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NORX, Simpira, .... This needs

far more attention, optimization.
Hash designs are usually overkill.

Is 256 fundamentally much slower,

or much less energy-efficient,
than 1287 My guess: No!

Another optimization target:
PRF inside EADSA signatures.

EdDSA generates per-signature
random number mod 256-bit £ as
truncated hash: H(s, m) mod .
H is SHA-512; s is subkey.
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truncated prefixed MD hash is a
high-security multi-user MAC.

Even with the constraint of
reusing preimage-resistant hash,
surely can build better design

in both software and hardware.



