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Tanja Lange

Technische Universiteit Eindhoven

1986 Chudnovsky–Chudnovsky,

“Sequences of numbers

generated by addition

in formal groups

and new primality

and factorization tests”:

“The crucial problem becomes

the choice of the model

of an algebraic group variety,

where computations mod p

are the least time consuming.”

Most important computations:

ADD is P;Q 7→ P +Q.

DBL is P 7→ 2P .
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of an algebraic group variety,

where computations mod p

are the least time consuming.”

Most important computations:

ADD is P;Q 7→ P +Q.

DBL is P 7→ 2P .

“It is preferable to use

models of elliptic curves

lying in low-dimensional spaces,

for otherwise the number of

coordinates and operations is

increasing. This limits us : : : to

4 basic models of elliptic curves.”

Short Weierstrass:

y2 = x3 + ax+ b.

Jacobi intersection:

s2 + c2 = 1, as2 + d2 = 1.

Jacobi quartic: y2 = x4+2ax2+1.

Hessian: x3 + y3 + 1 = 3dxy.



Twisted Hessian curves

cr.yp.to/papers.html#hessian

Daniel J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

Joint work with:

Chitchanok Chuengsatiansup

Technische Universiteit Eindhoven

David Kohel

Aix-Marseille Université
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“Our experience shows that the

expression of the law of addition

on the cubic Hessian form

(d) of an elliptic curve is

by far the best and the prettiest.”

X3 = Y 1X2 · Y 1Z2−Z1Y 2 ·X1Y 2;

Y 3 = X1Z2 ·X1Y 2− Y 1X2 ·Z1X2;

Z3 = Z1Y 2 ·Z1X2−X1Z2 · Y 1Z2:

12M for ADD,

where M is the cost

of multiplication in the field.

8:4M for DBL,

assuming 0:8M for the cost

of squaring in the field.
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2007 Edwards: new curve shape.

2007 Bernstein–Lange: generalize,

analyze speed, completeness.

y

x

OO

//

neutral = (0; 1)
•

P1 = (x1; y1)•����
P2 = (x2; y2)•fffff
P3 = (x3; y3)•[[[[[[

Example: x2 + y2 = 1− 30x2y2.

Sum of (x1; y1) and (x2; y2) is

((x1y2+y1x2)=(1−30x1x2y1y2),

(y1y2−x1x2)=(1+30x1x2y1y2)).
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