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Vuagnoux.

Maybe the final straws:

2015 Mantin “Bar Mitzvah”,

2015 Garman–Paterson–

van der Merwe

“RC4 must die”,

2015 Vanhoef–Piessens

“RC4 no more”.

Meanwhile IETF publishes

RFC 7465 (“RC4 die die die”),

prohibiting RC4 in TLS.

2015.09.01: Google, Microsoft,

Mozilla say that in 2016 their

browsers will no longer allow RC4.



RC4 cryptanalysis continues:

2013 Lv–Zhang–Lin,

2013 Lv–Lin,

2013 Sen Gupta–Maitra–Meier–

Paul–Sarkar,

2013 Sarkar–Sen Gupta–Paul–

Maitra,

2013 Isobe–Ohigashi–Watanabe–

Morii,

2013 AlFardan–Bernstein–

Paterson–Poettering–

Schuldt,

2014 Paterson–Strefler,

2015 Sepehrdad–Sušil–Vaudenay–
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