Some challenges in Protocol generates
heavyweight cipher design new AES-128 key k.

Daniel J. Bernstein Protocol encrypts message block
m1q as AESk(l) b my,

m> as AESk(Z) D mo,

m3 as AESk(3) D ms3,

etc. Also authenticates.

University of lllinois at Chicago &
Technische Universiteit Eindhoven

First block my Is predictable:
GET / HTTP/1.1\r\n
Attacker learns AES,(1).

Can attacker deduce AES,(20)7?

We constantly tell people: "Nol
AES is secure! This is all safe!”

allenges In
ight cipher design

. Bernstein

ty of lllinois at Chicago &
he Universiteit Eindhoven

Protocol generates
new AES-128 key k.

Protocol encrypts message block
m1i as AESk(l) b mq,

m»> as AESk(Q) D mo,

m3 as AESk(3) P ms3,

etc. Also authenticates.

First block my Is predictable:
GET / HTTP/1.1\r\n
Attacker learns AES,(1).

Can attacker deduce AES,(20)7

We constantly tell people: "No!
AES is secure! This is all safe!”

Attacker
for, say,

Attacket
using fe:
Attacker
data for

s this 2
See 200

1

r design
4

is at Chicago &
siteit Eindhoven

Protocol generates
new AES-128 key k.

Protocol encrypts message block
m1q as AESk(l) b my,

mo> as AESk(Z) D mo,

m3 as AESk(3) D ms3,

etc. Also authenticates.

First block my Is predictable:
GET / HTTP/1.1\r\n
Attacker learns AES,(1).

Can attacker deduce AES,(20)7?

We constantly tell people: "Nol
AES is secure! This is all safe!”

Attacker learns AL
for, say, 240 user |

Attacker finds son
using feasible 283

Attacker decrypts,
data for that user.

s this 2128 “secur
See 2002 Biham *

go &
hoven

Protocol generates
new AES-128 key k.

Protocol encrypts message block
m1i as AESk(l) b my,

m»> as AESk(Q) D mo,

m3 as AESk(3) P ms3,

etc. Also authenticates.

First block my Is predictable:
GET / HTTP/1.1\r\n
Attacker learns AES,(1).

Can attacker deduce AES,(20)7

We constantly tell people: "No!
AES is secure! This is all safe!”

Attacker learns AES, (1)
for, say, 240 user keys k.

Attacker finds some user ke:
using feasible 2%% computat:i
Attacker decrypts, maybe fo
data for that user.

Is this 2128 “security” ?
See 2002 Biham “key collisi

Protocol generates
new AES-128 key k.

Protocol encrypts message block
mq as AESk(l) b mq,

mo> as AESk(Z) D mo,

m3 as AESk(3) D ms3,

etc. Also authenticates.

First block my Is predictable:
GET / HTTP/1.1\r\n
Attacker learns AES,(1).

Can attacker deduce AES,(20)7?

We constantly tell people: "Nol
AES is secure! This is all safel!”

Attacker learns AES, (1)

240

for, say, user keys k.

Attacker finds some user key

238 com putation.

using feasible
Attacker decrypts, maybe forges,

data for that user.

Is this 2128 “security” ?
See 2002 Biham “key collisions” .

Protocol generates
new AES-128 key k.

Protocol encrypts message block
mq as AESk(l) b mq,

mo> as AESk(Z) D mo,

m3 as AESk(3) D ms3,

etc. Also authenticates.

First block my Is predictable:
GET / HTTP/1.1\r\n
Attacker learns AES,(1).

Can attacker deduce AES,(20)7?
We constantly tell people: "Nol

AES is secure! This is all safe!”

Attacker learns AES, (1)

240

for, say, user keys k.

Attacker finds some user key

238 com putation.

using feasible
Attacker decrypts, maybe forges,

data for that user.

Is this 2128 “security” ?
See 2002 Biham “key collisions” .

Fragile fix: Complicate protocols
by trying to randomize everything.

Protocol generates
new AES-128 key k.

Protocol encrypts message block
mq as AESk(l) b mq,

mo> as AESk(Z) D mo,

m3 as AESk(3) D ms3,

etc. Also authenticates.

First block my Is predictable:
GET / HTTP/1.1\r\n
Attacker learns AES,(1).

Can attacker deduce AES,(20)7?
We constantly tell people: "Nol

AES is secure! This is all safe!”

Attacker learns AES, (1)

240

for, say, user keys k.

Attacker finds some user key

238 com putation.

using feasible
Attacker decrypts, maybe forges,

data for that user.

Is this 2128 “security” ?
See 2002 Biham “key collisions” .

Fragile fix: Complicate protocols
by trying to randomize everything.

Much simpler tix: 256-bit keys.
(Side discussion: Is 192 enough?)

| generates
>-128 key k.

| encrypts message block
ESy(1) @ my,

ESy(2) & my,

ESk(3) ® m3,

0 authenticates.

ck my Is predictable:
I'TP/1.1\r\n
“learns AES,(1).

icker deduce AES,(20)7

tantly tell people: “No!
ecure! This is all safel!”

Attacker learns AES, (1)

240

for, say, user keys k.

Attacker finds some user key

using feasible 283

computation.
Attacker decrypts, maybe forges,

data for that user.

Is this 2128 “security’ ?
See 2002 Biham “key collisions” .

Fragile fix: Complicate protocols

by trying to randomize everything.

Much simpler fix: 256-bit keys.
(Side discussion: Is 192 enough?)

Another
about 1:

quantun

Grover f
using 2°
on a sm

>

K.

message block
my,
my,
ms3,

cates.

yredictable:
\n
Sk (1).

ce AES,(20)7
people: “Nol!
is is all safe!”

Attacker learns AES, (1)
for, say, 240 user keys k.

Attacker finds some user key
using feasible 288 computation.
Attacker decrypts, maybe forges,
data for that user.

Is this 2128 “security” ?
See 2002 Biham “key collisions” .

Fragile fix: Complicate protocols

by trying to randomize everything.

Much simpler fix: 256-bit keys.
(Side discussion: Is 192 enough?)

Another reason to
about 128-bit cipt
quantum computil

Grover finds k frol
using 204 iteration
on a small quantu

ylock

Attacker learns AES, (1)
for, say, 240 user keys k.

Attacker finds some user key
using feasible 288 computation.
Attacker decrypts, maybe forges,
data for that user.

Is this 2128 “security’ ?
See 2002 Biham “key collisions” .

Fragile fix: Complicate protocols

by trying to randomize everything.

Much simpler fix: 256-bit keys.
(Side discussion: Is 192 enough?)

Another reason to be concel
about 128-bit cipher keys:
quantum computing.

Grover finds k from AES,(1
using 204 iterations
on a small quantum process

Attacker learns AES, (1)
for, say, 240 user keys k.

Attacker finds some user key
using feasible 288 computation.
Attacker decrypts, maybe forges,
data for that user.

Is this 2128 “security” ?
See 2002 Biham “key collisions” .

Fragile fix: Complicate protocols

by trying to randomize everything.

Much simpler fix: 256-bit keys.
(Side discussion: Is 192 enough?)

Another reason to be concerned
about 128-bit cipher keys:
quantum computing.

Grover finds k from AES, (1)

264

using iterations

on a small quantum processor.

Attacker learns AES, (1)
for, say, 240 user keys k.

Attacker finds some user key
using feasible 288 computation.
Attacker decrypts, maybe forges,
data for that user.

Is this 2128 “security” ?
See 2002 Biham “key collisions” .

Fragile fix: Complicate protocols

by trying to randomize everything.

Much simpler fix: 256-bit keys.
(Side discussion: Is 192 enough?)

Another reason to be concerned
about 128-bit cipher keys:
quantum computing.

Grover finds k from AES, (1)

264

using iterations

on a small quantum processor.

Parallelize: N? processors,
each running 2%% /N iterations.
1999 Zalka claims this i1s optimal.

Attacker learns AES, (1)
for, say, 240 user keys k.

Attacker finds some user key
using feasible 288 computation.
Attacker decrypts, maybe forges,
data for that user.

Is this 2128 “security” ?
See 2002 Biham “key collisions” .

Fragile fix: Complicate protocols

by trying to randomize everything.

Much simpler fix: 256-bit keys.
(Side discussion: Is 192 enough?)

Another reason to be concerned
about 128-bit cipher keys:
quantum computing.

Grover finds k from AES, (1)

264

using iterations

on a small quantum processor.

Parallelize: N? processors,
each running 2%% /N iterations.
1999 Zalka claims this i1s optimal.

Multiple targets should allow
much better parallelization.
Related algos: 2009 Bernstein:;
2004 Grover—Radhakrishnan.

“learns AES, (1)

240 yser keys k.

- finds some user key

238 com putation.

asible
- decrypts, maybe forges,

that user.

128 “security” ?

2 Biham “key collisions” .

IxX: Complicate protocols

r to randomize everything.

mpler fix: 256-bit keys.
scussion: |s 192 enough?)

Another reason to be concerned
about 128-bit cipher keys:
quantum computing.

Grover finds k from AES, (1)

264

using iterations

on a small quantum processor.

Parallelize: N? processors,
each running 2%% /N iterations.
1999 Zalka claims this 1s optimal.

Multiple targets should allow
much better parallelization.
Related algos: 2009 Bernstein:;
2004 Grover—Radhakrishnan.

Should |

To auth

Comput
different
e.g., rrr

where r

Generatx
Sn — AE

Add to «

r4m1 -+

Widely «
consider

Sk(1)
eys k.

1€ user key
computation.
maybe forges,

ity 7
key collisions”.

icate protocols

mize everything.

2560-bit keys.
s 192 enough?)

Another reason to be concerned
about 128-bit cipher keys:
quantum computing.

Grover finds k from AES, (1)

264

using iterations

on a small quantum processor.

Parallelize: N? processors,
each running 2%% /N iterations.
1999 Zalka claims this i1s optimal.

Multiple targets should allow
much better parallelization.
Related algos: 2009 Bernstein:;
2004 Grover—Radhakrishnan.

Should MACs hav

To authenticate (1

Compute function
differential probab
e.g., r?

where r Is secret.

mi + r3m2

Generate a one-ti
Spn — AESk(n) fror

Add to obtain MA

r4m1 -+ r3m2 -+ r2

Widely deployed f«
consider, e.g., GCI

rges,

ons .

ycols

/thing.

yS.
ugh?)

Another reason to be concerned
about 128-bit cipher keys:
quantum computing.

Grover finds k from AES, (1)

264

using iterations

on a small quantum processor.

Parallelize: N? processors,
each running 2%% /N iterations.

1999 Zalka claims this 1s optimal.

Multiple targets should allow
much better parallelization.
Related algos: 2009 Bernstein:;
2004 Grover—Radhakrishnan.

Should MACs have nonces?

To authenticate (mq, my, m:

-

Compute function with sma

differential probabilities.

e.g., r4m1 -+ r3m2 -+ r2m3 o

where r Is secret.

Generate a one-time key
sn = AES,(n) from master |

Add to obtain MAC:

r4m1 -+ r3m2 -+ r2m3 -+ rmy

Widely deployed for speed:
consider, e.g., GCM.

Another reason to be concerned
about 128-bit cipher keys:
quantum computing.

Grover finds k from AES, (1)

264

using iterations

on a small quantum processor.

Parallelize: N? processors,
each running 2%% /N iterations.
1999 Zalka claims this i1s optimal.

Multiple targets should allow
much better parallelization.
Related algos: 2009 Bernstein:;
2004 Grover—Radhakrishnan.

Should MACs have nonces?

To authenticate (mq, my, m3, my):

Compute function with small
differential probabilities.

e.g., r4m1 + r3m2 + r2m3 + rmy,
where r Is secret.

Generate a one-time key
sn = AES,(n) from master key k.

Add to obtain MAC:

r4m1 -+ r3m2 + r2m3 -+ rmg + Sp.

Widely deployed for speed:
consider, e.g., GCM.

reason to be concerned
28-bit cipher keys:
1 computing.

inds k from AES,(1)
* iterations
all quantum processor.

re: N2 ProCcessors,
ning 2% /N iterations.
lka claims this is optimal.

targets should allow
tter parallelization.
algos: 2009 Bernstein;
over—Radhakrishnan.

Should MACs have nonces?

To authenticate (mq, mo, m3, my):

Compute function with small
differential probabilities.
e.g., r4m1 -+ r3m2 -+ r2m3 + rmy,

where r Is secret.

Generate a one-time key
sn = AES,(n) from master key k.

Add to obtain MAC:

r4m1 -+ r3m2 -+ r2m3 -+ rmg + Sp.

Widely deployed for speed:
consider, e.g., GCM.

20006 Joi

ntwice 1
= attac
can easl

be concerned
er keys:

1g.

m AES, (1)
S
M Processor.

)CESSOrS,
N iterations.
this is optimal.

ould allow
elization.

)9 Bernstein;
akrishnan.

Should MACs have nonces?

To authenticate (mq, my, m3, my):

Compute function with small
differential probabilities.

e.g., r4m1 + r3m2 + r2m3 + rmy,
where r Is secret.

Generate a one-time key
sn = AES,(n) from master key k.

Add to obtain MAC:

r4m1 -+ r3m2 + r2m3 -+ rmg + Sp.

Widely deployed for speed:
consider, e.g., GCM.

2006 Joux “forbid
ntwice in GCM =
= attacker figures
can easily forge m

‘ned

or.

1S.

timal.

n;

Should MACs have nonces?

To authenticate (mq, mo, m3, my):

Compute function with small
differential probabilities.
e.g., r4m1 -+ r3m2 -+ r2m3 + rmy,

where r Is secret.

Generate a one-time key
sn = AES,(n) from master key k.

Add to obtain MAC:

r4m1 -+ r3m2 -+ r2m3 -+ rmg + Sp.

Widely deployed for speed:
consider, e.g., GCM.

2006 Joux “forbidden attacl
ntwice in GCM = repeated
= attacker figures out r,
can easily forge messages.

Should MACs have nonces?

To authenticate (mq, my, m3, my):

Compute function with small
differential probabilities.

e.g., r?
where r Is secret.

mi + r3m2 -+ r2m3 -+ rmgy,

Generate a one-time key
sn = AES,(n) from master key k.

Add to obtain MAC:

r4m1 -+ r3m2 + r2m3 -+ rmg + Sp.

Widely deployed for speed:
consider, e.g., GCM.

2006 Joux “forbidden attack’:
ntwice in GCM = repeated s,
= attacker figures out r,
can easily forge messages.

Should MACs have nonces?

To authenticate (mq, my, m3, my):

Compute function with small
differential probabilities.

e.g., r?
where r Is secret.

mi + r3m2 -+ r2m3 -+ rmgy,

Generate a one-time key
sn = AES,(n) from master key k.

Add to obtain MAC:

r4m1 -+ r3m2 + r2m3 -+ rmg + Sp.

Widely deployed for speed:
consider, e.g., GCM.

2006 Joux “forbidden attack’:
ntwice in GCM = repeated s,
= attacker figures out r,
can easily forge messages.

Joux's suggested response:

AES, (r*m; + Pmy—+rPms+ rmy)
“seems a safe option”. (Also
suggested and analyzed in, e.g.,
2000 Bernstein; earlier refs?)

Should MACs have nonces?

To authenticate (mq, my, m3, my):

Compute function with small
differential probabilities.

e.g., r?
where r Is secret.

mi + r3m2 -+ r2m3 -+ rmgy,

Generate a one-time key
sn = AES,(n) from master key k.

Add to obtain MAC:

r4m1 -+ r3m2 + r2m3 -+ rmg + Sp.

Widely deployed for speed:
consider, e.g., GCM.

2006 Joux “forbidden attack’:
ntwice in GCM = repeated s,
= attacker figures out r,
can easily forge messages.

Joux's suggested response:

AES, (r*m; + Pmy—+rPms+ rmy)
“seems a safe option”. (Also
suggested and analyzed in, e.g.,
2000 Bernstein; earlier refs?)

Is this 2128 “security”?

Should MACs have nonces?

To authenticate (mq, my, m3, my):

Compute function with small
differential probabilities.

e.g., r?
where r Is secret.

mi + r3m2 -+ r2m3 -+ rmgy,

Generate a one-time key
sn = AES,(n) from master key k.

Add to obtain MAC:

r4m1 -+ r3m2 + r2m3 -+ rmg + Sp.

Widely deployed for speed:
consider, e.g., GCM.

2006 Joux “forbidden attack’:
ntwice in GCM = repeated s,
= attacker figures out r,
can easily forge messages.

Joux's suggested response:

AES, (r*m; + Pmy—+rPms+ rmy)
“seems a safe option”. (Also
suggested and analyzed in, e.g.,
2000 Bernstein; earlier refs?)

Is this 2128 “security” ?
Forgery chance < ¢ + € where
€ is AES PRF insecurity and
5 ~ qZL/2128

for message lengths <L.

VIACs have nonces?

enticate (mq, my, m3, my):

e function with small

lal probabilities.

N1 + r3m2 -+ r2m3 -+ rmay,
IS secret.

> a one-time key
Si(n) from master key k.

ybtain MAC:

r3m2 -+ r2m3 -+ rmg + Sp.

leployed for speed:
,e.g., GCM.

2006 Joux “forbidden attack’:
ntwice in GCM = repeated s,
= attacker figures out r,
can easily forge messages.

Joux's suggested response:

AES, (r*my + Pmy—+rPmy+ rmy)
“seems a safe option”. (Also
suggested and analyzed in, e.g.,
2000 Bernstein; earlier refs?)

Is this 2128 “security” ?

Forgery chance < ¢ + € where

€ is AES PRF insecurity and
~ q2 L/2128

for message lengths <L.

€ 1s at le

Solution
(2005 B

e nonces’?

N1, My, M3, My):

with small
ities.
+ r2m3 + rmy,

me key
n master key k.

\C:
ms3 -+ rmg + Sp.

or speed:
M.

2006 Joux “forbidden attack’:
ntwice in GCM = repeated s,
= attacker figures out r,
can easily forge messages.

Joux's suggested response:

AES, (r*m; + Pmy—+rPms+ rmy)
“seems a safe option”. (Also
suggested and analyzed in, e.g.,
2000 Bernstein; earlier refs?)

Is this 2128 “security” ?
Forgery chance < ¢ + € where
€ is AES PRF insecurity and
5 ~ qZL/2128

for message lengths <L.

€ is at least g(qg —
Solution: better P
(2005 Bernstein),

, My):

- FMmy,

ey K.

2006 Joux “forbidden attack’:
ntwice in GCM = repeated s,
= attacker figures out r,
can easily forge messages.

Joux's suggested response:

AES, (r*my + Pmy—+rPmy+ rmy)
“seems a safe option”. (Also
suggested and analyzed in, e.g.,
2000 Bernstein; earlier refs?)

Is this 2128 “security” ?

Forgery chance < ¢ + € where

e is AES PRF insecurity and
~ q2 L/2128

for message lengths <L.

€ is at least q(q — 1)/21%°.
Solution: better PRP/PRF
(2005 Bernstein), ok for g =

2006 Joux “forbidden attack’:
ntwice in GCM = repeated s,
= attacker figures out r,
can easily forge messages.

Joux's suggested response:

AES, (r*m; + Pmy—+rPms+ rmy)
“seems a safe option”. (Also
suggested and analyzed in, e.g.,
2000 Bernstein; earlier refs?)

Is this 2128 “security” ?
Forgery chance < ¢ + € where
€ is AES PRF insecurity and
5 ~ qZL/2128

for message lengths <L.

€ is at least q(q — 1)/21%°.

Solution: better PRP/PRF switch
(2005 Bernstein), ok for g ~ 264

2006 Joux “forbidden attack’:
ntwice in GCM = repeated s,
= attacker figures out r,
can easily forge messages.

Joux's suggested response:

AES, (r*m; + Pmy—+rPms+ rmy)
“seems a safe option”. (Also
suggested and analyzed in, e.g.,
2000 Bernstein; earlier refs?)

Is this 2128 “security” ?
Forgery chance < ¢ + € where
€ is AES PRF insecurity and
5 ~ qZL/2128

for message lengths <L.

€ is at least q(q — 1)/21%°.

Solution: better PRP/PRF switch
(2005 Bernstein), ok for g ~ 264

0 is still unacceptably large.
(Show that this is tight? See,
e.g., 2005 Ferguson GCM attack.)

2006 Joux “forbidden attack’:
ntwice in GCM = repeated s,
= attacker figures out r,
can easily forge messages.

Joux's suggested response:

AES, (r*m; + Pmy—+rPms+ rmy)
“seems a safe option”. (Also
suggested and analyzed in, e.g.,
2000 Bernstein; earlier refs?)

Is this 2128 “security” ?
Forgery chance < ¢ + € where
€ is AES PRF insecurity and
5 ~ qZL/2128

for message lengths <L.

€ is at least q(q — 1)/21%°.

Solution: better PRP/PRF switch
(2005 Bernstein), ok for g ~ 264

0 is still unacceptably large.
(Show that this is tight? See,
e.g., 2005 Ferguson GCM attack.)

Fragile solution: “Switch keys!”

2006 Joux “forbidden attack’:
ntwice in GCM = repeated s,
= attacker figures out r,
can easily forge messages.

Joux's suggested response:

AES, (r*m; + Pmy—+rPms+ rmy)
“seems a safe option”. (Also
suggested and analyzed in, e.g.,
2000 Bernstein; earlier refs?)

Is this 2128 “security” ?
Forgery chance < ¢ + € where
€ is AES PRF insecurity and
5 ~ qZL/2128

for message lengths <L.

€ is at least q(q — 1)/21%°.
Solution: better PRP/PRF switch
(2005 Bernstein), ok for g ~ 264

0 is still unacceptably large.
(Show that this is tight? See,
e.g., 2005 Ferguson GCM attack.)

Fragile solution: “Switch keys!”
Much simpler: 256-bit blocks.

2014 Bernstein—Chou “Auth256":
29 bit ops/message bit for
differential probability <2222
Or try EHC from 2013 Nandi?

ux “‘forbidden attack™:
1 GCM = repeated s,
ker figures out r,
y forge messages.

uggested response:

m1+ r3my+ rPmy + rmy)
3 safe option”. (Also

d and analyzed in, e.g.,
rnstein; earlier refs?)

128 “security” ?

chance < 9 + € where
' PRF insecurity and
/2128

age lengths <L.

€ is at least q(q — 1)/21%°.
Solution: better PRP/PRF switch
(2005 Bernstein), ok for g ~ 2%,

0 is still unacceptably large.
(Show that this is tight? See,
e.g., 2005 Ferguson GCM attack.)

Fragile solution: “Switch keys!”
Much simpler: 256-bit blocks.

2014 Bernstein—Chou “Auth256":
29 bit ops/message bit for
differential probability <2222
Or try EHC from 2013 Nandi?

Improvir

Tor wan
easy-to-
encumbe
509-byte
(But cut
SO can C

Also: se
from eac

Tor 1s cc
Of AE/Z

See, e.g.
from RV

den attack’:
repeated s,
> out r,

essages.

esponse:
o+ r’mz + rmy)
on". (Also
lyzed In, e.g.,
rlier refs?)

ity 7
0 + € where
curity and

s <L.

€ is at least q(q — 1)/21%°.

Solution: better PRP/PRF switch
(2005 Bernstein), ok for g ~ 264

0 is still unacceptably large.
(Show that this is tight? See,
e.g., 2005 Ferguson GCM attack.)

Fragile solution: “Switch keys!”
Much simpler: 256-bit blocks.

2014 Bernstein—Chou “Auth256":
29 bit ops/message bit for
differential probability <2222
Or try EHC from 2013 Nandi?

Improving Tor

Tor wants “fast, p
easy-to-implement
encumbered, side-
509-byte blooock
(But current ciphe
SO can consider cc

Also: secure chain
from each blooock

Tor Is considering
of AEZ or HHFHF

See, e.g., Mathew
from RWC 2013 a

€ is at least q(q — 1)/21%°.
Solution: better PRP/PRF switch
(2005 Bernstein), ok for g ~ 2°%.

0 is still unacceptably large.
(Show that this is tight? See,
e.g., 2005 Ferguson GCM attack.)

Fragile solution: “Switch keys!”
Much simpler: 256-bit blocks.

2014 Bernstein—Chou “Auth256":
29 bit ops/message bit for
differential probability <2222
Or try EHC from 2013 Nandi?

Improving Tor

Tor wants “fast, proven, sec
easy-to-implement, non-pate
encumbered, side-channel-fr
509-byte blooock cipher.

(But current cipher is a disa
so can consider compromise:

Also: secure chaining
from each blooock to the ne

Tor is considering deploymel
of AEZ or HHFHFH in 201¢

See, e.g., Mathewson talks
from RWC 2013 and RWC

€ is at least q(q — 1)/21%°.

Solution: better PRP/PRF switch
(2005 Bernstein), ok for g ~ 264

0 is still unacceptably large.
(Show that this is tight? See,
e.g., 2005 Ferguson GCM attack.)

Fragile solution: “Switch keys!”
Much simpler: 256-bit blocks.

2014 Bernstein—Chou “Auth256":
29 bit ops/message bit for
differential probability <2222
Or try EHC from 2013 Nandi?

Improving Tor

Tor wants “fast, proven, secure,
easy-to-implement, non-patent-
encumbered, side-channel-free”

509-byte blooock cipher.

(But current cipher is a disaster,
so can consider compromises.)

Also: secure chaining
from each blooock to the next.

Tor is considering deployment
of AEZ or HHFHFH in 2016.

See, e.g., Mathewson talks
from RWC 2013 and RWC 2016.

ast q(q — 1)/212°,
. better PRP/PRF switch

ernstein), ok for g ~ 24,

unacceptably large.
hat this is tight? See,
)5 Ferguson GCM attack.)

olution: “Switch keys!”
mpler: 256-bit blocks.

rnstein—Chou “Auth256":

0s/message bit for

ial probability <2722,

HC from 2013 Nandi?

Improving Tor

Tor wants “fast, proven, secure,
easy-to-implement, non-patent-

encumbered, side-channel-free”

509-byte blooock cipher.

(But current cipher is a disaster,

so can consider compromises.)

Also: secure chaining
from each blooock to the next.

Tor is considering deployment
of AEZ or HHFHFH in 2016.

See, e.g., Mathewson talks
from RWC 2013 and RWC 2016.

Fels

|

stream
(strong

|

SCTE
HHFH

1)/2129_
'RP/PRF switch
ok for g ~ 204

bly large.
tight? See,
n GCM attack.)

Switch keys!”
)-bit blocks.

1ou “Auth256":
e bit for

ility <272°°.
2013 Nandi?

Improving Tor

Tor wants “fast, proven, secure,
easy-to-implement, non-patent-
encumbered, side-channel-free”
509-byte blooock cipher.

(But current cipher is a disaster,

so can consider compromises.)

Also: secure chaining
from each blooock to the next.

Tor is considering deployment
of AEZ or HHFHFH in 2016.

See, e.g., Mathewson talks

from RWC 2013 and RWC 2016.

Feistel

CTF
OFE

e

stream cipher
(strong PRF)

SCTES
HHFHFH

[]

switch
, 204

tack.)

yS!”
S.

256” :

55
17

Improving Tor

Tor wants “fast, proven, secure,
easy-to-implement, non-patent-
encumbered, side-channel-free”

509-byte blooock cipher.

(But current cipher is a disaster,
so can consider compromises.)

Also: secure chaining
from each blooock to the next.

Tor is considering deployment
of AEZ or HHFHFH in 2016.

See, e.g., Mathewson talks
from RWC 2013 and RWC 2016.

block cipl

(strong SP

Feistel |~
CTR C

OFB E

X

H(

stream cipher P
(strong PRF) H
T

H

1

H

SCTES VE“
AHFHFR blooock ci
(strong SP

Improving Tor

Tor wants “fast, proven, secure,
easy-to-implement, non-patent-
encumbered, side-channel-free”

509-byte blooock cipher.

(But current cipher is a disaster,
so can consider compromises.)

Also: secure chaining
from each blooock to the next.

Tor is considering deployment
of AEZ or HHFHFH in 2016.

See, e.g., Mathewson talks
from RWC 2013 and RWC 2016.

block cipher

(strong SPRP)

Feistel

CTR
OFB

stream cipher
(strong PRF)

SCTES

Y

NR
CMC
EME
XCB

HCTR
PEP
HCH
TET
HEH
IHCH
HOH

EMME

HHFHFH

blooock cipher
(strong SPRP)

g Tor

ts “fast, proven, secure,
mplement, non-patent-
ared, side-channel-free”
 blooock cipher.

rent cipher Is a disaster,

onsider compromises.)

cure chaining
"h blooock to the next.

nsidering deployment
or HHFHFH in 2016.

. Mathewson talks

VC 2013 and RWC 2016.

Feistel

CTR
OFB

block cipher
(strong SPRP)

stream cipher
(strong PRF)

SCTES
HHFHFH

Y

NR
CMC
EME
XCB
HCTR
PEP
HCH
TET
HEH
HCH
HOH
EMME

blooock cipher
(strong SPRP)

roven, secure,
, hon-patent-
channel-free”

cipher.

r 1s a disaster,

mpromises.)

ing
¢ to the next.

deployment
‘H in 2016.

son talks

nd RWC 2016.

Feistel

CTR
OFB

block cipher
(strong SPRP)

stream cipher
(strong PRF)

SCTES
HHFHFH

NR
CMC
EME
XCB
HCTR
PEP
HCH
TET
HEH
HCH
HOH
EMME

Y

blooock cipher
(strong SPRP)

ure,
N{-

ee”

ster,

X L.

1t

2016.

Feistel

CTR
OFB

block cipher
(strong SPRP)

stream cipher
(strong PRF)

SCTES
HHFHFH

Y

NR
CMC
EME
XCB
HCTR
PEP
HCH
TET
HEH
HCH
HOH
EMME

blooock cipher
(strong SPRP)

X0 - X
+1 = H1 =

. B

Xp —> Hyo —— o =——=>{
J/ § v

3~ B3~ H3[=— X

)

Hy —— —

Y \

X4 X

Feistel

CTR
OFB

block cipher
(strong SPRP)

stream cipher
(strong PRF)

SCTES
HHFHFH

NR
CMC
EME
XCB
HCTR
PEP
HCH
TET
HEH
HCH
HOH
EMME

Y

blooock cipher
(strong SPRP)

X0 w X1
+1 < H1 <
4 Y
X) —= H2 —> F2 —> 9
l | p
—3<— 3= H3<—x3
Hy ——= —14
Y Y
X4 Xs

tel

block cipher
(strong SPRP)

NR

CTR CMC
OFB EME

cipher
PRF)

XCB
HCTR
PEP
HCH
TET
HEH
HCH
HOH
EMME

Y

blooock cipher
(strong SPRP)

X0 W X1
+1 < H1 (<
4 Y
X —> H2 —> F2 —> 2
J/ | p
—3<— FR<~—H3~—x3
Hy ——= —1
Y Y
X4 X5,

Previous
(Bernste
H 1s pur
F 1s a st

Ingrediel
H at toy
bottom

H>, H3 ¢
H1, H4 c
XCB/H(
than 20(

Allow or
unity Hj

unity H-

block cipher
strong SPRP)

A4 4

Y

NR

CMC
EME
XCB
HCTR
PEP
HCH
TET
HEH
HCH
HOH
EMME

looock cipher
strong SPRP)

X0 w X1
+1 (<~ H1 =
4 i
XD —> H2 —> F2 —> 9
l y
—3~<—F3 H3 =— x3
Hy —— —4
Y i
X4 X,

Previous slide: HF
(Bernstein—Nandi-
H is purely combi
F 1s a stream ciph

Ingredients: 4-rou
H at top (1996 Lt
bottom (1997 Nac
H>, H3 allow one-|
Hq, Hy are stretch
XCB/HCTR-style
than 2002 Liskov-

Allow one H1, Hbo,
unify H1, H2 NYypPO

unify Hsz, Ha hypo

X0 w X1
+1 = H1 =
4 Y
X —> H2 —> F2 —> 2
J/ § y
3~ B~ X3
Hy ——= —1
Y Y
X4 G

Previous slide: HHFHFH
(Bernstein—Nandi—Sarkar).
H is purely combinatorial;
F 1s a stream cipher.

Ingredients: 4-round Feistel;
H at top (1996 Lucks),

bottom (1997 Naor—Reingol
H>, H3 allow one-block nonc
Hy, Hy are stretched by 0-p:
XCB/HCTR-style tweak, fas
than 2002 Liskov—Rivest—\W:

Allow one Hy, Ho, H3, Ha ke
unify Hi, Hy hypotheses;

unify Hs, Hg hypotheses.

X0 w X1
+1 < H1 =
4 Y
XQQHQE%FQ —> 9
l | y
—3<— FR~~—H3=~—Xx3
Hy ——= —14
\ Y
X4 X5

Previous slide: HHFHFH
(Bernstein—Nandi—Sarkar).
H is purely combinatorial;
F 1s a stream cipher.

Ingredients: 4-round Feistel;

H at top (1996 Lucks),
bottom (1997 Naor—Reingold);
H>, H3 allow one-block nonces;
H1, Hy are stretched by 0-pad;
XCB/HCTR-style tweak, faster
than 2002 Liskov—Rivest—\Wagner.

Allow one Hi, Hy, H3, Hy key;
unify Hi, Hy hypotheses;

unify Hsz, Hg hypotheses.

v X1

i

——> Fo == 12
? y

< H3 <~—Xx3

Hy ——= —1

Y

X5

Previous slide: HHFHFH
(Bernstein—Nandi—Sarkar).
H is purely combinatorial;
F 1s a stream cipher.

Ingredients: 4-round Feistel;

H at top (1996 Lucks),
bottom (1997 Naor—Reingold);
H>, H3 allow one-block nonces;
Hy, Hy are stretched by 0-pad;
XCB/HCTR-style tweak, faster

than 2002 Liskov—Rivest—Wagner.

Allow one Hy, Ho, H3z, Hy key;
unify Hi, Hy hypotheses;

unify Hs, Hg hypotheses.

One pos
permuta

Full-wid
beats sq
and CT}

Also chc
We're st

Use sing
“chop T(

w as tru

HHFHFI
twice, w
Somethi
more loc

X1
oy
Fo ——= +9
.z
H3 =— x3
Hy ——= —14

Y

X5

Previous slide: HHFHFH
(Bernstein—Nandi—Sarkar).
H is purely combinatorial;
F 1s a stream cipher.

Ingredients: 4-round Feistel;

H at top (1996 Lucks),
bottom (1997 Naor—Reingold);
H>, H3 allow one-block nonces;
H1, Hy are stretched by 0-pad;
XCB/HCTR-style tweak, faster

than 2002 Liskov—Rivest—Wagner.

Allow one Hi, Hy, H3, Hy key;
unify Hi, Hy hypotheses;

unify Hs, Hg hypotheses.

One possibility for
permutation in EN

Full-width permut

beats squeezing fc
and CTR is highly

Also choose highly
We're still optimiz

Use single-block t
“chopTC": chain
w as truncation o

HHFHFH reads ez
twice, writes each
Something I'm wo
more locality insid

Previous slide: HHFHFH
(Bernstein—Nandi—Sarkar).
H is purely combinatorial;
F 1s a stream cipher.

Ingredients: 4-round Feistel;

H at top (1996 Lucks),
bottom (1997 Naor—Reingold);
H>, H3 allow one-block nonces;
Hy, Hy are stretched by 0-pad;
XCB/HCTR-style tweak, faster

than 2002 Liskov—Rivest—Wagner.

Allow one Hy, Ho, H3, Hy key;
unify Hi, Hy hypotheses;

unify Hs, Hg hypotheses.

One possibility for F:
permutation in EM in CTR.

Full-width permutation outg

beats squeezing for long out
and CTR is highly parallel.

Also choose highly parallel f
We're still optimizing choice

Use single-block tweak w.
“chop TC": chain by choosin
w as truncation of P & C.

HHFHFH reads each bit In :
twice, writes each bit once.
Something I'm working on r
more locality inside permuta

Previous slide: HHFHFH
(Bernstein—Nandi—Sarkar).
H is purely combinatorial;
F 1s a stream cipher.

Ingredients: 4-round Feistel;

H at top (1996 Lucks),
bottom (1997 Naor—Reingold);
H>, H3 allow one-block nonces;
H1, Hy are stretched by 0-pad;
XCB/HCTR-style tweak, faster

than 2002 Liskov—Rivest—\Wagner.

Allow one Hi, Hy, H3, Hy key;
unify Hi, Hy hypotheses;

unify Hs, Hg hypotheses.

One possibility for F:
permutation in EM in CTR.

Full-width permutation output

beats squeezing for long output;
and CTR is highly parallel.

Also choose highly parallel H.
We're still optimizing choices.

Use single-block tweak w.
“chopTC": chain by choosing
w as truncation of P & C.

HHFHFH reads each bit In array
twice, writes each bit once.

Something I'm working on now:
more locality inside permutation.

 slide: HHFHFH
in—Nandi—Sarkar).
ely combinatorial;
ream cipher.

ts: 4-round Feistel:

) (1996 Lucks),

(1997 Naor—Reingold);
llow one-block nonces;
re stretched by 0-pad;
_TR-style tweak, faster

)2 Liskov—Rivest—\Wagner.

e Hy, Ha, H3, Hy key;
, H> hypotheses;

, H4 hypotheses.

One possibility for F:
permutation in EM in CTR.

Full-width permutation output

beats squeezing for long output;
and CTR is highly parallel.

Also choose highly parallel H.
We're still optimizing choices.

Use single-block tweak w.
“chopTC": chain by choosing
w as truncation of P & C.

HHFHFH reads each bit in array

twice, writes each bit once.
Something I'm working on now:

more locality inside permutation.

Security
compare
basically
assumin;

and typl
Is this 2

{FHFH
-Sarkar).
natorial;
er.

nd Feistel:
Icks),
r—Reingold);
slock nonces:;
ed by 0-pad;
tweak, faster

Rivest—Wagner.

Hs, Hy key;
theses;

theses.

One possibility for F:
permutation in EM in CTR.

Full-width permutation output

beats squeezing for long output;
and CTR is highly parallel.

Also choose highly parallel H.
We're still optimizing choices.

Use single-block tweak w.
“chopTC": chain by choosing
w as truncation of P & C.

HHFHFH reads each bit in array
twice, writes each bit once.
Something I'm working on now:

more locality inside permutation.

Security loss of m
compared to secur
basically g2 /2128,
assuming 128-bit |
and typical choice

s this 2125 “secur

€S
d:
ter

agner.

One possibility for F:
permutation in EM in CTR.

Full-width permutation output

beats squeezing for long output;
and CTR is highly parallel.

Also choose highly parallel H.
We're still optimizing choices.

Use single-block tweak w.
“chopTC": chain by choosing
w as truncation of P & C.

HHFHFH reads each bit In array
twice, writes each bit once.

Something I'm working on now:
more locality inside permutation.

Security loss of mode
compared to security of F:
basically g2 /2128,

assuming 128-bit blocks

and typical choice of H.

Is this 2128 “security” ?

One possibility for F:
permutation in EM in CTR.

Full-width permutation output

beats squeezing for long output;
and CTR is highly parallel.

Also choose highly parallel H.
We're still optimizing choices.

Use single-block tweak w.
“chopTC": chain by choosing
w as truncation of P & C.

HHFHFH reads each bit In array
twice, writes each bit once.

Something I'm working on now:
more locality inside permutation.

Security loss of mode
compared to security of F:
basically g2 /2128,

assuming 128-bit blocks
and typical choice of H.

Is this 2128 “security” ?

One possibility for F:
permutation in EM in CTR.

Full-width permutation output

beats squeezing for long output;
and CTR is highly parallel.

Also choose highly parallel H.
We're still optimizing choices.

Use single-block tweak w.
“chopTC": chain by choosing
w as truncation of P & C.

HHFHFH reads each bit In array
twice, writes each bit once.

Something I'm working on now:
more locality inside permutation.

Security loss of mode
compared to security of F:
basically g2 /2128,
assuming 128-bit blocks
and typical choice of H.

Is this 2128 “security” ?

Fragile fix: “beyond-birthday-
bound security.” Complicates
implementation, security analysis.

One possibility for F:
permutation in EM in CTR.

Full-width permutation output

beats squeezing for long output;
and CTR is highly parallel.

Also choose highly parallel H.
We're still optimizing choices.

Use single-block tweak w.
“chopTC": chain by choosing
w as truncation of P & C.

HHFHFH reads each bit In array
twice, writes each bit once.

Something I'm working on now:
more locality inside permutation.

Security loss of mode
compared to security of F:
basically g2 /2128,
assuming 128-bit blocks

and typical choice of H.
Is this 2128 “security” ?

Fragile fix: “beyond-birthday-
bound security.” Complicates
implementation, security analysis.

Simpler fix: “bigger-birthday-
bound security.” Use 256-bit

blocks, security q2/2256.

One possibility for F:
permutation in EM in CTR.

Full-width permutation output

beats squeezing for long output;
and CTR is highly parallel.

Also choose highly parallel H.
We're still optimizing choices.

Use single-block tweak w.
“chopTC": chain by choosing
w as truncation of P & C.

HHFHFH reads each bit In array
twice, writes each bit once.

Something I'm working on now:
more locality inside permutation.

Security loss of mode
compared to security of F:
basically g2 /2128,
assuming 128-bit blocks

and typical choice of H.
Is this 2128 “security” ?

Fragile fix: “beyond-birthday-
bound security.” Complicates
implementation, security analysis.

Simpler fix: “bigger-birthday-
bound security.” Use 256-bit

blocks, security q2/2256.

Is 256-bit n safe in ChaCha?

sibility for F:
tion in EM in CTR.

th permutation output
ueezing for long output;
R Is highly parallel.

ose highly parallel H.
ill optimizing choices.
le-block tweak w.

_": chain by choosing
ncation of P& C.

1 reads each bit in array
rites each bit once.
ng I'm working on now:

ality inside permutation.

Security loss of mode
compared to security of F:
basically g2 /2128,
assuming 128-bit blocks

and typical choice of H.
Is this 2128 “security” ?

Fragile fix: “beyond-birthday-
bound security.” Complicates

implementation, security analysis.

Simpler fix: “bigger-birthday-
bound security.” Use 256-bit

blocks, security q2/2256.

Is 256-bit n safe in ChaCha?

Heavywe

Interesti
>256 bi
>256-bi
>256-bi

F
1in CTR.

ation output
r long output;
parallel.

r parallel H.
Ing choices.

veak w.
oy choosing
P& C.

ch bit in array
bit once.

rking on now:
e permutation.

Security loss of mode
compared to security of F:
basically g2 /2128,
assuming 128-bit blocks
and typical choice of H.

Is this 2128 “security”?

Fragile fix: “beyond-birthday-
bound security.” Complicates

implementation, security analysis.

Simpler fix: “bigger-birthday-
bound security.” Use 256-bit

blocks, security q2/2256.

Is 256-bit n safe in ChaCha?

Heavyweight ciphe

Interesting cipher
>256 bits for all ¢
>2b56-bit keys, >Z
>256-bit subkeys,

ut

put;

array

IOW.

tion.

Security loss of mode
compared to security of F:
basically g2 /2128,
assuming 128-bit blocks

and typical choice of H.
Is this 2128 “security” ?

Fragile fix: “beyond-birthday-
bound security.” Complicates

implementation, security analysis.

Simpler fix: “bigger-birthday-
bound security.” Use 256-bit

blocks, security q2/2256.

Is 256-bit n safe in ChaCha?

Heavyweight ciphers

Interesting cipher-design sp.
>256 bits for all pipes.
>256-bit keys, >256-bit out
>256-bit subkeys, etc.

Security loss of mode
compared to security of F:
basically g2 /2128,
assuming 128-bit blocks
and typical choice of H.

Is this 2128 “security”?

Fragile fix: “beyond-birthday-
bound security.” Complicates

implementation, security analysis.

Simpler fix: “bigger-birthday-
bound security.” Use 256-bit

blocks, security q2/2256.

Is 256-bit n safe in ChaCha?

Heavyweight ciphers

Interesting cipher-design space:
>256 bits for all pipes.

>256-
>256-

oIt keys, >2b6-bit outputs,

nit subkeys, etc.

Security loss of mode
compared to security of F:
basically g2 /2128,
assuming 128-bit blocks
and typical choice of H.

Is this 2128 “security”?

Fragile fix: “beyond-birthday-
bound security.” Complicates

implementation, security analysis.

Simpler fix: “bigger-birthday-
bound security.” Use 256-bit

blocks, security q2/2256.

Is 256-bit n safe in ChaCha?

Heavyweight ciphers

Interesting cipher-design space:
>256 bits for all pipes.

>2b6-bit keys, >256-bit outputs,
>256-bit subkeys, etc.

Occasional designs: Rijndael,

OMD (SHA-2), Keccak, BLAKE2,
NORX, Simpira, This needs
far more attention, optimization.
Hash designs are usually overkill.

Security loss of mode
compared to security of F:
basically g2 /2128,
assuming 128-bit blocks
and typical choice of H.

Is this 2128 “security” ?

Fragile fix: “beyond-birthday-
bound security.” Complicates

implementation, security analysis.

Simpler fix: “bigger-birthday-
bound security.” Use 256-bit

blocks, security q2/2256.

Is 256-bit n safe in ChaCha?

Heavyweight ciphers

Interesting cipher-design space:
>256 bits for all pipes.

>2b6-bit keys, >256-bit outputs,
>256-bit subkeys, etc.

Occasional designs: Rijndael,
OMD (SHA-2), Keccak, BLAKE2,

NORX, Simpira, This needs
far more attention, optimization.
Hash designs are usually overkill.

Is 256 fundamentally much slower,

or much less energy-efficient,
than 1287 My guess: No!

loss of mode

d to security of F:
, q2/2128,

o 128-bit blocks
cal choice of H.

128 “security” ?

IX: "beyond-birthday-
ecurity.” Complicates

ntation, security analysis.

fix: “bigger-birthday-
ecurity.” Use 256-bit

ecurity g2 /2%,

t n safe in ChaCha?

Heavyweight ciphers

Interesting cipher-design space:
>256 bits for all pipes.

>256-bit keys, >256-bit outputs,
>256-bit subkeys, etc.

Occasional designs: Rijndael,

OMD (SHA-2), Keccak, BLAKE2,

NORX, Simpira, This needs

far more attention, optimization.
Hash designs are usually overkill.

Is 256 fundamentally much slower,

or much less energy-efficient,
than 1287 My guess: No!

Another
PRF ins

EdDSA

random

truncate
H is SH

2015 Be
truncate
high-sec

Even wi
reusing |
surely c:
in both

bde
ity of F:

blocks
of H.
ity 7

1d-birthday-
_omplicates

acurity analysis.

er-birthday-
Jse 256-bit
3/2256_

1 ChaCha?

Heavyweight ciphers

Interesting cipher-design space:
>256 bits for all pipes.

>2b56-bit keys, >256-bit outputs,
>256-bit subkeys, etc.

Occasional designs: Rijndael,

OMD (SHA-2), Keccak, BLAKE2,

NORX, Simpira, This needs

far more attention, optimization.
Hash designs are usually overkill.

Is 256 fundamentally much slower,

or much less energy-efficient,
than 1287 My guess: No!

Another optimizat
PRF inside EdDS/

EdDSA generates
random number
truncated hash: F
H is SHA-512: s i

2015 Bel

truncatec
high-secu

are—Bern
prefixed
rity mult

Even with the con

reusing preimage-t

surely can build b

In both software a

=S

alysis.

Heavyweight ciphers

Interesting cipher-design space:
>256 bits for all pipes.

>256-bit keys, >256-bit outputs,
>256-bit subkeys, etc.

Occasional designs: Rijndael,

OMD (SHA-2), Keccak, BLAKE2,

NORX, Simpira, This needs
far more attention, optimization.

Hash designs are usually overkill.

Is 256 fundamentally much slower,

or much less energy-efficient,
than 1287 My guess: No!

Another optimization target
PRF inside EADSA signatur:

EdDSA generates per-signat

random number mod 256-bi

truncated hash: H(s, m) mc
H is SHA-512; s is subkey.

2015 Bel

truncatec
high-secu

are—Bernstein—Tess
prefixed MD hash
rity multi-user MA

Even with the constraint of

reusing preimage-resistant h

surely can build better desig

In both software and hardws

Heavyweight ciphers

Interesting cipher-design space:
>256 bits for all pipes.

>256-bit keys, >256-bit outputs,
>256-bit subkeys, etc.

Occasional designs: Rijndael,

OMD (SHA-2), Keccak, BLAKE2,

NORX, Simpira, This needs

far more attention, optimization.
Hash designs are usually overkill.

Is 256 fundamentally much slower,

or much less energy-efficient,
than 1287 My guess: No!

Another optimization target:
PRF inside EADSA signatures.

EdDSA generates per-signature
random number mod 256-bit £ as
truncated hash: H(s, m) mod .
H is SHA-512; s is subkey.

2015 Bellare—Bernstein—Tessaro:

truncated prefixed MD hash is a
high-security multi-user MAC.

Even with the constraint of
reusing preimage-resistant hash,
surely can build better design

in both software and hardware.

