
Twisted Hessian curves

cr.yp.to/papers.html#hessian

Daniel J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

Joint work with:

Chitchanok Chuengsatiansup

Technische Universiteit Eindhoven

David Kohel

Aix-Marseille Université

Tanja Lange

Technische Universiteit Eindhoven

1986 Chudnovsky–Chudnovsky,

“Sequences of numbers

generated by addition

in formal groups

and new primality

and factorization tests”:

“The crucial problem becomes

the choice of the model

of an algebraic group variety,

where computations mod p

are the least time consuming.”

Most important computations:

ADD is P;Q 7→ P +Q.

DBL is P 7→ 2P .

Twisted Hessian curves

cr.yp.to/papers.html#hessian

Daniel J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

Joint work with:

Chitchanok Chuengsatiansup

Technische Universiteit Eindhoven

David Kohel

Aix-Marseille Université

Tanja Lange

Technische Universiteit Eindhoven

1986 Chudnovsky–Chudnovsky,

“Sequences of numbers

generated by addition

in formal groups

and new primality

and factorization tests”:

“The crucial problem becomes

the choice of the model

of an algebraic group variety,

where computations mod p

are the least time consuming.”

Most important computations:

ADD is P;Q 7→ P +Q.

DBL is P 7→ 2P .

“It is preferable to use

models of elliptic curves

lying in low-dimensional spaces,

for otherwise the number of

coordinates and operations is

increasing. This limits us : : : to

4 basic models of elliptic curves.”

Short Weierstrass:

y2 = x3 + ax+ b.

Jacobi intersection:

s2 + c2 = 1, as2 + d2 = 1.

Jacobi quartic: y2 = x4+2ax2+1.

Hessian: x3 + y3 + 1 = 3dxy.

Twisted Hessian curves

cr.yp.to/papers.html#hessian

Daniel J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

Joint work with:

Chitchanok Chuengsatiansup

Technische Universiteit Eindhoven

David Kohel

Aix-Marseille Université

Tanja Lange

Technische Universiteit Eindhoven

1986 Chudnovsky–Chudnovsky,

“Sequences of numbers

generated by addition

in formal groups

and new primality

and factorization tests”:

“The crucial problem becomes

the choice of the model

of an algebraic group variety,

where computations mod p

are the least time consuming.”

Most important computations:

ADD is P;Q 7→ P +Q.

DBL is P 7→ 2P .

“It is preferable to use

models of elliptic curves

lying in low-dimensional spaces,

for otherwise the number of

coordinates and operations is

increasing. This limits us : : : to

4 basic models of elliptic curves.”

Short Weierstrass:

y2 = x3 + ax+ b.

Jacobi intersection:

s2 + c2 = 1, as2 + d2 = 1.

Jacobi quartic: y2 = x4+2ax2+1.

Hessian: x3 + y3 + 1 = 3dxy.

Twisted Hessian curves

cr.yp.to/papers.html#hessian

Daniel J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

Joint work with:

Chitchanok Chuengsatiansup

Technische Universiteit Eindhoven

David Kohel

Aix-Marseille Université

Tanja Lange

Technische Universiteit Eindhoven

1986 Chudnovsky–Chudnovsky,

“Sequences of numbers

generated by addition

in formal groups

and new primality

and factorization tests”:

“The crucial problem becomes

the choice of the model

of an algebraic group variety,

where computations mod p

are the least time consuming.”

Most important computations:

ADD is P;Q 7→ P +Q.

DBL is P 7→ 2P .

“It is preferable to use

models of elliptic curves

lying in low-dimensional spaces,

for otherwise the number of

coordinates and operations is

increasing. This limits us : : : to

4 basic models of elliptic curves.”

Short Weierstrass:

y2 = x3 + ax+ b.

Jacobi intersection:

s2 + c2 = 1, as2 + d2 = 1.

Jacobi quartic: y2 = x4+2ax2+1.

Hessian: x3 + y3 + 1 = 3dxy.

1986 Chudnovsky–Chudnovsky,

“Sequences of numbers

generated by addition

in formal groups

and new primality

and factorization tests”:

“The crucial problem becomes

the choice of the model

of an algebraic group variety,

where computations mod p

are the least time consuming.”

Most important computations:

ADD is P;Q 7→ P +Q.

DBL is P 7→ 2P .

“It is preferable to use

models of elliptic curves

lying in low-dimensional spaces,

for otherwise the number of

coordinates and operations is

increasing. This limits us : : : to

4 basic models of elliptic curves.”

Short Weierstrass:

y2 = x3 + ax+ b.

Jacobi intersection:

s2 + c2 = 1, as2 + d2 = 1.

Jacobi quartic: y2 = x4+2ax2+1.

Hessian: x3 + y3 + 1 = 3dxy.

1986 Chudnovsky–Chudnovsky,

“Sequences of numbers

generated by addition

in formal groups

and new primality

and factorization tests”:

“The crucial problem becomes

the choice of the model

of an algebraic group variety,

where computations mod p

are the least time consuming.”

Most important computations:

ADD is P;Q 7→ P +Q.

DBL is P 7→ 2P .

“It is preferable to use

models of elliptic curves

lying in low-dimensional spaces,

for otherwise the number of

coordinates and operations is

increasing. This limits us : : : to

4 basic models of elliptic curves.”

Short Weierstrass:

y2 = x3 + ax+ b.

Jacobi intersection:

s2 + c2 = 1, as2 + d2 = 1.

Jacobi quartic: y2 = x4+2ax2+1.

Hessian: x3 + y3 + 1 = 3dxy.

“Our experience shows that the

expression of the law of addition

on the cubic Hessian form

(d) of an elliptic curve is

by far the best and the prettiest.”

X3 = Y 1X2 · Y 1Z2−Z1Y 2 ·X1Y 2;

Y 3 = X1Z2 ·X1Y 2− Y 1X2 ·Z1X2;

Z3 = Z1Y 2 ·Z1X2−X1Z2 · Y 1Z2:

12M for ADD,

where M is the cost

of multiplication in the field.

8:4M for DBL,

assuming 0:8M for the cost

of squaring in the field.

1986 Chudnovsky–Chudnovsky,

“Sequences of numbers

generated by addition

in formal groups

and new primality

and factorization tests”:

“The crucial problem becomes

the choice of the model

of an algebraic group variety,

where computations mod p

are the least time consuming.”

Most important computations:

ADD is P;Q 7→ P +Q.

DBL is P 7→ 2P .

“It is preferable to use

models of elliptic curves

lying in low-dimensional spaces,

for otherwise the number of

coordinates and operations is

increasing. This limits us : : : to

4 basic models of elliptic curves.”

Short Weierstrass:

y2 = x3 + ax+ b.

Jacobi intersection:

s2 + c2 = 1, as2 + d2 = 1.

Jacobi quartic: y2 = x4+2ax2+1.

Hessian: x3 + y3 + 1 = 3dxy.

“Our experience shows that the

expression of the law of addition

on the cubic Hessian form

(d) of an elliptic curve is

by far the best and the prettiest.”

X3 = Y 1X2 · Y 1Z2−Z1Y 2 ·X1Y 2;

Y 3 = X1Z2 ·X1Y 2− Y 1X2 ·Z1X2;

Z3 = Z1Y 2 ·Z1X2−X1Z2 · Y 1Z2:

12M for ADD,

where M is the cost

of multiplication in the field.

8:4M for DBL,

assuming 0:8M for the cost

of squaring in the field.

1986 Chudnovsky–Chudnovsky,

“Sequences of numbers

generated by addition

in formal groups

and new primality

and factorization tests”:

“The crucial problem becomes

the choice of the model

of an algebraic group variety,

where computations mod p

are the least time consuming.”

Most important computations:

ADD is P;Q 7→ P +Q.

DBL is P 7→ 2P .

“It is preferable to use

models of elliptic curves

lying in low-dimensional spaces,

for otherwise the number of

coordinates and operations is

increasing. This limits us : : : to

4 basic models of elliptic curves.”

Short Weierstrass:

y2 = x3 + ax+ b.

Jacobi intersection:

s2 + c2 = 1, as2 + d2 = 1.

Jacobi quartic: y2 = x4+2ax2+1.

Hessian: x3 + y3 + 1 = 3dxy.

“Our experience shows that the

expression of the law of addition

on the cubic Hessian form

(d) of an elliptic curve is

by far the best and the prettiest.”

X3 = Y 1X2 · Y 1Z2−Z1Y 2 ·X1Y 2;

Y 3 = X1Z2 ·X1Y 2− Y 1X2 ·Z1X2;

Z3 = Z1Y 2 ·Z1X2−X1Z2 · Y 1Z2:

12M for ADD,

where M is the cost

of multiplication in the field.

8:4M for DBL,

assuming 0:8M for the cost

of squaring in the field.

“It is preferable to use

models of elliptic curves

lying in low-dimensional spaces,

for otherwise the number of

coordinates and operations is

increasing. This limits us : : : to

4 basic models of elliptic curves.”

Short Weierstrass:

y2 = x3 + ax+ b.

Jacobi intersection:

s2 + c2 = 1, as2 + d2 = 1.

Jacobi quartic: y2 = x4+2ax2+1.

Hessian: x3 + y3 + 1 = 3dxy.

“Our experience shows that the

expression of the law of addition

on the cubic Hessian form

(d) of an elliptic curve is

by far the best and the prettiest.”

X3 = Y 1X2 · Y 1Z2−Z1Y 2 ·X1Y 2;

Y 3 = X1Z2 ·X1Y 2− Y 1X2 ·Z1X2;

Z3 = Z1Y 2 ·Z1X2−X1Z2 · Y 1Z2:

12M for ADD,

where M is the cost

of multiplication in the field.

8:4M for DBL,

assuming 0:8M for the cost

of squaring in the field.

“It is preferable to use

models of elliptic curves

lying in low-dimensional spaces,

for otherwise the number of

coordinates and operations is

increasing. This limits us : : : to

4 basic models of elliptic curves.”

Short Weierstrass:

y2 = x3 + ax+ b.

Jacobi intersection:

s2 + c2 = 1, as2 + d2 = 1.

Jacobi quartic: y2 = x4+2ax2+1.

Hessian: x3 + y3 + 1 = 3dxy.

“Our experience shows that the

expression of the law of addition

on the cubic Hessian form

(d) of an elliptic curve is

by far the best and the prettiest.”

X3 = Y 1X2 · Y 1Z2−Z1Y 2 ·X1Y 2;

Y 3 = X1Z2 ·X1Y 2− Y 1X2 ·Z1X2;

Z3 = Z1Y 2 ·Z1X2−X1Z2 · Y 1Z2:

12M for ADD,

where M is the cost

of multiplication in the field.

8:4M for DBL,

assuming 0:8M for the cost

of squaring in the field.

1990s: ECC standards instead

use short Weierstrass curves

in Jacobian coordinates

for “the fastest arithmetic”.

15:2M for ADD,

much slower than Hessian.

Why is this a good idea?

“It is preferable to use

models of elliptic curves

lying in low-dimensional spaces,

for otherwise the number of

coordinates and operations is

increasing. This limits us : : : to

4 basic models of elliptic curves.”

Short Weierstrass:

y2 = x3 + ax+ b.

Jacobi intersection:

s2 + c2 = 1, as2 + d2 = 1.

Jacobi quartic: y2 = x4+2ax2+1.

Hessian: x3 + y3 + 1 = 3dxy.

“Our experience shows that the

expression of the law of addition

on the cubic Hessian form

(d) of an elliptic curve is

by far the best and the prettiest.”

X3 = Y 1X2 · Y 1Z2−Z1Y 2 ·X1Y 2;

Y 3 = X1Z2 ·X1Y 2− Y 1X2 ·Z1X2;

Z3 = Z1Y 2 ·Z1X2−X1Z2 · Y 1Z2:

12M for ADD,

where M is the cost

of multiplication in the field.

8:4M for DBL,

assuming 0:8M for the cost

of squaring in the field.

1990s: ECC standards instead

use short Weierstrass curves

in Jacobian coordinates

for “the fastest arithmetic”.

15:2M for ADD,

much slower than Hessian.

Why is this a good idea?

“It is preferable to use

models of elliptic curves

lying in low-dimensional spaces,

for otherwise the number of

coordinates and operations is

increasing. This limits us : : : to

4 basic models of elliptic curves.”

Short Weierstrass:

y2 = x3 + ax+ b.

Jacobi intersection:

s2 + c2 = 1, as2 + d2 = 1.

Jacobi quartic: y2 = x4+2ax2+1.

Hessian: x3 + y3 + 1 = 3dxy.

“Our experience shows that the

expression of the law of addition

on the cubic Hessian form

(d) of an elliptic curve is

by far the best and the prettiest.”

X3 = Y 1X2 · Y 1Z2−Z1Y 2 ·X1Y 2;

Y 3 = X1Z2 ·X1Y 2− Y 1X2 ·Z1X2;

Z3 = Z1Y 2 ·Z1X2−X1Z2 · Y 1Z2:

12M for ADD,

where M is the cost

of multiplication in the field.

8:4M for DBL,

assuming 0:8M for the cost

of squaring in the field.

1990s: ECC standards instead

use short Weierstrass curves

in Jacobian coordinates

for “the fastest arithmetic”.

15:2M for ADD,

much slower than Hessian.

Why is this a good idea?

“Our experience shows that the

expression of the law of addition

on the cubic Hessian form

(d) of an elliptic curve is

by far the best and the prettiest.”

X3 = Y 1X2 · Y 1Z2−Z1Y 2 ·X1Y 2;

Y 3 = X1Z2 ·X1Y 2− Y 1X2 ·Z1X2;

Z3 = Z1Y 2 ·Z1X2−X1Z2 · Y 1Z2:

12M for ADD,

where M is the cost

of multiplication in the field.

8:4M for DBL,

assuming 0:8M for the cost

of squaring in the field.

1990s: ECC standards instead

use short Weierstrass curves

in Jacobian coordinates

for “the fastest arithmetic”.

15:2M for ADD,

much slower than Hessian.

Why is this a good idea?

“Our experience shows that the

expression of the law of addition

on the cubic Hessian form

(d) of an elliptic curve is

by far the best and the prettiest.”

X3 = Y 1X2 · Y 1Z2−Z1Y 2 ·X1Y 2;

Y 3 = X1Z2 ·X1Y 2− Y 1X2 ·Z1X2;

Z3 = Z1Y 2 ·Z1X2−X1Z2 · Y 1Z2:

12M for ADD,

where M is the cost

of multiplication in the field.

8:4M for DBL,

assuming 0:8M for the cost

of squaring in the field.

1990s: ECC standards instead

use short Weierstrass curves

in Jacobian coordinates

for “the fastest arithmetic”.

15:2M for ADD,

much slower than Hessian.

Why is this a good idea?

Answer: Only 7:2M for DBL with

Chudnovsky–Chudnovsky formula.

“Our experience shows that the

expression of the law of addition

on the cubic Hessian form

(d) of an elliptic curve is

by far the best and the prettiest.”

X3 = Y 1X2 · Y 1Z2−Z1Y 2 ·X1Y 2;

Y 3 = X1Z2 ·X1Y 2− Y 1X2 ·Z1X2;

Z3 = Z1Y 2 ·Z1X2−X1Z2 · Y 1Z2:

12M for ADD,

where M is the cost

of multiplication in the field.

8:4M for DBL,

assuming 0:8M for the cost

of squaring in the field.

1990s: ECC standards instead

use short Weierstrass curves

in Jacobian coordinates

for “the fastest arithmetic”.

15:2M for ADD,

much slower than Hessian.

Why is this a good idea?

Answer: Only 7:2M for DBL with

Chudnovsky–Chudnovsky formula.

2001 Bernstein: 15M, 7M.

“Our experience shows that the

expression of the law of addition

on the cubic Hessian form

(d) of an elliptic curve is

by far the best and the prettiest.”

X3 = Y 1X2 · Y 1Z2−Z1Y 2 ·X1Y 2;

Y 3 = X1Z2 ·X1Y 2− Y 1X2 ·Z1X2;

Z3 = Z1Y 2 ·Z1X2−X1Z2 · Y 1Z2:

12M for ADD,

where M is the cost

of multiplication in the field.

8:4M for DBL,

assuming 0:8M for the cost

of squaring in the field.

1990s: ECC standards instead

use short Weierstrass curves

in Jacobian coordinates

for “the fastest arithmetic”.

15:2M for ADD,

much slower than Hessian.

Why is this a good idea?

Answer: Only 7:2M for DBL with

Chudnovsky–Chudnovsky formula.

2001 Bernstein: 15M, 7M.

Compared to Hessian,

Weierstrass saves 4M in typical

DBL-DBL-DBL-DBL-DBL-ADD.

“Our experience shows that the

expression of the law of addition

on the cubic Hessian form

(d) of an elliptic curve is

by far the best and the prettiest.”

X3 = Y 1X2 · Y 1Z2−Z1Y 2 ·X1Y 2;

Y 3 = X1Z2 ·X1Y 2− Y 1X2 ·Z1X2;

Z3 = Z1Y 2 ·Z1X2−X1Z2 · Y 1Z2:

12M for ADD,

where M is the cost

of multiplication in the field.

8:4M for DBL,

assuming 0:8M for the cost

of squaring in the field.

1990s: ECC standards instead

use short Weierstrass curves

in Jacobian coordinates

for “the fastest arithmetic”.

15:2M for ADD,

much slower than Hessian.

Why is this a good idea?

Answer: Only 7:2M for DBL with

Chudnovsky–Chudnovsky formula.

2001 Bernstein: 15M, 7M.

Compared to Hessian,

Weierstrass saves 4M in typical

DBL-DBL-DBL-DBL-DBL-ADD.

2007 Edwards: new curve shape.

2007 Bernstein–Lange: generalize,

analyze speed, completeness.

y

x

OO

//

neutral = (0; 1)
•

P1 = (x1; y1)•����
P2 = (x2; y2)•fffff
P3 = (x3; y3)•[[[[[[

Example: x2 + y2 = 1− 30x2y2.

Sum of (x1; y1) and (x2; y2) is

((x1y2+y1x2)=(1−30x1x2y1y2),

(y1y2−x1x2)=(1+30x1x2y1y2)).

“Our experience shows that the

expression of the law of addition

on the cubic Hessian form

(d) of an elliptic curve is

by far the best and the prettiest.”

X3 = Y 1X2 · Y 1Z2−Z1Y 2 ·X1Y 2;

Y 3 = X1Z2 ·X1Y 2− Y 1X2 ·Z1X2;

Z3 = Z1Y 2 ·Z1X2−X1Z2 · Y 1Z2:

12M for ADD,

where M is the cost

of multiplication in the field.

8:4M for DBL,

assuming 0:8M for the cost

of squaring in the field.

1990s: ECC standards instead

use short Weierstrass curves

in Jacobian coordinates

for “the fastest arithmetic”.

15:2M for ADD,

much slower than Hessian.

Why is this a good idea?

Answer: Only 7:2M for DBL with

Chudnovsky–Chudnovsky formula.

2001 Bernstein: 15M, 7M.

Compared to Hessian,

Weierstrass saves 4M in typical

DBL-DBL-DBL-DBL-DBL-ADD.

2007 Edwards: new curve shape.

2007 Bernstein–Lange: generalize,

analyze speed, completeness.

y

x

OO

//

neutral = (0; 1)
•

P1 = (x1; y1)•����
P2 = (x2; y2)•fffff
P3 = (x3; y3)•[[[[[[

Example: x2 + y2 = 1− 30x2y2.

Sum of (x1; y1) and (x2; y2) is

((x1y2+y1x2)=(1−30x1x2y1y2),

(y1y2−x1x2)=(1+30x1x2y1y2)).

“Our experience shows that the

expression of the law of addition

on the cubic Hessian form

(d) of an elliptic curve is

by far the best and the prettiest.”

X3 = Y 1X2 · Y 1Z2−Z1Y 2 ·X1Y 2;

Y 3 = X1Z2 ·X1Y 2− Y 1X2 ·Z1X2;

Z3 = Z1Y 2 ·Z1X2−X1Z2 · Y 1Z2:

12M for ADD,

where M is the cost

of multiplication in the field.

8:4M for DBL,

assuming 0:8M for the cost

of squaring in the field.

1990s: ECC standards instead

use short Weierstrass curves

in Jacobian coordinates

for “the fastest arithmetic”.

15:2M for ADD,

much slower than Hessian.

Why is this a good idea?

Answer: Only 7:2M for DBL with

Chudnovsky–Chudnovsky formula.

2001 Bernstein: 15M, 7M.

Compared to Hessian,

Weierstrass saves 4M in typical

DBL-DBL-DBL-DBL-DBL-ADD.

2007 Edwards: new curve shape.

2007 Bernstein–Lange: generalize,

analyze speed, completeness.

y

x

OO

//

neutral = (0; 1)
•

P1 = (x1; y1)•����
P2 = (x2; y2)•fffff
P3 = (x3; y3)•[[[[[[

Example: x2 + y2 = 1− 30x2y2.

Sum of (x1; y1) and (x2; y2) is

((x1y2+y1x2)=(1−30x1x2y1y2),

(y1y2−x1x2)=(1+30x1x2y1y2)).

1990s: ECC standards instead

use short Weierstrass curves

in Jacobian coordinates

for “the fastest arithmetic”.

15:2M for ADD,

much slower than Hessian.

Why is this a good idea?

Answer: Only 7:2M for DBL with

Chudnovsky–Chudnovsky formula.

2001 Bernstein: 15M, 7M.

Compared to Hessian,

Weierstrass saves 4M in typical

DBL-DBL-DBL-DBL-DBL-ADD.

2007 Edwards: new curve shape.

2007 Bernstein–Lange: generalize,

analyze speed, completeness.

y

x

OO

//

neutral = (0; 1)
•

P1 = (x1; y1)•����
P2 = (x2; y2)•fffff
P3 = (x3; y3)•[[[[[[

Example: x2 + y2 = 1− 30x2y2.

Sum of (x1; y1) and (x2; y2) is

((x1y2+y1x2)=(1−30x1x2y1y2),

(y1y2−x1x2)=(1+30x1x2y1y2)).

1990s: ECC standards instead

use short Weierstrass curves

in Jacobian coordinates

for “the fastest arithmetic”.

15:2M for ADD,

much slower than Hessian.

Why is this a good idea?

Answer: Only 7:2M for DBL with

Chudnovsky–Chudnovsky formula.

2001 Bernstein: 15M, 7M.

Compared to Hessian,

Weierstrass saves 4M in typical

DBL-DBL-DBL-DBL-DBL-ADD.

2007 Edwards: new curve shape.

2007 Bernstein–Lange: generalize,

analyze speed, completeness.

y

x

OO

//

neutral = (0; 1)
•

P1 = (x1; y1)•����
P2 = (x2; y2)•fffff
P3 = (x3; y3)•[[[[[[

Example: x2 + y2 = 1− 30x2y2.

Sum of (x1; y1) and (x2; y2) is

((x1y2+y1x2)=(1−30x1x2y1y2),

(y1y2−x1x2)=(1+30x1x2y1y2)).

2007 Bernstein–Lange:

10:8M for ADD, 6:2M for DBL.

1990s: ECC standards instead

use short Weierstrass curves

in Jacobian coordinates

for “the fastest arithmetic”.

15:2M for ADD,

much slower than Hessian.

Why is this a good idea?

Answer: Only 7:2M for DBL with

Chudnovsky–Chudnovsky formula.

2001 Bernstein: 15M, 7M.

Compared to Hessian,

Weierstrass saves 4M in typical

DBL-DBL-DBL-DBL-DBL-ADD.

2007 Edwards: new curve shape.

2007 Bernstein–Lange: generalize,

analyze speed, completeness.

y

x

OO

//

neutral = (0; 1)
•

P1 = (x1; y1)•����
P2 = (x2; y2)•fffff
P3 = (x3; y3)•[[[[[[

Example: x2 + y2 = 1− 30x2y2.

Sum of (x1; y1) and (x2; y2) is

((x1y2+y1x2)=(1−30x1x2y1y2),

(y1y2−x1x2)=(1+30x1x2y1y2)).

2007 Bernstein–Lange:

10:8M for ADD, 6:2M for DBL.

1990s: ECC standards instead

use short Weierstrass curves

in Jacobian coordinates

for “the fastest arithmetic”.

15:2M for ADD,

much slower than Hessian.

Why is this a good idea?

Answer: Only 7:2M for DBL with

Chudnovsky–Chudnovsky formula.

2001 Bernstein: 15M, 7M.

Compared to Hessian,

Weierstrass saves 4M in typical

DBL-DBL-DBL-DBL-DBL-ADD.

2007 Edwards: new curve shape.

2007 Bernstein–Lange: generalize,

analyze speed, completeness.

y

x

OO

//

neutral = (0; 1)
•

P1 = (x1; y1)•����
P2 = (x2; y2)•fffff
P3 = (x3; y3)•[[[[[[

Example: x2 + y2 = 1− 30x2y2.

Sum of (x1; y1) and (x2; y2) is

((x1y2+y1x2)=(1−30x1x2y1y2),

(y1y2−x1x2)=(1+30x1x2y1y2)).

2007 Bernstein–Lange:

10:8M for ADD, 6:2M for DBL.

2007 Edwards: new curve shape.

2007 Bernstein–Lange: generalize,

analyze speed, completeness.

y

x

OO

//

neutral = (0; 1)
•

P1 = (x1; y1)•����
P2 = (x2; y2)•fffff
P3 = (x3; y3)•[[[[[[

Example: x2 + y2 = 1− 30x2y2.

Sum of (x1; y1) and (x2; y2) is

((x1y2+y1x2)=(1−30x1x2y1y2),

(y1y2−x1x2)=(1+30x1x2y1y2)).

2007 Bernstein–Lange:

10:8M for ADD, 6:2M for DBL.

2007 Edwards: new curve shape.

2007 Bernstein–Lange: generalize,

analyze speed, completeness.

y

x

OO

//

neutral = (0; 1)
•

P1 = (x1; y1)•����
P2 = (x2; y2)•fffff
P3 = (x3; y3)•[[[[[[

Example: x2 + y2 = 1− 30x2y2.

Sum of (x1; y1) and (x2; y2) is

((x1y2+y1x2)=(1−30x1x2y1y2),

(y1y2−x1x2)=(1+30x1x2y1y2)).

2007 Bernstein–Lange:

10:8M for ADD, 6:2M for DBL.

2008 Hisil–Wong–Carter–Dawson:

just 8M for ADD.

2007 Edwards: new curve shape.

2007 Bernstein–Lange: generalize,

analyze speed, completeness.

y

x

OO

//

neutral = (0; 1)
•

P1 = (x1; y1)•����
P2 = (x2; y2)•fffff
P3 = (x3; y3)•[[[[[[

Example: x2 + y2 = 1− 30x2y2.

Sum of (x1; y1) and (x2; y2) is

((x1y2+y1x2)=(1−30x1x2y1y2),

(y1y2−x1x2)=(1+30x1x2y1y2)).

2007 Bernstein–Lange:

10:8M for ADD, 6:2M for DBL.

2008 Hisil–Wong–Carter–Dawson:

just 8M for ADD.

2007 Edwards: new curve shape.

2007 Bernstein–Lange: generalize,

analyze speed, completeness.

y

x

OO

//

neutral = (0; 1)
•

P1 = (x1; y1)•����
P2 = (x2; y2)•fffff
P3 = (x3; y3)•[[[[[[

Example: x2 + y2 = 1− 30x2y2.

Sum of (x1; y1) and (x2; y2) is

((x1y2+y1x2)=(1−30x1x2y1y2),

(y1y2−x1x2)=(1+30x1x2y1y2)).

2007 Bernstein–Lange:

10:8M for ADD, 6:2M for DBL.

2008 Hisil–Wong–Carter–Dawson:

just 8M for ADD.

y2 = x3 − 0:4x+ 0:7

2007 Edwards: new curve shape.

2007 Bernstein–Lange: generalize,

analyze speed, completeness.

y

x

OO

//

neutral = (0; 1)
•

P1 = (x1; y1)•����
P2 = (x2; y2)•fffff
P3 = (x3; y3)•[[[[[[

Example: x2 + y2 = 1− 30x2y2.

Sum of (x1; y1) and (x2; y2) is

((x1y2+y1x2)=(1−30x1x2y1y2),

(y1y2−x1x2)=(1+30x1x2y1y2)).

2007 Bernstein–Lange:

10:8M for ADD, 6:2M for DBL.

2008 Hisil–Wong–Carter–Dawson:

just 8M for ADD.

y2 = x3 − 0:4x+ 0:7

2007 Edwards: new curve shape.

2007 Bernstein–Lange: generalize,

analyze speed, completeness.

y

x

OO

//

neutral = (0; 1)
•

P1 = (x1; y1)•����
P2 = (x2; y2)•fffff
P3 = (x3; y3)•[[[[[[

Example: x2 + y2 = 1− 30x2y2.

Sum of (x1; y1) and (x2; y2) is

((x1y2+y1x2)=(1−30x1x2y1y2),

(y1y2−x1x2)=(1+30x1x2y1y2)).

2007 Bernstein–Lange:

10:8M for ADD, 6:2M for DBL.

2008 Hisil–Wong–Carter–Dawson:

just 8M for ADD.

y2 = x3 − 0:4x+ 0:7

2007 Bernstein–Lange:

10:8M for ADD, 6:2M for DBL.

2008 Hisil–Wong–Carter–Dawson:

just 8M for ADD.

y2 = x3 − 0:4x+ 0:7

2007 Bernstein–Lange:

10:8M for ADD, 6:2M for DBL.

2008 Hisil–Wong–Carter–Dawson:

just 8M for ADD.

y2 = x3 − 0:4x+ 0:7

2007 Bernstein–Lange:

10:8M for ADD, 6:2M for DBL.

2008 Hisil–Wong–Carter–Dawson:

just 8M for ADD.

y2 = x3 − 0:4x+ 0:7

2007 Bernstein–Lange:

10:8M for ADD, 6:2M for DBL.

2008 Hisil–Wong–Carter–Dawson:

just 8M for ADD.

y2 = x3 − 0:4x+ 0:7

y2 = x3 − 0:4x+ 0:7

y2 = x3 − 0:4x+ 0:7 x2 + y2 = 1− 300x2y2

y2 = x3 − 0:4x+ 0:7 x2 + y2 = 1− 300x2y2

y2 = x3 − 0:4x+ 0:7 x2 + y2 = 1− 300x2y2

x2 + y2 = 1− 300x2y2

x2 + y2 = 1− 300x2y2

x2 + y2 = 1− 300x2y2

x2 + y2 = 1− 300x2y2

x2 + y2 = 1− 300x2y2

x2 + y2 = 1− 300x2y2 x2 = y4 − 1:9y2 + 1

x2 + y2 = 1− 300x2y2 x2 = y4 − 1:9y2 + 1

x2 + y2 = 1− 300x2y2 x2 = y4 − 1:9y2 + 1

x2 = y4 − 1:9y2 + 1

x2 = y4 − 1:9y2 + 1

x2 = y4 − 1:9y2 + 1

x2 = y4 − 1:9y2 + 1

x2 = y4 − 1:9y2 + 1

x2 = y4 − 1:9y2 + 1 x3 − y3 + 1 = 0:3xy

x2 = y4 − 1:9y2 + 1 x3 − y3 + 1 = 0:3xy

x2 = y4 − 1:9y2 + 1 x3 − y3 + 1 = 0:3xy

x3 − y3 + 1 = 0:3xy

x3 − y3 + 1 = 0:3xy

x3 − y3 + 1 = 0:3xy

x3 − y3 + 1 = 0:3xy

x3 − y3 + 1 = 0:3xy

x3 − y3 + 1 = 0:3xy

x3 − y3 + 1 = 0:3xy

x3 − y3 + 1 = 0:3xy

Faster Hessian arithmetic

2007 Hisil–Carter–Dawson:

7:8M for DBL.

Faster Hessian arithmetic

2007 Hisil–Carter–Dawson:

7:8M for DBL.

Faster Hessian arithmetic

2007 Hisil–Carter–Dawson:

7:8M for DBL.

Faster Hessian arithmetic

2007 Hisil–Carter–Dawson:

7:8M for DBL.

Faster Hessian arithmetic

2007 Hisil–Carter–Dawson:

7:8M for DBL.

2010 Hisil: 11M for ADD.

Faster Hessian arithmetic

2007 Hisil–Carter–Dawson:

7:8M for DBL.

2010 Hisil: 11M for ADD.

Hessian tied with Weierstrass for

DBL-DBL-DBL-DBL-DBL-ADD.

Need to zoom in closer:

analyze exact S=M, overhead

for checking for special cases,

extra DBL, extra ADD, etc.

Faster Hessian arithmetic

2007 Hisil–Carter–Dawson:

7:8M for DBL.

2010 Hisil: 11M for ADD.

Hessian tied with Weierstrass for

DBL-DBL-DBL-DBL-DBL-ADD.

Need to zoom in closer:

analyze exact S=M, overhead

for checking for special cases,

extra DBL, extra ADD, etc.

Or speed up Hessian more.

Faster Hessian arithmetic

2007 Hisil–Carter–Dawson:

7:8M for DBL.

2010 Hisil: 11M for ADD.

Hessian tied with Weierstrass for

DBL-DBL-DBL-DBL-DBL-ADD.

Need to zoom in closer:

analyze exact S=M, overhead

for checking for special cases,

extra DBL, extra ADD, etc.

Or speed up Hessian more.

New: 7:6M for DBL.

Faster Hessian arithmetic

2007 Hisil–Carter–Dawson:

7:8M for DBL.

2010 Hisil: 11M for ADD.

Hessian tied with Weierstrass for

DBL-DBL-DBL-DBL-DBL-ADD.

Need to zoom in closer:

analyze exact S=M, overhead

for checking for special cases,

extra DBL, extra ADD, etc.

Or speed up Hessian more.

New: 7:6M for DBL.

New (announced July 2009):

Generalize to more curves:

twisted Hessian curves

aX3 + Y 3 + Z3 = dXY Z

with a(27a− d3) 6= 0.

2007 7:8M DBL idea fails, but

2010 11M ADD generalizes,

new 7:6M DBL generalizes.

Faster Hessian arithmetic

2007 Hisil–Carter–Dawson:

7:8M for DBL.

2010 Hisil: 11M for ADD.

Hessian tied with Weierstrass for

DBL-DBL-DBL-DBL-DBL-ADD.

Need to zoom in closer:

analyze exact S=M, overhead

for checking for special cases,

extra DBL, extra ADD, etc.

Or speed up Hessian more.

New: 7:6M for DBL.

New (announced July 2009):

Generalize to more curves:

twisted Hessian curves

aX3 + Y 3 + Z3 = dXY Z

with a(27a− d3) 6= 0.

2007 7:8M DBL idea fails, but

2010 11M ADD generalizes,

new 7:6M DBL generalizes.

Faster Hessian arithmetic

2007 Hisil–Carter–Dawson:

7:8M for DBL.

2010 Hisil: 11M for ADD.

Hessian tied with Weierstrass for

DBL-DBL-DBL-DBL-DBL-ADD.

Need to zoom in closer:

analyze exact S=M, overhead

for checking for special cases,

extra DBL, extra ADD, etc.

Or speed up Hessian more.

New: 7:6M for DBL.

New (announced July 2009):

Generalize to more curves:

twisted Hessian curves

aX3 + Y 3 + Z3 = dXY Z

with a(27a− d3) 6= 0.

2007 7:8M DBL idea fails, but

2010 11M ADD generalizes,

new 7:6M DBL generalizes.

Faster Hessian arithmetic

2007 Hisil–Carter–Dawson:

7:8M for DBL.

2010 Hisil: 11M for ADD.

Hessian tied with Weierstrass for

DBL-DBL-DBL-DBL-DBL-ADD.

Need to zoom in closer:

analyze exact S=M, overhead

for checking for special cases,

extra DBL, extra ADD, etc.

Or speed up Hessian more.

New: 7:6M for DBL.

New (announced July 2009):

Generalize to more curves:

twisted Hessian curves

aX3 + Y 3 + Z3 = dXY Z

with a(27a− d3) 6= 0.

2007 7:8M DBL idea fails, but

2010 11M ADD generalizes,

new 7:6M DBL generalizes.

Faster Hessian arithmetic

2007 Hisil–Carter–Dawson:

7:8M for DBL.

2010 Hisil: 11M for ADD.

Hessian tied with Weierstrass for

DBL-DBL-DBL-DBL-DBL-ADD.

Need to zoom in closer:

analyze exact S=M, overhead

for checking for special cases,

extra DBL, extra ADD, etc.

Or speed up Hessian more.

New: 7:6M for DBL.

New (announced July 2009):

Generalize to more curves:

twisted Hessian curves

aX3 + Y 3 + Z3 = dXY Z

with a(27a− d3) 6= 0.

2007 7:8M DBL idea fails, but

2010 11M ADD generalizes,

new 7:6M DBL generalizes.

Rotate addition law

so that it also works for DBL;

complete if a is not a cube.

Eliminates special-case overhead,

helps stop side-channel attacks.

Faster Hessian arithmetic

2007 Hisil–Carter–Dawson:

7:8M for DBL.

2010 Hisil: 11M for ADD.

Hessian tied with Weierstrass for

DBL-DBL-DBL-DBL-DBL-ADD.

Need to zoom in closer:

analyze exact S=M, overhead

for checking for special cases,

extra DBL, extra ADD, etc.

Or speed up Hessian more.

New: 7:6M for DBL.

New (announced July 2009):

Generalize to more curves:

twisted Hessian curves

aX3 + Y 3 + Z3 = dXY Z

with a(27a− d3) 6= 0.

2007 7:8M DBL idea fails, but

2010 11M ADD generalizes,

new 7:6M DBL generalizes.

Rotate addition law

so that it also works for DBL;

complete if a is not a cube.

Eliminates special-case overhead,

helps stop side-channel attacks.

Triplings (assuming d 6= 0)

TPL is P 7→ 3P .

2007 Hisil–Carter–Dawson:

12:8M for Hessian TPL.

Generalizes to twisted Hessian.

Faster Hessian arithmetic

2007 Hisil–Carter–Dawson:

7:8M for DBL.

2010 Hisil: 11M for ADD.

Hessian tied with Weierstrass for

DBL-DBL-DBL-DBL-DBL-ADD.

Need to zoom in closer:

analyze exact S=M, overhead

for checking for special cases,

extra DBL, extra ADD, etc.

Or speed up Hessian more.

New: 7:6M for DBL.

New (announced July 2009):

Generalize to more curves:

twisted Hessian curves

aX3 + Y 3 + Z3 = dXY Z

with a(27a− d3) 6= 0.

2007 7:8M DBL idea fails, but

2010 11M ADD generalizes,

new 7:6M DBL generalizes.

Rotate addition law

so that it also works for DBL;

complete if a is not a cube.

Eliminates special-case overhead,

helps stop side-channel attacks.

Triplings (assuming d 6= 0)

TPL is P 7→ 3P .

2007 Hisil–Carter–Dawson:

12:8M for Hessian TPL.

Generalizes to twisted Hessian.

Faster Hessian arithmetic

2007 Hisil–Carter–Dawson:

7:8M for DBL.

2010 Hisil: 11M for ADD.

Hessian tied with Weierstrass for

DBL-DBL-DBL-DBL-DBL-ADD.

Need to zoom in closer:

analyze exact S=M, overhead

for checking for special cases,

extra DBL, extra ADD, etc.

Or speed up Hessian more.

New: 7:6M for DBL.

New (announced July 2009):

Generalize to more curves:

twisted Hessian curves

aX3 + Y 3 + Z3 = dXY Z

with a(27a− d3) 6= 0.

2007 7:8M DBL idea fails, but

2010 11M ADD generalizes,

new 7:6M DBL generalizes.

Rotate addition law

so that it also works for DBL;

complete if a is not a cube.

Eliminates special-case overhead,

helps stop side-channel attacks.

Triplings (assuming d 6= 0)

TPL is P 7→ 3P .

2007 Hisil–Carter–Dawson:

12:8M for Hessian TPL.

Generalizes to twisted Hessian.

New (announced July 2009):

Generalize to more curves:

twisted Hessian curves

aX3 + Y 3 + Z3 = dXY Z

with a(27a− d3) 6= 0.

2007 7:8M DBL idea fails, but

2010 11M ADD generalizes,

new 7:6M DBL generalizes.

Rotate addition law

so that it also works for DBL;

complete if a is not a cube.

Eliminates special-case overhead,

helps stop side-channel attacks.

Triplings (assuming d 6= 0)

TPL is P 7→ 3P .

2007 Hisil–Carter–Dawson:

12:8M for Hessian TPL.

Generalizes to twisted Hessian.

New (announced July 2009):

Generalize to more curves:

twisted Hessian curves

aX3 + Y 3 + Z3 = dXY Z

with a(27a− d3) 6= 0.

2007 7:8M DBL idea fails, but

2010 11M ADD generalizes,

new 7:6M DBL generalizes.

Rotate addition law

so that it also works for DBL;

complete if a is not a cube.

Eliminates special-case overhead,

helps stop side-channel attacks.

Triplings (assuming d 6= 0)

TPL is P 7→ 3P .

2007 Hisil–Carter–Dawson:

12:8M for Hessian TPL.

Generalizes to twisted Hessian.

2015 Kohel: 11:2M.

New (announced July 2009):

Generalize to more curves:

twisted Hessian curves

aX3 + Y 3 + Z3 = dXY Z

with a(27a− d3) 6= 0.

2007 7:8M DBL idea fails, but

2010 11M ADD generalizes,

new 7:6M DBL generalizes.

Rotate addition law

so that it also works for DBL;

complete if a is not a cube.

Eliminates special-case overhead,

helps stop side-channel attacks.

Triplings (assuming d 6= 0)

TPL is P 7→ 3P .

2007 Hisil–Carter–Dawson:

12:8M for Hessian TPL.

Generalizes to twisted Hessian.

2015 Kohel: 11:2M.

New: 10:8M assuming

field with fast primitive 3
√

1;

e.g., Fq[!]=(!2 + ! + 1), or

Fp with 7p = 2298 + 2149 + 1.

(More history in small char.

See paper for details.)

New (announced July 2009):

Generalize to more curves:

twisted Hessian curves

aX3 + Y 3 + Z3 = dXY Z

with a(27a− d3) 6= 0.

2007 7:8M DBL idea fails, but

2010 11M ADD generalizes,

new 7:6M DBL generalizes.

Rotate addition law

so that it also works for DBL;

complete if a is not a cube.

Eliminates special-case overhead,

helps stop side-channel attacks.

Triplings (assuming d 6= 0)

TPL is P 7→ 3P .

2007 Hisil–Carter–Dawson:

12:8M for Hessian TPL.

Generalizes to twisted Hessian.

2015 Kohel: 11:2M.

New: 10:8M assuming

field with fast primitive 3
√

1;

e.g., Fq[!]=(!2 + ! + 1), or

Fp with 7p = 2298 + 2149 + 1.

(More history in small char.

See paper for details.)

If aX3 + Y 3 + Z3 = dXY Z

then V W (V + dU + aW) = U3

where

U = −XY Z, V = Y 3, W = X3.

If V W (V + dU + aW) = U3

then aX3
3 + Y 3

3 + Z3
3 = dX3Y3Z3

where Q = dU, R = aW ,

S = −(V +Q+ R),

dX3 = R3 + S3 + V 3 − 3RSV ,

Y3 = RS2 + SV 2 + V R2 − 3RSV ,

Z3 = RV 2 +SR2 + V S2− 3RSV .

Compose these 3-isogenies:

(X3 : Y3 : Z3) = 3(X : Y : Z).

New (announced July 2009):

Generalize to more curves:

twisted Hessian curves

aX3 + Y 3 + Z3 = dXY Z

with a(27a− d3) 6= 0.

2007 7:8M DBL idea fails, but

2010 11M ADD generalizes,

new 7:6M DBL generalizes.

Rotate addition law

so that it also works for DBL;

complete if a is not a cube.

Eliminates special-case overhead,

helps stop side-channel attacks.

Triplings (assuming d 6= 0)

TPL is P 7→ 3P .

2007 Hisil–Carter–Dawson:

12:8M for Hessian TPL.

Generalizes to twisted Hessian.

2015 Kohel: 11:2M.

New: 10:8M assuming

field with fast primitive 3
√

1;

e.g., Fq[!]=(!2 + ! + 1), or

Fp with 7p = 2298 + 2149 + 1.

(More history in small char.

See paper for details.)

If aX3 + Y 3 + Z3 = dXY Z

then V W (V + dU + aW) = U3

where

U = −XY Z, V = Y 3, W = X3.

If V W (V + dU + aW) = U3

then aX3
3 + Y 3

3 + Z3
3 = dX3Y3Z3

where Q = dU, R = aW ,

S = −(V +Q+ R),

dX3 = R3 + S3 + V 3 − 3RSV ,

Y3 = RS2 + SV 2 + V R2 − 3RSV ,

Z3 = RV 2 +SR2 + V S2− 3RSV .

Compose these 3-isogenies:

(X3 : Y3 : Z3) = 3(X : Y : Z).

New (announced July 2009):

Generalize to more curves:

twisted Hessian curves

aX3 + Y 3 + Z3 = dXY Z

with a(27a− d3) 6= 0.

2007 7:8M DBL idea fails, but

2010 11M ADD generalizes,

new 7:6M DBL generalizes.

Rotate addition law

so that it also works for DBL;

complete if a is not a cube.

Eliminates special-case overhead,

helps stop side-channel attacks.

Triplings (assuming d 6= 0)

TPL is P 7→ 3P .

2007 Hisil–Carter–Dawson:

12:8M for Hessian TPL.

Generalizes to twisted Hessian.

2015 Kohel: 11:2M.

New: 10:8M assuming

field with fast primitive 3
√

1;

e.g., Fq[!]=(!2 + ! + 1), or

Fp with 7p = 2298 + 2149 + 1.

(More history in small char.

See paper for details.)

If aX3 + Y 3 + Z3 = dXY Z

then V W (V + dU + aW) = U3

where

U = −XY Z, V = Y 3, W = X3.

If V W (V + dU + aW) = U3

then aX3
3 + Y 3

3 + Z3
3 = dX3Y3Z3

where Q = dU, R = aW ,

S = −(V +Q+ R),

dX3 = R3 + S3 + V 3 − 3RSV ,

Y3 = RS2 + SV 2 + V R2 − 3RSV ,

Z3 = RV 2 +SR2 + V S2− 3RSV .

Compose these 3-isogenies:

(X3 : Y3 : Z3) = 3(X : Y : Z).

Triplings (assuming d 6= 0)

TPL is P 7→ 3P .

2007 Hisil–Carter–Dawson:

12:8M for Hessian TPL.

Generalizes to twisted Hessian.

2015 Kohel: 11:2M.

New: 10:8M assuming

field with fast primitive 3
√

1;

e.g., Fq[!]=(!2 + ! + 1), or

Fp with 7p = 2298 + 2149 + 1.

(More history in small char.

See paper for details.)

If aX3 + Y 3 + Z3 = dXY Z

then V W (V + dU + aW) = U3

where

U = −XY Z, V = Y 3, W = X3.

If V W (V + dU + aW) = U3

then aX3
3 + Y 3

3 + Z3
3 = dX3Y3Z3

where Q = dU, R = aW ,

S = −(V +Q+ R),

dX3 = R3 + S3 + V 3 − 3RSV ,

Y3 = RS2 + SV 2 + V R2 − 3RSV ,

Z3 = RV 2 +SR2 + V S2− 3RSV .

Compose these 3-isogenies:

(X3 : Y3 : Z3) = 3(X : Y : Z).

Triplings (assuming d 6= 0)

TPL is P 7→ 3P .

2007 Hisil–Carter–Dawson:

12:8M for Hessian TPL.

Generalizes to twisted Hessian.

2015 Kohel: 11:2M.

New: 10:8M assuming

field with fast primitive 3
√

1;

e.g., Fq[!]=(!2 + ! + 1), or

Fp with 7p = 2298 + 2149 + 1.

(More history in small char.

See paper for details.)

If aX3 + Y 3 + Z3 = dXY Z

then V W (V + dU + aW) = U3

where

U = −XY Z, V = Y 3, W = X3.

If V W (V + dU + aW) = U3

then aX3
3 + Y 3

3 + Z3
3 = dX3Y3Z3

where Q = dU, R = aW ,

S = −(V +Q+ R),

dX3 = R3 + S3 + V 3 − 3RSV ,

Y3 = RS2 + SV 2 + V R2 − 3RSV ,

Z3 = RV 2 +SR2 + V S2− 3RSV .

Compose these 3-isogenies:

(X3 : Y3 : Z3) = 3(X : Y : Z).

To quickly triple (X : Y : Z):

Three cubings for R;S; V .

For three choices of constants

(¸; ˛; ‚) compute

(¸R + ˛S + ‚V) ·
(¸S + ˛V + ‚R) ·
(¸V + ˛R + ‚S)

= ¸˛‚dX3

+ (¸˛2+˛‚2+‚¸2)Y3

+ (˛¸2+‚˛2+¸‚2)Z3

+ (¸+˛+‚)3RSV .

Also use a(R+S+V)3 = d3RSV .

Solve for dX3; Y3; Z3.

Triplings (assuming d 6= 0)

TPL is P 7→ 3P .

2007 Hisil–Carter–Dawson:

12:8M for Hessian TPL.

Generalizes to twisted Hessian.

2015 Kohel: 11:2M.

New: 10:8M assuming

field with fast primitive 3
√

1;

e.g., Fq[!]=(!2 + ! + 1), or

Fp with 7p = 2298 + 2149 + 1.

(More history in small char.

See paper for details.)

If aX3 + Y 3 + Z3 = dXY Z

then V W (V + dU + aW) = U3

where

U = −XY Z, V = Y 3, W = X3.

If V W (V + dU + aW) = U3

then aX3
3 + Y 3

3 + Z3
3 = dX3Y3Z3

where Q = dU, R = aW ,

S = −(V +Q+ R),

dX3 = R3 + S3 + V 3 − 3RSV ,

Y3 = RS2 + SV 2 + V R2 − 3RSV ,

Z3 = RV 2 +SR2 + V S2− 3RSV .

Compose these 3-isogenies:

(X3 : Y3 : Z3) = 3(X : Y : Z).

To quickly triple (X : Y : Z):

Three cubings for R;S; V .

For three choices of constants

(¸; ˛; ‚) compute

(¸R + ˛S + ‚V) ·
(¸S + ˛V + ‚R) ·
(¸V + ˛R + ‚S)

= ¸˛‚dX3

+ (¸˛2+˛‚2+‚¸2)Y3

+ (˛¸2+‚˛2+¸‚2)Z3

+ (¸+˛+‚)3RSV .

Also use a(R+S+V)3 = d3RSV .

Solve for dX3; Y3; Z3.

Triplings (assuming d 6= 0)

TPL is P 7→ 3P .

2007 Hisil–Carter–Dawson:

12:8M for Hessian TPL.

Generalizes to twisted Hessian.

2015 Kohel: 11:2M.

New: 10:8M assuming

field with fast primitive 3
√

1;

e.g., Fq[!]=(!2 + ! + 1), or

Fp with 7p = 2298 + 2149 + 1.

(More history in small char.

See paper for details.)

If aX3 + Y 3 + Z3 = dXY Z

then V W (V + dU + aW) = U3

where

U = −XY Z, V = Y 3, W = X3.

If V W (V + dU + aW) = U3

then aX3
3 + Y 3

3 + Z3
3 = dX3Y3Z3

where Q = dU, R = aW ,

S = −(V +Q+ R),

dX3 = R3 + S3 + V 3 − 3RSV ,

Y3 = RS2 + SV 2 + V R2 − 3RSV ,

Z3 = RV 2 +SR2 + V S2− 3RSV .

Compose these 3-isogenies:

(X3 : Y3 : Z3) = 3(X : Y : Z).

To quickly triple (X : Y : Z):

Three cubings for R;S; V .

For three choices of constants

(¸; ˛; ‚) compute

(¸R + ˛S + ‚V) ·
(¸S + ˛V + ‚R) ·
(¸V + ˛R + ‚S)

= ¸˛‚dX3

+ (¸˛2+˛‚2+‚¸2)Y3

+ (˛¸2+‚˛2+¸‚2)Z3

+ (¸+˛+‚)3RSV .

Also use a(R+S+V)3 = d3RSV .

Solve for dX3; Y3; Z3.

If aX3 + Y 3 + Z3 = dXY Z

then V W (V + dU + aW) = U3

where

U = −XY Z, V = Y 3, W = X3.

If V W (V + dU + aW) = U3

then aX3
3 + Y 3

3 + Z3
3 = dX3Y3Z3

where Q = dU, R = aW ,

S = −(V +Q+ R),

dX3 = R3 + S3 + V 3 − 3RSV ,

Y3 = RS2 + SV 2 + V R2 − 3RSV ,

Z3 = RV 2 +SR2 + V S2− 3RSV .

Compose these 3-isogenies:

(X3 : Y3 : Z3) = 3(X : Y : Z).

To quickly triple (X : Y : Z):

Three cubings for R;S; V .

For three choices of constants

(¸; ˛; ‚) compute

(¸R + ˛S + ‚V) ·
(¸S + ˛V + ‚R) ·
(¸V + ˛R + ‚S)

= ¸˛‚dX3

+ (¸˛2+˛‚2+‚¸2)Y3

+ (˛¸2+‚˛2+¸‚2)Z3

+ (¸+˛+‚)3RSV .

Also use a(R+S+V)3 = d3RSV .

Solve for dX3; Y3; Z3.

If aX3 + Y 3 + Z3 = dXY Z

then V W (V + dU + aW) = U3

where

U = −XY Z, V = Y 3, W = X3.

If V W (V + dU + aW) = U3

then aX3
3 + Y 3

3 + Z3
3 = dX3Y3Z3

where Q = dU, R = aW ,

S = −(V +Q+ R),

dX3 = R3 + S3 + V 3 − 3RSV ,

Y3 = RS2 + SV 2 + V R2 − 3RSV ,

Z3 = RV 2 +SR2 + V S2− 3RSV .

Compose these 3-isogenies:

(X3 : Y3 : Z3) = 3(X : Y : Z).

To quickly triple (X : Y : Z):

Three cubings for R;S; V .

For three choices of constants

(¸; ˛; ‚) compute

(¸R + ˛S + ‚V) ·
(¸S + ˛V + ‚R) ·
(¸V + ˛R + ‚S)

= ¸˛‚dX3

+ (¸˛2+˛‚2+‚¸2)Y3

+ (˛¸2+‚˛2+¸‚2)Z3

+ (¸+˛+‚)3RSV .

Also use a(R+S+V)3 = d3RSV .

Solve for dX3; Y3; Z3.

2015 Kohel’s 11:2M

(4 cubings + 4 mults)

introduced this TPL idea with

(¸; ˛; ‚) = (1; 1; 1),

(¸; ˛; ‚) = (1;−1; 0),

(¸; ˛; ‚) = (1; 1; 0).

If aX3 + Y 3 + Z3 = dXY Z

then V W (V + dU + aW) = U3

where

U = −XY Z, V = Y 3, W = X3.

If V W (V + dU + aW) = U3

then aX3
3 + Y 3

3 + Z3
3 = dX3Y3Z3

where Q = dU, R = aW ,

S = −(V +Q+ R),

dX3 = R3 + S3 + V 3 − 3RSV ,

Y3 = RS2 + SV 2 + V R2 − 3RSV ,

Z3 = RV 2 +SR2 + V S2− 3RSV .

Compose these 3-isogenies:

(X3 : Y3 : Z3) = 3(X : Y : Z).

To quickly triple (X : Y : Z):

Three cubings for R;S; V .

For three choices of constants

(¸; ˛; ‚) compute

(¸R + ˛S + ‚V) ·
(¸S + ˛V + ‚R) ·
(¸V + ˛R + ‚S)

= ¸˛‚dX3

+ (¸˛2+˛‚2+‚¸2)Y3

+ (˛¸2+‚˛2+¸‚2)Z3

+ (¸+˛+‚)3RSV .

Also use a(R+S+V)3 = d3RSV .

Solve for dX3; Y3; Z3.

2015 Kohel’s 11:2M

(4 cubings + 4 mults)

introduced this TPL idea with

(¸; ˛; ‚) = (1; 1; 1),

(¸; ˛; ‚) = (1;−1; 0),

(¸; ˛; ‚) = (1; 1; 0).

If aX3 + Y 3 + Z3 = dXY Z

then V W (V + dU + aW) = U3

where

U = −XY Z, V = Y 3, W = X3.

If V W (V + dU + aW) = U3

then aX3
3 + Y 3

3 + Z3
3 = dX3Y3Z3

where Q = dU, R = aW ,

S = −(V +Q+ R),

dX3 = R3 + S3 + V 3 − 3RSV ,

Y3 = RS2 + SV 2 + V R2 − 3RSV ,

Z3 = RV 2 +SR2 + V S2− 3RSV .

Compose these 3-isogenies:

(X3 : Y3 : Z3) = 3(X : Y : Z).

To quickly triple (X : Y : Z):

Three cubings for R;S; V .

For three choices of constants

(¸; ˛; ‚) compute

(¸R + ˛S + ‚V) ·
(¸S + ˛V + ‚R) ·
(¸V + ˛R + ‚S)

= ¸˛‚dX3

+ (¸˛2+˛‚2+‚¸2)Y3

+ (˛¸2+‚˛2+¸‚2)Z3

+ (¸+˛+‚)3RSV .

Also use a(R+S+V)3 = d3RSV .

Solve for dX3; Y3; Z3.

2015 Kohel’s 11:2M

(4 cubings + 4 mults)

introduced this TPL idea with

(¸; ˛; ‚) = (1; 1; 1),

(¸; ˛; ‚) = (1;−1; 0),

(¸; ˛; ‚) = (1; 1; 0).

To quickly triple (X : Y : Z):

Three cubings for R;S; V .

For three choices of constants

(¸; ˛; ‚) compute

(¸R + ˛S + ‚V) ·
(¸S + ˛V + ‚R) ·
(¸V + ˛R + ‚S)

= ¸˛‚dX3

+ (¸˛2+˛‚2+‚¸2)Y3

+ (˛¸2+‚˛2+¸‚2)Z3

+ (¸+˛+‚)3RSV .

Also use a(R+S+V)3 = d3RSV .

Solve for dX3; Y3; Z3.

2015 Kohel’s 11:2M

(4 cubings + 4 mults)

introduced this TPL idea with

(¸; ˛; ‚) = (1; 1; 1),

(¸; ˛; ‚) = (1;−1; 0),

(¸; ˛; ‚) = (1; 1; 0).

To quickly triple (X : Y : Z):

Three cubings for R;S; V .

For three choices of constants

(¸; ˛; ‚) compute

(¸R + ˛S + ‚V) ·
(¸S + ˛V + ‚R) ·
(¸V + ˛R + ‚S)

= ¸˛‚dX3

+ (¸˛2+˛‚2+‚¸2)Y3

+ (˛¸2+‚˛2+¸‚2)Z3

+ (¸+˛+‚)3RSV .

Also use a(R+S+V)3 = d3RSV .

Solve for dX3; Y3; Z3.

2015 Kohel’s 11:2M

(4 cubings + 4 mults)

introduced this TPL idea with

(¸; ˛; ‚) = (1; 1; 1),

(¸; ˛; ‚) = (1;−1; 0),

(¸; ˛; ‚) = (1; 1; 0).

New 10:8M (6 cubings)

makes faster choices

assuming fast primitive ! = 3
√

1:

(¸; ˛; ‚) = (1; 1; 1),

(¸; ˛; ‚) = (1; !; !2),

(¸; ˛; ‚) = (1; !2; !).

To quickly triple (X : Y : Z):

Three cubings for R;S; V .

For three choices of constants

(¸; ˛; ‚) compute

(¸R + ˛S + ‚V) ·
(¸S + ˛V + ‚R) ·
(¸V + ˛R + ‚S)

= ¸˛‚dX3

+ (¸˛2+˛‚2+‚¸2)Y3

+ (˛¸2+‚˛2+¸‚2)Z3

+ (¸+˛+‚)3RSV .

Also use a(R+S+V)3 = d3RSV .

Solve for dX3; Y3; Z3.

2015 Kohel’s 11:2M

(4 cubings + 4 mults)

introduced this TPL idea with

(¸; ˛; ‚) = (1; 1; 1),

(¸; ˛; ‚) = (1;−1; 0),

(¸; ˛; ‚) = (1; 1; 0).

New 10:8M (6 cubings)

makes faster choices

assuming fast primitive ! = 3
√

1:

(¸; ˛; ‚) = (1; 1; 1),

(¸; ˛; ‚) = (1; !; !2),

(¸; ˛; ‚) = (1; !2; !).

Are triplings useful?

2005 Dimitrov–Imbert–Mishra

“double-base chains”: e.g.,

compute 314159P as

21532P + 21132P + 2831P

+ 2431P − 2030P .

2TPL, 15DBL, 4ADD.

2006 Doche–Imbert

generalized double-base chains:

e.g., compute 314159P as

212333P−27335P−24317P−2030P

after precomputing 3P; 5P; 7P .

3TPL, 13DBL, 6ADD.

To quickly triple (X : Y : Z):

Three cubings for R;S; V .

For three choices of constants

(¸; ˛; ‚) compute

(¸R + ˛S + ‚V) ·
(¸S + ˛V + ‚R) ·
(¸V + ˛R + ‚S)

= ¸˛‚dX3

+ (¸˛2+˛‚2+‚¸2)Y3

+ (˛¸2+‚˛2+¸‚2)Z3

+ (¸+˛+‚)3RSV .

Also use a(R+S+V)3 = d3RSV .

Solve for dX3; Y3; Z3.

2015 Kohel’s 11:2M

(4 cubings + 4 mults)

introduced this TPL idea with

(¸; ˛; ‚) = (1; 1; 1),

(¸; ˛; ‚) = (1;−1; 0),

(¸; ˛; ‚) = (1; 1; 0).

New 10:8M (6 cubings)

makes faster choices

assuming fast primitive ! = 3
√

1:

(¸; ˛; ‚) = (1; 1; 1),

(¸; ˛; ‚) = (1; !; !2),

(¸; ˛; ‚) = (1; !2; !).

Are triplings useful?

2005 Dimitrov–Imbert–Mishra

“double-base chains”: e.g.,

compute 314159P as

21532P + 21132P + 2831P

+ 2431P − 2030P .

2TPL, 15DBL, 4ADD.

2006 Doche–Imbert

generalized double-base chains:

e.g., compute 314159P as

212333P−27335P−24317P−2030P

after precomputing 3P; 5P; 7P .

3TPL, 13DBL, 6ADD.

To quickly triple (X : Y : Z):

Three cubings for R;S; V .

For three choices of constants

(¸; ˛; ‚) compute

(¸R + ˛S + ‚V) ·
(¸S + ˛V + ‚R) ·
(¸V + ˛R + ‚S)

= ¸˛‚dX3

+ (¸˛2+˛‚2+‚¸2)Y3

+ (˛¸2+‚˛2+¸‚2)Z3

+ (¸+˛+‚)3RSV .

Also use a(R+S+V)3 = d3RSV .

Solve for dX3; Y3; Z3.

2015 Kohel’s 11:2M

(4 cubings + 4 mults)

introduced this TPL idea with

(¸; ˛; ‚) = (1; 1; 1),

(¸; ˛; ‚) = (1;−1; 0),

(¸; ˛; ‚) = (1; 1; 0).

New 10:8M (6 cubings)

makes faster choices

assuming fast primitive ! = 3
√

1:

(¸; ˛; ‚) = (1; 1; 1),

(¸; ˛; ‚) = (1; !; !2),

(¸; ˛; ‚) = (1; !2; !).

Are triplings useful?

2005 Dimitrov–Imbert–Mishra

“double-base chains”: e.g.,

compute 314159P as

21532P + 21132P + 2831P

+ 2431P − 2030P .

2TPL, 15DBL, 4ADD.

2006 Doche–Imbert

generalized double-base chains:

e.g., compute 314159P as

212333P−27335P−24317P−2030P

after precomputing 3P; 5P; 7P .

3TPL, 13DBL, 6ADD.

2015 Kohel’s 11:2M

(4 cubings + 4 mults)

introduced this TPL idea with

(¸; ˛; ‚) = (1; 1; 1),

(¸; ˛; ‚) = (1;−1; 0),

(¸; ˛; ‚) = (1; 1; 0).

New 10:8M (6 cubings)

makes faster choices

assuming fast primitive ! = 3
√

1:

(¸; ˛; ‚) = (1; 1; 1),

(¸; ˛; ‚) = (1; !; !2),

(¸; ˛; ‚) = (1; !2; !).

Are triplings useful?

2005 Dimitrov–Imbert–Mishra

“double-base chains”: e.g.,

compute 314159P as

21532P + 21132P + 2831P

+ 2431P − 2030P .

2TPL, 15DBL, 4ADD.

2006 Doche–Imbert

generalized double-base chains:

e.g., compute 314159P as

212333P−27335P−24317P−2030P

after precomputing 3P; 5P; 7P .

3TPL, 13DBL, 6ADD.

2015 Kohel’s 11:2M

(4 cubings + 4 mults)

introduced this TPL idea with

(¸; ˛; ‚) = (1; 1; 1),

(¸; ˛; ‚) = (1;−1; 0),

(¸; ˛; ‚) = (1; 1; 0).

New 10:8M (6 cubings)

makes faster choices

assuming fast primitive ! = 3
√

1:

(¸; ˛; ‚) = (1; 1; 1),

(¸; ˛; ‚) = (1; !; !2),

(¸; ˛; ‚) = (1; !2; !).

Are triplings useful?

2005 Dimitrov–Imbert–Mishra

“double-base chains”: e.g.,

compute 314159P as

21532P + 21132P + 2831P

+ 2431P − 2030P .

2TPL, 15DBL, 4ADD.

2006 Doche–Imbert

generalized double-base chains:

e.g., compute 314159P as

212333P−27335P−24317P−2030P

after precomputing 3P; 5P; 7P .

3TPL, 13DBL, 6ADD.

Not good for constant time.

Good for signature verification,

factorization, math, etc.

Also need time to compute chain.

Good for scalars used many times.

2015 Kohel’s 11:2M

(4 cubings + 4 mults)

introduced this TPL idea with

(¸; ˛; ‚) = (1; 1; 1),

(¸; ˛; ‚) = (1;−1; 0),

(¸; ˛; ‚) = (1; 1; 0).

New 10:8M (6 cubings)

makes faster choices

assuming fast primitive ! = 3
√

1:

(¸; ˛; ‚) = (1; 1; 1),

(¸; ˛; ‚) = (1; !; !2),

(¸; ˛; ‚) = (1; !2; !).

Are triplings useful?

2005 Dimitrov–Imbert–Mishra

“double-base chains”: e.g.,

compute 314159P as

21532P + 21132P + 2831P

+ 2431P − 2030P .

2TPL, 15DBL, 4ADD.

2006 Doche–Imbert

generalized double-base chains:

e.g., compute 314159P as

212333P−27335P−24317P−2030P

after precomputing 3P; 5P; 7P .

3TPL, 13DBL, 6ADD.

Not good for constant time.

Good for signature verification,

factorization, math, etc.

Also need time to compute chain.

Good for scalars used many times.

2015 Kohel’s 11:2M

(4 cubings + 4 mults)

introduced this TPL idea with

(¸; ˛; ‚) = (1; 1; 1),

(¸; ˛; ‚) = (1;−1; 0),

(¸; ˛; ‚) = (1; 1; 0).

New 10:8M (6 cubings)

makes faster choices

assuming fast primitive ! = 3
√

1:

(¸; ˛; ‚) = (1; 1; 1),

(¸; ˛; ‚) = (1; !; !2),

(¸; ˛; ‚) = (1; !2; !).

Are triplings useful?

2005 Dimitrov–Imbert–Mishra

“double-base chains”: e.g.,

compute 314159P as

21532P + 21132P + 2831P

+ 2431P − 2030P .

2TPL, 15DBL, 4ADD.

2006 Doche–Imbert

generalized double-base chains:

e.g., compute 314159P as

212333P−27335P−24317P−2030P

after precomputing 3P; 5P; 7P .

3TPL, 13DBL, 6ADD.

Not good for constant time.

Good for signature verification,

factorization, math, etc.

Also need time to compute chain.

Good for scalars used many times.

Are triplings useful?

2005 Dimitrov–Imbert–Mishra

“double-base chains”: e.g.,

compute 314159P as

21532P + 21132P + 2831P

+ 2431P − 2030P .

2TPL, 15DBL, 4ADD.

2006 Doche–Imbert

generalized double-base chains:

e.g., compute 314159P as

212333P−27335P−24317P−2030P

after precomputing 3P; 5P; 7P .

3TPL, 13DBL, 6ADD.

Not good for constant time.

Good for signature verification,

factorization, math, etc.

Also need time to compute chain.

Good for scalars used many times.

Are triplings useful?

2005 Dimitrov–Imbert–Mishra

“double-base chains”: e.g.,

compute 314159P as

21532P + 21132P + 2831P

+ 2431P − 2030P .

2TPL, 15DBL, 4ADD.

2006 Doche–Imbert

generalized double-base chains:

e.g., compute 314159P as

212333P−27335P−24317P−2030P

after precomputing 3P; 5P; 7P .

3TPL, 13DBL, 6ADD.

Not good for constant time.

Good for signature verification,

factorization, math, etc.

Also need time to compute chain.

Good for scalars used many times.

Analysis+optimization from 2007

Bernstein–Birkner–Lange–Peters:

Double-base chains speed up

Weierstrass curves slightly:

9:29M/bit for 256-bit scalars.

More savings for, e.g., Hessian:

9:65M/bit. Still not competitive.

Are triplings useful?

2005 Dimitrov–Imbert–Mishra

“double-base chains”: e.g.,

compute 314159P as

21532P + 21132P + 2831P

+ 2431P − 2030P .

2TPL, 15DBL, 4ADD.

2006 Doche–Imbert

generalized double-base chains:

e.g., compute 314159P as

212333P−27335P−24317P−2030P

after precomputing 3P; 5P; 7P .

3TPL, 13DBL, 6ADD.

Not good for constant time.

Good for signature verification,

factorization, math, etc.

Also need time to compute chain.

Good for scalars used many times.

Analysis+optimization from 2007

Bernstein–Birkner–Lange–Peters:

Double-base chains speed up

Weierstrass curves slightly:

9:29M/bit for 256-bit scalars.

More savings for, e.g., Hessian:

9:65M/bit. Still not competitive.

Revisit conclusions

using latest Hessian formulas,

latest double-base techniques.

Are triplings useful?

2005 Dimitrov–Imbert–Mishra

“double-base chains”: e.g.,

compute 314159P as

21532P + 21132P + 2831P

+ 2431P − 2030P .

2TPL, 15DBL, 4ADD.

2006 Doche–Imbert

generalized double-base chains:

e.g., compute 314159P as

212333P−27335P−24317P−2030P

after precomputing 3P; 5P; 7P .

3TPL, 13DBL, 6ADD.

Not good for constant time.

Good for signature verification,

factorization, math, etc.

Also need time to compute chain.

Good for scalars used many times.

Analysis+optimization from 2007

Bernstein–Birkner–Lange–Peters:

Double-base chains speed up

Weierstrass curves slightly:

9:29M/bit for 256-bit scalars.

More savings for, e.g., Hessian:

9:65M/bit. Still not competitive.

Revisit conclusions

using latest Hessian formulas,

latest double-base techniques.

Are triplings useful?

2005 Dimitrov–Imbert–Mishra

“double-base chains”: e.g.,

compute 314159P as

21532P + 21132P + 2831P

+ 2431P − 2030P .

2TPL, 15DBL, 4ADD.

2006 Doche–Imbert

generalized double-base chains:

e.g., compute 314159P as

212333P−27335P−24317P−2030P

after precomputing 3P; 5P; 7P .

3TPL, 13DBL, 6ADD.

Not good for constant time.

Good for signature verification,

factorization, math, etc.

Also need time to compute chain.

Good for scalars used many times.

Analysis+optimization from 2007

Bernstein–Birkner–Lange–Peters:

Double-base chains speed up

Weierstrass curves slightly:

9:29M/bit for 256-bit scalars.

More savings for, e.g., Hessian:

9:65M/bit. Still not competitive.

Revisit conclusions

using latest Hessian formulas,

latest double-base techniques.

Not good for constant time.

Good for signature verification,

factorization, math, etc.

Also need time to compute chain.

Good for scalars used many times.

Analysis+optimization from 2007

Bernstein–Birkner–Lange–Peters:

Double-base chains speed up

Weierstrass curves slightly:

9:29M/bit for 256-bit scalars.

More savings for, e.g., Hessian:

9:65M/bit. Still not competitive.

Revisit conclusions

using latest Hessian formulas,

latest double-base techniques.

Not good for constant time.

Good for signature verification,

factorization, math, etc.

Also need time to compute chain.

Good for scalars used many times.

Analysis+optimization from 2007

Bernstein–Birkner–Lange–Peters:

Double-base chains speed up

Weierstrass curves slightly:

9:29M/bit for 256-bit scalars.

More savings for, e.g., Hessian:

9:65M/bit. Still not competitive.

Revisit conclusions

using latest Hessian formulas,

latest double-base techniques.

New: 8:77M/bit for 256 bits.

Not good for constant time.

Good for signature verification,

factorization, math, etc.

Also need time to compute chain.

Good for scalars used many times.

Analysis+optimization from 2007

Bernstein–Birkner–Lange–Peters:

Double-base chains speed up

Weierstrass curves slightly:

9:29M/bit for 256-bit scalars.

More savings for, e.g., Hessian:

9:65M/bit. Still not competitive.

Revisit conclusions

using latest Hessian formulas,

latest double-base techniques.

New: 8:77M/bit for 256 bits.

Comparison to Weierstrass for

1-bit, 2-bit, : : : , 64-bit scalars:

-50

 0

 50

 100

 0 50 100 150 200 250 300 350 400 450 500 550 600 650

M
u

lt
ip

lic
a

ti
o
n

s
 s

a
v
e

d

Multiplications using the new formulas

Uses 2008 Doche–Habsieger

“tree search” and some new

improvements: e.g., account for

costs of ADD, DBL, TPL.

Not good for constant time.

Good for signature verification,

factorization, math, etc.

Also need time to compute chain.

Good for scalars used many times.

Analysis+optimization from 2007

Bernstein–Birkner–Lange–Peters:

Double-base chains speed up

Weierstrass curves slightly:

9:29M/bit for 256-bit scalars.

More savings for, e.g., Hessian:

9:65M/bit. Still not competitive.

Revisit conclusions

using latest Hessian formulas,

latest double-base techniques.

New: 8:77M/bit for 256 bits.

Comparison to Weierstrass for

1-bit, 2-bit, : : : , 64-bit scalars:

-50

 0

 50

 100

 0 50 100 150 200 250 300 350 400 450 500 550 600 650

M
u

lt
ip

lic
a

ti
o
n

s
 s

a
v
e

d

Multiplications using the new formulas

Uses 2008 Doche–Habsieger

“tree search” and some new

improvements: e.g., account for

costs of ADD, DBL, TPL.

Summary:

Twisted Hessian curves

solidly beat Weierstrass.

Chuengsatiansup talk tomorrow:

even better double-base chains

from shortest paths in DAG—

and also new Edwards speeds!

Not good for constant time.

Good for signature verification,

factorization, math, etc.

Also need time to compute chain.

Good for scalars used many times.

Analysis+optimization from 2007

Bernstein–Birkner–Lange–Peters:

Double-base chains speed up

Weierstrass curves slightly:

9:29M/bit for 256-bit scalars.

More savings for, e.g., Hessian:

9:65M/bit. Still not competitive.

Revisit conclusions

using latest Hessian formulas,

latest double-base techniques.

New: 8:77M/bit for 256 bits.

Comparison to Weierstrass for

1-bit, 2-bit, : : : , 64-bit scalars:

-50

 0

 50

 100

 0 50 100 150 200 250 300 350 400 450 500 550 600 650

M
u

lt
ip

lic
a

ti
o
n

s
 s

a
v
e

d

Multiplications using the new formulas

Uses 2008 Doche–Habsieger

“tree search” and some new

improvements: e.g., account for

costs of ADD, DBL, TPL.

Summary:

Twisted Hessian curves

solidly beat Weierstrass.

Chuengsatiansup talk tomorrow:

even better double-base chains

from shortest paths in DAG—

and also new Edwards speeds!

Not good for constant time.

Good for signature verification,

factorization, math, etc.

Also need time to compute chain.

Good for scalars used many times.

Analysis+optimization from 2007

Bernstein–Birkner–Lange–Peters:

Double-base chains speed up

Weierstrass curves slightly:

9:29M/bit for 256-bit scalars.

More savings for, e.g., Hessian:

9:65M/bit. Still not competitive.

Revisit conclusions

using latest Hessian formulas,

latest double-base techniques.

New: 8:77M/bit for 256 bits.

Comparison to Weierstrass for

1-bit, 2-bit, : : : , 64-bit scalars:

-50

 0

 50

 100

 0 50 100 150 200 250 300 350 400 450 500 550 600 650

M
u

lt
ip

lic
a

ti
o
n

s
 s

a
v
e

d

Multiplications using the new formulas

Uses 2008 Doche–Habsieger

“tree search” and some new

improvements: e.g., account for

costs of ADD, DBL, TPL.

Summary:

Twisted Hessian curves

solidly beat Weierstrass.

Chuengsatiansup talk tomorrow:

even better double-base chains

from shortest paths in DAG—

and also new Edwards speeds!

Revisit conclusions

using latest Hessian formulas,

latest double-base techniques.

New: 8:77M/bit for 256 bits.

Comparison to Weierstrass for

1-bit, 2-bit, : : : , 64-bit scalars:

-50

 0

 50

 100

 0 50 100 150 200 250 300 350 400 450 500 550 600 650

M
u

lt
ip

lic
a

ti
o
n

s
 s

a
v
e

d

Multiplications using the new formulas

Uses 2008 Doche–Habsieger

“tree search” and some new

improvements: e.g., account for

costs of ADD, DBL, TPL.

Summary:

Twisted Hessian curves

solidly beat Weierstrass.

Chuengsatiansup talk tomorrow:

even better double-base chains

from shortest paths in DAG—

and also new Edwards speeds!

