
Boring crypto

Daniel J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

Ancient Chinese curse: “May you

live in interesting times, so that

you have many papers to write.”

Related mailing list:

boring-crypto+subscribe

@googlegroups.com

Some recent TLS failures

Diginotar CA compromise.

BEAST CBC attack.

Trustwave HTTPS interception.

CRIME compression attack.

Lucky 13 padding/timing attack.

RC4 keystream bias.

TLS truncation.

gotofail signature-verification bug.

Triple Handshake.

Heartbleed buffer overread.

POODLE padding-oracle attack.

Winshock buffer overflow.

FREAK factorization attack.

Logjam discrete-log attack.

Boring crypto

Daniel J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

Ancient Chinese curse: “May you

live in interesting times, so that

you have many papers to write.”

Related mailing list:

boring-crypto+subscribe

@googlegroups.com

Some recent TLS failures

Diginotar CA compromise.

BEAST CBC attack.

Trustwave HTTPS interception.

CRIME compression attack.

Lucky 13 padding/timing attack.

RC4 keystream bias.

TLS truncation.

gotofail signature-verification bug.

Triple Handshake.

Heartbleed buffer overread.

POODLE padding-oracle attack.

Winshock buffer overflow.

FREAK factorization attack.

Logjam discrete-log attack.

TLS is not boring crypto.

New attacks!

Disputes about security!

Improved attacks!

Proposed fixes!

Even better attacks!

Emergency upgrades!

Different attacks!

New protocol versions!

Boring crypto

Daniel J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

Ancient Chinese curse: “May you

live in interesting times, so that

you have many papers to write.”

Related mailing list:

boring-crypto+subscribe

@googlegroups.com

Some recent TLS failures

Diginotar CA compromise.

BEAST CBC attack.

Trustwave HTTPS interception.

CRIME compression attack.

Lucky 13 padding/timing attack.

RC4 keystream bias.

TLS truncation.

gotofail signature-verification bug.

Triple Handshake.

Heartbleed buffer overread.

POODLE padding-oracle attack.

Winshock buffer overflow.

FREAK factorization attack.

Logjam discrete-log attack.

TLS is not boring crypto.

New attacks!

Disputes about security!

Improved attacks!

Proposed fixes!

Even better attacks!

Emergency upgrades!

Different attacks!

New protocol versions!

Boring crypto

Daniel J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

Ancient Chinese curse: “May you

live in interesting times, so that

you have many papers to write.”

Related mailing list:

boring-crypto+subscribe

@googlegroups.com

Some recent TLS failures

Diginotar CA compromise.

BEAST CBC attack.

Trustwave HTTPS interception.

CRIME compression attack.

Lucky 13 padding/timing attack.

RC4 keystream bias.

TLS truncation.

gotofail signature-verification bug.

Triple Handshake.

Heartbleed buffer overread.

POODLE padding-oracle attack.

Winshock buffer overflow.

FREAK factorization attack.

Logjam discrete-log attack.

TLS is not boring crypto.

New attacks!

Disputes about security!

Improved attacks!

Proposed fixes!

Even better attacks!

Emergency upgrades!

Different attacks!

New protocol versions!

Some recent TLS failures

Diginotar CA compromise.

BEAST CBC attack.

Trustwave HTTPS interception.

CRIME compression attack.

Lucky 13 padding/timing attack.

RC4 keystream bias.

TLS truncation.

gotofail signature-verification bug.

Triple Handshake.

Heartbleed buffer overread.

POODLE padding-oracle attack.

Winshock buffer overflow.

FREAK factorization attack.

Logjam discrete-log attack.

TLS is not boring crypto.

New attacks!

Disputes about security!

Improved attacks!

Proposed fixes!

Even better attacks!

Emergency upgrades!

Different attacks!

New protocol versions!

Some recent TLS failures

Diginotar CA compromise.

BEAST CBC attack.

Trustwave HTTPS interception.

CRIME compression attack.

Lucky 13 padding/timing attack.

RC4 keystream bias.

TLS truncation.

gotofail signature-verification bug.

Triple Handshake.

Heartbleed buffer overread.

POODLE padding-oracle attack.

Winshock buffer overflow.

FREAK factorization attack.

Logjam discrete-log attack.

TLS is not boring crypto.

New attacks!

Disputes about security!

Improved attacks!

Proposed fixes!

Even better attacks!

Emergency upgrades!

Different attacks!

New protocol versions!

Continual excitement;

tons of research papers;

more jobs for cryptographers.

Some recent TLS failures

Diginotar CA compromise.

BEAST CBC attack.

Trustwave HTTPS interception.

CRIME compression attack.

Lucky 13 padding/timing attack.

RC4 keystream bias.

TLS truncation.

gotofail signature-verification bug.

Triple Handshake.

Heartbleed buffer overread.

POODLE padding-oracle attack.

Winshock buffer overflow.

FREAK factorization attack.

Logjam discrete-log attack.

TLS is not boring crypto.

New attacks!

Disputes about security!

Improved attacks!

Proposed fixes!

Even better attacks!

Emergency upgrades!

Different attacks!

New protocol versions!

Continual excitement;

tons of research papers;

more jobs for cryptographers.

Let’s look at an example.

Some recent TLS failures

Diginotar CA compromise.

BEAST CBC attack.

Trustwave HTTPS interception.

CRIME compression attack.

Lucky 13 padding/timing attack.

RC4 keystream bias.

TLS truncation.

gotofail signature-verification bug.

Triple Handshake.

Heartbleed buffer overread.

POODLE padding-oracle attack.

Winshock buffer overflow.

FREAK factorization attack.

Logjam discrete-log attack.

TLS is not boring crypto.

New attacks!

Disputes about security!

Improved attacks!

Proposed fixes!

Even better attacks!

Emergency upgrades!

Different attacks!

New protocol versions!

Continual excitement;

tons of research papers;

more jobs for cryptographers.

Let’s look at an example.

The RC4 stream cipher

1987: Ron Rivest designs RC4.

Does not publish it.

Some recent TLS failures

Diginotar CA compromise.

BEAST CBC attack.

Trustwave HTTPS interception.

CRIME compression attack.

Lucky 13 padding/timing attack.

RC4 keystream bias.

TLS truncation.

gotofail signature-verification bug.

Triple Handshake.

Heartbleed buffer overread.

POODLE padding-oracle attack.

Winshock buffer overflow.

FREAK factorization attack.

Logjam discrete-log attack.

TLS is not boring crypto.

New attacks!

Disputes about security!

Improved attacks!

Proposed fixes!

Even better attacks!

Emergency upgrades!

Different attacks!

New protocol versions!

Continual excitement;

tons of research papers;

more jobs for cryptographers.

Let’s look at an example.

The RC4 stream cipher

1987: Ron Rivest designs RC4.

Does not publish it.

Some recent TLS failures

Diginotar CA compromise.

BEAST CBC attack.

Trustwave HTTPS interception.

CRIME compression attack.

Lucky 13 padding/timing attack.

RC4 keystream bias.

TLS truncation.

gotofail signature-verification bug.

Triple Handshake.

Heartbleed buffer overread.

POODLE padding-oracle attack.

Winshock buffer overflow.

FREAK factorization attack.

Logjam discrete-log attack.

TLS is not boring crypto.

New attacks!

Disputes about security!

Improved attacks!

Proposed fixes!

Even better attacks!

Emergency upgrades!

Different attacks!

New protocol versions!

Continual excitement;

tons of research papers;

more jobs for cryptographers.

Let’s look at an example.

The RC4 stream cipher

1987: Ron Rivest designs RC4.

Does not publish it.

TLS is not boring crypto.

New attacks!

Disputes about security!

Improved attacks!

Proposed fixes!

Even better attacks!

Emergency upgrades!

Different attacks!

New protocol versions!

Continual excitement;

tons of research papers;

more jobs for cryptographers.

Let’s look at an example.

The RC4 stream cipher

1987: Ron Rivest designs RC4.

Does not publish it.

TLS is not boring crypto.

New attacks!

Disputes about security!

Improved attacks!

Proposed fixes!

Even better attacks!

Emergency upgrades!

Different attacks!

New protocol versions!

Continual excitement;

tons of research papers;

more jobs for cryptographers.

Let’s look at an example.

The RC4 stream cipher

1987: Ron Rivest designs RC4.

Does not publish it.

1992: NSA makes a deal with

Software Publishers Association.

“NSA allows encryption : : :

The U.S. Department of State

will grant export permission

to any program that uses the

RC2 or RC4 data-encryption

algorithm with a key size

of less than 40 bits.”

TLS is not boring crypto.

New attacks!

Disputes about security!

Improved attacks!

Proposed fixes!

Even better attacks!

Emergency upgrades!

Different attacks!

New protocol versions!

Continual excitement;

tons of research papers;

more jobs for cryptographers.

Let’s look at an example.

The RC4 stream cipher

1987: Ron Rivest designs RC4.

Does not publish it.

1992: NSA makes a deal with

Software Publishers Association.

“NSA allows encryption : : :

The U.S. Department of State

will grant export permission

to any program that uses the

RC2 or RC4 data-encryption

algorithm with a key size

of less than 40 bits.”

1994: Someone anonymously

posts RC4 source code.

New York Times: “Widespread

dissemination could compromise

the long-term effectiveness of the

system : : : [RC4] has become

the de facto coding standard

for many popular software

programs including Microsoft

Windows, Apple’s Macintosh

operating system and Lotus

Notes. : : : ‘I have been told it

was part of this deal that RC4

be kept confidential,’ Jim Bidzos,

president of RSA, said.”

TLS is not boring crypto.

New attacks!

Disputes about security!

Improved attacks!

Proposed fixes!

Even better attacks!

Emergency upgrades!

Different attacks!

New protocol versions!

Continual excitement;

tons of research papers;

more jobs for cryptographers.

Let’s look at an example.

The RC4 stream cipher

1987: Ron Rivest designs RC4.

Does not publish it.

1992: NSA makes a deal with

Software Publishers Association.

“NSA allows encryption : : :

The U.S. Department of State

will grant export permission

to any program that uses the

RC2 or RC4 data-encryption

algorithm with a key size

of less than 40 bits.”

1994: Someone anonymously

posts RC4 source code.

New York Times: “Widespread

dissemination could compromise

the long-term effectiveness of the

system : : : [RC4] has become

the de facto coding standard

for many popular software

programs including Microsoft

Windows, Apple’s Macintosh

operating system and Lotus

Notes. : : : ‘I have been told it

was part of this deal that RC4

be kept confidential,’ Jim Bidzos,

president of RSA, said.”

TLS is not boring crypto.

New attacks!

Disputes about security!

Improved attacks!

Proposed fixes!

Even better attacks!

Emergency upgrades!

Different attacks!

New protocol versions!

Continual excitement;

tons of research papers;

more jobs for cryptographers.

Let’s look at an example.

The RC4 stream cipher

1987: Ron Rivest designs RC4.

Does not publish it.

1992: NSA makes a deal with

Software Publishers Association.

“NSA allows encryption : : :

The U.S. Department of State

will grant export permission

to any program that uses the

RC2 or RC4 data-encryption

algorithm with a key size

of less than 40 bits.”

1994: Someone anonymously

posts RC4 source code.

New York Times: “Widespread

dissemination could compromise

the long-term effectiveness of the

system : : : [RC4] has become

the de facto coding standard

for many popular software

programs including Microsoft

Windows, Apple’s Macintosh

operating system and Lotus

Notes. : : : ‘I have been told it

was part of this deal that RC4

be kept confidential,’ Jim Bidzos,

president of RSA, said.”

The RC4 stream cipher

1987: Ron Rivest designs RC4.

Does not publish it.

1992: NSA makes a deal with

Software Publishers Association.

“NSA allows encryption : : :

The U.S. Department of State

will grant export permission

to any program that uses the

RC2 or RC4 data-encryption

algorithm with a key size

of less than 40 bits.”

1994: Someone anonymously

posts RC4 source code.

New York Times: “Widespread

dissemination could compromise

the long-term effectiveness of the

system : : : [RC4] has become

the de facto coding standard

for many popular software

programs including Microsoft

Windows, Apple’s Macintosh

operating system and Lotus

Notes. : : : ‘I have been told it

was part of this deal that RC4

be kept confidential,’ Jim Bidzos,

president of RSA, said.”

The RC4 stream cipher

1987: Ron Rivest designs RC4.

Does not publish it.

1992: NSA makes a deal with

Software Publishers Association.

“NSA allows encryption : : :

The U.S. Department of State

will grant export permission

to any program that uses the

RC2 or RC4 data-encryption

algorithm with a key size

of less than 40 bits.”

1994: Someone anonymously

posts RC4 source code.

New York Times: “Widespread

dissemination could compromise

the long-term effectiveness of the

system : : : [RC4] has become

the de facto coding standard

for many popular software

programs including Microsoft

Windows, Apple’s Macintosh

operating system and Lotus

Notes. : : : ‘I have been told it

was part of this deal that RC4

be kept confidential,’ Jim Bidzos,

president of RSA, said.”

1994: Netscape introduces

SSL (“Secure Sockets Layer”)

web browser and server “based on

RSA Data Security technology”.

SSL supports many options.

RC4 is fastest cipher in SSL.

The RC4 stream cipher

1987: Ron Rivest designs RC4.

Does not publish it.

1992: NSA makes a deal with

Software Publishers Association.

“NSA allows encryption : : :

The U.S. Department of State

will grant export permission

to any program that uses the

RC2 or RC4 data-encryption

algorithm with a key size

of less than 40 bits.”

1994: Someone anonymously

posts RC4 source code.

New York Times: “Widespread

dissemination could compromise

the long-term effectiveness of the

system : : : [RC4] has become

the de facto coding standard

for many popular software

programs including Microsoft

Windows, Apple’s Macintosh

operating system and Lotus

Notes. : : : ‘I have been told it

was part of this deal that RC4

be kept confidential,’ Jim Bidzos,

president of RSA, said.”

1994: Netscape introduces

SSL (“Secure Sockets Layer”)

web browser and server “based on

RSA Data Security technology”.

SSL supports many options.

RC4 is fastest cipher in SSL.

The RC4 stream cipher

1987: Ron Rivest designs RC4.

Does not publish it.

1992: NSA makes a deal with

Software Publishers Association.

“NSA allows encryption : : :

The U.S. Department of State

will grant export permission

to any program that uses the

RC2 or RC4 data-encryption

algorithm with a key size

of less than 40 bits.”

1994: Someone anonymously

posts RC4 source code.

New York Times: “Widespread

dissemination could compromise

the long-term effectiveness of the

system : : : [RC4] has become

the de facto coding standard

for many popular software

programs including Microsoft

Windows, Apple’s Macintosh

operating system and Lotus

Notes. : : : ‘I have been told it

was part of this deal that RC4

be kept confidential,’ Jim Bidzos,

president of RSA, said.”

1994: Netscape introduces

SSL (“Secure Sockets Layer”)

web browser and server “based on

RSA Data Security technology”.

SSL supports many options.

RC4 is fastest cipher in SSL.

1994: Someone anonymously

posts RC4 source code.

New York Times: “Widespread

dissemination could compromise

the long-term effectiveness of the

system : : : [RC4] has become

the de facto coding standard

for many popular software

programs including Microsoft

Windows, Apple’s Macintosh

operating system and Lotus

Notes. : : : ‘I have been told it

was part of this deal that RC4

be kept confidential,’ Jim Bidzos,

president of RSA, said.”

1994: Netscape introduces

SSL (“Secure Sockets Layer”)

web browser and server “based on

RSA Data Security technology”.

SSL supports many options.

RC4 is fastest cipher in SSL.

1994: Someone anonymously

posts RC4 source code.

New York Times: “Widespread

dissemination could compromise

the long-term effectiveness of the

system : : : [RC4] has become

the de facto coding standard

for many popular software

programs including Microsoft

Windows, Apple’s Macintosh

operating system and Lotus

Notes. : : : ‘I have been told it

was part of this deal that RC4

be kept confidential,’ Jim Bidzos,

president of RSA, said.”

1994: Netscape introduces

SSL (“Secure Sockets Layer”)

web browser and server “based on

RSA Data Security technology”.

SSL supports many options.

RC4 is fastest cipher in SSL.

1995: Finney posts some

examples of SSL ciphertexts.

Back–Byers–Young, Doligez,

Back–Brooks extract plaintexts.

1994: Someone anonymously

posts RC4 source code.

New York Times: “Widespread

dissemination could compromise

the long-term effectiveness of the

system : : : [RC4] has become

the de facto coding standard

for many popular software

programs including Microsoft

Windows, Apple’s Macintosh

operating system and Lotus

Notes. : : : ‘I have been told it

was part of this deal that RC4

be kept confidential,’ Jim Bidzos,

president of RSA, said.”

1994: Netscape introduces

SSL (“Secure Sockets Layer”)

web browser and server “based on

RSA Data Security technology”.

SSL supports many options.

RC4 is fastest cipher in SSL.

1995: Finney posts some

examples of SSL ciphertexts.

Back–Byers–Young, Doligez,

Back–Brooks extract plaintexts.

Fix: RC4-128?

1994: Someone anonymously

posts RC4 source code.

New York Times: “Widespread

dissemination could compromise

the long-term effectiveness of the

system : : : [RC4] has become

the de facto coding standard

for many popular software

programs including Microsoft

Windows, Apple’s Macintosh

operating system and Lotus

Notes. : : : ‘I have been told it

was part of this deal that RC4

be kept confidential,’ Jim Bidzos,

president of RSA, said.”

1994: Netscape introduces

SSL (“Secure Sockets Layer”)

web browser and server “based on

RSA Data Security technology”.

SSL supports many options.

RC4 is fastest cipher in SSL.

1995: Finney posts some

examples of SSL ciphertexts.

Back–Byers–Young, Doligez,

Back–Brooks extract plaintexts.

Fix: RC4-128? Unacceptable:

1995 Roos shows that RC4 fails a

basic definition of cipher security.

1994: Someone anonymously

posts RC4 source code.

New York Times: “Widespread

dissemination could compromise

the long-term effectiveness of the

system : : : [RC4] has become

the de facto coding standard

for many popular software

programs including Microsoft

Windows, Apple’s Macintosh

operating system and Lotus

Notes. : : : ‘I have been told it

was part of this deal that RC4

be kept confidential,’ Jim Bidzos,

president of RSA, said.”

1994: Netscape introduces

SSL (“Secure Sockets Layer”)

web browser and server “based on

RSA Data Security technology”.

SSL supports many options.

RC4 is fastest cipher in SSL.

1995: Finney posts some

examples of SSL ciphertexts.

Back–Byers–Young, Doligez,

Back–Brooks extract plaintexts.

Fix: RC4-128? Unacceptable:

1995 Roos shows that RC4 fails a

basic definition of cipher security.

So the crypto community

throws away 40-bit keys?

And throws away RC4?

1994: Someone anonymously

posts RC4 source code.

New York Times: “Widespread

dissemination could compromise

the long-term effectiveness of the

system : : : [RC4] has become

the de facto coding standard

for many popular software

programs including Microsoft

Windows, Apple’s Macintosh

operating system and Lotus

Notes. : : : ‘I have been told it

was part of this deal that RC4

be kept confidential,’ Jim Bidzos,

president of RSA, said.”

1994: Netscape introduces

SSL (“Secure Sockets Layer”)

web browser and server “based on

RSA Data Security technology”.

SSL supports many options.

RC4 is fastest cipher in SSL.

1995: Finney posts some

examples of SSL ciphertexts.

Back–Byers–Young, Doligez,

Back–Brooks extract plaintexts.

Fix: RC4-128? Unacceptable:

1995 Roos shows that RC4 fails a

basic definition of cipher security.

So the crypto community

throws away 40-bit keys?

And throws away RC4?

1994: Someone anonymously

posts RC4 source code.

New York Times: “Widespread

dissemination could compromise

the long-term effectiveness of the

system : : : [RC4] has become

the de facto coding standard

for many popular software

programs including Microsoft

Windows, Apple’s Macintosh

operating system and Lotus

Notes. : : : ‘I have been told it

was part of this deal that RC4

be kept confidential,’ Jim Bidzos,

president of RSA, said.”

1994: Netscape introduces

SSL (“Secure Sockets Layer”)

web browser and server “based on

RSA Data Security technology”.

SSL supports many options.

RC4 is fastest cipher in SSL.

1995: Finney posts some

examples of SSL ciphertexts.

Back–Byers–Young, Doligez,

Back–Brooks extract plaintexts.

Fix: RC4-128? Unacceptable:

1995 Roos shows that RC4 fails a

basic definition of cipher security.

So the crypto community

throws away 40-bit keys?

And throws away RC4?

1994: Netscape introduces

SSL (“Secure Sockets Layer”)

web browser and server “based on

RSA Data Security technology”.

SSL supports many options.

RC4 is fastest cipher in SSL.

1995: Finney posts some

examples of SSL ciphertexts.

Back–Byers–Young, Doligez,

Back–Brooks extract plaintexts.

Fix: RC4-128? Unacceptable:

1995 Roos shows that RC4 fails a

basic definition of cipher security.

So the crypto community

throws away 40-bit keys?

And throws away RC4?

1994: Netscape introduces

SSL (“Secure Sockets Layer”)

web browser and server “based on

RSA Data Security technology”.

SSL supports many options.

RC4 is fastest cipher in SSL.

1995: Finney posts some

examples of SSL ciphertexts.

Back–Byers–Young, Doligez,

Back–Brooks extract plaintexts.

Fix: RC4-128? Unacceptable:

1995 Roos shows that RC4 fails a

basic definition of cipher security.

So the crypto community

throws away 40-bit keys?

And throws away RC4?

Here’s what actually happens.

1994: Netscape introduces

SSL (“Secure Sockets Layer”)

web browser and server “based on

RSA Data Security technology”.

SSL supports many options.

RC4 is fastest cipher in SSL.

1995: Finney posts some

examples of SSL ciphertexts.

Back–Byers–Young, Doligez,

Back–Brooks extract plaintexts.

Fix: RC4-128? Unacceptable:

1995 Roos shows that RC4 fails a

basic definition of cipher security.

So the crypto community

throws away 40-bit keys?

And throws away RC4?

Here’s what actually happens.

1997: IEEE standardizes WEP

(“Wired Equivalent Privacy”)

for 802.11 wireless networks.

WEP uses RC4 for encryption.

1994: Netscape introduces

SSL (“Secure Sockets Layer”)

web browser and server “based on

RSA Data Security technology”.

SSL supports many options.

RC4 is fastest cipher in SSL.

1995: Finney posts some

examples of SSL ciphertexts.

Back–Byers–Young, Doligez,

Back–Brooks extract plaintexts.

Fix: RC4-128? Unacceptable:

1995 Roos shows that RC4 fails a

basic definition of cipher security.

So the crypto community

throws away 40-bit keys?

And throws away RC4?

Here’s what actually happens.

1997: IEEE standardizes WEP

(“Wired Equivalent Privacy”)

for 802.11 wireless networks.

WEP uses RC4 for encryption.

1999: TLS (“Transport Layer

Security”), new version of SSL.

RC4 is fastest cipher in TLS.

TLS still supports “export keys”.

1994: Netscape introduces

SSL (“Secure Sockets Layer”)

web browser and server “based on

RSA Data Security technology”.

SSL supports many options.

RC4 is fastest cipher in SSL.

1995: Finney posts some

examples of SSL ciphertexts.

Back–Byers–Young, Doligez,

Back–Brooks extract plaintexts.

Fix: RC4-128? Unacceptable:

1995 Roos shows that RC4 fails a

basic definition of cipher security.

So the crypto community

throws away 40-bit keys?

And throws away RC4?

Here’s what actually happens.

1997: IEEE standardizes WEP

(“Wired Equivalent Privacy”)

for 802.11 wireless networks.

WEP uses RC4 for encryption.

1999: TLS (“Transport Layer

Security”), new version of SSL.

RC4 is fastest cipher in TLS.

TLS still supports “export keys”.

More RC4 cryptanalysis:

1995 Wagner,

1997 Golic,

1998 Knudsen–Meier–Preneel–

Rijmen–Verdoolaege,

2000 Golic,

2000 Fluhrer–McGrew,

2001 Mantin–Shamir,

2001 Fluhrer–Mantin–Shamir,

2001 Stubblefield–Ioannidis–

Rubin.

RC4 key-output correlations

⇒ practical attacks on WEP.

1994: Netscape introduces

SSL (“Secure Sockets Layer”)

web browser and server “based on

RSA Data Security technology”.

SSL supports many options.

RC4 is fastest cipher in SSL.

1995: Finney posts some

examples of SSL ciphertexts.

Back–Byers–Young, Doligez,

Back–Brooks extract plaintexts.

Fix: RC4-128? Unacceptable:

1995 Roos shows that RC4 fails a

basic definition of cipher security.

So the crypto community

throws away 40-bit keys?

And throws away RC4?

Here’s what actually happens.

1997: IEEE standardizes WEP

(“Wired Equivalent Privacy”)

for 802.11 wireless networks.

WEP uses RC4 for encryption.

1999: TLS (“Transport Layer

Security”), new version of SSL.

RC4 is fastest cipher in TLS.

TLS still supports “export keys”.

More RC4 cryptanalysis:

1995 Wagner,

1997 Golic,

1998 Knudsen–Meier–Preneel–

Rijmen–Verdoolaege,

2000 Golic,

2000 Fluhrer–McGrew,

2001 Mantin–Shamir,

2001 Fluhrer–Mantin–Shamir,

2001 Stubblefield–Ioannidis–

Rubin.

RC4 key-output correlations

⇒ practical attacks on WEP.

1994: Netscape introduces

SSL (“Secure Sockets Layer”)

web browser and server “based on

RSA Data Security technology”.

SSL supports many options.

RC4 is fastest cipher in SSL.

1995: Finney posts some

examples of SSL ciphertexts.

Back–Byers–Young, Doligez,

Back–Brooks extract plaintexts.

Fix: RC4-128? Unacceptable:

1995 Roos shows that RC4 fails a

basic definition of cipher security.

So the crypto community

throws away 40-bit keys?

And throws away RC4?

Here’s what actually happens.

1997: IEEE standardizes WEP

(“Wired Equivalent Privacy”)

for 802.11 wireless networks.

WEP uses RC4 for encryption.

1999: TLS (“Transport Layer

Security”), new version of SSL.

RC4 is fastest cipher in TLS.

TLS still supports “export keys”.

More RC4 cryptanalysis:

1995 Wagner,

1997 Golic,

1998 Knudsen–Meier–Preneel–

Rijmen–Verdoolaege,

2000 Golic,

2000 Fluhrer–McGrew,

2001 Mantin–Shamir,

2001 Fluhrer–Mantin–Shamir,

2001 Stubblefield–Ioannidis–

Rubin.

RC4 key-output correlations

⇒ practical attacks on WEP.

So the crypto community

throws away 40-bit keys?

And throws away RC4?

Here’s what actually happens.

1997: IEEE standardizes WEP

(“Wired Equivalent Privacy”)

for 802.11 wireless networks.

WEP uses RC4 for encryption.

1999: TLS (“Transport Layer

Security”), new version of SSL.

RC4 is fastest cipher in TLS.

TLS still supports “export keys”.

More RC4 cryptanalysis:

1995 Wagner,

1997 Golic,

1998 Knudsen–Meier–Preneel–

Rijmen–Verdoolaege,

2000 Golic,

2000 Fluhrer–McGrew,

2001 Mantin–Shamir,

2001 Fluhrer–Mantin–Shamir,

2001 Stubblefield–Ioannidis–

Rubin.

RC4 key-output correlations

⇒ practical attacks on WEP.

So the crypto community

throws away 40-bit keys?

And throws away RC4?

Here’s what actually happens.

1997: IEEE standardizes WEP

(“Wired Equivalent Privacy”)

for 802.11 wireless networks.

WEP uses RC4 for encryption.

1999: TLS (“Transport Layer

Security”), new version of SSL.

RC4 is fastest cipher in TLS.

TLS still supports “export keys”.

More RC4 cryptanalysis:

1995 Wagner,

1997 Golic,

1998 Knudsen–Meier–Preneel–

Rijmen–Verdoolaege,

2000 Golic,

2000 Fluhrer–McGrew,

2001 Mantin–Shamir,

2001 Fluhrer–Mantin–Shamir,

2001 Stubblefield–Ioannidis–

Rubin.

RC4 key-output correlations

⇒ practical attacks on WEP.

2001 Rivest response: TLS is ok.

“Applications which pre-process

the encryption key and IV by

using hashing and/or which

discard the first 256 bytes of

pseudo-random output should

be considered secure from the

proposed attacks. : : : The ‘heart’

of RC4 is its exceptionally simple

and extremely efficient pseudo-

random generator. : : : RC4 is

likely to remain the algorithm of

choice for many applications and

embedded systems.”

So the crypto community

throws away 40-bit keys?

And throws away RC4?

Here’s what actually happens.

1997: IEEE standardizes WEP

(“Wired Equivalent Privacy”)

for 802.11 wireless networks.

WEP uses RC4 for encryption.

1999: TLS (“Transport Layer

Security”), new version of SSL.

RC4 is fastest cipher in TLS.

TLS still supports “export keys”.

More RC4 cryptanalysis:

1995 Wagner,

1997 Golic,

1998 Knudsen–Meier–Preneel–

Rijmen–Verdoolaege,

2000 Golic,

2000 Fluhrer–McGrew,

2001 Mantin–Shamir,

2001 Fluhrer–Mantin–Shamir,

2001 Stubblefield–Ioannidis–

Rubin.

RC4 key-output correlations

⇒ practical attacks on WEP.

2001 Rivest response: TLS is ok.

“Applications which pre-process

the encryption key and IV by

using hashing and/or which

discard the first 256 bytes of

pseudo-random output should

be considered secure from the

proposed attacks. : : : The ‘heart’

of RC4 is its exceptionally simple

and extremely efficient pseudo-

random generator. : : : RC4 is

likely to remain the algorithm of

choice for many applications and

embedded systems.”

So the crypto community

throws away 40-bit keys?

And throws away RC4?

Here’s what actually happens.

1997: IEEE standardizes WEP

(“Wired Equivalent Privacy”)

for 802.11 wireless networks.

WEP uses RC4 for encryption.

1999: TLS (“Transport Layer

Security”), new version of SSL.

RC4 is fastest cipher in TLS.

TLS still supports “export keys”.

More RC4 cryptanalysis:

1995 Wagner,

1997 Golic,

1998 Knudsen–Meier–Preneel–

Rijmen–Verdoolaege,

2000 Golic,

2000 Fluhrer–McGrew,

2001 Mantin–Shamir,

2001 Fluhrer–Mantin–Shamir,

2001 Stubblefield–Ioannidis–

Rubin.

RC4 key-output correlations

⇒ practical attacks on WEP.

2001 Rivest response: TLS is ok.

“Applications which pre-process

the encryption key and IV by

using hashing and/or which

discard the first 256 bytes of

pseudo-random output should

be considered secure from the

proposed attacks. : : : The ‘heart’

of RC4 is its exceptionally simple

and extremely efficient pseudo-

random generator. : : : RC4 is

likely to remain the algorithm of

choice for many applications and

embedded systems.”

More RC4 cryptanalysis:

1995 Wagner,

1997 Golic,

1998 Knudsen–Meier–Preneel–

Rijmen–Verdoolaege,

2000 Golic,

2000 Fluhrer–McGrew,

2001 Mantin–Shamir,

2001 Fluhrer–Mantin–Shamir,

2001 Stubblefield–Ioannidis–

Rubin.

RC4 key-output correlations

⇒ practical attacks on WEP.

2001 Rivest response: TLS is ok.

“Applications which pre-process

the encryption key and IV by

using hashing and/or which

discard the first 256 bytes of

pseudo-random output should

be considered secure from the

proposed attacks. : : : The ‘heart’

of RC4 is its exceptionally simple

and extremely efficient pseudo-

random generator. : : : RC4 is

likely to remain the algorithm of

choice for many applications and

embedded systems.”

More RC4 cryptanalysis:

1995 Wagner,

1997 Golic,

1998 Knudsen–Meier–Preneel–

Rijmen–Verdoolaege,

2000 Golic,

2000 Fluhrer–McGrew,

2001 Mantin–Shamir,

2001 Fluhrer–Mantin–Shamir,

2001 Stubblefield–Ioannidis–

Rubin.

RC4 key-output correlations

⇒ practical attacks on WEP.

2001 Rivest response: TLS is ok.

“Applications which pre-process

the encryption key and IV by

using hashing and/or which

discard the first 256 bytes of

pseudo-random output should

be considered secure from the

proposed attacks. : : : The ‘heart’

of RC4 is its exceptionally simple

and extremely efficient pseudo-

random generator. : : : RC4 is

likely to remain the algorithm of

choice for many applications and

embedded systems.”

Even more RC4 cryptanalysis:

2002 Hulton,

2002 Mironov,

2002 Pudovkina,

2003 Bittau,

2003 Pudovkina,

2004 Paul–Preneel,

2004 KoreK,

2004 Devine,

2005 Maximov,

2005 Mantin,

2005 d’Otreppe,

2006 Klein,

2006 Doroshenko–Ryabko,

2006 Chaabouni.

More RC4 cryptanalysis:

1995 Wagner,

1997 Golic,

1998 Knudsen–Meier–Preneel–

Rijmen–Verdoolaege,

2000 Golic,

2000 Fluhrer–McGrew,

2001 Mantin–Shamir,

2001 Fluhrer–Mantin–Shamir,

2001 Stubblefield–Ioannidis–

Rubin.

RC4 key-output correlations

⇒ practical attacks on WEP.

2001 Rivest response: TLS is ok.

“Applications which pre-process

the encryption key and IV by

using hashing and/or which

discard the first 256 bytes of

pseudo-random output should

be considered secure from the

proposed attacks. : : : The ‘heart’

of RC4 is its exceptionally simple

and extremely efficient pseudo-

random generator. : : : RC4 is

likely to remain the algorithm of

choice for many applications and

embedded systems.”

Even more RC4 cryptanalysis:

2002 Hulton,

2002 Mironov,

2002 Pudovkina,

2003 Bittau,

2003 Pudovkina,

2004 Paul–Preneel,

2004 KoreK,

2004 Devine,

2005 Maximov,

2005 Mantin,

2005 d’Otreppe,

2006 Klein,

2006 Doroshenko–Ryabko,

2006 Chaabouni.

More RC4 cryptanalysis:

1995 Wagner,

1997 Golic,

1998 Knudsen–Meier–Preneel–

Rijmen–Verdoolaege,

2000 Golic,

2000 Fluhrer–McGrew,

2001 Mantin–Shamir,

2001 Fluhrer–Mantin–Shamir,

2001 Stubblefield–Ioannidis–

Rubin.

RC4 key-output correlations

⇒ practical attacks on WEP.

2001 Rivest response: TLS is ok.

“Applications which pre-process

the encryption key and IV by

using hashing and/or which

discard the first 256 bytes of

pseudo-random output should

be considered secure from the

proposed attacks. : : : The ‘heart’

of RC4 is its exceptionally simple

and extremely efficient pseudo-

random generator. : : : RC4 is

likely to remain the algorithm of

choice for many applications and

embedded systems.”

Even more RC4 cryptanalysis:

2002 Hulton,

2002 Mironov,

2002 Pudovkina,

2003 Bittau,

2003 Pudovkina,

2004 Paul–Preneel,

2004 KoreK,

2004 Devine,

2005 Maximov,

2005 Mantin,

2005 d’Otreppe,

2006 Klein,

2006 Doroshenko–Ryabko,

2006 Chaabouni.

2001 Rivest response: TLS is ok.

“Applications which pre-process

the encryption key and IV by

using hashing and/or which

discard the first 256 bytes of

pseudo-random output should

be considered secure from the

proposed attacks. : : : The ‘heart’

of RC4 is its exceptionally simple

and extremely efficient pseudo-

random generator. : : : RC4 is

likely to remain the algorithm of

choice for many applications and

embedded systems.”

Even more RC4 cryptanalysis:

2002 Hulton,

2002 Mironov,

2002 Pudovkina,

2003 Bittau,

2003 Pudovkina,

2004 Paul–Preneel,

2004 KoreK,

2004 Devine,

2005 Maximov,

2005 Mantin,

2005 d’Otreppe,

2006 Klein,

2006 Doroshenko–Ryabko,

2006 Chaabouni.

2001 Rivest response: TLS is ok.

“Applications which pre-process

the encryption key and IV by

using hashing and/or which

discard the first 256 bytes of

pseudo-random output should

be considered secure from the

proposed attacks. : : : The ‘heart’

of RC4 is its exceptionally simple

and extremely efficient pseudo-

random generator. : : : RC4 is

likely to remain the algorithm of

choice for many applications and

embedded systems.”

Even more RC4 cryptanalysis:

2002 Hulton,

2002 Mironov,

2002 Pudovkina,

2003 Bittau,

2003 Pudovkina,

2004 Paul–Preneel,

2004 KoreK,

2004 Devine,

2005 Maximov,

2005 Mantin,

2005 d’Otreppe,

2006 Klein,

2006 Doroshenko–Ryabko,

2006 Chaabouni.

WEP blamed for 2007 theft of 45

million credit-card numbers from

T. J. Maxx. Subsequent lawsuit

settled for $40900000.

2001 Rivest response: TLS is ok.

“Applications which pre-process

the encryption key and IV by

using hashing and/or which

discard the first 256 bytes of

pseudo-random output should

be considered secure from the

proposed attacks. : : : The ‘heart’

of RC4 is its exceptionally simple

and extremely efficient pseudo-

random generator. : : : RC4 is

likely to remain the algorithm of

choice for many applications and

embedded systems.”

Even more RC4 cryptanalysis:

2002 Hulton,

2002 Mironov,

2002 Pudovkina,

2003 Bittau,

2003 Pudovkina,

2004 Paul–Preneel,

2004 KoreK,

2004 Devine,

2005 Maximov,

2005 Mantin,

2005 d’Otreppe,

2006 Klein,

2006 Doroshenko–Ryabko,

2006 Chaabouni.

WEP blamed for 2007 theft of 45

million credit-card numbers from

T. J. Maxx. Subsequent lawsuit

settled for $40900000.

2001 Rivest response: TLS is ok.

“Applications which pre-process

the encryption key and IV by

using hashing and/or which

discard the first 256 bytes of

pseudo-random output should

be considered secure from the

proposed attacks. : : : The ‘heart’

of RC4 is its exceptionally simple

and extremely efficient pseudo-

random generator. : : : RC4 is

likely to remain the algorithm of

choice for many applications and

embedded systems.”

Even more RC4 cryptanalysis:

2002 Hulton,

2002 Mironov,

2002 Pudovkina,

2003 Bittau,

2003 Pudovkina,

2004 Paul–Preneel,

2004 KoreK,

2004 Devine,

2005 Maximov,

2005 Mantin,

2005 d’Otreppe,

2006 Klein,

2006 Doroshenko–Ryabko,

2006 Chaabouni.

WEP blamed for 2007 theft of 45

million credit-card numbers from

T. J. Maxx. Subsequent lawsuit

settled for $40900000.

Even more RC4 cryptanalysis:

2002 Hulton,

2002 Mironov,

2002 Pudovkina,

2003 Bittau,

2003 Pudovkina,

2004 Paul–Preneel,

2004 KoreK,

2004 Devine,

2005 Maximov,

2005 Mantin,

2005 d’Otreppe,

2006 Klein,

2006 Doroshenko–Ryabko,

2006 Chaabouni.

WEP blamed for 2007 theft of 45

million credit-card numbers from

T. J. Maxx. Subsequent lawsuit

settled for $40900000.

Even more RC4 cryptanalysis:

2002 Hulton,

2002 Mironov,

2002 Pudovkina,

2003 Bittau,

2003 Pudovkina,

2004 Paul–Preneel,

2004 KoreK,

2004 Devine,

2005 Maximov,

2005 Mantin,

2005 d’Otreppe,

2006 Klein,

2006 Doroshenko–Ryabko,

2006 Chaabouni.

WEP blamed for 2007 theft of 45

million credit-card numbers from

T. J. Maxx. Subsequent lawsuit

settled for $40900000.

Cryptanalysis continues:

2007 Paul–Maitra–Srivastava,

2007 Paul–Rathi–Maitra,

2007 Paul–Maitra,

2007 Vaudenay–Vuagnoux,

2007 Tews–Weinmann–Pyshkin,

2007 Tomasevic–Bojanic–

Nieto-Taladriz,

2007 Maitra–Paul,

2008 Basu–Ganguly–Maitra–Paul.

Even more RC4 cryptanalysis:

2002 Hulton,

2002 Mironov,

2002 Pudovkina,

2003 Bittau,

2003 Pudovkina,

2004 Paul–Preneel,

2004 KoreK,

2004 Devine,

2005 Maximov,

2005 Mantin,

2005 d’Otreppe,

2006 Klein,

2006 Doroshenko–Ryabko,

2006 Chaabouni.

WEP blamed for 2007 theft of 45

million credit-card numbers from

T. J. Maxx. Subsequent lawsuit

settled for $40900000.

Cryptanalysis continues:

2007 Paul–Maitra–Srivastava,

2007 Paul–Rathi–Maitra,

2007 Paul–Maitra,

2007 Vaudenay–Vuagnoux,

2007 Tews–Weinmann–Pyshkin,

2007 Tomasevic–Bojanic–

Nieto-Taladriz,

2007 Maitra–Paul,

2008 Basu–Ganguly–Maitra–Paul.

And more:

2008 Biham–Carmeli,

2008 Golic–Morgari,

2008 Maximov–Khovratovich,

2008 Akgun–Kavak–Demirci,

2008 Maitra–Paul.

2008 Beck–Tews,

2009 Basu–Maitra–Paul–Talukdar,

2010 Sepehrdad–Vaudenay–

Vuagnoux,

2010 Vuagnoux,

2011 Maitra–Paul–Sen Gupta,

2011 Sen Gupta–Maitra–Paul–

Sarkar,

2011 Paul–Maitra book.

Even more RC4 cryptanalysis:

2002 Hulton,

2002 Mironov,

2002 Pudovkina,

2003 Bittau,

2003 Pudovkina,

2004 Paul–Preneel,

2004 KoreK,

2004 Devine,

2005 Maximov,

2005 Mantin,

2005 d’Otreppe,

2006 Klein,

2006 Doroshenko–Ryabko,

2006 Chaabouni.

WEP blamed for 2007 theft of 45

million credit-card numbers from

T. J. Maxx. Subsequent lawsuit

settled for $40900000.

Cryptanalysis continues:

2007 Paul–Maitra–Srivastava,

2007 Paul–Rathi–Maitra,

2007 Paul–Maitra,

2007 Vaudenay–Vuagnoux,

2007 Tews–Weinmann–Pyshkin,

2007 Tomasevic–Bojanic–

Nieto-Taladriz,

2007 Maitra–Paul,

2008 Basu–Ganguly–Maitra–Paul.

And more:

2008 Biham–Carmeli,

2008 Golic–Morgari,

2008 Maximov–Khovratovich,

2008 Akgun–Kavak–Demirci,

2008 Maitra–Paul.

2008 Beck–Tews,

2009 Basu–Maitra–Paul–Talukdar,

2010 Sepehrdad–Vaudenay–

Vuagnoux,

2010 Vuagnoux,

2011 Maitra–Paul–Sen Gupta,

2011 Sen Gupta–Maitra–Paul–

Sarkar,

2011 Paul–Maitra book.

Even more RC4 cryptanalysis:

2002 Hulton,

2002 Mironov,

2002 Pudovkina,

2003 Bittau,

2003 Pudovkina,

2004 Paul–Preneel,

2004 KoreK,

2004 Devine,

2005 Maximov,

2005 Mantin,

2005 d’Otreppe,

2006 Klein,

2006 Doroshenko–Ryabko,

2006 Chaabouni.

WEP blamed for 2007 theft of 45

million credit-card numbers from

T. J. Maxx. Subsequent lawsuit

settled for $40900000.

Cryptanalysis continues:

2007 Paul–Maitra–Srivastava,

2007 Paul–Rathi–Maitra,

2007 Paul–Maitra,

2007 Vaudenay–Vuagnoux,

2007 Tews–Weinmann–Pyshkin,

2007 Tomasevic–Bojanic–

Nieto-Taladriz,

2007 Maitra–Paul,

2008 Basu–Ganguly–Maitra–Paul.

And more:

2008 Biham–Carmeli,

2008 Golic–Morgari,

2008 Maximov–Khovratovich,

2008 Akgun–Kavak–Demirci,

2008 Maitra–Paul.

2008 Beck–Tews,

2009 Basu–Maitra–Paul–Talukdar,

2010 Sepehrdad–Vaudenay–

Vuagnoux,

2010 Vuagnoux,

2011 Maitra–Paul–Sen Gupta,

2011 Sen Gupta–Maitra–Paul–

Sarkar,

2011 Paul–Maitra book.

WEP blamed for 2007 theft of 45

million credit-card numbers from

T. J. Maxx. Subsequent lawsuit

settled for $40900000.

Cryptanalysis continues:

2007 Paul–Maitra–Srivastava,

2007 Paul–Rathi–Maitra,

2007 Paul–Maitra,

2007 Vaudenay–Vuagnoux,

2007 Tews–Weinmann–Pyshkin,

2007 Tomasevic–Bojanic–

Nieto-Taladriz,

2007 Maitra–Paul,

2008 Basu–Ganguly–Maitra–Paul.

And more:

2008 Biham–Carmeli,

2008 Golic–Morgari,

2008 Maximov–Khovratovich,

2008 Akgun–Kavak–Demirci,

2008 Maitra–Paul.

2008 Beck–Tews,

2009 Basu–Maitra–Paul–Talukdar,

2010 Sepehrdad–Vaudenay–

Vuagnoux,

2010 Vuagnoux,

2011 Maitra–Paul–Sen Gupta,

2011 Sen Gupta–Maitra–Paul–

Sarkar,

2011 Paul–Maitra book.

WEP blamed for 2007 theft of 45

million credit-card numbers from

T. J. Maxx. Subsequent lawsuit

settled for $40900000.

Cryptanalysis continues:

2007 Paul–Maitra–Srivastava,

2007 Paul–Rathi–Maitra,

2007 Paul–Maitra,

2007 Vaudenay–Vuagnoux,

2007 Tews–Weinmann–Pyshkin,

2007 Tomasevic–Bojanic–

Nieto-Taladriz,

2007 Maitra–Paul,

2008 Basu–Ganguly–Maitra–Paul.

And more:

2008 Biham–Carmeli,

2008 Golic–Morgari,

2008 Maximov–Khovratovich,

2008 Akgun–Kavak–Demirci,

2008 Maitra–Paul.

2008 Beck–Tews,

2009 Basu–Maitra–Paul–Talukdar,

2010 Sepehrdad–Vaudenay–

Vuagnoux,

2010 Vuagnoux,

2011 Maitra–Paul–Sen Gupta,

2011 Sen Gupta–Maitra–Paul–

Sarkar,

2011 Paul–Maitra book.

2012 Akamai blog entry:

“Up to 75% of SSL-enabled

web sites are vulnerable [to

BEAST] : : : OpenSSL v0.9.8w

is the current version in broad

use and it only supports TLS

v1.0. : : : the interim fix is to

prefer the RC4-128 cipher for

TLS v1.0 and SSL v3. : : : RC4-

128 is faster and cheaper in

processor time : : : approximately

15% of SSL/TLS negotiations

on the Akamai platform use

RC4 : : : most browsers can

support the RC4 fix for BEAST.”

WEP blamed for 2007 theft of 45

million credit-card numbers from

T. J. Maxx. Subsequent lawsuit

settled for $40900000.

Cryptanalysis continues:

2007 Paul–Maitra–Srivastava,

2007 Paul–Rathi–Maitra,

2007 Paul–Maitra,

2007 Vaudenay–Vuagnoux,

2007 Tews–Weinmann–Pyshkin,

2007 Tomasevic–Bojanic–

Nieto-Taladriz,

2007 Maitra–Paul,

2008 Basu–Ganguly–Maitra–Paul.

And more:

2008 Biham–Carmeli,

2008 Golic–Morgari,

2008 Maximov–Khovratovich,

2008 Akgun–Kavak–Demirci,

2008 Maitra–Paul.

2008 Beck–Tews,

2009 Basu–Maitra–Paul–Talukdar,

2010 Sepehrdad–Vaudenay–

Vuagnoux,

2010 Vuagnoux,

2011 Maitra–Paul–Sen Gupta,

2011 Sen Gupta–Maitra–Paul–

Sarkar,

2011 Paul–Maitra book.

2012 Akamai blog entry:

“Up to 75% of SSL-enabled

web sites are vulnerable [to

BEAST] : : : OpenSSL v0.9.8w

is the current version in broad

use and it only supports TLS

v1.0. : : : the interim fix is to

prefer the RC4-128 cipher for

TLS v1.0 and SSL v3. : : : RC4-

128 is faster and cheaper in

processor time : : : approximately

15% of SSL/TLS negotiations

on the Akamai platform use

RC4 : : : most browsers can

support the RC4 fix for BEAST.”

WEP blamed for 2007 theft of 45

million credit-card numbers from

T. J. Maxx. Subsequent lawsuit

settled for $40900000.

Cryptanalysis continues:

2007 Paul–Maitra–Srivastava,

2007 Paul–Rathi–Maitra,

2007 Paul–Maitra,

2007 Vaudenay–Vuagnoux,

2007 Tews–Weinmann–Pyshkin,

2007 Tomasevic–Bojanic–

Nieto-Taladriz,

2007 Maitra–Paul,

2008 Basu–Ganguly–Maitra–Paul.

And more:

2008 Biham–Carmeli,

2008 Golic–Morgari,

2008 Maximov–Khovratovich,

2008 Akgun–Kavak–Demirci,

2008 Maitra–Paul.

2008 Beck–Tews,

2009 Basu–Maitra–Paul–Talukdar,

2010 Sepehrdad–Vaudenay–

Vuagnoux,

2010 Vuagnoux,

2011 Maitra–Paul–Sen Gupta,

2011 Sen Gupta–Maitra–Paul–

Sarkar,

2011 Paul–Maitra book.

2012 Akamai blog entry:

“Up to 75% of SSL-enabled

web sites are vulnerable [to

BEAST] : : : OpenSSL v0.9.8w

is the current version in broad

use and it only supports TLS

v1.0. : : : the interim fix is to

prefer the RC4-128 cipher for

TLS v1.0 and SSL v3. : : : RC4-

128 is faster and cheaper in

processor time : : : approximately

15% of SSL/TLS negotiations

on the Akamai platform use

RC4 : : : most browsers can

support the RC4 fix for BEAST.”

And more:

2008 Biham–Carmeli,

2008 Golic–Morgari,

2008 Maximov–Khovratovich,

2008 Akgun–Kavak–Demirci,

2008 Maitra–Paul.

2008 Beck–Tews,

2009 Basu–Maitra–Paul–Talukdar,

2010 Sepehrdad–Vaudenay–

Vuagnoux,

2010 Vuagnoux,

2011 Maitra–Paul–Sen Gupta,

2011 Sen Gupta–Maitra–Paul–

Sarkar,

2011 Paul–Maitra book.

2012 Akamai blog entry:

“Up to 75% of SSL-enabled

web sites are vulnerable [to

BEAST] : : : OpenSSL v0.9.8w

is the current version in broad

use and it only supports TLS

v1.0. : : : the interim fix is to

prefer the RC4-128 cipher for

TLS v1.0 and SSL v3. : : : RC4-

128 is faster and cheaper in

processor time : : : approximately

15% of SSL/TLS negotiations

on the Akamai platform use

RC4 : : : most browsers can

support the RC4 fix for BEAST.”

And more:

2008 Biham–Carmeli,

2008 Golic–Morgari,

2008 Maximov–Khovratovich,

2008 Akgun–Kavak–Demirci,

2008 Maitra–Paul.

2008 Beck–Tews,

2009 Basu–Maitra–Paul–Talukdar,

2010 Sepehrdad–Vaudenay–

Vuagnoux,

2010 Vuagnoux,

2011 Maitra–Paul–Sen Gupta,

2011 Sen Gupta–Maitra–Paul–

Sarkar,

2011 Paul–Maitra book.

2012 Akamai blog entry:

“Up to 75% of SSL-enabled

web sites are vulnerable [to

BEAST] : : : OpenSSL v0.9.8w

is the current version in broad

use and it only supports TLS

v1.0. : : : the interim fix is to

prefer the RC4-128 cipher for

TLS v1.0 and SSL v3. : : : RC4-

128 is faster and cheaper in

processor time : : : approximately

15% of SSL/TLS negotiations

on the Akamai platform use

RC4 : : : most browsers can

support the RC4 fix for BEAST.”

RC4 cryptanalysis continues:

2013 Lv–Zhang–Lin,

2013 Lv–Lin,

2013 Sen Gupta–Maitra–Meier–

Paul–Sarkar,

2013 Sarkar–Sen Gupta–Paul–

Maitra,

2013 Isobe–Ohigashi–Watanabe–

Morii,

2013 AlFardan–Bernstein–

Paterson–Poettering–

Schuldt,

2014 Paterson–Strefler,

2015 Sepehrdad–Sušil–Vaudenay–

Vuagnoux.

And more:

2008 Biham–Carmeli,

2008 Golic–Morgari,

2008 Maximov–Khovratovich,

2008 Akgun–Kavak–Demirci,

2008 Maitra–Paul.

2008 Beck–Tews,

2009 Basu–Maitra–Paul–Talukdar,

2010 Sepehrdad–Vaudenay–

Vuagnoux,

2010 Vuagnoux,

2011 Maitra–Paul–Sen Gupta,

2011 Sen Gupta–Maitra–Paul–

Sarkar,

2011 Paul–Maitra book.

2012 Akamai blog entry:

“Up to 75% of SSL-enabled

web sites are vulnerable [to

BEAST] : : : OpenSSL v0.9.8w

is the current version in broad

use and it only supports TLS

v1.0. : : : the interim fix is to

prefer the RC4-128 cipher for

TLS v1.0 and SSL v3. : : : RC4-

128 is faster and cheaper in

processor time : : : approximately

15% of SSL/TLS negotiations

on the Akamai platform use

RC4 : : : most browsers can

support the RC4 fix for BEAST.”

RC4 cryptanalysis continues:

2013 Lv–Zhang–Lin,

2013 Lv–Lin,

2013 Sen Gupta–Maitra–Meier–

Paul–Sarkar,

2013 Sarkar–Sen Gupta–Paul–

Maitra,

2013 Isobe–Ohigashi–Watanabe–

Morii,

2013 AlFardan–Bernstein–

Paterson–Poettering–

Schuldt,

2014 Paterson–Strefler,

2015 Sepehrdad–Sušil–Vaudenay–

Vuagnoux.

And more:

2008 Biham–Carmeli,

2008 Golic–Morgari,

2008 Maximov–Khovratovich,

2008 Akgun–Kavak–Demirci,

2008 Maitra–Paul.

2008 Beck–Tews,

2009 Basu–Maitra–Paul–Talukdar,

2010 Sepehrdad–Vaudenay–

Vuagnoux,

2010 Vuagnoux,

2011 Maitra–Paul–Sen Gupta,

2011 Sen Gupta–Maitra–Paul–

Sarkar,

2011 Paul–Maitra book.

2012 Akamai blog entry:

“Up to 75% of SSL-enabled

web sites are vulnerable [to

BEAST] : : : OpenSSL v0.9.8w

is the current version in broad

use and it only supports TLS

v1.0. : : : the interim fix is to

prefer the RC4-128 cipher for

TLS v1.0 and SSL v3. : : : RC4-

128 is faster and cheaper in

processor time : : : approximately

15% of SSL/TLS negotiations

on the Akamai platform use

RC4 : : : most browsers can

support the RC4 fix for BEAST.”

RC4 cryptanalysis continues:

2013 Lv–Zhang–Lin,

2013 Lv–Lin,

2013 Sen Gupta–Maitra–Meier–

Paul–Sarkar,

2013 Sarkar–Sen Gupta–Paul–

Maitra,

2013 Isobe–Ohigashi–Watanabe–

Morii,

2013 AlFardan–Bernstein–

Paterson–Poettering–

Schuldt,

2014 Paterson–Strefler,

2015 Sepehrdad–Sušil–Vaudenay–

Vuagnoux.

2012 Akamai blog entry:

“Up to 75% of SSL-enabled

web sites are vulnerable [to

BEAST] : : : OpenSSL v0.9.8w

is the current version in broad

use and it only supports TLS

v1.0. : : : the interim fix is to

prefer the RC4-128 cipher for

TLS v1.0 and SSL v3. : : : RC4-

128 is faster and cheaper in

processor time : : : approximately

15% of SSL/TLS negotiations

on the Akamai platform use

RC4 : : : most browsers can

support the RC4 fix for BEAST.”

RC4 cryptanalysis continues:

2013 Lv–Zhang–Lin,

2013 Lv–Lin,

2013 Sen Gupta–Maitra–Meier–

Paul–Sarkar,

2013 Sarkar–Sen Gupta–Paul–

Maitra,

2013 Isobe–Ohigashi–Watanabe–

Morii,

2013 AlFardan–Bernstein–

Paterson–Poettering–

Schuldt,

2014 Paterson–Strefler,

2015 Sepehrdad–Sušil–Vaudenay–

Vuagnoux.

2012 Akamai blog entry:

“Up to 75% of SSL-enabled

web sites are vulnerable [to

BEAST] : : : OpenSSL v0.9.8w

is the current version in broad

use and it only supports TLS

v1.0. : : : the interim fix is to

prefer the RC4-128 cipher for

TLS v1.0 and SSL v3. : : : RC4-

128 is faster and cheaper in

processor time : : : approximately

15% of SSL/TLS negotiations

on the Akamai platform use

RC4 : : : most browsers can

support the RC4 fix for BEAST.”

RC4 cryptanalysis continues:

2013 Lv–Zhang–Lin,

2013 Lv–Lin,

2013 Sen Gupta–Maitra–Meier–

Paul–Sarkar,

2013 Sarkar–Sen Gupta–Paul–

Maitra,

2013 Isobe–Ohigashi–Watanabe–

Morii,

2013 AlFardan–Bernstein–

Paterson–Poettering–

Schuldt,

2014 Paterson–Strefler,

2015 Sepehrdad–Sušil–Vaudenay–

Vuagnoux.

Maybe the final straws:

2015 Mantin “Bar Mitzvah”,

2015 Garman–Paterson–

van der Merwe

“RC4 must die”,

2015 Vanhoef–Piessens

“RC4 no more”.

2012 Akamai blog entry:

“Up to 75% of SSL-enabled

web sites are vulnerable [to

BEAST] : : : OpenSSL v0.9.8w

is the current version in broad

use and it only supports TLS

v1.0. : : : the interim fix is to

prefer the RC4-128 cipher for

TLS v1.0 and SSL v3. : : : RC4-

128 is faster and cheaper in

processor time : : : approximately

15% of SSL/TLS negotiations

on the Akamai platform use

RC4 : : : most browsers can

support the RC4 fix for BEAST.”

RC4 cryptanalysis continues:

2013 Lv–Zhang–Lin,

2013 Lv–Lin,

2013 Sen Gupta–Maitra–Meier–

Paul–Sarkar,

2013 Sarkar–Sen Gupta–Paul–

Maitra,

2013 Isobe–Ohigashi–Watanabe–

Morii,

2013 AlFardan–Bernstein–

Paterson–Poettering–

Schuldt,

2014 Paterson–Strefler,

2015 Sepehrdad–Sušil–Vaudenay–

Vuagnoux.

Maybe the final straws:

2015 Mantin “Bar Mitzvah”,

2015 Garman–Paterson–

van der Merwe

“RC4 must die”,

2015 Vanhoef–Piessens

“RC4 no more”.

2012 Akamai blog entry:

“Up to 75% of SSL-enabled

web sites are vulnerable [to

BEAST] : : : OpenSSL v0.9.8w

is the current version in broad

use and it only supports TLS

v1.0. : : : the interim fix is to

prefer the RC4-128 cipher for

TLS v1.0 and SSL v3. : : : RC4-

128 is faster and cheaper in

processor time : : : approximately

15% of SSL/TLS negotiations

on the Akamai platform use

RC4 : : : most browsers can

support the RC4 fix for BEAST.”

RC4 cryptanalysis continues:

2013 Lv–Zhang–Lin,

2013 Lv–Lin,

2013 Sen Gupta–Maitra–Meier–

Paul–Sarkar,

2013 Sarkar–Sen Gupta–Paul–

Maitra,

2013 Isobe–Ohigashi–Watanabe–

Morii,

2013 AlFardan–Bernstein–

Paterson–Poettering–

Schuldt,

2014 Paterson–Strefler,

2015 Sepehrdad–Sušil–Vaudenay–

Vuagnoux.

Maybe the final straws:

2015 Mantin “Bar Mitzvah”,

2015 Garman–Paterson–

van der Merwe

“RC4 must die”,

2015 Vanhoef–Piessens

“RC4 no more”.

RC4 cryptanalysis continues:

2013 Lv–Zhang–Lin,

2013 Lv–Lin,

2013 Sen Gupta–Maitra–Meier–

Paul–Sarkar,

2013 Sarkar–Sen Gupta–Paul–

Maitra,

2013 Isobe–Ohigashi–Watanabe–

Morii,

2013 AlFardan–Bernstein–

Paterson–Poettering–

Schuldt,

2014 Paterson–Strefler,

2015 Sepehrdad–Sušil–Vaudenay–

Vuagnoux.

Maybe the final straws:

2015 Mantin “Bar Mitzvah”,

2015 Garman–Paterson–

van der Merwe

“RC4 must die”,

2015 Vanhoef–Piessens

“RC4 no more”.

RC4 cryptanalysis continues:

2013 Lv–Zhang–Lin,

2013 Lv–Lin,

2013 Sen Gupta–Maitra–Meier–

Paul–Sarkar,

2013 Sarkar–Sen Gupta–Paul–

Maitra,

2013 Isobe–Ohigashi–Watanabe–

Morii,

2013 AlFardan–Bernstein–

Paterson–Poettering–

Schuldt,

2014 Paterson–Strefler,

2015 Sepehrdad–Sušil–Vaudenay–

Vuagnoux.

Maybe the final straws:

2015 Mantin “Bar Mitzvah”,

2015 Garman–Paterson–

van der Merwe

“RC4 must die”,

2015 Vanhoef–Piessens

“RC4 no more”.

Meanwhile IETF publishes

RFC 7465 (“RC4 die die die”),

prohibiting RC4 in TLS.

RC4 cryptanalysis continues:

2013 Lv–Zhang–Lin,

2013 Lv–Lin,

2013 Sen Gupta–Maitra–Meier–

Paul–Sarkar,

2013 Sarkar–Sen Gupta–Paul–

Maitra,

2013 Isobe–Ohigashi–Watanabe–

Morii,

2013 AlFardan–Bernstein–

Paterson–Poettering–

Schuldt,

2014 Paterson–Strefler,

2015 Sepehrdad–Sušil–Vaudenay–

Vuagnoux.

Maybe the final straws:

2015 Mantin “Bar Mitzvah”,

2015 Garman–Paterson–

van der Merwe

“RC4 must die”,

2015 Vanhoef–Piessens

“RC4 no more”.

Meanwhile IETF publishes

RFC 7465 (“RC4 die die die”),

prohibiting RC4 in TLS.

2015.09.01: Google, Microsoft,

Mozilla say that in 2016 their

browsers will no longer allow RC4.

RC4 cryptanalysis continues:

2013 Lv–Zhang–Lin,

2013 Lv–Lin,

2013 Sen Gupta–Maitra–Meier–

Paul–Sarkar,

2013 Sarkar–Sen Gupta–Paul–

Maitra,

2013 Isobe–Ohigashi–Watanabe–

Morii,

2013 AlFardan–Bernstein–

Paterson–Poettering–

Schuldt,

2014 Paterson–Strefler,

2015 Sepehrdad–Sušil–Vaudenay–

Vuagnoux.

Maybe the final straws:

2015 Mantin “Bar Mitzvah”,

2015 Garman–Paterson–

van der Merwe

“RC4 must die”,

2015 Vanhoef–Piessens

“RC4 no more”.

Meanwhile IETF publishes

RFC 7465 (“RC4 die die die”),

prohibiting RC4 in TLS.

2015.09.01: Google, Microsoft,

Mozilla say that in 2016 their

browsers will no longer allow RC4.

Another example: timing attacks

2005 Tromer–Osvik–Shamir:

65ms to steal Linux AES key

used for hard-disk encryption.

Attack process on same CPU

but without privileges.

RC4 cryptanalysis continues:

2013 Lv–Zhang–Lin,

2013 Lv–Lin,

2013 Sen Gupta–Maitra–Meier–

Paul–Sarkar,

2013 Sarkar–Sen Gupta–Paul–

Maitra,

2013 Isobe–Ohigashi–Watanabe–

Morii,

2013 AlFardan–Bernstein–

Paterson–Poettering–

Schuldt,

2014 Paterson–Strefler,

2015 Sepehrdad–Sušil–Vaudenay–

Vuagnoux.

Maybe the final straws:

2015 Mantin “Bar Mitzvah”,

2015 Garman–Paterson–

van der Merwe

“RC4 must die”,

2015 Vanhoef–Piessens

“RC4 no more”.

Meanwhile IETF publishes

RFC 7465 (“RC4 die die die”),

prohibiting RC4 in TLS.

2015.09.01: Google, Microsoft,

Mozilla say that in 2016 their

browsers will no longer allow RC4.

Another example: timing attacks

2005 Tromer–Osvik–Shamir:

65ms to steal Linux AES key

used for hard-disk encryption.

Attack process on same CPU

but without privileges.

RC4 cryptanalysis continues:

2013 Lv–Zhang–Lin,

2013 Lv–Lin,

2013 Sen Gupta–Maitra–Meier–

Paul–Sarkar,

2013 Sarkar–Sen Gupta–Paul–

Maitra,

2013 Isobe–Ohigashi–Watanabe–

Morii,

2013 AlFardan–Bernstein–

Paterson–Poettering–

Schuldt,

2014 Paterson–Strefler,

2015 Sepehrdad–Sušil–Vaudenay–

Vuagnoux.

Maybe the final straws:

2015 Mantin “Bar Mitzvah”,

2015 Garman–Paterson–

van der Merwe

“RC4 must die”,

2015 Vanhoef–Piessens

“RC4 no more”.

Meanwhile IETF publishes

RFC 7465 (“RC4 die die die”),

prohibiting RC4 in TLS.

2015.09.01: Google, Microsoft,

Mozilla say that in 2016 their

browsers will no longer allow RC4.

Another example: timing attacks

2005 Tromer–Osvik–Shamir:

65ms to steal Linux AES key

used for hard-disk encryption.

Attack process on same CPU

but without privileges.

Maybe the final straws:

2015 Mantin “Bar Mitzvah”,

2015 Garman–Paterson–

van der Merwe

“RC4 must die”,

2015 Vanhoef–Piessens

“RC4 no more”.

Meanwhile IETF publishes

RFC 7465 (“RC4 die die die”),

prohibiting RC4 in TLS.

2015.09.01: Google, Microsoft,

Mozilla say that in 2016 their

browsers will no longer allow RC4.

Another example: timing attacks

2005 Tromer–Osvik–Shamir:

65ms to steal Linux AES key

used for hard-disk encryption.

Attack process on same CPU

but without privileges.

Maybe the final straws:

2015 Mantin “Bar Mitzvah”,

2015 Garman–Paterson–

van der Merwe

“RC4 must die”,

2015 Vanhoef–Piessens

“RC4 no more”.

Meanwhile IETF publishes

RFC 7465 (“RC4 die die die”),

prohibiting RC4 in TLS.

2015.09.01: Google, Microsoft,

Mozilla say that in 2016 their

browsers will no longer allow RC4.

Another example: timing attacks

2005 Tromer–Osvik–Shamir:

65ms to steal Linux AES key

used for hard-disk encryption.

Attack process on same CPU

but without privileges.

Almost all AES implementations

use fast lookup tables.

Kernel’s secret AES key

influences table-load addresses,

influencing CPU cache state,

influencing measurable timings

of the attack process.

65ms: compute key from timings.

Maybe the final straws:

2015 Mantin “Bar Mitzvah”,

2015 Garman–Paterson–

van der Merwe

“RC4 must die”,

2015 Vanhoef–Piessens

“RC4 no more”.

Meanwhile IETF publishes

RFC 7465 (“RC4 die die die”),

prohibiting RC4 in TLS.

2015.09.01: Google, Microsoft,

Mozilla say that in 2016 their

browsers will no longer allow RC4.

Another example: timing attacks

2005 Tromer–Osvik–Shamir:

65ms to steal Linux AES key

used for hard-disk encryption.

Attack process on same CPU

but without privileges.

Almost all AES implementations

use fast lookup tables.

Kernel’s secret AES key

influences table-load addresses,

influencing CPU cache state,

influencing measurable timings

of the attack process.

65ms: compute key from timings.

2011 Brumley–Tuveri:

minutes to steal another

machine’s OpenSSL ECDSA key.

Secret branch conditions

influence timings.

Maybe the final straws:

2015 Mantin “Bar Mitzvah”,

2015 Garman–Paterson–

van der Merwe

“RC4 must die”,

2015 Vanhoef–Piessens

“RC4 no more”.

Meanwhile IETF publishes

RFC 7465 (“RC4 die die die”),

prohibiting RC4 in TLS.

2015.09.01: Google, Microsoft,

Mozilla say that in 2016 their

browsers will no longer allow RC4.

Another example: timing attacks

2005 Tromer–Osvik–Shamir:

65ms to steal Linux AES key

used for hard-disk encryption.

Attack process on same CPU

but without privileges.

Almost all AES implementations

use fast lookup tables.

Kernel’s secret AES key

influences table-load addresses,

influencing CPU cache state,

influencing measurable timings

of the attack process.

65ms: compute key from timings.

2011 Brumley–Tuveri:

minutes to steal another

machine’s OpenSSL ECDSA key.

Secret branch conditions

influence timings.

Maybe the final straws:

2015 Mantin “Bar Mitzvah”,

2015 Garman–Paterson–

van der Merwe

“RC4 must die”,

2015 Vanhoef–Piessens

“RC4 no more”.

Meanwhile IETF publishes

RFC 7465 (“RC4 die die die”),

prohibiting RC4 in TLS.

2015.09.01: Google, Microsoft,

Mozilla say that in 2016 their

browsers will no longer allow RC4.

Another example: timing attacks

2005 Tromer–Osvik–Shamir:

65ms to steal Linux AES key

used for hard-disk encryption.

Attack process on same CPU

but without privileges.

Almost all AES implementations

use fast lookup tables.

Kernel’s secret AES key

influences table-load addresses,

influencing CPU cache state,

influencing measurable timings

of the attack process.

65ms: compute key from timings.

2011 Brumley–Tuveri:

minutes to steal another

machine’s OpenSSL ECDSA key.

Secret branch conditions

influence timings.

Another example: timing attacks

2005 Tromer–Osvik–Shamir:

65ms to steal Linux AES key

used for hard-disk encryption.

Attack process on same CPU

but without privileges.

Almost all AES implementations

use fast lookup tables.

Kernel’s secret AES key

influences table-load addresses,

influencing CPU cache state,

influencing measurable timings

of the attack process.

65ms: compute key from timings.

2011 Brumley–Tuveri:

minutes to steal another

machine’s OpenSSL ECDSA key.

Secret branch conditions

influence timings.

Another example: timing attacks

2005 Tromer–Osvik–Shamir:

65ms to steal Linux AES key

used for hard-disk encryption.

Attack process on same CPU

but without privileges.

Almost all AES implementations

use fast lookup tables.

Kernel’s secret AES key

influences table-load addresses,

influencing CPU cache state,

influencing measurable timings

of the attack process.

65ms: compute key from timings.

2011 Brumley–Tuveri:

minutes to steal another

machine’s OpenSSL ECDSA key.

Secret branch conditions

influence timings.

Most cryptographic software

has many more small-scale

variations in timing:

e.g., memcmp for IPsec MACs.

Another example: timing attacks

2005 Tromer–Osvik–Shamir:

65ms to steal Linux AES key

used for hard-disk encryption.

Attack process on same CPU

but without privileges.

Almost all AES implementations

use fast lookup tables.

Kernel’s secret AES key

influences table-load addresses,

influencing CPU cache state,

influencing measurable timings

of the attack process.

65ms: compute key from timings.

2011 Brumley–Tuveri:

minutes to steal another

machine’s OpenSSL ECDSA key.

Secret branch conditions

influence timings.

Most cryptographic software

has many more small-scale

variations in timing:

e.g., memcmp for IPsec MACs.

Many more timing attacks: e.g.

2014 van de Pol–Smart–Yarom

extracted Bitcoin secret keys

from 25 OpenSSL signatures.

Another example: timing attacks

2005 Tromer–Osvik–Shamir:

65ms to steal Linux AES key

used for hard-disk encryption.

Attack process on same CPU

but without privileges.

Almost all AES implementations

use fast lookup tables.

Kernel’s secret AES key

influences table-load addresses,

influencing CPU cache state,

influencing measurable timings

of the attack process.

65ms: compute key from timings.

2011 Brumley–Tuveri:

minutes to steal another

machine’s OpenSSL ECDSA key.

Secret branch conditions

influence timings.

Most cryptographic software

has many more small-scale

variations in timing:

e.g., memcmp for IPsec MACs.

Many more timing attacks: e.g.

2014 van de Pol–Smart–Yarom

extracted Bitcoin secret keys

from 25 OpenSSL signatures.

2008 RFC 5246 “The Transport

Layer Security (TLS) Protocol,

Version 1.2”: “This leaves a

small timing channel, since MAC

performance depends to some

extent on the size of the data

fragment, but it is not believed to

be large enough to be exploitable,

due to the large block size of

existing MACs and the small size

of the timing signal.”

Another example: timing attacks

2005 Tromer–Osvik–Shamir:

65ms to steal Linux AES key

used for hard-disk encryption.

Attack process on same CPU

but without privileges.

Almost all AES implementations

use fast lookup tables.

Kernel’s secret AES key

influences table-load addresses,

influencing CPU cache state,

influencing measurable timings

of the attack process.

65ms: compute key from timings.

2011 Brumley–Tuveri:

minutes to steal another

machine’s OpenSSL ECDSA key.

Secret branch conditions

influence timings.

Most cryptographic software

has many more small-scale

variations in timing:

e.g., memcmp for IPsec MACs.

Many more timing attacks: e.g.

2014 van de Pol–Smart–Yarom

extracted Bitcoin secret keys

from 25 OpenSSL signatures.

2008 RFC 5246 “The Transport

Layer Security (TLS) Protocol,

Version 1.2”: “This leaves a

small timing channel, since MAC

performance depends to some

extent on the size of the data

fragment, but it is not believed to

be large enough to be exploitable,

due to the large block size of

existing MACs and the small size

of the timing signal.”

Another example: timing attacks

2005 Tromer–Osvik–Shamir:

65ms to steal Linux AES key

used for hard-disk encryption.

Attack process on same CPU

but without privileges.

Almost all AES implementations

use fast lookup tables.

Kernel’s secret AES key

influences table-load addresses,

influencing CPU cache state,

influencing measurable timings

of the attack process.

65ms: compute key from timings.

2011 Brumley–Tuveri:

minutes to steal another

machine’s OpenSSL ECDSA key.

Secret branch conditions

influence timings.

Most cryptographic software

has many more small-scale

variations in timing:

e.g., memcmp for IPsec MACs.

Many more timing attacks: e.g.

2014 van de Pol–Smart–Yarom

extracted Bitcoin secret keys

from 25 OpenSSL signatures.

2008 RFC 5246 “The Transport

Layer Security (TLS) Protocol,

Version 1.2”: “This leaves a

small timing channel, since MAC

performance depends to some

extent on the size of the data

fragment, but it is not believed to

be large enough to be exploitable,

due to the large block size of

existing MACs and the small size

of the timing signal.”

2011 Brumley–Tuveri:

minutes to steal another

machine’s OpenSSL ECDSA key.

Secret branch conditions

influence timings.

Most cryptographic software

has many more small-scale

variations in timing:

e.g., memcmp for IPsec MACs.

Many more timing attacks: e.g.

2014 van de Pol–Smart–Yarom

extracted Bitcoin secret keys

from 25 OpenSSL signatures.

2008 RFC 5246 “The Transport

Layer Security (TLS) Protocol,

Version 1.2”: “This leaves a

small timing channel, since MAC

performance depends to some

extent on the size of the data

fragment, but it is not believed to

be large enough to be exploitable,

due to the large block size of

existing MACs and the small size

of the timing signal.”

2011 Brumley–Tuveri:

minutes to steal another

machine’s OpenSSL ECDSA key.

Secret branch conditions

influence timings.

Most cryptographic software

has many more small-scale

variations in timing:

e.g., memcmp for IPsec MACs.

Many more timing attacks: e.g.

2014 van de Pol–Smart–Yarom

extracted Bitcoin secret keys

from 25 OpenSSL signatures.

2008 RFC 5246 “The Transport

Layer Security (TLS) Protocol,

Version 1.2”: “This leaves a

small timing channel, since MAC

performance depends to some

extent on the size of the data

fragment, but it is not believed to

be large enough to be exploitable,

due to the large block size of

existing MACs and the small size

of the timing signal.”

2013 AlFardan–Paterson “Lucky

Thirteen: breaking the TLS and

DTLS record protocols”: exploit

these timings; steal plaintext.

2011 Brumley–Tuveri:

minutes to steal another

machine’s OpenSSL ECDSA key.

Secret branch conditions

influence timings.

Most cryptographic software

has many more small-scale

variations in timing:

e.g., memcmp for IPsec MACs.

Many more timing attacks: e.g.

2014 van de Pol–Smart–Yarom

extracted Bitcoin secret keys

from 25 OpenSSL signatures.

2008 RFC 5246 “The Transport

Layer Security (TLS) Protocol,

Version 1.2”: “This leaves a

small timing channel, since MAC

performance depends to some

extent on the size of the data

fragment, but it is not believed to

be large enough to be exploitable,

due to the large block size of

existing MACs and the small size

of the timing signal.”

2013 AlFardan–Paterson “Lucky

Thirteen: breaking the TLS and

DTLS record protocols”: exploit

these timings; steal plaintext.

Interesting vs. boring crypto

All of this excitement is

wonderful for crypto researchers.

2011 Brumley–Tuveri:

minutes to steal another

machine’s OpenSSL ECDSA key.

Secret branch conditions

influence timings.

Most cryptographic software

has many more small-scale

variations in timing:

e.g., memcmp for IPsec MACs.

Many more timing attacks: e.g.

2014 van de Pol–Smart–Yarom

extracted Bitcoin secret keys

from 25 OpenSSL signatures.

2008 RFC 5246 “The Transport

Layer Security (TLS) Protocol,

Version 1.2”: “This leaves a

small timing channel, since MAC

performance depends to some

extent on the size of the data

fragment, but it is not believed to

be large enough to be exploitable,

due to the large block size of

existing MACs and the small size

of the timing signal.”

2013 AlFardan–Paterson “Lucky

Thirteen: breaking the TLS and

DTLS record protocols”: exploit

these timings; steal plaintext.

Interesting vs. boring crypto

All of this excitement is

wonderful for crypto researchers.

2011 Brumley–Tuveri:

minutes to steal another

machine’s OpenSSL ECDSA key.

Secret branch conditions

influence timings.

Most cryptographic software

has many more small-scale

variations in timing:

e.g., memcmp for IPsec MACs.

Many more timing attacks: e.g.

2014 van de Pol–Smart–Yarom

extracted Bitcoin secret keys

from 25 OpenSSL signatures.

2008 RFC 5246 “The Transport

Layer Security (TLS) Protocol,

Version 1.2”: “This leaves a

small timing channel, since MAC

performance depends to some

extent on the size of the data

fragment, but it is not believed to

be large enough to be exploitable,

due to the large block size of

existing MACs and the small size

of the timing signal.”

2013 AlFardan–Paterson “Lucky

Thirteen: breaking the TLS and

DTLS record protocols”: exploit

these timings; steal plaintext.

Interesting vs. boring crypto

All of this excitement is

wonderful for crypto researchers.

2008 RFC 5246 “The Transport

Layer Security (TLS) Protocol,

Version 1.2”: “This leaves a

small timing channel, since MAC

performance depends to some

extent on the size of the data

fragment, but it is not believed to

be large enough to be exploitable,

due to the large block size of

existing MACs and the small size

of the timing signal.”

2013 AlFardan–Paterson “Lucky

Thirteen: breaking the TLS and

DTLS record protocols”: exploit

these timings; steal plaintext.

Interesting vs. boring crypto

All of this excitement is

wonderful for crypto researchers.

2008 RFC 5246 “The Transport

Layer Security (TLS) Protocol,

Version 1.2”: “This leaves a

small timing channel, since MAC

performance depends to some

extent on the size of the data

fragment, but it is not believed to

be large enough to be exploitable,

due to the large block size of

existing MACs and the small size

of the timing signal.”

2013 AlFardan–Paterson “Lucky

Thirteen: breaking the TLS and

DTLS record protocols”: exploit

these timings; steal plaintext.

Interesting vs. boring crypto

All of this excitement is

wonderful for crypto researchers.

The only people suffering

are the crypto users:

continually forced to panic,

vulnerable to attacks,

uncertain what to do next.

2008 RFC 5246 “The Transport

Layer Security (TLS) Protocol,

Version 1.2”: “This leaves a

small timing channel, since MAC

performance depends to some

extent on the size of the data

fragment, but it is not believed to

be large enough to be exploitable,

due to the large block size of

existing MACs and the small size

of the timing signal.”

2013 AlFardan–Paterson “Lucky

Thirteen: breaking the TLS and

DTLS record protocols”: exploit

these timings; steal plaintext.

Interesting vs. boring crypto

All of this excitement is

wonderful for crypto researchers.

The only people suffering

are the crypto users:

continually forced to panic,

vulnerable to attacks,

uncertain what to do next.

The crypto users’ fantasy

is boring crypto:

crypto that simply works,

solidly resists attacks,

never needs any upgrades.

2008 RFC 5246 “The Transport

Layer Security (TLS) Protocol,

Version 1.2”: “This leaves a

small timing channel, since MAC

performance depends to some

extent on the size of the data

fragment, but it is not believed to

be large enough to be exploitable,

due to the large block size of

existing MACs and the small size

of the timing signal.”

2013 AlFardan–Paterson “Lucky

Thirteen: breaking the TLS and

DTLS record protocols”: exploit

these timings; steal plaintext.

Interesting vs. boring crypto

All of this excitement is

wonderful for crypto researchers.

The only people suffering

are the crypto users:

continually forced to panic,

vulnerable to attacks,

uncertain what to do next.

The crypto users’ fantasy

is boring crypto:

crypto that simply works,

solidly resists attacks,

never needs any upgrades.

What will happen if

the crypto users convince

some crypto researchers to

actually create boring crypto?

2008 RFC 5246 “The Transport

Layer Security (TLS) Protocol,

Version 1.2”: “This leaves a

small timing channel, since MAC

performance depends to some

extent on the size of the data

fragment, but it is not believed to

be large enough to be exploitable,

due to the large block size of

existing MACs and the small size

of the timing signal.”

2013 AlFardan–Paterson “Lucky

Thirteen: breaking the TLS and

DTLS record protocols”: exploit

these timings; steal plaintext.

Interesting vs. boring crypto

All of this excitement is

wonderful for crypto researchers.

The only people suffering

are the crypto users:

continually forced to panic,

vulnerable to attacks,

uncertain what to do next.

The crypto users’ fantasy

is boring crypto:

crypto that simply works,

solidly resists attacks,

never needs any upgrades.

What will happen if

the crypto users convince

some crypto researchers to

actually create boring crypto?

2008 RFC 5246 “The Transport

Layer Security (TLS) Protocol,

Version 1.2”: “This leaves a

small timing channel, since MAC

performance depends to some

extent on the size of the data

fragment, but it is not believed to

be large enough to be exploitable,

due to the large block size of

existing MACs and the small size

of the timing signal.”

2013 AlFardan–Paterson “Lucky

Thirteen: breaking the TLS and

DTLS record protocols”: exploit

these timings; steal plaintext.

Interesting vs. boring crypto

All of this excitement is

wonderful for crypto researchers.

The only people suffering

are the crypto users:

continually forced to panic,

vulnerable to attacks,

uncertain what to do next.

The crypto users’ fantasy

is boring crypto:

crypto that simply works,

solidly resists attacks,

never needs any upgrades.

What will happen if

the crypto users convince

some crypto researchers to

actually create boring crypto?

Interesting vs. boring crypto

All of this excitement is

wonderful for crypto researchers.

The only people suffering

are the crypto users:

continually forced to panic,

vulnerable to attacks,

uncertain what to do next.

The crypto users’ fantasy

is boring crypto:

crypto that simply works,

solidly resists attacks,

never needs any upgrades.

What will happen if

the crypto users convince

some crypto researchers to

actually create boring crypto?

Interesting vs. boring crypto

All of this excitement is

wonderful for crypto researchers.

The only people suffering

are the crypto users:

continually forced to panic,

vulnerable to attacks,

uncertain what to do next.

The crypto users’ fantasy

is boring crypto:

crypto that simply works,

solidly resists attacks,

never needs any upgrades.

What will happen if

the crypto users convince

some crypto researchers to

actually create boring crypto?

No more real-world attacks.

No more emergency upgrades.

Limited audience for any

minor attack improvements

and for replacement crypto.

Interesting vs. boring crypto

All of this excitement is

wonderful for crypto researchers.

The only people suffering

are the crypto users:

continually forced to panic,

vulnerable to attacks,

uncertain what to do next.

The crypto users’ fantasy

is boring crypto:

crypto that simply works,

solidly resists attacks,

never needs any upgrades.

What will happen if

the crypto users convince

some crypto researchers to

actually create boring crypto?

No more real-world attacks.

No more emergency upgrades.

Limited audience for any

minor attack improvements

and for replacement crypto.

This is an existential threat

against future crypto research.

Interesting vs. boring crypto

All of this excitement is

wonderful for crypto researchers.

The only people suffering

are the crypto users:

continually forced to panic,

vulnerable to attacks,

uncertain what to do next.

The crypto users’ fantasy

is boring crypto:

crypto that simply works,

solidly resists attacks,

never needs any upgrades.

What will happen if

the crypto users convince

some crypto researchers to

actually create boring crypto?

No more real-world attacks.

No more emergency upgrades.

Limited audience for any

minor attack improvements

and for replacement crypto.

This is an existential threat

against future crypto research.

Is this the real life?

Is this just fantasy?

Interesting vs. boring crypto

All of this excitement is

wonderful for crypto researchers.

The only people suffering

are the crypto users:

continually forced to panic,

vulnerable to attacks,

uncertain what to do next.

The crypto users’ fantasy

is boring crypto:

crypto that simply works,

solidly resists attacks,

never needs any upgrades.

What will happen if

the crypto users convince

some crypto researchers to

actually create boring crypto?

No more real-world attacks.

No more emergency upgrades.

Limited audience for any

minor attack improvements

and for replacement crypto.

This is an existential threat

against future crypto research.

Is this the real life?

Is this just fantasy?

Crypto can be boring

Again consider timing leaks.

Many interesting questions:

How do secrets affect timings?

How can attacker see timings?

How can attacker choose inputs

to influence how secrets

affect timings? Et cetera.

Interesting vs. boring crypto

All of this excitement is

wonderful for crypto researchers.

The only people suffering

are the crypto users:

continually forced to panic,

vulnerable to attacks,

uncertain what to do next.

The crypto users’ fantasy

is boring crypto:

crypto that simply works,

solidly resists attacks,

never needs any upgrades.

What will happen if

the crypto users convince

some crypto researchers to

actually create boring crypto?

No more real-world attacks.

No more emergency upgrades.

Limited audience for any

minor attack improvements

and for replacement crypto.

This is an existential threat

against future crypto research.

Is this the real life?

Is this just fantasy?

Crypto can be boring

Again consider timing leaks.

Many interesting questions:

How do secrets affect timings?

How can attacker see timings?

How can attacker choose inputs

to influence how secrets

affect timings? Et cetera.

Interesting vs. boring crypto

All of this excitement is

wonderful for crypto researchers.

The only people suffering

are the crypto users:

continually forced to panic,

vulnerable to attacks,

uncertain what to do next.

The crypto users’ fantasy

is boring crypto:

crypto that simply works,

solidly resists attacks,

never needs any upgrades.

What will happen if

the crypto users convince

some crypto researchers to

actually create boring crypto?

No more real-world attacks.

No more emergency upgrades.

Limited audience for any

minor attack improvements

and for replacement crypto.

This is an existential threat

against future crypto research.

Is this the real life?

Is this just fantasy?

Crypto can be boring

Again consider timing leaks.

Many interesting questions:

How do secrets affect timings?

How can attacker see timings?

How can attacker choose inputs

to influence how secrets

affect timings? Et cetera.

What will happen if

the crypto users convince

some crypto researchers to

actually create boring crypto?

No more real-world attacks.

No more emergency upgrades.

Limited audience for any

minor attack improvements

and for replacement crypto.

This is an existential threat

against future crypto research.

Is this the real life?

Is this just fantasy?

Crypto can be boring

Again consider timing leaks.

Many interesting questions:

How do secrets affect timings?

How can attacker see timings?

How can attacker choose inputs

to influence how secrets

affect timings? Et cetera.

What will happen if

the crypto users convince

some crypto researchers to

actually create boring crypto?

No more real-world attacks.

No more emergency upgrades.

Limited audience for any

minor attack improvements

and for replacement crypto.

This is an existential threat

against future crypto research.

Is this the real life?

Is this just fantasy?

Crypto can be boring

Again consider timing leaks.

Many interesting questions:

How do secrets affect timings?

How can attacker see timings?

How can attacker choose inputs

to influence how secrets

affect timings? Et cetera.

The boring-crypto alternative:

crypto software is built from

instructions that have no data

flow from inputs to timings.

Obviously constant time.

What will happen if

the crypto users convince

some crypto researchers to

actually create boring crypto?

No more real-world attacks.

No more emergency upgrades.

Limited audience for any

minor attack improvements

and for replacement crypto.

This is an existential threat

against future crypto research.

Is this the real life?

Is this just fantasy?

Crypto can be boring

Again consider timing leaks.

Many interesting questions:

How do secrets affect timings?

How can attacker see timings?

How can attacker choose inputs

to influence how secrets

affect timings? Et cetera.

The boring-crypto alternative:

crypto software is built from

instructions that have no data

flow from inputs to timings.

Obviously constant time.

Another example:

“280 security” is interesting.

280 mults on mass-market GPUs:

about 222 watt-years.

Bluffdale: 226 watts.

What will happen if

the crypto users convince

some crypto researchers to

actually create boring crypto?

No more real-world attacks.

No more emergency upgrades.

Limited audience for any

minor attack improvements

and for replacement crypto.

This is an existential threat

against future crypto research.

Is this the real life?

Is this just fantasy?

Crypto can be boring

Again consider timing leaks.

Many interesting questions:

How do secrets affect timings?

How can attacker see timings?

How can attacker choose inputs

to influence how secrets

affect timings? Et cetera.

The boring-crypto alternative:

crypto software is built from

instructions that have no data

flow from inputs to timings.

Obviously constant time.

Another example:

“280 security” is interesting.

280 mults on mass-market GPUs:

about 222 watt-years.

Bluffdale: 226 watts.

What will happen if

the crypto users convince

some crypto researchers to

actually create boring crypto?

No more real-world attacks.

No more emergency upgrades.

Limited audience for any

minor attack improvements

and for replacement crypto.

This is an existential threat

against future crypto research.

Is this the real life?

Is this just fantasy?

Crypto can be boring

Again consider timing leaks.

Many interesting questions:

How do secrets affect timings?

How can attacker see timings?

How can attacker choose inputs

to influence how secrets

affect timings? Et cetera.

The boring-crypto alternative:

crypto software is built from

instructions that have no data

flow from inputs to timings.

Obviously constant time.

Another example:

“280 security” is interesting.

280 mults on mass-market GPUs:

about 222 watt-years.

Bluffdale: 226 watts.

Crypto can be boring

Again consider timing leaks.

Many interesting questions:

How do secrets affect timings?

How can attacker see timings?

How can attacker choose inputs

to influence how secrets

affect timings? Et cetera.

The boring-crypto alternative:

crypto software is built from

instructions that have no data

flow from inputs to timings.

Obviously constant time.

Another example:

“280 security” is interesting.

280 mults on mass-market GPUs:

about 222 watt-years.

Bluffdale: 226 watts.

Crypto can be boring

Again consider timing leaks.

Many interesting questions:

How do secrets affect timings?

How can attacker see timings?

How can attacker choose inputs

to influence how secrets

affect timings? Et cetera.

The boring-crypto alternative:

crypto software is built from

instructions that have no data

flow from inputs to timings.

Obviously constant time.

Another example:

“280 security” is interesting.

280 mults on mass-market GPUs:

about 222 watt-years.

Bluffdale: 226 watts.

Is “280 security” really 285? 275?

Are the individual ops harder than

single-precision mults? Easier?

Can the attack cost be shared

across targets, as in Logjam?

Every speedup is important.

Crypto can be boring

Again consider timing leaks.

Many interesting questions:

How do secrets affect timings?

How can attacker see timings?

How can attacker choose inputs

to influence how secrets

affect timings? Et cetera.

The boring-crypto alternative:

crypto software is built from

instructions that have no data

flow from inputs to timings.

Obviously constant time.

Another example:

“280 security” is interesting.

280 mults on mass-market GPUs:

about 222 watt-years.

Bluffdale: 226 watts.

Is “280 security” really 285? 275?

Are the individual ops harder than

single-precision mults? Easier?

Can the attack cost be shared

across targets, as in Logjam?

Every speedup is important.

“2128 security” is boring.

Crypto can be boring

Again consider timing leaks.

Many interesting questions:

How do secrets affect timings?

How can attacker see timings?

How can attacker choose inputs

to influence how secrets

affect timings? Et cetera.

The boring-crypto alternative:

crypto software is built from

instructions that have no data

flow from inputs to timings.

Obviously constant time.

Another example:

“280 security” is interesting.

280 mults on mass-market GPUs:

about 222 watt-years.

Bluffdale: 226 watts.

Is “280 security” really 285? 275?

Are the individual ops harder than

single-precision mults? Easier?

Can the attack cost be shared

across targets, as in Logjam?

Every speedup is important.

“2128 security” is boring.

NIST ECC is interesting:

see, e.g., how keys were exposed

in PS3 ECDSA and Java ECDH.

Ed25519 and X25519: boring.

Crypto can be boring

Again consider timing leaks.

Many interesting questions:

How do secrets affect timings?

How can attacker see timings?

How can attacker choose inputs

to influence how secrets

affect timings? Et cetera.

The boring-crypto alternative:

crypto software is built from

instructions that have no data

flow from inputs to timings.

Obviously constant time.

Another example:

“280 security” is interesting.

280 mults on mass-market GPUs:

about 222 watt-years.

Bluffdale: 226 watts.

Is “280 security” really 285? 275?

Are the individual ops harder than

single-precision mults? Easier?

Can the attack cost be shared

across targets, as in Logjam?

Every speedup is important.

“2128 security” is boring.

NIST ECC is interesting:

see, e.g., how keys were exposed

in PS3 ECDSA and Java ECDH.

Ed25519 and X25519: boring.

Crypto can be boring

Again consider timing leaks.

Many interesting questions:

How do secrets affect timings?

How can attacker see timings?

How can attacker choose inputs

to influence how secrets

affect timings? Et cetera.

The boring-crypto alternative:

crypto software is built from

instructions that have no data

flow from inputs to timings.

Obviously constant time.

Another example:

“280 security” is interesting.

280 mults on mass-market GPUs:

about 222 watt-years.

Bluffdale: 226 watts.

Is “280 security” really 285? 275?

Are the individual ops harder than

single-precision mults? Easier?

Can the attack cost be shared

across targets, as in Logjam?

Every speedup is important.

“2128 security” is boring.

NIST ECC is interesting:

see, e.g., how keys were exposed

in PS3 ECDSA and Java ECDH.

Ed25519 and X25519: boring.

Another example:

“280 security” is interesting.

280 mults on mass-market GPUs:

about 222 watt-years.

Bluffdale: 226 watts.

Is “280 security” really 285? 275?

Are the individual ops harder than

single-precision mults? Easier?

Can the attack cost be shared

across targets, as in Logjam?

Every speedup is important.

“2128 security” is boring.

NIST ECC is interesting:

see, e.g., how keys were exposed

in PS3 ECDSA and Java ECDH.

Ed25519 and X25519: boring.

Another example:

“280 security” is interesting.

280 mults on mass-market GPUs:

about 222 watt-years.

Bluffdale: 226 watts.

Is “280 security” really 285? 275?

Are the individual ops harder than

single-precision mults? Easier?

Can the attack cost be shared

across targets, as in Logjam?

Every speedup is important.

“2128 security” is boring.

NIST ECC is interesting:

see, e.g., how keys were exposed

in PS3 ECDSA and Java ECDH.

Ed25519 and X25519: boring.

Crypto “agility” is interesting:

expands the attack surface,

complicates implementations,

complicates security analysis.

One True Cipher Suite: boring.

Another example:

“280 security” is interesting.

280 mults on mass-market GPUs:

about 222 watt-years.

Bluffdale: 226 watts.

Is “280 security” really 285? 275?

Are the individual ops harder than

single-precision mults? Easier?

Can the attack cost be shared

across targets, as in Logjam?

Every speedup is important.

“2128 security” is boring.

NIST ECC is interesting:

see, e.g., how keys were exposed

in PS3 ECDSA and Java ECDH.

Ed25519 and X25519: boring.

Crypto “agility” is interesting:

expands the attack surface,

complicates implementations,

complicates security analysis.

One True Cipher Suite: boring.

Incorrect software: interesting.

Correct software: boring.

Can boring-crypto researchers

actually ensure correctness?

Another example:

“280 security” is interesting.

280 mults on mass-market GPUs:

about 222 watt-years.

Bluffdale: 226 watts.

Is “280 security” really 285? 275?

Are the individual ops harder than

single-precision mults? Easier?

Can the attack cost be shared

across targets, as in Logjam?

Every speedup is important.

“2128 security” is boring.

NIST ECC is interesting:

see, e.g., how keys were exposed

in PS3 ECDSA and Java ECDH.

Ed25519 and X25519: boring.

Crypto “agility” is interesting:

expands the attack surface,

complicates implementations,

complicates security analysis.

One True Cipher Suite: boring.

Incorrect software: interesting.

Correct software: boring.

Can boring-crypto researchers

actually ensure correctness?

Bugs triggered by very rare inputs

usually aren’t caught by testing.

Another example:

“280 security” is interesting.

280 mults on mass-market GPUs:

about 222 watt-years.

Bluffdale: 226 watts.

Is “280 security” really 285? 275?

Are the individual ops harder than

single-precision mults? Easier?

Can the attack cost be shared

across targets, as in Logjam?

Every speedup is important.

“2128 security” is boring.

NIST ECC is interesting:

see, e.g., how keys were exposed

in PS3 ECDSA and Java ECDH.

Ed25519 and X25519: boring.

Crypto “agility” is interesting:

expands the attack surface,

complicates implementations,

complicates security analysis.

One True Cipher Suite: boring.

Incorrect software: interesting.

Correct software: boring.

Can boring-crypto researchers

actually ensure correctness?

Bugs triggered by very rare inputs

usually aren’t caught by testing.

Another example:

“280 security” is interesting.

280 mults on mass-market GPUs:

about 222 watt-years.

Bluffdale: 226 watts.

Is “280 security” really 285? 275?

Are the individual ops harder than

single-precision mults? Easier?

Can the attack cost be shared

across targets, as in Logjam?

Every speedup is important.

“2128 security” is boring.

NIST ECC is interesting:

see, e.g., how keys were exposed

in PS3 ECDSA and Java ECDH.

Ed25519 and X25519: boring.

Crypto “agility” is interesting:

expands the attack surface,

complicates implementations,

complicates security analysis.

One True Cipher Suite: boring.

Incorrect software: interesting.

Correct software: boring.

Can boring-crypto researchers

actually ensure correctness?

Bugs triggered by very rare inputs

usually aren’t caught by testing.

NIST ECC is interesting:

see, e.g., how keys were exposed

in PS3 ECDSA and Java ECDH.

Ed25519 and X25519: boring.

Crypto “agility” is interesting:

expands the attack surface,

complicates implementations,

complicates security analysis.

One True Cipher Suite: boring.

Incorrect software: interesting.

Correct software: boring.

Can boring-crypto researchers

actually ensure correctness?

Bugs triggered by very rare inputs

usually aren’t caught by testing.

NIST ECC is interesting:

see, e.g., how keys were exposed

in PS3 ECDSA and Java ECDH.

Ed25519 and X25519: boring.

Crypto “agility” is interesting:

expands the attack surface,

complicates implementations,

complicates security analysis.

One True Cipher Suite: boring.

Incorrect software: interesting.

Correct software: boring.

Can boring-crypto researchers

actually ensure correctness?

Bugs triggered by very rare inputs

usually aren’t caught by testing.

Block-cipher implementations

typically have no such bugs.

NIST ECC is interesting:

see, e.g., how keys were exposed

in PS3 ECDSA and Java ECDH.

Ed25519 and X25519: boring.

Crypto “agility” is interesting:

expands the attack surface,

complicates implementations,

complicates security analysis.

One True Cipher Suite: boring.

Incorrect software: interesting.

Correct software: boring.

Can boring-crypto researchers

actually ensure correctness?

Bugs triggered by very rare inputs

usually aren’t caught by testing.

Block-cipher implementations

typically have no such bugs.

Much bigger issue for bigint

software. Integers are split into

“limbs” stored in CPU words;

typical tests fail to find extreme

values of limbs, fail to catch slight

overflows inside arithmetic.

NIST ECC is interesting:

see, e.g., how keys were exposed

in PS3 ECDSA and Java ECDH.

Ed25519 and X25519: boring.

Crypto “agility” is interesting:

expands the attack surface,

complicates implementations,

complicates security analysis.

One True Cipher Suite: boring.

Incorrect software: interesting.

Correct software: boring.

Can boring-crypto researchers

actually ensure correctness?

Bugs triggered by very rare inputs

usually aren’t caught by testing.

Block-cipher implementations

typically have no such bugs.

Much bigger issue for bigint

software. Integers are split into

“limbs” stored in CPU words;

typical tests fail to find extreme

values of limbs, fail to catch slight

overflows inside arithmetic.

2011 Brumley–Barbosa–Page–

Vercauteren exploited a

limb overflow in OpenSSL.

NIST ECC is interesting:

see, e.g., how keys were exposed

in PS3 ECDSA and Java ECDH.

Ed25519 and X25519: boring.

Crypto “agility” is interesting:

expands the attack surface,

complicates implementations,

complicates security analysis.

One True Cipher Suite: boring.

Incorrect software: interesting.

Correct software: boring.

Can boring-crypto researchers

actually ensure correctness?

Bugs triggered by very rare inputs

usually aren’t caught by testing.

Block-cipher implementations

typically have no such bugs.

Much bigger issue for bigint

software. Integers are split into

“limbs” stored in CPU words;

typical tests fail to find extreme

values of limbs, fail to catch slight

overflows inside arithmetic.

2011 Brumley–Barbosa–Page–

Vercauteren exploited a

limb overflow in OpenSSL.

Typically these limb overflows

are caught by careful audits.

Can this be automated?

NIST ECC is interesting:

see, e.g., how keys were exposed

in PS3 ECDSA and Java ECDH.

Ed25519 and X25519: boring.

Crypto “agility” is interesting:

expands the attack surface,

complicates implementations,

complicates security analysis.

One True Cipher Suite: boring.

Incorrect software: interesting.

Correct software: boring.

Can boring-crypto researchers

actually ensure correctness?

Bugs triggered by very rare inputs

usually aren’t caught by testing.

Block-cipher implementations

typically have no such bugs.

Much bigger issue for bigint

software. Integers are split into

“limbs” stored in CPU words;

typical tests fail to find extreme

values of limbs, fail to catch slight

overflows inside arithmetic.

2011 Brumley–Barbosa–Page–

Vercauteren exploited a

limb overflow in OpenSSL.

Typically these limb overflows

are caught by careful audits.

Can this be automated?

NIST ECC is interesting:

see, e.g., how keys were exposed

in PS3 ECDSA and Java ECDH.

Ed25519 and X25519: boring.

Crypto “agility” is interesting:

expands the attack surface,

complicates implementations,

complicates security analysis.

One True Cipher Suite: boring.

Incorrect software: interesting.

Correct software: boring.

Can boring-crypto researchers

actually ensure correctness?

Bugs triggered by very rare inputs

usually aren’t caught by testing.

Block-cipher implementations

typically have no such bugs.

Much bigger issue for bigint

software. Integers are split into

“limbs” stored in CPU words;

typical tests fail to find extreme

values of limbs, fail to catch slight

overflows inside arithmetic.

2011 Brumley–Barbosa–Page–

Vercauteren exploited a

limb overflow in OpenSSL.

Typically these limb overflows

are caught by careful audits.

Can this be automated?

Bugs triggered by very rare inputs

usually aren’t caught by testing.

Block-cipher implementations

typically have no such bugs.

Much bigger issue for bigint

software. Integers are split into

“limbs” stored in CPU words;

typical tests fail to find extreme

values of limbs, fail to catch slight

overflows inside arithmetic.

2011 Brumley–Barbosa–Page–

Vercauteren exploited a

limb overflow in OpenSSL.

Typically these limb overflows

are caught by careful audits.

Can this be automated?

Bugs triggered by very rare inputs

usually aren’t caught by testing.

Block-cipher implementations

typically have no such bugs.

Much bigger issue for bigint

software. Integers are split into

“limbs” stored in CPU words;

typical tests fail to find extreme

values of limbs, fail to catch slight

overflows inside arithmetic.

2011 Brumley–Barbosa–Page–

Vercauteren exploited a

limb overflow in OpenSSL.

Typically these limb overflows

are caught by careful audits.

Can this be automated?

2014 Chen–Hsu–Lin–Schwabe–

Tsai–Wang–Yang–Yang “Verifying

Curve25519 software”: proof of

correctness of thousands of lines

of asm for X25519 main loop.

Bugs triggered by very rare inputs

usually aren’t caught by testing.

Block-cipher implementations

typically have no such bugs.

Much bigger issue for bigint

software. Integers are split into

“limbs” stored in CPU words;

typical tests fail to find extreme

values of limbs, fail to catch slight

overflows inside arithmetic.

2011 Brumley–Barbosa–Page–

Vercauteren exploited a

limb overflow in OpenSSL.

Typically these limb overflows

are caught by careful audits.

Can this be automated?

2014 Chen–Hsu–Lin–Schwabe–

Tsai–Wang–Yang–Yang “Verifying

Curve25519 software”: proof of

correctness of thousands of lines

of asm for X25519 main loop.

Still very far from automatic:

huge portion of proof was checked

by computer but written by hand.

Per proof: many hours of CPU

time; many hours of human time.

Bugs triggered by very rare inputs

usually aren’t caught by testing.

Block-cipher implementations

typically have no such bugs.

Much bigger issue for bigint

software. Integers are split into

“limbs” stored in CPU words;

typical tests fail to find extreme

values of limbs, fail to catch slight

overflows inside arithmetic.

2011 Brumley–Barbosa–Page–

Vercauteren exploited a

limb overflow in OpenSSL.

Typically these limb overflows

are caught by careful audits.

Can this be automated?

2014 Chen–Hsu–Lin–Schwabe–

Tsai–Wang–Yang–Yang “Verifying

Curve25519 software”: proof of

correctness of thousands of lines

of asm for X25519 main loop.

Still very far from automatic:

huge portion of proof was checked

by computer but written by hand.

Per proof: many hours of CPU

time; many hours of human time.

2015 Bernstein–Schwabe

gfverif, in progress:

far less time per proof.

Usable part of development

process for ECC software.

Latest news: finished proving

correctness for ref10

implementation of X25519.

CPU time per proof:

141 seconds on my laptop.

Human time per proof:

annotations for each field op.

Working on automating this.

Bugs triggered by very rare inputs

usually aren’t caught by testing.

Block-cipher implementations

typically have no such bugs.

Much bigger issue for bigint

software. Integers are split into

“limbs” stored in CPU words;

typical tests fail to find extreme

values of limbs, fail to catch slight

overflows inside arithmetic.

2011 Brumley–Barbosa–Page–

Vercauteren exploited a

limb overflow in OpenSSL.

Typically these limb overflows

are caught by careful audits.

Can this be automated?

2014 Chen–Hsu–Lin–Schwabe–

Tsai–Wang–Yang–Yang “Verifying

Curve25519 software”: proof of

correctness of thousands of lines

of asm for X25519 main loop.

Still very far from automatic:

huge portion of proof was checked

by computer but written by hand.

Per proof: many hours of CPU

time; many hours of human time.

2015 Bernstein–Schwabe

gfverif, in progress:

far less time per proof.

Usable part of development

process for ECC software.

Latest news: finished proving

correctness for ref10

implementation of X25519.

CPU time per proof:

141 seconds on my laptop.

Human time per proof:

annotations for each field op.

Working on automating this.

Bugs triggered by very rare inputs

usually aren’t caught by testing.

Block-cipher implementations

typically have no such bugs.

Much bigger issue for bigint

software. Integers are split into

“limbs” stored in CPU words;

typical tests fail to find extreme

values of limbs, fail to catch slight

overflows inside arithmetic.

2011 Brumley–Barbosa–Page–

Vercauteren exploited a

limb overflow in OpenSSL.

Typically these limb overflows

are caught by careful audits.

Can this be automated?

2014 Chen–Hsu–Lin–Schwabe–

Tsai–Wang–Yang–Yang “Verifying

Curve25519 software”: proof of

correctness of thousands of lines

of asm for X25519 main loop.

Still very far from automatic:

huge portion of proof was checked

by computer but written by hand.

Per proof: many hours of CPU

time; many hours of human time.

2015 Bernstein–Schwabe

gfverif, in progress:

far less time per proof.

Usable part of development

process for ECC software.

Latest news: finished proving

correctness for ref10

implementation of X25519.

CPU time per proof:

141 seconds on my laptop.

Human time per proof:

annotations for each field op.

Working on automating this.

Typically these limb overflows

are caught by careful audits.

Can this be automated?

2014 Chen–Hsu–Lin–Schwabe–

Tsai–Wang–Yang–Yang “Verifying

Curve25519 software”: proof of

correctness of thousands of lines

of asm for X25519 main loop.

Still very far from automatic:

huge portion of proof was checked

by computer but written by hand.

Per proof: many hours of CPU

time; many hours of human time.

2015 Bernstein–Schwabe

gfverif, in progress:

far less time per proof.

Usable part of development

process for ECC software.

Latest news: finished proving

correctness for ref10

implementation of X25519.

CPU time per proof:

141 seconds on my laptop.

Human time per proof:

annotations for each field op.

Working on automating this.

