assuming 128-bit blocks and typical choice of H.

Is this 2¹²⁸ "security"?

Full-width permutation output beats squeezing for long output; and CTR is highly parallel.

Also choose highly parallel *H*. We're still optimizing choices.

Use single-block tweak w. "chopTC": chain by choosing w as truncation of $P \oplus C$.

HHFHFH reads each bit in array twice, writes each bit once.

Something I'm working on now: more locality inside permutation.

Security loss of mode compared to security of F: basically $q^2/2^{128}$, assuming 128-bit blocks and typical choice of H.

Is this 2¹²⁸ "security"?

Fragile fix: "beyond-birthdaybound security." Complicates implementation, security analysis.

Full-width permutation output beats squeezing for long output; and CTR is highly parallel.

Also choose highly parallel H. We're still optimizing choices.

Use single-block tweak w. "chopTC": chain by choosing w as truncation of $P \oplus C$.

HHFHFH reads each bit in array twice, writes each bit once.

Something I'm working on now: more locality inside permutation.

Security loss of mode compared to security of F: basically $q^2/2^{128}$, assuming 128-bit blocks and typical choice of H.

Is this 2¹²⁸ "security"?

Fragile fix: "beyond-birthdaybound security." Complicates implementation, security analysis.

Simpler fix: "bigger-birthday-bound security." Use 256-bit blocks, security $q^2/2^{256}$.

Full-width permutation output beats squeezing for long output; and CTR is highly parallel.

Also choose highly parallel H. We're still optimizing choices.

Use single-block tweak w. "chopTC": chain by choosing w as truncation of $P \oplus C$.

HHFHFH reads each bit in array twice, writes each bit once.

Something I'm working on now: more locality inside permutation.

Security loss of mode compared to security of F: basically $q^2/2^{128}$, assuming 128-bit blocks and typical choice of H.

Is this 2¹²⁸ "security"?

Fragile fix: "beyond-birthdaybound security." Complicates implementation, security analysis.

Simpler fix: "bigger-birthday-bound security." Use 256-bit blocks, security $q^2/2^{256}$.

Is 256-bit *n* safe in ChaCha?

sibility for F: tion in EM in CTR.

th permutation output ueezing for long output; R is highly parallel.

ose highly parallel H. ill optimizing choices.

le-block tweak w.

C": chain by choosing incation of $P \oplus C$.

H reads each bit in array rites each bit once.

ng I'm working on now:
cality inside permutation.

Security loss of mode compared to security of F: basically $q^2/2^{128}$, assuming 128-bit blocks and typical choice of H.

Is this 2¹²⁸ "security"?

Fragile fix: "beyond-birthdaybound security." Complicates implementation, security analysis.

Simpler fix: "bigger-birthday-bound security." Use 256-bit blocks, security $q^2/2^{256}$.

Is 256-bit *n* safe in ChaCha?

<u>Heavywe</u>

Interesti

 \geq 256 bi

≥256-bi

≥256-bi

F: 1 in CTR.

ation output or long output; parallel.

parallel H. ing choices.

weak w. by choosing $P \oplus C$.

bit once.
rking on now:
e permutation.

Security loss of mode compared to security of F: basically $q^2/2^{128}$, assuming 128-bit blocks and typical choice of H.

Is this 2¹²⁸ "security"?

Fragile fix: "beyond-birthdaybound security." Complicates implementation, security analysis.

Simpler fix: "bigger-birthday-bound security." Use 256-bit blocks, security $q^2/2^{256}$.

Is 256-bit *n* safe in ChaCha?

Heavyweight ciphe

Interesting cipher

- \geq 256 bits for all p
- \geq 256-bit keys, \geq 2
- \geq 256-bit subkeys,

ut put;

┨.

S.

g

array

iow: ition. Security loss of mode compared to security of F: basically $q^2/2^{128}$, assuming 128-bit blocks and typical choice of H.

Is this 2¹²⁸ "security"?

Fragile fix: "beyond-birthdaybound security." Complicates implementation, security analysis.

Simpler fix: "bigger-birthday-bound security." Use 256-bit blocks, security $q^2/2^{256}$.

Is 256-bit *n* safe in ChaCha?

Heavyweight ciphers

Interesting cipher-design sp

- \geq 256 bits for all pipes.
- \geq 256-bit keys, \geq 256-bit out
- \geq 256-bit subkeys, etc.

Security loss of mode compared to security of F: basically $q^2/2^{128}$, assuming 128-bit blocks and typical choice of H.

Is this 2¹²⁸ "security"?

Fragile fix: "beyond-birthdaybound security." Complicates implementation, security analysis.

Simpler fix: "bigger-birthday-bound security." Use 256-bit blocks, security $q^2/2^{256}$.

Is 256-bit *n* safe in ChaCha?

Heavyweight ciphers

Interesting cipher-design space:

- \geq 256 bits for all pipes.
- \geq 256-bit keys, \geq 256-bit outputs,
- \geq 256-bit subkeys, etc.

Security loss of mode compared to security of F: basically $q^2/2^{128}$, assuming 128-bit blocks and typical choice of H.

Is this 2¹²⁸ "security"?

Fragile fix: "beyond-birthdaybound security." Complicates implementation, security analysis.

Simpler fix: "bigger-birthday-bound security." Use 256-bit blocks, security $q^2/2^{256}$.

Is 256-bit *n* safe in ChaCha?

Heavyweight ciphers

Interesting cipher-design space:

- \geq 256 bits for all pipes.
- \geq 256-bit keys, \geq 256-bit outputs,
- \geq 256-bit subkeys, etc.

Occasional designs: Rijndael, OMD (SHA-2), Keccak, BLAKE2, NORX, Simpira, This needs far more attention, optimization. **Hash** designs are usually overkill.

Security loss of mode compared to security of F: basically $q^2/2^{128}$, assuming 128-bit blocks and typical choice of H.

Is this 2¹²⁸ "security"?

Fragile fix: "beyond-birthdaybound security." Complicates implementation, security analysis.

Simpler fix: "bigger-birthday-bound security." Use 256-bit blocks, security $q^2/2^{256}$.

Is 256-bit *n* safe in ChaCha?

Heavyweight ciphers

Interesting cipher-design space:

- \geq 256 bits for all pipes.
- \geq 256-bit keys, \geq 256-bit outputs,
- \geq 256-bit subkeys, etc.

Occasional designs: Rijndael, OMD (SHA-2), Keccak, BLAKE2, NORX, Simpira, This needs far more attention, optimization. **Hash** designs are usually overkill.

Is 256 fundamentally much slower, or much less energy-efficient, than 128? My guess: No!

loss of mode d to security of F: $q^2/2^{128}$, g 128-bit blocks cal choice of H.

¹²⁸ "security"?

ix: "beyond-birthdayecurity." Complicates ntation, security analysis.

fix: "bigger-birthday-ecurity." Use 256-bit security $q^2/2^{256}$.

it *n* safe in ChaCha?

Heavyweight ciphers

Interesting cipher-design space:

 \geq 256 bits for all pipes.

 \geq 256-bit keys, \geq 256-bit outputs,

 \geq 256-bit subkeys, etc.

Occasional designs: Rijndael, OMD (SHA-2), Keccak, BLAKE2, NORX, Simpira, This needs far more attention, optimization. **Hash** designs are usually overkill.

Is 256 fundamentally much slower, or much less energy-efficient, than 128? My guess: No!

Another PRF insi

EdDSA random truncate

H is SH

2015 Be truncate high-sec

Even with reusing parely call in both s

ode fity of *F*:

of H.

ity"?

nd-birthday-Complicates ecurity analysis.

er-birthday-Jse 256-bit $^2/2^{256}$.

n ChaCha?

Heavyweight ciphers

Interesting cipher-design space:

 \geq 256 bits for all pipes.

 \geq 256-bit keys, \geq 256-bit outputs,

 \geq 256-bit subkeys, etc.

Occasional designs: Rijndael, OMD (SHA-2), Keccak, BLAKE2, NORX, Simpira, This needs far more attention, optimization. **Hash** designs are usually overkill.

Is 256 fundamentally much slower, or much less energy-efficient, than 128? My guess: No!

Another optimizate PRF inside EdDS/

EdDSA generates random number metruncated hash: Head ha

2015 Bellare-Bern truncated prefixed high-security mult

Even with the conreusing preimage-results are build be in both software a

Heavyweight ciphers

Interesting cipher-design space:

- \geq 256 bits for all pipes.
- \geq 256-bit keys, \geq 256-bit outputs,
- \geq 256-bit subkeys, etc.

Occasional designs: Rijndael, OMD (SHA-2), Keccak, BLAKE2, NORX, Simpira, This needs far more attention, optimization. **Hash** designs are usually overkill.

Is 256 fundamentally much slower, or much less energy-efficient, than 128? My guess: No!

Another optimization target PRF inside EdDSA signature

EdDSA generates per-signate random number mod 256-bit truncated hash: H(s, m) mod H is SHA-512; s is subkey.

2015 Bellare–Bernstein–Tess truncated prefixed MD hash high-security multi-user MA

Even with the constraint of reusing preimage-resistant h surely can build better design in both software and hardware

yes alysis.

/t

Heavyweight ciphers

Interesting cipher-design space:

- \geq 256 bits for all pipes.
- \geq 256-bit keys, \geq 256-bit outputs,
- \geq 256-bit subkeys, etc.

Occasional designs: Rijndael, OMD (SHA-2), Keccak, BLAKE2, NORX, Simpira, This needs far more attention, optimization. **Hash** designs are usually overkill.

Is 256 fundamentally much slower, or much less energy-efficient, than 128? My guess: No!

Another optimization target: PRF inside EdDSA signatures.

EdDSA generates per-signature random number mod 256-bit ℓ as truncated hash: $H(s, m) \mod \ell$. H is SHA-512; s is subkey.

2015 Bellare–Bernstein–Tessaro: truncated prefixed MD hash is a high-security multi-user MAC.

Even with the constraint of reusing preimage-resistant hash, surely can build better design in both software and hardware.