Boring crypto

Daniel J. Bernstein
University of lllinois at Chicago &
Technische Universiteit Eindhoven

Some recent TLS failures

Ancient Chinese curse: “"May you
live In Interesting times, so that
you have many papers to write.”

Related mailing list:
boring-crypto+subscribe

@Qgooglegroups.com

Diginotar CA compromise.
BEAST CBC attack.

Trustwave HT TPS interception.
CRIME compression attack.
Lucky 13 padding/timing attack.
RC4 keystream bias.

TLS truncation.

gotofail signature-verification bug.
Triple Handshake.

Heartbleed buffer overread.
POODLE padding-oracle attack.
Winshock buffer overflow.
FREAK factorization attack.
Logjam discrete-log attack.

rypto

. Bernstein
ty of lllinois at Chicago &
he Universiteit Eindhoven

Some recent TLS failures

Chinese curse: “May you
teresting times, so that
> many papers to write.”

mailing list:
-crypto+subscribe

2groups . COIl

Diginotar CA compromise.
BEAST CBC attack.

Trustwave HT TPS interception.
CRIME compression attack.
Lucky 13 padding/timing attack.
RC4 keystream bias.

TLS truncation.

gotofail signature-verification bug.

Triple Handshake.

Heartbleed buffer overread.
POODLE padding-oracle attack.
Winshock buffer overflow.
FREAK factorization attack.
Logjam discrete-log attack.

TLS isr

New att
Disputes
Improve
Propose
Even be
Emerger

Differen
New pro

l
is at Chicago &
siteit Eindhoven

urse: "May you
times, so that
pers to write.”

i
subscribe

01

Some recent TLS failures

Diginotar CA compromise.
BEAST CBC attack.

Trustwave HT TPS interception.
CRIME compression attack.
Lucky 13 padding/timing attack.
RC4 keystream bias.

TLS truncation.

gotofail signature-verification bug.

Triple Handshake.

Heartbleed buffer overread.
POODLE padding-oracle attack.
Winshock buffer overflow.
FREAK factorization attack.
Logjam discrete-log attack.

TLS is not boring

New attacks!

Disputes about se

Improvec

Proposec

attacks!
fixes!

Even better attacl

Emergency upgrac
Different attacks!
New protocol vers

g0 &
hoven

y you
‘hat

1te.

v

Some recent TLS failures

Diginotar CA compromise.
BEAST CBC attack.

Trustwave HT TPS interception.
CRIME compression attack.
Lucky 13 padding/timing attack.
RC4 keystream bias.

TLS truncation.

gotofail signature-verification bug.

Triple Handshake.

Heartbleed buffer overread.
POODLE padding-oracle attack.
Winshock buffer overflow.
FREAK factorization attack.
Logjam discrete-log attack.

TLS is not boring crypto.

New attacks!
Disputes about security!
Improved attacks!

Proposed fixes!

Even better attacks!
Emergency upgrades!
Different attacks!

New protocol versions!

Some recent TLS failures

Diginotar CA compromise.
BEAST CBC attack.

Trustwave HT TPS interception.
CRIME compression attack.
Lucky 13 padding/timing attack.
RC4 keystream bias.

TLS truncation.

gotofail signature-verification bug.

Triple Handshake.

Heartbleed buffer overread.
POODLE padding-oracle attack.
Winshock buffer overflow.
FREAK factorization attack.
Logjam discrete-log attack.

TLS is not boring crypto.

New attacks!
Disputes about security!
Improved attacks!

Proposed fixes!

Even better attacks!
Emergency upgrades!
Different attacks!

New protocol versions!

Some recent TLS failures

Diginotar CA compromise.
BEAST CBC attack.

Trustwave HT TPS interception.
CRIME compression attack.
Lucky 13 padding/timing attack.
RC4 keystream bias.

TLS truncation.

gotofail signature-verification bug.

Triple Handshake.

Heartbleed buffer overread.
POODLE padding-oracle attack.
Winshock buffer overflow.
FREAK factorization attack.
Logjam discrete-log attack.

TLS is not boring crypto.

New attacks!

Disputes about security!

Improvec

Proposec

attacks!
fixes!

Even better attacks!

Emergency upgrades!
Different attacks!
New protocol versions!

Continual excitement:

tons of research papers;

more jobs for cryptographers.

Some recent TLS failures

Diginotar CA compromise.
BEAST CBC attack.

Trustwave HT TPS interception.
CRIME compression attack.
Lucky 13 padding/timing attack.
RC4 keystream bias.

TLS truncation.

gotofail signature-verification bug.

Triple Handshake.

Heartbleed buffer overread.
POODLE padding-oracle attack.
Winshock buffer overflow.
FREAK factorization attack.
Logjam discrete-log attack.

TLS is not boring crypto.

New attacks!
Disputes about security!
Improved attacks!

Proposed fixes!

Even better attacks!
Emergency upgrades!
Different attacks!

New protocol versions!

Continual excitement;
tons of research papers;
more jobs for cryptographers.

Let's look at an example.

cent TLS failures

r CA compromise.

CBC attack.

ve HTTPS interception.
compression attack.

3 padding/timing attack.
stream bias.

ncation.

signature-verification bug.

andshake.
ed buffer overread.

E padding-oracle attack.
'k buffer overflow.
factorization attack.
discrete-log attack.

TLS is not boring crypto.

New attacks!
Disputes about security!
Improved attacks!

Proposed fixes!

Even better attacks!
Emergency upgrades!
Different attacks!

New protocol versions!

Continual excitement;
tons of research papers;

more jobs for cryptographers.

Let's look at an example.

The RCe

1987: R
Does no

failures

promise.

ck.

> Iinterception.
on attack.
/timing attack.
S.

verification bug.

overread.
-oracle attack.
verflow.

on attack.

g attack.

TLS is not boring crypto.

New attacks!
Disputes about security!
Improved attacks!

Proposed fixes!

Even better attacks!
Emergency upgrades!
Different attacks!

New protocol versions!

Continual excitement;
tons of research papers;
more jobs for cryptographers.

Let's look at an example.

The RC4 stream c

1987: Ron Rivest
Does not publish |

1on.

tack.

n bug.

ack.

TLS is not boring crypto.

New attacks!
Disputes about security!
Improved attacks!

Proposed fixes!

Even better attacks!
Emergency upgrades!
Different attacks!

New protocol versions!

Continual excitement;
tons of research papers;
more jobs for cryptographers.

Let's look at an example.

The RC4 stream cipher

1987: Ron Rivest designs R
Does not publish it.

TLS is not boring crypto.

New attacks!
Disputes about security!
Improved attacks!

Proposed fixes!

Even better attacks!
Emergency upgrades!
Different attacks!

New protocol versions!

Continual excitement;
tons of research papers;
more jobs for cryptographers.

Let's look at an example.

The RC4 stream cipher

1987: Ron Rivest designs RC4.
Does not publish it.

TLS is not boring crypto.

New attacks!
Disputes about security!
Improved attacks!

Proposed fixes!

Even better attacks!
Emergency upgrades!
Different attacks!

New protocol versions!

Continual excitement;
tons of research papers;
more jobs for cryptographers.

Let's look at an example.

The RC4 stream cipher

1987: Ron Rivest designs RC4.
Does not publish it.

1992: NSA makes a deal with
Software Publishers Association.

“NSA allows encryption ...
The U.S. Department of State
will grant export permission
to any program that uses the
RC2 or RC4 data-encryption
algorithm with a key size

of less than 40 bits.”

ot boring crypto.

acks!
 about security!
d attacks!

d fixes!

tter attacks!
Icy upgrades!
t attacks!
tocol versions!

|l excitement:
esearch papers;
s for cryptographers.

)k at an example.

The RC4 stream cipher

1987: Ron Rivest designs RC4.
Does not publish it.

1992: NSA makes a deal with

Software Publishers Association.

“NSA allows encryption ...
The U.S. Department of State
will grant export permission
to any program that uses the
RC2 or RC4 data-encryption
algorithm with a key size

of less than 40 bits.”

1994: S
posts R(

New Yo
dissemin

the long
system .
the de f:
for man
program
Window
operatin
Notes. .
was part
be kept
presiden

crypto.

curity!

s
les|
ions!

ent;
ApErs;
tographers.

cample.

The RC4 stream cipher

1987: Ron Rivest designs RC4.
Does not publish it.

1992: NSA makes a deal with

Software Publishers Association.

“NSA allows encryption ...
The U.S. Department of State
will grant export permission
to any program that uses the
RC2 or RC4 data-encryption
algorithm with a key size

of less than 40 bits.”

1994: Someone at
posts RC4 source

New York Times:

dissemination coul
the long-term effe
system ... [RC4]

the de facto codin
for many popular
programs including
Windows, Apple’s
operating system :
Notes. ... ‘| have
was part of this de

be kept confidenti
president of RSA,

V)

The RC4 stream cipher

1987: Ron Rivest designs RC4.
Does not publish it.

1992: NSA makes a deal with

Software Publishers Association.

“NSA allows encryption ...
The U.S. Department of State
will grant export permission
to any program that uses the
RC2 or RC4 data-encryption
algorithm with a key size

of less than 40 bits.”

1994: Someone anonymousl
posts RC4 source code.

New York Times: “Widespr:
dissemination could comprol

the long-term effectiveness ¢
system ... [RC4] has becon
the de facto coding standarce
for many popular software

programs including Microsof

Windows, Apple's Macintos
operating system and Lotus
Notes. ... ‘| have been told
was part of this deal that R
be kept confidential,” Jim B
president of RSA, said.”

The RC4 stream cipher

1987: Ron Rivest designs RC4.
Does not publish it.

1992: NSA makes a deal with

Software Publishers Association.

“NSA allows encryption ...
The U.S. Department of State
will grant export permission
to any program that uses the
RC2 or RC4 data-encryption
algorithm with a key size

of less than 40 bits.”

1994: Someone anonymously
posts RC4 source code.

New York Times: “Widespread
dissemination could compromise
the long-term effectiveness of the
system ... [RC4] has become
the de facto coding standard

for many popular software
programs including Microsoft
Windows, Apple's Macintosh
operating system and Lotus
Notes. ... ‘| have been told it
was part of this deal that RC4
be kept confidential,” Jim Bidzos,
president of RSA, said.”

|l stream cipher

on Rivest designs RC4.
t publish it.

SA makes a deal with

» Publishers Association.

lows encryption . ..

. Department of State
t export permission
rogram that uses the
RC4 data-encryption

n with a key size

nan 40 bits.”

1994: Someone anonymously
posts RC4 source code.

New York Times: “Widespread
dissemination could compromise

the long-term effectiveness of the
system ... [RC4] has become
the de facto coding standard

for many popular software
programs including Microsoft
Windows, Apple’'s Macintosh
operating system and Lotus
Notes. ... ‘| have been told it
was part of this deal that RC4
be kept confidential,” Jim Bidzos,
president of RSA, said.”

1994: N
SSL (S
web broy
RSA Da

SSL sup
RC4 is f

ipher

designs RC4.
t.

“a deal with

s Association.

/ption . ..
ent of State
)ermission
at uses the
encryption
ey size

S.

1994: Someone anonymously
posts RC4 source code.

New York Times: “Widespread
dissemination could compromise
the long-term effectiveness of the
system ... [RC4] has become
the de facto coding standard

for many popular software
programs including Microsoft
Windows, Apple's Macintosh
operating system and Lotus
Notes. ... ‘| have been told it
was part of this deal that RC4
be kept confidential,” Jim Bidzos,
president of RSA, said.”

1994: Netscape In
SSL (“Secure Soc

web browser and s
RSA Data Securit

SSL supports man
RC4 is fastest cipt

C4.

th

Flon.

1te

1994: Someone anonymously
posts RC4 source code.

New York Times: “Widespread
dissemination could compromise

the long-term effectiveness of the
system ... [RC4] has become
the de facto coding standard

for many popular software
programs including Microsoft
Windows, Apple’'s Macintosh
operating system and Lotus
Notes. ... ‘| have been told it
was part of this deal that RC4
be kept confidential,” Jim Bidzos,
president of RSA, said.”

1994: Netscape introduces

SSL (“Secure Sockets Layer
web browser and server “ba:s
RSA Data Security technolo

SSL supports many options.
RC4 is fastest cipher in SSL

1994: Someone anonymously
posts RC4 source code.

New York Times: “Widespread
dissemination could compromise
the long-term effectiveness of the
system ... [RC4] has become
the de facto coding standard

for many popular software
programs including Microsoft
Windows, Apple’'s Macintosh
operating system and Lotus
Notes. ... ‘| have been told it
was part of this deal that RC4
be kept confidential,” Jim Bidzos,
president of RSA, said.”

1994: Netscape introduces

SSL (“Secure Sockets Layer”)
web browser and server “based on
RSA Data Security technology” .

SSL supports many options.
RC4 is fastest cipher in SSL.

1994: Someone anonymously
posts RC4 source code.

New York Times: “Widespread
dissemination could compromise
the long-term effectiveness of the
system ... [RC4] has become
the de facto coding standard

for many popular software
programs including Microsoft
Windows, Apple’'s Macintosh
operating system and Lotus
Notes. ... ‘| have been told it
was part of this deal that RC4
be kept confidential,” Jim Bidzos,
president of RSA, said.”

1994: Netscape introduces

SSL (“Secure Sockets Layer”)
web browser and server “based on
RSA Data Security technology” .

SSL supports many options.
RC4 is fastest cipher in SSL.

1995: Finney posts some
examples of SSL ciphertexts.
Back—Byers—Young, Doligez,
Back—Brooks extract plaintexts.

1994: Someone anonymously
posts RC4 source code.

New York Times: “Widespread
dissemination could compromise
the long-term effectiveness of the
system ... [RC4] has become
the de facto coding standard

for many popular software
programs including Microsoft
Windows, Apple’'s Macintosh
operating system and Lotus
Notes. ... ‘| have been told it
was part of this deal that RC4
be kept confidential,” Jim Bidzos,
president of RSA, said.”

1994: Netscape introduces

SSL (“Secure Sockets Layer”)
web browser and server “based on
RSA Data Security technology” .

SSL supports many options.
RC4 is fastest cipher in SSL.

1995: Finney posts some
examples of SSL ciphertexts.
Back—Byers—Young, Doligez,
Back—Brooks extract plaintexts.

Fix: RC4-1287

1994: Someone anonymously
posts RC4 source code.

New York Times: “Widespread
dissemination could compromise
the long-term effectiveness of the
system ... [RC4] has become
the de facto coding standard

for many popular software
programs including Microsoft
Windows, Apple’'s Macintosh
operating system and Lotus
Notes. ... ‘| have been told it
was part of this deal that RC4
be kept confidential,” Jim Bidzos,
president of RSA, said.”

1994: Netscape introduces

SSL (“Secure Sockets Layer”)
web browser and server “based on
RSA Data Security technology” .

SSL supports many options.
RC4 is fastest cipher in SSL.

1995: Finney posts some
examples of SSL ciphertexts.
Back—Byers—Young, Doligez,
Back—Brooks extract plaintexts.

Fix: RC4-1287 Unacceptable:
1995 Roos shows that RC4 fails a
basic definition of cipher security.

omeone anonymously
_4 source code.

k Times: “Widespread

ation could compromise
-term effectiveness of the
.. |RC4] has become
1cto coding standard

/ popular software

s including Microsoft

s, Apple’s Macintosh

g system and Lotus

.. | have been told it

- of this deal that RC4

confidential,” Jim Bidzos,
t of RSA, said.”

1994: Netscape introduces

SSL (“Secure Sockets Layer”)
web browser and server “based on
RSA Data Security technology” .

SSL supports many options.
RC4 is fastest cipher in SSL.

1995: Finney posts some
examples of SSL ciphertexts.
Back—Byers—Young, Doligez,
Back—Brooks extract plaintexts.

Fix: RC4-1287 Unacceptable:
1995 Roos shows that RC4 fails a
basic definition of cipher security.

So the ¢

throws ¢
And thr

1onymously
code.

“Widespread

d compromise
ctiveness of the
has become

g standard
software

> Microsoft
Macintosh

and Lotus

been told 1t
al that RC4
al,” Jim Bidzos,
said.”

1994: Netscape introduces

SSL (“Secure Sockets Layer”)
web browser and server “based on
RSA Data Security technology” .

SSL supports many options.
RC4 is fastest cipher in SSL.

1995: Finney posts some
examples of SSL ciphertexts.
Back—Byers—Young, Doligez,
Back—Brooks extract plaintexts.

Fix: RC4-1287 Unacceptable:
1995 Roos shows that RC4 fails a
basic definition of cipher security.

So the crypto comr
throws away 40-bi
And throws away

2ad
nise
f the
e

It
_4
dzos,

1994: Netscape introduces

SSL (“Secure Sockets Layer”)
web browser and server “based on
RSA Data Security technology” .

SSL supports many options.
RC4 is fastest cipher in SSL.

1995: Finney posts some
examples of SSL ciphertexts.
Back—Byers—Young, Doligez,
Back—Brooks extract plaintexts.

Fix: RC4-1287 Unacceptable:
1995 Roos shows that RC4 fails a
basic definition of cipher security.

So the crypto community
throws away 40-bit keys?
And throws away RC4?

1994: Netscape introduces

SSL (“Secure Sockets Layer”)
web browser and server “"based on
RSA Data Security technology” .

SSL supports many options.
RC4 is fastest cipher in SSL.

1995: Finney posts some
examples of SSL ciphertexts.
Back—Byers—Young, Doligez,
Back—Brooks extract plaintexts.

Fix: RC4-1287 Unacceptable:
1995 Roos shows that RC4 fails a
basic definition of cipher security.

So the crypto community
throws away 40-bit keys?
And throws away RC47

1994: Netscape introduces

SSL (“Secure Sockets Layer”)
web browser and server “"based on
RSA Data Security technology” .

SSL supports many options.
RC4 is fastest cipher in SSL.

1995: Finney posts some
examples of SSL ciphertexts.
Back—Byers—Young, Doligez,
Back—Brooks extract plaintexts.

Fix: RC4-1287 Unacceptable:
1995 Roos shows that RC4 fails a
basic definition of cipher security.

So the crypto community
throws away 40-bit keys?
And throws away RC47

Here's what actually happens.

1994: Netscape introduces

SSL (“Secure Sockets Layer”)
web browser and server “"based on
RSA Data Security technology” .

SSL supports many options.
RC4 is fastest cipher in SSL.

1995: Finney posts some
examples of SSL ciphertexts.
Back—Byers—Young, Doligez,
Back—Brooks extract plaintexts.

Fix: RC4-1287 Unacceptable:
1995 Roos shows that RC4 fails a
basic definition of cipher security.

So the crypto community
throws away 40-bit keys?
And throws away RC47

Here's what actually happens.

1997: |EEE standardizes WEP
(“Wired Equivalent Privacy")

for 802.11 wireless networks.

WEP uses RC4 for encryption.

1994: Netscape introduces So the crypto community
SSL (“Secure Sockets Layer") throws away 40-bit keys?
web browser and server “based on And throws away RC47

RSA Data Security technology”. Here's what actually happens.

SSL supports many options.
RC4 is fastest cipher in SSL.

1997: |EEE standardizes WEP
(“Wired Equivalent Privacy")

1995: Finney posts some for 802.11 wireless networks.

examples of SSL ciphertexts. WEP uses RC4 for encryption.

Back—Byers—Young, Doligez,

Back—Brooks extract plaintexts. 1999: TLS (“Transport Layer

| Security”), new version of SSL.
Fix: RC4-1287 Unacceptable:

1995 Roos shows that RC4 fails a RC4 is fastest cipher in TLS.
basic definition of cipher security. TLS still supports “export keys".

etscape Iintroduces

ecure Sockets Layer”)
yvser and server “based on
ta Security technology” .

ports many options.
astest cipher in SSL.

Inney posts some

s of SSL ciphertexts.
/ers—Young, Doligez,
-ooks extract plaintexts.

1-1287? Unacceptable:
os shows that RC4 fails a
finition of cipher security.

So the crypto community
throws away 40-bit keys?
And throws away RC4?

Here's what actually happens.

1997: |IEEE standardizes WEP
(“Wired Equivalent Privacy”)
for 802.11 wireless networks.

WEP uses RC4 for encryption.
1999: TLS (“Transport Layer

Security”), new version of SSL.

RC4 is fastest cipher in TLS.

TLS still supports “export keys" .

More R(

1995 Wi,
1997 Go
1998 Kn

Rij
2000 Go
2000 Fl
2001 M:
2001 Fle
2001 St

Ru

RC4 key
—> pract

troduces

kets Layer”)
erver 'based on
y technology” .

y options.
er in SSL.

S some
Iphertexts.
o, Doligez,
act plaintexts.

1acceptable:
that RC4 fails a
cipher security.

So the crypto community
throws away 40-bit keys?
And throws away RC47

Here's what actually happens.

1997: |EEE standardizes WEP
(“Wired Equivalent Privacy")

for 802.11 wireless networks.
WEP uses RC4 for encryption.
1999: TLS (“Transport Layer

Security”), new version of SSL.

RC4 is fastest cipher in TLS.

TLS still supports “export keys' .

More RC4 cryptar

1995 Wagner,

1997 Golic,

1998 Knudsen—Me
Rijmen—Verd

2000 Golic,

2000 Fluhrer—Mc(

2001 Mantin—Shai

2001 Fluhrer—Man

2001 Stubblefield-
Rubin.

RC4 key-output c
= practical attacl

sed on

X1S.

e:
fails a
urity.

So the crypto community
throws away 40-bit keys?
And throws away RC4?

Here's what actually happens.

1997: |IEEE standardizes WEP
(“Wired Equivalent Privacy”)
for 802.11 wireless networks.

WEP uses RC4 for encryption.
1999: TLS (“Transport Layer

Security”), new version of SSL.

RC4 is fastest cipher in TLS.

TLS still supports “export keys" .

More RC4 cryptanalysis:

1995 Wagner,

1997 Golic,

1998 Knudsen—Meier—Prene
Rijmen—Verdoolaege,

2000 Golic,

2000 Fluhrer—McGrew,

2001 Mantin—=Shamir,

2001 Fluhrer—-Mantin—Sham

2001 Stubblefield—loannidis-
Rubin.

RC4 key-output correlations
— practical attacks on WEI

So the crypto community
throws away 40-bit keys?
And throws away RC47

Here's what actually happens.

1997: |EEE standardizes WEP
(“Wired Equivalent Privacy")

for 802.11 wireless networks.
WEP uses RC4 for encryption.
1999: TLS (“Transport Layer

Security”), new version of SSL.

RC4 is fastest cipher in TLS.

TLS still supports “export keys" .

More RC4 cryptanalysis:

1995 Wagner,

1997 Golic,

1998 Knudsen—Meier—Preneel-
Rijmen—Verdoolaege,

2000 Golic,

2000 Fluhrer—McGrew,

2001 Mantin—=Shamir,

2001 Fluhrer—Mantin—=Shamir,

2001 Stubblefield—loannidis—
Rubin.

RC4 key-output correlations
— practical attacks on WEP.

rypto community
way 40-bit keys?
ows away RC47

/hat actually happens.

-EE standardizes WEP

Equivalent Privacy”)
|1 wireless networks.

es RC4 for encryption.

LS (“Transport Layer

"), new version of SSL.

astest cipher in TLS.

| supports “export keys' .

More RC4 cryptanalysis:

1995 Wagner,

1997 Golic,

1998 Knudsen—Meier—Preneel-
Rijmen—Verdoolaege,

2000 Golic,

2000 Fluhrer—McGrew,

2001 Mantin—=Shamir,

2001 Fluhrer—Mantin—=Shamir,

2001 Stubblefield—loannidis—
Rubin.

RC4 key-output correlations
— practical attacks on WEP.

2001 R

“Applice
the encr
using ha
discard 1
pseudo-t
be consi
PropoSsec
of RC4 |
and extr
random
likely to
choice f
embedd:

munity
t keys?
RC47

lly happens.

ardizes WEP
t Privacy”)

; networks.
r encryption.

sport Layer

rsion of SSL.

er in TLS.

“export keys" .

More RC4 cryptanalysis:

1995 Wagner,

1997 Golic,

1998 Knudsen—Meier—Preneel-
Rijmen—Verdoolaege,

2000 Golic,

2000 Fluhrer—McGrew,

2001 Mantin=Shamir,

2001 Fluhrer—Mantin—=Shamir,

2001 Stubblefield—loannidis—
Rubin.

RC4 key-output correlations
— practical attacks on WEP.

2001 Rivest respoi

“Applications whic
the encryption key
using hashing and
discard the first 2!
pseudo-random ou
be considered sect
proposed attacks.
of RC4 is its excej
and extremely effi
random generator.
likely to remain th
choice for many a
embedded system:s

S.

n.

1

eys'

More RC4 cryptanalysis:

1995 Wagner,

1997 Golic,

1998 Knudsen—Meier—Preneel-
Rijmen—Verdoolaege,

2000 Golic,

2000 Fluhrer—McGrew,

2001 Mantin=Shamir,

2001 Fluhrer—Mantin—=Shamir,

2001 Stubblefield—loannidis—
Rubin.

RC4 key-output correlations
— practical attacks on WEP.

2001 Rivest response: TLS

“Applications which pre-pro
the encryption key and IV b
using hashing and/or which
discard the first 256 bytes o
pseudo-random output shou
be considered secure from t

proposed attacks. ... The"

of RC4 is its exceptionally s
and extremely efficient pseu
random generator. ... RC4
likely to remain the algorithi
choice for many applications
embedded systems.”

More RC4 cryptanalysis:

1995 Wagner,

1997 Golic,

1998 Knudsen—Meier—Preneel-
Rijmen—Verdoolaege,

2000 Golic,

2000 Fluhrer—McGrew,

2001 Mantin—=Shamir,

2001 Fluhrer—Mantin—=Shamir,

2001 Stubblefield—loannidis—
Rubin.

RC4 key-output correlations
— practical attacks on WEP.

2001 Rivest response: TLS is ok.

“Applications which pre-process
the encryption key and IV by
using hashing and/or which
discard the first 256 bytes of
pseudo-random output should
be considered secure from the

proposed attacks. ... The ‘heart’

of RC4 is its exceptionally simple
and extremely efficient pseudo-
random generator. ... RC4 is
likely to remain the algorithm of
choice for many applications and
embedded systems.”

_4 cryptanalysis:

gner,

»|iC,
udsen—Meler—Preneel-
men—Verdoolaege,

»|iC,

threr—McGrew,
intin—Shamir,
threr—-Mantin—Shamir,
1bblefield—loannidis—

bin.

-output correlations
ical attacks on WEP.

2001 Rivest response: TLS is ok.

“Applications which pre-process
the encryption key and IV by
using hashing and/or which
discard the first 256 bytes of
pseudo-random output should
be considered secure from the

proposed attacks. ... The ‘heart’

of RC4 is its exceptionally simple
and extremely efficient pseudo-
random generator. ... RC4 is
likely to remain the algorithm of
choice for many applications and
embedded systems.”

Even mc

2002 Hu
2002 Mi
2002 Pu
2003 B
2003 Pu
2004 Pa
2004 Kc
2004 De
2005 M:
2005 M:
2005 d'(
2006 Kl
2006 Dc
2006 Ch

alysis:

ler—Preneel-
oolaege,

rew,

nir,
tin—Shamir,
loannidis—

rrelations
s on WEP.

2001 Rivest response: TLS is ok.

“Applications which pre-process
the encryption key and IV by
using hashing and/or which
discard the first 256 bytes of
pseudo-random output should
be considered secure from the

proposed attacks. ... The ‘heart’

of RC4 is its exceptionally simple
and extremely efficient pseudo-
random generator. ... RC4 is
likely to remain the algorithm of
choice for many applications and
embedded systems.”

Even more RC4 cr

2002 Hulton,
2002 Mironov,
2002 Pudovkina,
2003 Bittau,
2003 Pudovkina,
2004 Paul-Prenee
2004 KoreK,
2004 Devine,
2005 Maximov,
2005 Mantin,
2005 d'Otreppe,
2006 Klein,

2006 Doroshenko-
2006 Chaabouni.

o|—

2001 Rivest response: TLS is ok.

“Applications which pre-process
the encryption key and IV by
using hashing and/or which
discard the first 256 bytes of
pseudo-random output should
be considered secure from the

proposed attacks. ... The ‘heart’

of RC4 is its exceptionally simple
and extremely efficient pseudo-
random generator. ... RC4 is
likely to remain the algorithm of
choice for many applications and
embedded systems.”

Even more RC4 cryptanalysi

2002 Hulton,

2002 Mironov,
2002 Pudovkina,
2003 Bittau,

2003 Pudovkina,
2004 Paul-Preneel,
2004 KorekK,

2004 Devine,

2005 Maximov,
2005 Mantin,

2005 d'Otreppe,
2006 Klein,

2006 Doroshenko—Ryabko,
2006 Chaabouni.

2001 Rivest response: TLS is ok.

“Applications which pre-process
the encryption key and IV by
using hashing and/or which
discard the first 256 bytes of
pseudo-random output should
be considered secure from the

proposed attacks. ... The ‘heart’

of RC4 is its exceptionally simple
and extremely efficient pseudo-
random generator. ... RC4 is
likely to remain the algorithm of
choice for many applications and
embedded systems.”

Even more RC4 cryptanalysis:

2002 Hulton,

2002 Mironov,
2002 Pudovkina,
2003 Bittau,

2003 Pudovkina,
2004 Paul-Preneel,
2004 KorekK,

2004 Devine,

2005 Maximov,
2005 Mantin,

2005 d'Otreppe,
2006 Klein,

2006 Doroshenko—Ryabko,
2006 Chaabouni.

sest response: TLS is ok.

itions which pre-process
yption key and IV by
shing and/or which

he first 256 bytes of
andom output should
dered secure from the

] attacks. ... The ‘heart’

s Its exceptionally simple
emely efficient pseudo-
generator. ... RC4 is
remain the algorithm of
or many applications and
2d systems.”

Even more RC4 cryptanalysis:

2002 Hulton,

2002 Mironov,
2002 Pudovkina,
2003 Bittau,

2003 Pudovkina,
2004 Paul—-Preneel,
2004 KorekK,

2004 Devine,

2005 Maximov,
2005 Mantin,

2005 d'Otreppe,
2006 Klein,

2006 Doroshenko—Ryabko,
2006 Chaabouni.

WEP bl:
million ¢

T. J. M:
settled f

1se: TLS is ok.

“h pre-process
~and |V by

/or which
0 bytes of
tput should
ire from the

. T he ‘heart’

ytionally simple

“lent pseudo-
... RC4 is

e algorithm of

oplications and

>.

Even more RC4 cryptanalysis:

2002 Hulton,

2002 Mironov,
2002 Pudovkina,
2003 Bittau,

2003 Pudovkina,
2004 Paul-Preneel,
2004 KorekK,

2004 Devine,

2005 Maximov,
2005 Mantin,

2005 d'Otreppe,
2006 Klein,

2006 Doroshenko—Ryabko,
2006 Chaabouni.

WEP blamed for
million credit-card
T. J. Maxx. Subse
settled for $40900

s ok.

CESS

1€

neart’

mple
do-

IS

M of
> and

Even more RC4 cryptanalysis:

2002 Hulton,

2002 Mironov,
2002 Pudovkina,
2003 Bittau,

2003 Pudovkina,
2004 Paul-Preneel,
2004 KorekK,

2004 Devine,

2005 Maximov,
2005 Mantin,

2005 d'Otreppe,
2006 Klein,

2006 Doroshenko—Ryabko,
2006 Chaabouni.

WEP blamed for 2007 theft
million credit-card numbers

T. J. Maxx. Subsequent law
settled for $40900000.

Even more RC4 cryptanalysis:

2002 Hulton,

2002 Mironov,
2002 Pudovkina,
2003 Bittau,

2003 Pudovkina,
2004 Paul-Preneel,
2004 KorekK,

2004 Devine,

2005 Maximov,
2005 Mantin,

2005 d'Otreppe,
2006 Klein,

2006 Doroshenko—Ryabko,
2006 Chaabouni.

WEP blamed for 2007 theft of 45
million credit-card numbers from

T. J. Maxx. Subsequent lawsuit
settled for $40900000.

Even more RC4 cryptanalysis:

2002 Hulton,

2002 Mironov,
2002 Pudovkina,
2003 Bittau,

2003 Pudovkina,
2004 Paul-Preneel,
2004 KorekK,

2004 Devine,

2005 Maximov,
2005 Mantin,

2005 d'Otreppe,
2006 Klein,

2006 Doroshenko—Ryabko,
2006 Chaabouni.

WEP blamed for 2007 theft of 45
million credit-card numbers from

T. J. Maxx. Subsequent lawsuit
settled for $40900000.

Cryptanalysis continues:

2007 Paul—-Maitra—Srivastava,
2007 Paul-Rathi—Maitra,

2007 Paul-Maitra,

2007 Vaudenay—Vuagnoux,

2007 Tews—Weinmann—Pyshkin,
2007 Tomasevic—Bojanic—

Nieto- Taladriz,

2007 Maitra—Paul,

2008 Basu—Ganguly—Maitra—Paul.

re RC4 cryptanalysis:

ton,
ronov,
dovkina,
tau,
dovkina,
ul—Preneel,
rek,

evine,
IXIMOV,
ntin,
Dtreppe,
In,
roshenko—Ryabko,
aabouni.

WEP blamed for 2007 theft of 45
million credit-card numbers from

T. J. Maxx. Subsequent lawsuit
settled for $40900000.

Cryptanalysis continues:

2007 Paul—-Maitra—Srivastava,
2007 Paul-Rathi—Maitra,

2007 Paul-Maitra,

2007 Vaudenay—Vuagnoux,
2007 Tews—Weinmann—Pyshkin,
2007 Tomasevic—Bojanic—
Nieto-Taladriz,

2007 Maitra—Paul,

2008 Basu—Ganguly—Maitra—Paul.

And mo

2008 Bl
2008 Go
2008 M:
2008 Ak
2008 M:
2008 Be
2009 Ba
2010 Se

Vu
2010 Vu
2011 M:
2011 Se

Sa
2011 Pa

yptanalysis:

-Ryabko,

WEP blamed for 2007 theft of 45
million credit-card numbers from

T. J. Maxx. Subsequent lawsuit
settled for $40900000.

Cryptanalysis continues:

2007 Pau
2007 Pau
2007 Pau

—Maitra—Srivastava,
—Rathi—Maitra,
—Maitra,

2007 Vaudenay—Vuagnoux,
2007 Tews—Weinmann—Pyshkin,
2007 Tomasevic—Bojanic—

Nieto- Taladriz,

2007 Maitra—Paul,

2008 Basu—Ganguly—Maitra—Paul.

And more:

2008 Biham—Carn
2008 Golic—Morga
2008 Maximov—KI
2008 Akgun—Kava
2008 Maitra—Paul
2008 Beck—Tews,
2009 Basu—Maitra
2010 Sepehrdad—-\
Vuagnoux,
2010 Vuagnoux,
2011 Maitra—Paul-
2011 Sen Gupta-I
Sarkar,
2011 Paul-Maitra

WEP blamed for 2007 theft of 45
million credit-card numbers from

T. J. Maxx. Subsequent lawsuit
settled for $40900000.

Cryptanalysis continues:

2007 Paul—-Maitra—Srivastava,
2007 Paul-Rathi—Maitra,

2007 Paul-Maitra,

2007 Vaudenay—Vuagnoux,
2007 Tews—Weinmann—Pyshkin,
2007 Tomasevic—Bojanic—
Nieto-Taladriz,

2007 Maitra—Paul,

2008 Basu—Ganguly—Maitra—Paul.

And more:

2008 Biham—Carmeli,

2008 Golic—Morgari,

2008 Maximov—Khovratovic
2008 Akgun—Kavak—Demirci
2008 Maitra—Paul.

2008 Beck—Tews,

2009 Basu—Maitra—Paul-Tal
2010 Sepehrdad—Vaudenay—

Vuagnoux,
2010 Vuagnoux,
2011 Maitra—Pau

—Sen Gupt

2011 Sen Gupta—Maitra—Pai

Sarkar,

2011 Paul-Maitra book.

WEP blamed for 2007 theft of 45
million credit-card numbers from

T. J. Maxx. Subsequent lawsuit
settled for $40900000.

Cryptanalysis continues:

2007 Paul—-Maitra—Srivastava,
2007 Paul-Rathi—Maitra,

2007 Paul-Maitra,

2007 Vaudenay—Vuagnoux,
2007 Tews—Weinmann—Pyshkin,
2007 Tomasevic—Bojanic—
Nieto- Taladriz,

2007 Maitra—Paul,

2008 Basu—Ganguly—Maitra—Paul.

And more:

2008 Biham—Carmeli,

2008 Golic—Morgari,

2008 Maximov—Khovratovich,

2008 Akgun—Kavak—Demirci,

2008 Maitra—Paul.

2008 Beck—Tews,

2009 Basu—Maitra—Paul-Talukdar,

2010 Sepehrdad—Vaudenay—
Vuagnoux,

2010 Vuagnoux,

2011 Maitra—Paul-Sen Gupta,

2011 Sen Gupta—Maitra—Paul—
Sarkar,

2011 Paul-Maitra book.

amed for 2007 theft of 45
redit-card numbers from
XX, Subsequent lawsuit

or $40900000.

alysis continues:

ul-Maitra—Srivastava,
ul-Rathi—Maitra,
ul—-Maitra,

udenay—Vuagnoux,
ws—Weinmann—Pyshkin,
masevic—Bojanic—

=to- Taladriz,

vitra—Paul,

su—Ganguly—Maitra—Paul.

And more:

2008 Biham—Carmeli,

2008 Golic—Morgari,

2008 Maximov—Khovratovich,
2008 Akgun—Kavak—Demirci,
2008 Maitra—Paul.

2008 Beck—Tews,
2009 Basu—Maitra—Paul—-Talukdar,

2010 Sepehrdad—Vaudenay—

Vuagnoux,
2010 Vuagnoux,
2011 Maitra—Pau

—Sen Gupta,

2011 Sen Gupta—Maitra—Paul-

Sarkar,

2011 Paul-Maitra book.

2012 Ak
“Up to -
web site
BEAST]
Is the cL
use and
v1.0. ...
prefer th
TLS v1.
128 is fe
ProCessC
15% of |
on the £
RC4 ...

support

007 theft of 45
numbers from

2quent lawsuit
000.

nues:

-Srivastava,
Maitra,

uagnoux,
1ann—Pyshkin,
30janic—

1Z,

ly—Maitra—Paul.

And more:

2008 Biham—Carmeli,

2008 Golic—Morgari,

2008 Maximov—Khovratovich,
2008 Akgun—Kavak—Demirci,
2008 Maitra—Paul.

2008 Beck—Tews,

2009 Basu—Maitra—Paul-Talukdar,

2010 Sepehrdad—Vaudenay—
Vuagnoux,

2010 Vuagnoux,

2011 Maitra—Paul-Sen Gupta,

2011 Sen Gupta—Maitra—Paul—
Sarkar,

2011 Paul-Maitra book.

2012 Akamal blog
“Up to 75% of SS
web sites are vulne
BEAST] ... Open
Is the current vers
use and it only su
v1.0. ... the inter
prefer the RC4-12.
TLS v1.0 and SSL
128 is faster and ¢
processor time . ..
15% of SSL/TLS
on the Akamai pla
RC4 ... most bro
support the RC4 f{

of 45
from
/sult

Kin,

-Paul.

And more:

2008 Biham—Carmeli,

2008 Golic—Morgari,

2008 Maximov—Khovratovich,
2008 Akgun—Kavak—Demirci,
2008 Maitra—Paul.

2008 Beck—Tews,

2009 Basu—Maitra—Paul-Talukdar,

2010 Sepehrdad—Vaudenay—
Vuagnoux,

2010 Vuagnoux,

2011 Maitra—Paul-Sen Gupta,

2011 Sen Gupta—Maitra—Paul-
Sarkar,

2011 Paul-Maitra book.

2012 Akamai blog entry:
“Up to 75% of SSL-enabled
web sites are vulnerable [to
BEAST] ... OpenSSL v0.9.
Is the current version in bro:
use and i1t only supports TL.
v1.0. ... the interim fix is t
prefer the RC4-128 cipher fc
TLS v1.0 and SSL v3. ... F
128 is faster and cheaper in
processor time ... approxim
15% of SSL/TLS negotiatio
on the Akamai platform use

RC4 ... most browsers can
support the RC4 fix for BEA

And more:

2008 Biham—Carmeli,

2008 Golic—Morgari,

2008 Maximov—Khovratovich,
2008 Akgun—Kavak—Demirci,
2008 Maitra—Paul.

2008 Beck—Tews,

2009 Basu—Maitra—Paul-Talukdar,

2010 Sepehrdad—Vaudenay—
Vuagnoux,

2010 Vuagnoux,

2011 Maitra—Paul-Sen Gupta,

2011 Sen Gupta—Maitra—Paul—
Sarkar,

2011 Paul-Maitra book.

2012 Akamai blog entry:

“Up to 75% of SSL-enabled
web sites are vulnerable [to
BEAST] ... OpenSSL v0.9.8w
Is the current version in broad
use and it only supports TLS
v1.0. ... the interim fix is to
prefer the RC4-128 cipher for
TLS v1.0 and SSL v3. ... RC4-
128 is faster and cheaper in
processor time ... approximately
15% of SSL/TLS negotiations
on the Akamai platform use

RC4 ... most browsers can
support the RC4 fix for BEAST.”

e:
1am—Carmeli,
lic—Morgari,

aximov—Khovratovich,
gun—Kavak—Demirci,
yitra—Paul.

ck—Tews,

su—Maitra—Paul-Talukdar,

pehrdad—Vaudenay—
agnoux,

agnoux,
vitra—Paul-Sen Gupta,

n Gupta—Maitra—Paul-
rkar,
ul-Maitra book.

2012 Akamai blog entry:

“Up to 75% of SSL-enabled
web sites are vulnerable [to
BEAST]| ... OpenSSL v0.9.8w
is the current version in broad
use and it only supports TLS
v1.0. ... the interim fix is to
prefer the RC4-128 cipher for
TLS v1.0 and SSL v3. ... RC4-
128 is faster and cheaper in
processor time ... approximately
15% of SSL/TLS negotiations
on the Akamai platform use

RC4 ... most browsers can
support the RC4 fix for BEAST.”

RC4 cry

2013 Lv-
2013 Lv-
2013 Se
Pa
2013 Sa
M:
2013 Isc
M«
2013 All
Pa
Sc
2014 Pa
2015 Se
Vu

el

i,
1ovratovich,
k—Demirci,

—Paul-Talukdar,

/audenay—

-Sen Gupta,
Aaitra—Paul—

book.

2012 Akamai blog entry:

“Up to 75% of SSL-enabled
web sites are vulnerable [to
BEAST] ... OpenSSL v0.9.8w
Is the current version in broad
use and it only supports TLS
v1.0. ... the interim fix is to
prefer the RC4-128 cipher for
TLS v1.0 and SSL v3. ... RC4-
128 is faster and cheaper in
processor time ... approximately
15% of SSL/TLS negotiations
on the Akamai platform use
RC4 ... most browsers can

support the RC4 fix for BEAST.”

RC4 cryptanalysis

2013 Lv—Zhang—L

2013 Lv—Lin,

2013 Sen Gupta-|
Paul-Sarkar,

2013 Sarkar—Sen (
Maitra,

2013 Isobe—Ohiga:
Morii,

2013 AlFardan—Be
Paterson—Po
Schuldt,

2014 Paterson—Sti

2015 Sepehrdad-S
Vuagnoux.

ukdar,

Il—

2012 Akamai blog entry:

“Up to 75% of SSL-enabled
web sites are vulnerable [to
BEAST]| ... OpenSSL v0.9.8w
is the current version in broad
use and it only supports TLS
v1.0. ... the interim fix is to
prefer the RC4-128 cipher for
TLS v1.0 and SSL v3. ... RC4-
128 is faster and cheaper in
processor time ... approximately
15% of SSL/TLS negotiations
on the Akamai platform use
RC4 ... most browsers can

support the RC4 fix for BEAST.”

RC4 cryptanalysis continues

2013 Lv—Zhang—Lin,

2013 Lv—Lin,

2013 Sen Gupta—Maitra—Me
Paul-Sarkar,

2013 Sarkar—Sen Gupta—Pat
Maitra,

2013 Isobe—Ohigashi—\Watan
Morii,

2013 AlFardan—Bernstein—
Paterson—Poettering—
Schuldt,

2014 Paterson—Strefler,

2015 Sepehrdad—-Susil-Vaud
Vuagnoux.

2012 Akamai blog entry:

“Up to 75% of SSL-enabled
web sites are vulnerable [to
BEAST] ... OpenSSL v0.9.8w
Is the current version in broad
use and it only supports TLS
v1.0. ... the interim fix is to
prefer the RC4-128 cipher for
TLS v1.0 and SSL v3. ... RC4-
128 is faster and cheaper in
processor time ... approximately
15% of SSL/TLS negotiations
on the Akamai platform use
RC4 ... most browsers can

support the RC4 fix for BEAST.”

RC4 cryptanalysis continues:

2013 Lv—Zhang—Lin,

2013 Lv—Lin,

2013 Sen Gupta—Maitra—Meier—
Paul-Sarkar,

2013 Sarkar—Sen Gupta—Paul-
Maitra,

2013 Isobe—Ohigashi—\Watanabe—
Morii,

2013 AlFardan—Bernstein—
Paterson—Poettering—
Schuldt,

2014 Paterson—Strefler,

2015 Sepehrdad—-Susil-Vaudenay—
Vuagnoux.

amai blog entry:
5% of SSL-enabled
s are vulnerable [to
... OpenSSL v0.9.8w
rrent version in broad
it only supports TLS
the interim fix is to
e RC4-128 cipher for
0 and SSL v3. ... RC4-
ster and cheaper In
r time ... approximately
SSL/TLS negotiations
\kamai platform use
most browsers can

the RC4 fix for BEAST.”

RC4 cryptanalysis continues:

2013 Lv—Zhang—Lin,

2013 Lv—Lin,

2013 Sen Gupta—Maitra—Meier—
Paul-Sarkar,

2013 Sarkar—Sen Gupta—Paul-
Maitra,

2013 Isobe—Ohigashi—Watanabe—
Morii,

2013 AlFardan—Bernstein—
Paterson—Poettering—
Schuldt,

2014 Paterson—Strefler,

2015 Sepehrdad—Susil-Vaudenay—
Vuagnoux.

Maybe t

2015 Mz:
2015 Ga

Val

2015 Va

entry:
L-enabled
rable [to
SSL v0.9.8w
ion in broad
oports TLS
im fix is to
3 cipher for
v3. ... RC4-
heaper In
approximately
negotiations
tform use
WSEers can

ix for BEAST."

RC4 cryptanalysis continues:

2013 Lv—Zhang—Lin,

2013 Lv—Lin,

2013 Sen Gupta—Maitra—Meier—
Paul-Sarkar,

2013 Sarkar—Sen Gupta—Paul-
Maitra,

2013 Isobe—Ohigashi—\Watanabe—
Morii,

2013 AlFardan—Bernstein—
Paterson—Poettering—
Schuldt,

2014 Paterson—Strefler,

2015 Sepehrdad—-Susil-Vaudenay—
Vuagnoux.

Maybe the final st

2015 Mantin “Bar
2015 Garman—Pat
van der Men
"RC4 must ¢
2015 Vanhoef—Pie
"RC4 no mo

3w

V)

o
C4-

ately

\ST."

RC4 cryptanalysis continues:

2013 Lv—Zhang—Lin,

2013 Lv—Lin,

2013 Sen Gupta—Maitra—Meier—
Paul-Sarkar,

2013 Sarkar—Sen Gupta—Paul-
Maitra,

2013 Isobe—Ohigashi—Watanabe—
Morii,

2013 AlFardan—Bernstein—
Paterson—Poettering—
Schuldt,

2014 Paterson—Strefler,

2015 Sepehrdad—Susil-Vaudenay—
Vuagnoux.

Maybe the final straws:

2015 Mantin “Bar Mitzvah”
2015 Garman—Paterson—
van der Merwe

"RC4 must die"’,
2015 Vanhoef—Piessens
"RC4 no more” .

RC4 cryptanalysis continues: Maybe the final straws:

2013 Lv—Zhang—Lin, 2015 Mantin “Bar Mitzvah",
2013 Lv—Lin, 2015 Garman—Paterson—
2013 Sen Gupta—Maitra—Meier— van der Merwe
Paul-Sarkar, “RC4 must die”,
2013 Sarkar-Sen Gupta—Paul- 2015 Vanhoef—Piessens
Maitra, “RC4 no more" .
2013 Isobe—Ohigashi—\Watanabe—
Morili,

2013 AlFardan—Bernstein—
Paterson—Poettering—
Schuldt,

2014 Paterson—Strefler,

2015 Sepehrdad—-Susil-Vaudenay—
Vuagnoux.

RC4 cryptanalysis continues: Maybe the final straws:

2013 Lv—Zhang—Lin, 2015 Mantin “Bar Mitzvah",

2013 Lv—Lin, 2015 Garman—Paterson—

2013 Sen Gupta—Maitra—Meier— van der Merwe
Paul-Sarkar, “RC4 must die”,

2013 Sarkar-Sen Gupta—Paul- 2015 Vanhoef—Piessens
Maitra, “RC4 no more" .

2013 Isobe—Ohigashi—\Watanabe—

Meanwhile IETF publishes
RFEC 7465 (“RC4 die die die"),
prohibiting RC4 in TLS.

Morili,

2013 AlFardan—Bernstein—
Paterson—Poettering—
Schuldt,

2014 Paterson—Strefler,

2015 Sepehrdad—-Susil-Vaudenay—
Vuagnoux.

RC4 cryptanalysis continues:

2013 Lv—Zhang—Lin,

2013 Lv—Lin,

2013 Sen Gupta—Maitra—Meier—
Paul-Sarkar,

2013 Sarkar—Sen Gupta—Paul-
Maitra,

2013 Isobe—Ohigashi—\Watanabe—
Morili,

2013 AlFardan—Bernstein—
Paterson—Poettering—
Schuldt,

2014 Paterson—Strefler,

2015 Sepehrdad—-Susil-Vaudenay—
Vuagnoux.

Maybe the final straws:

2015 Mantin “Bar Mitzvah",

2015 Garman—Paterson—
van der Merwe
"RC4 must die”,

2015 Vanhoef—Piessens
"RC4 no more” .

Meanwhile IETF publishes
RFEC 7465 (“RC4 die die die"),
prohibiting RC4 in TLS.

2015.09.01: Google, Microsoft,
Mozilla say that in 2016 their
browsers will no longer allow RC4.

ptanalysis continues:

-/hang—Lin,

—Lin,

n Gupta—Maitra—Meier—
ul-Sarkar,

rkar—Sen Gupta—Paul-
\itra,
be—Ohigashi—\Watanabe—
I,

-ardan—Bernstein—
terson—Poettering—

huldt,
terson—Strefler,

pehrdad—Susil-Vaudenay—

agnoux.

Maybe the final straws:

2015 Mantin “Bar Mitzvah",

2015 Garman—Paterson—
van der Merwe
"RC4 must die"’,

2015 Vanhoef—Piessens
"RC4 no more” .

Meanwhile IETF publishes
RFEC 7465 (“RC4 die die die”),
prohibiting RC4 in TLS.

2015.09.01: Google, Microsoft,
Mozilla say that in 2016 their

browsers will no longer allow RC4.

Another

2005 Tr
6bms to
used for
Attack g
but with

continues:

n,

Aaitra—Meier—

supta—Paul-

shi—\\Watanabe—

rnstein—

ettering—

efler,
usil-Vaudenay—

Maybe the final straws:

2015 Mantin “Bar Mitzvah",

2015 Garman—Paterson—
van der Merwe
"RC4 must die”,

2015 Vanhoef—Piessens
"RC4 no more” .

Meanwhile IETF publishes
RFEC 7465 (“RC4 die die die"),
prohibiting RC4 in TLS.

2015.09.01: Google, Microsoft,
Mozilla say that in 2016 their

browsers will no longer allow RC4.

Another example:

2005 Tromer—Osvi
6bms to steal Lint
used for hard-disk
Attack process on
but without privile

ler—

1—

abe—

enay—

Maybe the final straws:

2015 Mantin “Bar Mitzvah",
2015 Garman—Paterson—
van der Merwe
"RC4 must die"’,

2015 Vanhoef—Piessens
"RC4 no more”.

Meanwhile IETF publishes
RFEC 7465 (“RC4 die die die”),
prohibiting RC4 in TLS.

2015.09.01: Google, Microsoft,
Mozilla say that in 2016 their

browsers will no longer allow RC4.

Another example: timing at

2005 Tromer—Osvik—Shamir:
65ms to steal Linux AES ke
used for hard-disk encryptiol
Attack process on same CPI
but without privileges.

Maybe the final straws:

2015 Mantin “Bar Mitzvah",
2015 Garman—Paterson—
van der Merwe
"RC4 must die”’,

2015 Vanhoef—Piessens
"RC4 no more”.

Meanwhile IETF publishes
RFEC 7465 (“RC4 die die die"),
prohibiting RC4 in TLS.

2015.09.01: Google, Microsoft,
Mozilla say that in 2016 their

browsers will no longer allow RC4.

Another example: timing attacks

2005 Tromer—Osvik—Shamir:

65ms to steal Linux AES key
used for hard-disk encryption.
Attack process on same CPU
but without privileges.

Maybe the final straws:

2015 Mantin “Bar Mitzvah",

2015 Garman—Paterson—
van der Merwe
"RC4 must die”’,

2015 Vanhoef—Piessens
"RC4 no more” .

Meanwhile IETF publishes
RFEC 7465 (“RC4 die die die"),
prohibiting RC4 in TLS.

2015.09.01: Google, Microsoft,
Mozilla say that in 2016 their

browsers will no longer allow RC4.

Another example: timing attacks

2005 Tromer—Osvik—Shamir:

65ms to steal Linux AES key
used for hard-disk encryption.
Attack process on same CPU
but without privileges.

Almost all AES implementations
use fast lookup tables.

Kernel's secret AES key
influences table-load addresses,

influencing CPU cache state,
influencing measurable timings
of the attack process.

65ms: compute key from timings.

he final straws:

intin “Bar Mitzvah",
rman—Paterson—

1 der Merwe

C4 must die”,
nhoef—Piessens

C4 no more” .

lle IETF publishes
5 (“RC4 die die die"),
ng RC4 in TLS.

01: Google, Microsoft,
say that in 2016 their

 will no longer allow RC4.

Another example: timing attacks

2005 Tromer—Osvik—Shamir:

65ms to steal Linux AES key
used for hard-disk encryption.
Attack process on same CPU
but without privileges.

Almost all AES implementations
use fast lookup tables.

Kernel's secret AES key
influences table-load addresses,

influencing CPU cache state,
influencing measurable timings
of the attack process.

6bms: compute key from timings.

2011 Br
minutes
machine
Secret b
influence

raws.

- Mitzvah'
erson—

NE

lie”,

SSens

re .

yublishes
die die die”),
- TLS.

le, Microsoft,
) 2016 their

nger allow RC4.

Another example: timing attacks

2005 Tromer—Osvik—Shamir:

65ms to steal Linux AES key
used for hard-disk encryption.
Attack process on same CPU
but without privileges.

Almost all AES implementations
use fast lookup tables.

Kernel's secret AES key
influences table-load addresses,

influencing CPU cache state,
influencing measurable timings
of the attack process.

65ms: compute key from timings.

2011 Brumley—Tuw
minutes to steal a
machine’'s OpenSS
Secret branch con
influence timings.

oft,

~ir

) RC4.

Another example: timing attacks

2005 Tromer—Osvik—Shamir:

65ms to steal Linux AES key
used for hard-disk encryption.
Attack process on same CPU
but without privileges.

Almost all AES implementations
use fast lookup tables.

Kernel's secret AES key
influences table-load addresses,

influencing CPU cache state,
influencing measurable timings
of the attack process.

65bms: compute key from timings.

2011 Brumley—Tuveri:
minutes to steal another
machine’'s OpenSSL ECDSA
Secret branch conditions
influence timings.

Another example: timing attacks

2005 Tromer—Osvik—Shamir:

65ms to steal Linux AES key
used for hard-disk encryption.
Attack process on same CPU
but without privileges.

Almost all AES implementations
use fast lookup tables.

Kernel's secret AES key
influences table-load addresses,

influencing CPU cache state,
influencing measurable timings
of the attack process.

65ms: compute key from timings.

2011 Brumley—Tuveri:

minutes to steal another
machine’'s OpenSSL ECDSA key.
Secret branch conditions
influence timings.

Another example: timing attacks

2005 Tromer—Osvik—Shamir:

65ms to steal Linux AES key
used for hard-disk encryption.
Attack process on same CPU
but without privileges.

Almost all AES implementations
use fast lookup tables.

Kernel's secret AES key
influences table-load addresses,

influencing CPU cache state,
influencing measurable timings
of the attack process.

65ms: compute key from timings.

2011 Brumley—Tuveri:

minutes to steal another
machine’'s OpenSSL ECDSA key.
Secret branch conditions
influence timings.

Most cryptographic software
has many more small-scale
variations in timing:

e.g., memcmp for IPsec MACGs.

Another example: timing attacks

2005 Tromer—Osvik—Shamir:

65ms to steal Linux AES key
used for hard-disk encryption.
Attack process on same CPU
but without privileges.

Almost all AES implementations
use fast lookup tables.

Kernel's secret AES key
influences table-load addresses,

influencing CPU cache state,
influencing measurable timings
of the attack process.

65ms: compute key from timings.

2011 Brumley—Tuveri:

minutes to steal another
machine’'s OpenSSL ECDSA key.
Secret branch conditions
influence timings.

Most cryptographic software
has many more small-scale
variations in timing:

e.g., memcmp for IPsec MACGs.

Many more timing attacks: e.g.
2014 van de Pol-Smart—Yarom
extracted Bitcoin secret keys
from 25 OpenSSL signatures.

‘example: timing attacks

omer—0Osvik—Shamir:

steal Linux AES key
hard-disk encryption.
yrocess on same CPU
out privileges.

all AES implementations
lookup tables.

secret AES key

s table-load addresses,
ng CPU cache state,

ng measurable timings
'tack process.

ompute key from timings.

2011 Brumley—Tuveri:

minutes to steal another
machine’'s OpenSSL ECDSA key.
Secret branch conditions
influence timings.

Most cryptographic software
has many more small-scale
variations in timing:

e.g., memcmp for IPsec MACs.

Many more timing attacks: e.g.
2014 van de Pol-Smart—Yarom
extracted Bitcoin secret keys
from 25 OpenSSL signatures.

2008 RF
Layer Se
Version

small tir
perform:
extent o
fragmen
be large
due to t
existing
of the ti

timing attacks

k—Shamir:

Ix AES key
encryption.
same CPU

ges.

iplementations
bles.

S key

ad addresses,
ache state,
-able timings
ess.

y from timings.

2011 Brumley—Tuveri:

minutes to steal another
machine’'s OpenSSL ECDSA key.
Secret branch conditions
influence timings.

Most cryptographic software
has many more small-scale
variations in timing:

e.g., memcmp for IPsec MACGs.

Many more timing attacks: e.g.
2014 van de Pol-Smart—Yarom
extracted Bitcoin secret keys
from 25 OpenSSL signatures.

2008 RFC 5246
Layer Security (TL
Version 1.2": “Th
small timing chani
performance depel
extent on the size
fragment, but it is
be large enough tc
due to the large b
existing MACs anc
of the timing sign:

tacks

IONS

€S,

\gS

nings.

2011 Brumley—Tuveri:

minutes to steal another
machine’'s OpenSSL ECDSA key.
Secret branch conditions
influence timings.

Most cryptographic software
has many more small-scale
variations in timing:

e.g., memcmp for IPsec MACGs.

Many more timing attacks: e.g.
2014 van de Pol-Smart—Yarom
extracted Bitcoin secret keys
from 25 OpenSSL signatures.

2008 RFC 5246 “The Trans
Layer Security (TLS) Protoc
Version 1.2": "This leaves &
small timing channel, since |
performance depends to son
extent on the size of the daf
fragment, but it is not belie:
be large enough to be explo
due to the large block size ¢
existing MACs and the smal
of the timing signal.”

2011 Brumley—Tuveri:
minutes to steal another

machine’'s OpenSSL ECDSA key.

Secret branch conditions
influence timings.

Most cryptographic software
has many more small-scale
variations in timing:

e.g., memcmp for IPsec MACGs.

Many more timing attacks: e.g.

2014 van de Pol-Smart—Yarom
extracted Bitcoin secret keys
from 25 OpenSSL signatures.

2008 RFC 5246 “The Transport

Layer Security (TLS) Protocol
Version 1.2": “This leaves a

small timing channel, since MAC

performance depends to some
extent on the size of the data

fragment, but it is not believed to

be large enough to be exploita
due to the large block size of

ole,

existing MACs and the small size

of the timing signal.”

2011 Brumley—Tuveri:
minutes to steal another

machine’'s OpenSSL ECDSA key.

Secret branch conditions
influence timings.

Most cryptographic software
has many more small-scale
variations in timing:

e.g., memcmp for IPsec MACGs.

Many more timing attacks: e.g.

2014 van de Pol-Smart—Yarom
extracted Bitcoin secret keys
from 25 OpenSSL signatures.

2008 RFC 5246 “The Transport
Layer Security (TLS) Protocol,
Version 1.2": “This leaves a
small timing channel, since MAC
performance depends to some
extent on the size of the data
fragment, but it is not believed to

be large enough to be exploitable,
due to the large block size of
existing MACs and the small size
of the timing signal.”

2013 AlFardan—Paterson “Lucky

Thirteen: breaking the TLS and
DTLS record protocols”: exploit

these timings; steal plaintext.

umley—Tuver!:

to steal another

's OpenSSL ECDSA key.
ranch conditions

> timings.

/ptographic software
y more small-scale
S In timing:

icmp for IPsec MACGs.

ore timing attacks: e.g.
1 de Pol-Smart—Yarom
d Bitcoin secret keys
OpenSSL signatures.

2008 RFC 5246 “The Transport
Layer Security (TLS) Protocol,
Version 1.2": “This leaves a
small timing channel, since MAC
performance depends to some
extent on the size of the data
fragment, but it is not believed to

be large enough to be exploitable,
due to the large block size of
existing MACs and the small size
of the timing signal.”

2013 AlFardan—Paterson “Lucky
Thirteen: breaking the TLS and

DTLS record protocols”: exploit

these timings; steal plaintext.

Interesti

All of th
wonderfi

/eri: 2008 RFC 5246 “The Transport Interesting vs. bor

~nother Layer Security (TI_.S) Protocol, All of thic excitem
L ECDSA key. Version 1.2": “This leaves a

- o | wonderful for cryp
ditions small timing channel, since MAC

performance depends to some
extent on the size of the data

c software o |
fragment, but it is not believed to
1all-scale _
| be large enough to be exploitable,
> due to the large block size of
°sec MACs. &

existing MACs and the small size

. attacks: e.g. of the timing signal.”

ymart—Yarom
2013 AlFardan—Paterson “Lucky

Thirteen: breaking the TLS and
DTLS record protocols”: exploit

secret keys
signatures.

these timings; steal plaintext.

 key.

om

V)

V)

2008 RFC 5246 “The Transport
Layer Security (TLS) Protocol,
Version 1.2": “This leaves a
small timing channel, since MAC
performance depends to some
extent on the size of the data
fragment, but it is not believed to

be large enough to be exploitable,
due to the large block size of
existing MACs and the small size
of the timing signal.”

2013 AlFardan—Paterson “Lucky

Thirteen: breaking the TLS and
DTLS record protocols”: exploit

these timings; steal plaintext.

Interesting vs. boring crypto

All of this excitement is
wonderful for crypto researc

2008 RFC 5246 “The Transport
Layer Security (TLS) Protocol,
Version 1.2": “This leaves a
small timing channel, since MAC
performance depends to some
extent on the size of the data
fragment, but it is not believed to

be large enough to be exploitable,
due to the large block size of
existing MACs and the small size
of the timing signal.”

2013 AlFardan—Paterson “Lucky
Thirteen: breaking the TLS and

DTLS record protocols”: exploit

these timings; steal plaintext.

Interesting vs. boring crypto

All o

- this excitement is

wonda

erful for crypto researchers.

2008 RFC 5246 “The Transport
Layer Security (TLS) Protocol,
Version 1.2": “This leaves a
small timing channel, since MAC
performance depends to some
extent on the size of the data
fragment, but it is not believed to

be large enough to be exploitable,
due to the large block size of
existing MACs and the small size
of the timing signal.”

2013 AlFardan—Paterson “Lucky
Thirteen: breaking the TLS and

DTLS record protocols”: exploit

these timings; steal plaintext.

Interesting vs. boring crypto

All of this excitement is
wonderful for crypto researchers.

The only people suffering
are the crypto users:
continually forced to panic,

vulnerable to attacks,
uncertain what to do next.

2008 RFC 5246 “The Transport
Layer Security (TLS) Protocol,
Version 1.2": “This leaves a
small timing channel, since MAC
performance depends to some
extent on the size of the data
fragment, but it is not believed to

be large enough to be exploitable,
due to the large block size of
existing MACs and the small size
of the timing signal.”

2013 AlFardan—Paterson “Lucky
Thirteen: breaking the TLS and

DTLS record protocols”: exploit

these timings; steal plaintext.

Interesting vs. boring crypto

All of this excitement is
wonderful for crypto researchers.

The only people suffering
are the crypto users:
continually forced to panic,

vulnerable to attacks,
uncertain what to do next.

The crypto users’ fantasy
is boring crypto:

crypto that simply works,
solidly resists attacks,
never needs any upgrades.

C 5246 "The Transport
curity (TLS) Protocol,
1.2": “This leaves a

ning channel, since MAC
ance depends to some

n the size of the data

t, but 1t Is not believed to

enough to be exploitable,
he large block size of
MACs and the small size

ming signal.”

-ardan—Paterson “Lucky
: breaking the TLS and
cord protocols”: exploit

nings; steal plaintext.

Interesting vs. boring crypto

All of this excitement is

wonderful for crypto researchers.

The only people suffering
are the crypto users:
continually forced to panic,

vulnerable to attacks,
uncertain what to do next.

The crypto users’ fantasy
is boring crypto:

crypto that simply works,
solidly resists attacks,
never needs any upgrades.

What w
the cryp
some cn
actually

[he Transport
:S) Protocol,
Is leaves a

1el, since MAC
1ds to some

of the data

- not believed to

) be exploitable,
lock size of
] the small size

18

terson “Lucky
r the TLS and
bcols™ : exploit

| plaintext.

Interesting vs. boring crypto

All of this excitement is

wonderful for crypto researchers.

The only people suffering
are the crypto users:
continually forced to panic,

vulnerable to attacks,
uncertain what to do next.

The crypto users’ fantasy
is boring crypto:

crypto that simply works,
solidly resists attacks,
never needs any upgrades.

What will happen
the crypto users c
some crypto resea
actually create bol

DOIT
ol

MAC
e

v

ved to

table,
f

| size

ucky
and
ploit

Interesting vs. boring crypto

All of this excitement is

wonderful for crypto researchers.

The only people suffering
are the crypto users:
continually forced to panic,

vulnerable to attacks,
uncertain what to do next.

The crypto users’ fantasy
is boring crypto:

crypto that simply works,
solidly resists attacks,
never needs any upgrades.

What will happen if

the crypto users convince
some crypto researchers to
actually create boring cryptc

Interesting vs. boring crypto

All of this excitement is

wonderful for crypto researchers.

The only people suffering
are the crypto users:
continually forced to panic,

vulnerable to attacks,
uncertain what to do next.

The crypto users’ fantasy
is boring crypto:

crypto that simply works,
solidly resists attacks,
never needs any upgrades.

What will happen if

the crypto users convince
some crypto researchers to
actually create boring crypto?

Interesting vs. boring crypto

All of this excitement is

wonderful for crypto researchers.

The only people suffering
are the crypto users:

continually forced to panic,

vulnerable to attacks,
uncertain what to do next.

The crypto users’ fantasy
is boring crypto:

crypto that simply works,
solidly resists attacks,
never needs any upgrades.

What will happen if

the crypto users convince
some crypto researchers to
actually create boring crypto?

No more real-world attacks.

No more emergency upgrades.
Limited audience for any
minor attack improvements
and for replacement crypto.

Interesting vs. boring crypto

All of this excitement is

wonderful for crypto researchers.

The only people suffering
are the crypto users:
continually forced to panic,

vulnerable to attacks,
uncertain what to do next.

The crypto users’ fantasy
is boring crypto:

crypto that simply works,
solidly resists attacks,
never needs any upgrades.

What will happen if

the crypto users convince
some crypto researchers to
actually create boring crypto?

No more real-world attacks.

No more emergency upgrades.
Limited audience for any
minor attack improvements
and for replacement crypto.

This Is an existential threat
against future crypto research.

Interesting vs. boring crypto

All of this excitement is

wonderful for crypto researchers.

The only people suffering
are the crypto users:
continually forced to panic,

vulnerable to attacks,
uncertain what to do next.

The crypto users’ fantasy
is boring crypto:

crypto that simply works,
solidly resists attacks,
never needs any upgrades.

What will happen if

the crypto users convince
some crypto researchers to
actually create boring crypto?

No more real-world attacks.

No more emergency upgrades.
Limited audience for any
minor attack improvements
and for replacement crypto.

This Is an existential threat
against future crypto research.

Is this the real life?

Is this just fantasy?

ng vs. boring crypto

IS excitement Is

il for crypto researchers.

/ people suffering
“rypto users:
|ly forced to panic,

e to attacks,

n what to do next.

to users’ fantasy
¥ Crypto:

hat simply works,
asists attacks,

eds any upgrades.

What will happen if

the crypto users convince
some crypto researchers to
actually create boring crypto?

No more real-world attacks.

Limited audience for any
minor attack improvements
and for replacement crypto.

This i1s an existential threat

against future crypto research.

Is this the real life?

Is this just fantasy?

No more emergency upgrades.

Crypto ¢

Again cc

Many In
How do
How car
How car
to influe
affect ti

Ing crypto

ent Is

to researchers.

uffering
rS:

to panic,
~ks,

do next.

fantasy

- works,
cks,
pgrades.

What will happen if

the crypto users convince
some crypto researchers to
actually create boring crypto?

No more real-world attacks.

Limited audience for any
minor attack improvements
and for replacement crypto.

This i1s an existential threat

against future crypto research.

Is this the real life?

Is this just fantasy?

No more emergency upgrades.

Crypto can be bor

Again consider tin

Many interesting ¢
How do secrets af
How can attacker
How can attacker
to influence how s
affect timings? Et

hers.

What will happen if

the crypto users convince
some crypto researchers to
actually create boring crypto?

No more real-world attacks.

Limited audience for any
minor attack improvements
and for replacement crypto.

This i1s an existential threat

against future crypto research.

Is this the real life?

Is this just fantasy?

No more emergency upgrades.

Crypto can be boring

Again consider timing leaks.

Many interesting questions:
How do secrets affect timing
How can attacker see timing
How can attacker choose In
to influence how secrets
affect timings? Et cetera.

What will happen if

the crypto users convince
some crypto researchers to
actually create boring crypto?

No more real-world attacks.

Limited audience for any
minor attack improvements
and for replacement crypto.

This i1s an existential threat

against future crypto research.

Is this the real life?

Is this just fantasy?

No more emergency upgrades.

Crypto can be boring

Again consider timing leaks.

Many interesting questions:
How do secrets affect timings?
How can attacker see timings?
How can attacker choose inputs
to influence how secrets

affect timings? Et cetera.

What will happen if

the crypto users convince
some crypto researchers to
actually create boring crypto?

No more real-world attacks.

Limited audience for any
minor attack improvements
and for replacement crypto.

This i1s an existential threat

against future crypto research.

Is this the real life?

Is this just fantasy?

No more emergency upgrades.

Crypto can be boring

Again consider timing leaks.

Many interesting questions:
How do secrets affect timings?
How can attacker see timings?
How can attacker choose inputs
to influence how secrets

affect timings? Et cetera.

The boring-crypto alternative:
crypto software is built from
instructions that have no data
flow from inputs to timings.
Obviously constant time.

|l happen if

to users convince
/pto researchers to
create boring crypto?

» real-world attacks.

> emergency upgrades.

audience for any
tack improvements
replacement crypto.

n existential threat

future crypto research.

e real life?
Ist fantasy?

Crypto can be boring

Again consider timing leaks.

Many interesting questions:
How do secrets affect timings?
How can attacker see timings?
How can attacker choose inputs
to influence how secrets

affect timings? Et cetera.

The boring-crypto alternative;
crypto software is built from
instructions that have no data
flow from inputs to timings.
Obviously constant time.

Another

280 gec

280 muli

about 2
Bluffdal

if

onvince
rchers to
ing crypto?

d attacks.

"y upgrades.

or any
ovements
Nt crypto.

1al threat

yto research.

?
?

Crypto can be boring

Again consider timing leaks.

Many interesting questions:
How do secrets affect timings?
How can attacker see timings?
How can attacker choose inputs
to influence how secrets

affect timings? Et cetera.

The boring-crypto alternative:
crypto software is built from
instructions that have no data
flow from inputs to timings.
Obviously constant time.

Another example:

280 security” is it

280 mults on mass

about 222 watt-ye
Bluffdale: 220 wat

Crypto can be boring

Again consider timing leaks.

Many interesting questions:
How do secrets affect timings?
How can attacker see timings?
How can attacker choose inputs
to influence how secrets

affect timings? Et cetera.

The boring-crypto alternative;
crypto software is built from
instructions that have no data
flow from inputs to timings.
Obviously constant time.

Another example:

“280 security” is interesting.

280 mults on mass-market G

about 222 watt-years.
Bluffdale: 229 watts.

Crypto can be boring

Again consider timing leaks.

Many interesting questions:
How do secrets affect timings?
How can attacker see timings?
How can attacker choose inputs
to influence how secrets

affect timings? Et cetera.

The boring-crypto alternative:
crypto software is built from
instructions that have no data
flow from inputs to timings.
Obviously constant time.

Another example:

“280 security” is interesting.

280 mults on mass-market GPUs:

about 222 watt-years.
Bluffdale: 22° watts.

Crypto can be boring

Again consider timing leaks.

Many interesting questions:
How do secrets affect timings?
How can attacker see timings?
How can attacker choose inputs
to influence how secrets

affect timings? Et cetera.

The boring-crypto alternative:
crypto software is built from
instructions that have no data
flow from inputs to timings.
Obviously constant time.

Another example:

“280 security” is interesting.

280 mults on mass-market GPUs:

about 222 watt-years.
Bluffdale: 22° watts.

s “280 security” really 2827 27°7
Are the individual ops harder than
single-precision mults? Easier?
Can the attack cost be shared
across targets, as in Logjam?
Every speedup Is important.

Crypto can be boring

Again consider timing leaks.

Many interesting questions:
How do secrets affect timings?
How can attacker see timings?
How can attacker choose inputs
to influence how secrets

affect timings? Et cetera.

The boring-crypto alternative:
crypto software is built from
instructions that have no data
flow from inputs to timings.
Obviously constant time.

Another example:

“280 security” is interesting.

280 mults on mass-market GPUs:

about 222 watt-years.
Bluffdale: 22° watts.

s “280 security” really 2827 27°7
Are the individual ops harder than
single-precision mults? Easier?
Can the attack cost be shared
across targets, as in Logjam?
Every speedup Is important.

2128 security” is boring.

an _be boring

nsider timing leaks.

teresting questions:
secrets affect timings?

| attacker see timings?

' attacker choose inputs
nce how secrets

mings? Et cetera.

ing-crypto alternative:
oftware is built from
ons that have no data
n inputs to timings.
ly constant time.

Another example:

“280 security” is interesting.

280 mults on mass-market GPUs:

about 222 watt-years.

Bluffdale: 22° watts.

s “280 security” really 2827 27°7
Are the individual ops harder than
single-precision mults? Easier?
Can the attack cost be shared
across targets, as in Logjam?
Every speedup Is important.

2128 security” is boring.

NIST E(
see, e.g.
in PS3 [

Ed2551¢

ing
1ing leaks.

Juestions:
fect timings?
see timings?
choose inputs
ecrets

cetera.

alternative:
built from
ave no data
0 timings.

t time.

Another example:

“280 security” is interesting.

280 mults on mass-market GPUs:

about 222 watt-years.

Bluffdale: 22° watts.

s “280 security” really 2827 27°7
Are the individual ops harder than
single-precision mults? Easier?
Can the attack cost be shared
across targets, as in Logjam?
Every speedup Is important.

2128 security” is boring.

NIST ECC is inter
see, e.g., how key:s
in PS3 ECDSA an

Ed25519 and X25

rs?
'S 7
DuUts

Another example:

“280 security” is interesting.

280 mults on mass-market GPUs:

about 222 watt-years.

Bluffdale: 22° watts.

s “280 security” really 2827 27°7
Are the individual ops harder than
single-precision mults? Easier?
Can the attack cost be shared
across targets, as in Logjam?
Every speedup Is important.

2128 security” is boring.

NIST ECC is interesting:
see, e.g., how keys were exp
in PS3 ECDSA and Java EC

Ed25519 and X25519: borir

Another example:

“280 security” is interesting.

280 mults on mass-market GPUs:

about 222 watt-years.
Bluffdale: 22° watts.

s “280 security” really 2827 27°7
Are the individual ops harder than
single-precision mults? Easier?
Can the attack cost be shared
across targets, as in Logjam?
Every speedup Is important.

2128 security” is boring.

NIST ECC is interesting:
see, e.g., how keys were exposed
in PS3 ECDSA and Java ECDH.

Ed25519 and X25519: boring.

Another example:

“280 security” is interesting.

280 mults on mass-market GPUs:

about 222 watt-years.

Bluffdale: 22° watts.

s “280 security” really 2827 27°7
Are the individual ops harder than
single-precision mults? Easier?
Can the attack cost be shared
across targets, as in Logjam?
Every speedup Is important.

2128 security” is boring.

NIST ECC is interesting:
see, e.g., how keys were exposed
in PS3 ECDSA and Java ECDH.

Ed25519 and X25519: boring.

Crypto “agility” Is interesting:
expands the attack surface,

complicates implementations,

complicates security analysis.

One True Cipher Suite: boring.

Another example:

“280 security” is interesting.

280 mults on mass-market GPUs:

about 222 watt-years.

Bluffdale: 22° watts.

s “280 security” really 2827 27°7
Are the individual ops harder than
single-precision mults? Easier?
Can the attack cost be shared
across targets, as in Logjam?
Every speedup Is important.

2128 security” is boring.

NIST ECC is interesting:
see, e.g., how keys were exposed
in PS3 ECDSA and Java ECDH.

Ed25519 and X25519: boring.

Crypto “agility” Is interesting:
expands the attack surface,

complicates implementations,

complicates security analysis.
One True Cipher Suite: boring.
Incorrect software: interesting.

Correct software: boring.
Can boring-crypto researchers
actually ensure correctness?

example:

urity’” 1s interesting.

s on mass-market GPUs:
2 watt-years.

»: 220 \watts.

ecurity” really 2827 2797
individual ops harder than
ecision mults? Easier?
attack cost be shared
rgets, as in Logjam?
eedup Is important.

curity’ Is boring.

NIST ECC is interesting:
see, e.g., how keys were exposed

in PS3 ECDSA and Java ECDH.

Ed25519 and X25519: boring.

Crypto “agility” Is interesting:
expands the attack surface,
complicates implementations,

complicates security analysis.
One True Cipher Suite: boring.
Incorrect software: interesting.

Correct software: boring.
Can boring-crypto researchers
actually ensure correctness?

Bugs tri
usually

1teresting.

-market GPUs:
ars.

ts.

cally 2827 2727
ops harder than
ilts? Easier?

st be shared

in Logjam?
mportant.

boring.

NIST ECC is interesting:
see, e.g., how keys were exposed

in PS3 ECDSA and Java ECDH.

Ed25519 and X25519: boring.

Crypto “agility” Is interesting:
expands the attack surface,

complicates implementations,

complicates security analysis.
One True Cipher Suite: boring.
Incorrect software: interesting.

Correct software: boring.
Can boring-crypto researchers
actually ensure correctness?

Bugs triggered by
usually aren't caug

PUs:

NIST ECC is interesting:
see, e.g., how keys were exposed

in PS3 ECDSA and Java ECDH.

Ed25519 and X25519: boring.

Crypto “agility” Is interesting:
expands the attack surface,

complicates implementations,

complicates security analysis.
One True Cipher Suite: boring.
Incorrect software: interesting.

Correct software: boring.
Can boring-crypto researchers
actually ensure correctness?

Bugs triggered by very rare
usually aren't caught by test

NIST ECC is interesting:
see, e.g., how keys were exposed

in PS3 ECDSA and Java ECDH.

Ed25519 and X25519: boring.

Crypto “agility” Is interesting:
expands the attack surface,
complicates implementations,

complicates security analysis.
One True Cipher Suite: boring.
Incorrect software: interesting.

Correct software: boring.
Can boring-crypto researchers
actually ensure correctness?

Bugs triggered by very rare inputs
usually aren’t caught by testing.

NIST ECC is interesting:
see, e.g., how keys were exposed

in PS3 ECDSA and Java ECDH.

Ed25519 and X25519: boring.

Crypto “agility” Is interesting:
expands the attack surface,
complicates implementations,

complicates security analysis.
One True Cipher Suite: boring.
Incorrect software: interesting.

Correct software: boring.
Can boring-crypto researchers
actually ensure correctness?

Bugs triggered by very rare inputs
usually aren’t caught by testing.

Block-cipher implementations
typically have no such bugs.

NIST ECC is interesting:
see, e.g., how keys were exposed

in PS3 ECDSA and Java ECDH.

Ed25519 and X25519: boring.

Crypto “agility” Is interesting:
expands the attack surface,

complicates implementations,

complicates security analysis.
One True Cipher Suite: boring.
Incorrect software: interesting.

Correct software: boring.
Can boring-crypto researchers
actually ensure correctness?

Bugs triggered by very rare inputs
usually aren’t caught by testing.

Block-cipher implementations
typically have no such bugs.

Much bigger issue for bigint
software. Integers are split into
“limbs” stored in CPU words;
typical tests fail to find extreme
values of limbs, fail to catch slight
overflows inside arithmetic.

NIST ECC is interesting:
see, e.g., how keys were exposed

in PS3 ECDSA and Java ECDH.

Ed25519 and X25519: boring.

Crypto “agility” Is interesting:
expands the attack surface,

complicates implementations,

complicates security analysis.
One True Cipher Suite: boring.
Incorrect software: interesting.

Correct software: boring.
Can boring-crypto researchers
actually ensure correctness?

Bugs triggered by very rare inputs
usually aren’t caught by testing.

Block-cipher implementations
typically have no such bugs.

Much bigger issue for bigint
software. Integers are split into
“limbs” stored in CPU words;
typical tests fail to find extreme
values of limbs, fail to catch slight
overflows inside arithmetic.

2011 Brumley—Barbosa—Page—
Vercauteren exploited a
limb overflow in OpenSSL.

_C is interesting:
, how keys were exposed

-CDSA and Java ECDH.

) and X25519: boring.

‘agility” Is interesting:
the attack surface,
ites implementations,
ites security analysis.

e Cipher Suite: boring.
- software: interesting.

software: boring.
ing-crypto researchers
ensure correctness?

Bugs triggered by very rare inputs
usually aren’t caught by testing.

Block-cipher implementations
typically have no such bugs.

Much bigger issue for bigint
software. Integers are split into
“limbs” stored in CPU words;

typical tests fail to find extreme

values of limbs, fail to catch slight
overflows inside arithmetic.

2011 Brumley—Barbosa—Page—
Vercauteren exploited a
limb overflow in OpenSSL.

Typically
are caug
Can this

esting:
; were exposed

d Java ECDH.

H»19: boring.

Interesting:
K surface,
mentations,

ty analysis.
uite: boring.
Interesting.

boring.
researchers
rrectness?

Bugs triggered by very rare inputs
usually aren’t caught by testing.

Block-cipher implementations
typically have no such bugs.

Much bigger issue for bigint
software. Integers are split into
“limbs” stored in CPU words;
typical tests fail to find extreme
values of limbs, fail to catch slight
overflows inside arithmetic.

2011 Brumley—Barbosa—Page—
Vercauteren exploited a
limb overflow in OpenSSL.

Typically these lin
are caught by care
Can this be automn

osed

DH.

ng.

1.

Bugs triggered by very rare inputs
usually aren’t caught by testing.

Block-cipher implementations
typically have no such bugs.

Much bigger issue for bigint
software. Integers are split into
“limbs” stored in CPU words;

typical tests fail to find extreme

values of limbs, fail to catch slight
overflows inside arithmetic.

2011 Brumley—Barbosa—Page—
Vercauteren exploited a
limb overflow in OpenSSL.

Typically these limb overflov
are caught by careful audits.
Can this be automated?

Bugs triggered by very rare inputs
usually aren't caught by testing.

Block-cipher implementations
typically have no such bugs.

Much bigger issue for bigint
software. Integers are split into
“limbs” stored in CPU words;
typical tests fail to find extreme
values of limbs, fail to catch slight
overflows inside arithmetic.

2011 Brumley—Barbosa—Page—
Vercauteren exploited a
limb overflow in OpenSSL.

Typically these limb overtlows
are caught by careful audits.
Can this be automated?

Bugs triggered by very rare inputs
usually aren’t caught by testing.

Block-cipher implementations
typically have no such bugs.

Much bigger issue for bigint
software. Integers are split into
“limbs” stored in CPU words;
typical tests fail to find extreme
values of limbs, fail to catch slight
overflows inside arithmetic.

2011 Brumley—Barbosa—Page—
Vercauteren exploited a
limb overflow in OpenSSL.

Typically these limb overtlows
are caught by careful audits.
Can this be automated?

2014 Chen—Hsu—Lin—Schwabe—
Tsai-Wang—Yang—Yang “Veritying
Curve25519 software”: proof of
correctness of thousands of lines
of asm for X25519 main loop.

Bugs triggered by very rare inputs
usually aren’t caught by testing.

Block-cipher implementations
typically have no such bugs.

Much bigger issue for bigint
software. Integers are split into
“limbs” stored in CPU words;
typical tests fail to find extreme
values of limbs, fail to catch slight
overflows inside arithmetic.

2011 Brumley—Barbosa—Page—
Vercauteren exploited a
limb overflow in OpenSSL.

Typically these limb overtlows
are caught by careful audits.
Can this be automated?

2014 Chen—Hsu—Lin—Schwabe—
Tsai-Wang—Yang—Yang “Veritying
Curve25519 software”: proof of
correctness of thousands of lines
of asm for X25519 main loop.

Still very far from automatic:
nuge portion of proof was checked

oy computer but written by hand.

Per proof: many hours of CPU
time; many hours of human time.

ogered by very rare inputs
iren’'t caught by testing.

pher implementations
have no such bugs.

gger issue for bigint

. Integers are split into
stored in CPU words:
ests fail to find extreme

f limbs, fail to catch slight
s inside arithmetic.

umley—Barbosa—Page—
ren exploited a

rflow in OpenSSL.

Typically these limb overflows
are caught by careful audits.
Can this be automated?

2014 Chen—Hsu—-Lin—Schwabe—
Tsai-Wang—Yang—Yang “Verifying
Curve25519 software”: proof of
correctness of thousands of lines
of asm for X25519 main loop.

Still very far from automatic:
nuge portion of proof was checked

oy computer but written by hand.

Per proof: many hours of CPU
time; many hours of human time.

2015 Be

gfverii
far less 1

Usable
Process

| atest n
correctn

impleme

CPU tin
141 secc

Human

annotati
Working

very rare inputs
rht by testing.

mentations
uch bugs.

for bigint

are split into
CPU words:

) find extreme

Il to catch slight
1thmetic.

‘bosa—Page—
ted a
penSSL.

Typically these limb overflows
are caught by careful audits.
Can this be automated?

2014 Chen—Hsu—-Lin—Schwabe—
Tsai-Wang—Yang—Yang “Veritying
Curve25519 software”: proof of
correctness of thousands of lines
of asm for X25519 main loop.

Still very far from automatic:
nuge portion of proof was checked

oy computer but written by hand.

Per proof: many hours of CPU
time; many hours of human time.

2015 Bernstein—Sc¢
gfverif, in progr
far less time per p
Usable part of dev
process for ECC s

| atest news: finisl
correctness for re:
implementation of

CPU time per pro
141 seconds on m

Human time per g
annotations for ea
Working on auton

inputs
Ing.

1S

Typically these limb overflows
are caught by careful audits.
Can this be automated?

2014 Chen—Hsu—-Lin—Schwabe—
Tsai-Wang—Yang—Yang “Verifying
Curve25519 software”: proof of
correctness of thousands of lines
of asm for X25519 main loop.

Still very far from automatic:
nuge portion of proof was checked

oy computer but written by hand.

Per proof: many hours of CPU
time; many hours of human time.

2015 Bernstein—Schwabe
gfverif, in progress:

far less time per proof.
Usable part of development
process for ECC software.

Latest news: finished provin
correctness for ref10
implementation of X25519.

CPU time per proof:
141 seconds on my laptop.

Human time per proof:
annotations for each field or
Working on automating this

Typically these limb overflows
are caught by careful audits.
Can this be automated?

2014 Chen—Hsu—Lin—Schwabe—
Tsai-Wang—Yang—Yang “Veritying
Curve25519 software”: proof of
correctness of thousands of lines
of asm for X25519 main loop.

Still very far from automatic:
nuge portion of proof was checked

oy computer but written by hand.

Per proof: many hours of CPU
time; many hours of human time.

2015 Bernstein—Schwabe
gfverif, in progress:

far less time per proof.
Usable part of development
process for ECC software.

Latest news: finished proving
correctness for ref10
implementation of X25519.

CPU time per proof:
141 seconds on my laptop.

Human time per proof:
annotations for each field op.
Working on automating this.

