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Rewind to 2012 Gaudry—Schost:
“the computation took
more than 1,000,000 CPU hours".


http://cr.yp.to/papers.html#hyperand

The Gaudry—Schost motivation:
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Inputs: “squared 6 coordinates”
(x0:yo:20: ) for Qo,
(x3:y3:23:1t3) for Q3,
(x1:y1:21:11) for Q1 = Q3 — Q2.

This diagram computes
(Xa:y4:2z4: 1) for Qg = 2Q>,
(x5:y5:25: t5) for Qs = Q3 + Q».
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(1986 Chudnovsky—Chudnovsky).

Huge speedup if constants

1 .1 .1 .1
(3—2_?.?2.?) etc. are small.

Just 25 mults for Q4, Q5
(2006 Gaudry) after Q1 precomp.




(x;:y;j:z:t;) are points on

original Kummer surface K :

4E°xyzt = ((x* + y? + z% + t?)
—F(xt+ yz) — G(xz + yt)

—H(xy + zt))?
where
A2 = a2 + b + 2 + d?,
BZ 2_b2_C —d2,
C2 2—b2—|—C —d2,
D2 2 b2—C—|—d2

F =(a*—b*—c*+d*)/(a°d?—b>c?),
G = (a*—b*+c*—d*) /(a°c?—b?d?),
H = (a*+b*—c*—d*)/(a?b?>—c?d?),
E°=F°+G°+ H? + FGH — 4.



Surface is from 1864 Kummer,
Uber die Flichen vierten Grades
mit sechzehn singularen Punkten:

vorn 18. April 1864. 253

Endlich moge hier noch eine Formverinderung erwihnt
werden, welche man mit der Gleichung dieser Flichen vorneh-
men kann. Wihlt man die vier in der Form (4.) enthaltenen
singuliren Tangentialebenen

p=0, g==0, p'=10, ¢’ =0

als die Fundamentalchenen, also p, ¢, p', ¢, als die vier homo-
genen Coordinaten, und bezeichnet demgemiils die beiden letz-

teren durch r und s, so erbilt man folgende Form der Glei-

chung:

10., ¢? = 16 Kpgrs,
wo
p=p%-4-qg*- 1252 =2a(qr-+ps) ~4=25(rp—-qs5) H=2c(pg =-rs)
K=a® 4% 4 c* —2abc—1.

in welcher die sieben Constanten a, &, ¢, d, ¢, f, k jener Form
auf die richtige Anzahl von drei Constanten a, &, ¢ eingeschrinkt
ist. Wihlt man in dieser Form die Coefficienten der linearen

Ausdriicke p, ¢, r, s real, und die drei Constanten a, &, ¢ eben-



(>, Q3 are points on
Jacobian J of a related

genus-2 hyperelliptic curve C.
“Standard” X : J/{::]_} — K
defines squared 6 coords on J.
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defines squared 6 coords on J.

Use diagram k times to compute

X(Q1) = X(nQ1), X((n+1)Q1)
forany n€ {0,1,..., ok — 11

Beware typos in the “standard”

Rosen
formu

Cosset, 2013 Bos—Costello—Hisil—

nain/Mumford /Kummer

as in 2007 Gaudry, 2010

Lauter. See our paper for simpler

formulas as Sage scripts.



1966 Mumford, On the equations
defining Abelian varieties. I
“There are several thousand
formulas in this paper which

allow one or more ‘sign-like
ambiguities’: I.e., alternate and
symmetric but non-equivalent
reformulations. These occur in
definitions and theorems. | have
made a superhuman effort to
achieve consistency and even to
make correct statements: but |
still cannot guarantee the result.”



1966 Mumford, On the equations
defining Abelian varieties. I
“There are several thousand
formulas in this paper which

allow one or more ‘sign-like
ambiguities’: I.e., alternate and
symmetric but non-equivalent
reformulations. These occur in
definitions and theorems. | have
made a superhuman effort to
achieve consistency and even to
make correct statements: but |
still cannot guarantee the result.”

Sage is better than superhuman!



1975 Well: “"Kummer discovered
that family of surfaces ... entirely

without the help of the powerful
tool provided by theta-functions;
actually, the connection with
theta-functions was noticed

only in 1877, by Cayley and by
Borchardt ... His example is of
particular value at a time when
it Is again realized by algebraic
geometers that the detailec

study of well-chosen specia
varieties remains one major road
to progress in their field.”
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2012 Gaudry—Schost:

“We want to find a curve

of genus 2 over a prime field
that is suitable for building
a public-key cryptosystem.”

Obvious choice of field:
F, where p = 2127 _ 1. Fast.
#J(F,) ~ 2%°*; big enough.

1000000 CPU hours found
(a2, b%, c?, d?) = (—11, 22,19, 3),
primes #J(F,)/16,#J (F,)/16.
Here J' is Jacobian of nontrivial
quadratic twist of curve C.
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Is this faster than a similar-
security elliptic curve over sz
or a similar-size prime field?

Counting ops suggests: Yes,
especially with small a2 etc.

Implementations (2006 Bernstein,
2013 Bos—Costello—Hisil-Lauter,
2014 Bernstein—Chuengsatiansup—
Lange—Schwabe): Yes.

2015 Costello-Longa E with

v/ —10 CM, 2-isogeny to E: faster
on some CPUs but not others,
not compressed, not twist-secure.
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nolds speed records for
nigh-security n, Q@ — nQ.

But what about P Q@ — P + Q7
n— nP? mn PQ+— mP 4+ nQ7

Fastest known addition formulas

are faster for E than for J.
So J isn't competitive for
key generation, signing, etc.

Hyper-and-elliptic curve
cryptography: Build one group
supporting the fastest formulas
from genus 1 and genus 2.
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Group is E(F 2) = W(Fp).

E 1s an Fpg—complete Edwards
curve; W i1s Well restriction.
Note: 2 parameters for W.

Map W(F,) — K(Fp) using
fast isogeny W — J = Jac H for
some H, and fast X : J — K.
Note: 3 parameters for K.

Surprise: We have examples
where a2, b?, c2, d? are small!

This allows fastest n, P — nP.

Explanation: Can lift from

F 2/Fp to Q(vA4)/Q.



Another virtue of these groups:
genus-1 point-counting is fast.
(Use Magma; Sage needs F.)

History of using W — J
for genus-2 point-counting

via genus-1 point-counting:

2002 Gaudry—Hess—Smart

In char 2;: odd char is “hard" .
2001 Galbraith: “rather difficult™.
2003 Diem, 2003 Diem—Scholten,
2003 Scholten, 2003 Thériault,
2004 Diem—-Scholten, 2009 Satoh,
2011 Freeman—Satoh: various
odd-char constructions.
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Scholten curves

(2003 Scholten + simplifications)

Assume: odd prime p;

r,s, B € sz; B ¢ Fp;
minor additional hypotheses.

Write r = rP, s = sP, B = BP.
Define g € F 2]z] as

rv6 —+ 5v4u2 —+ §v2u4 —+ 7u6

_ _ __2 .

B+ B B> +5B B + 76
where u =1—8z, v = 1—Bz.
Note that g € Fp|z].

Scholten curve H : y? = g(z).
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Denominator of g is in Fp,.
Choose square root w € Fpg.

Define E as the elliptic curve
y2 = rx3+sx2+35x+T
Define ¢ : H — E as

(z,y) = (v*/u?, wy /).

Choose an Fp-basis for sz,
hence a Well restriction W of E.

¢ induces H — W, which induces
V' J — W where J = JacH.

Concretely: (P} + P,) =
W coords of ¢(P1) + ¢(P>).
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Our paper interpolates to
obtain low-degree formulas for ¢/

on Mumford coordinates for J.
Also low-degree formulas for ¢ :
W — J with J/(c(P)) = 2P.

All formulas are defined over F.

(Can show: ¢(P) is trace of sum
of ¢-preimages of P; “norm-
conorm’ map used In, e.g., 2002
Gaudry—Hess—Smart, 2003 Diem,
2004 Arita—Matsuo—Nagao—
Shimura. But this doesn’t

give a very fast algorithm.)
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Take s1, s0,53 € sz, norm 1,

with 512 522 532 distinct.

—51252253 has norm 1.

Write it as ¥/r with r € F*,.
p
Define s = —r(s; + s + s3).

Take any p € sz - Fp
with (B/B)? ¢ {51 53, 53}

Then g has 6 distinct roots
(1 T SJ)/(,B T ,BSJ') c Fp.

Hope that a2, b?, c2, d? € Fp:

Pray for small height.
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Lifting to Q(v/A)/Q

F 2= F,(v/A) for many

small squarefree integers A.

Take, say, B = vV A.
Take small norm-1 elements

s1,5,53 € Q(VA).

As before define r,s € Q(\/Z);
g € Q(VA)[z]; and X\, 1, v € Q.

A, 1, v are small.

Maybe the square roots exist,
giving small a2, b%, ¢?,d? € Q.

Or maybe there's an obstruction.



For each small quadratic field:
We tried all small s1, 59, s3.



For each small quadratic field:
We tried all small s1, 59, s3.

For, e.g., A = —67 found that

s; = (—17143 +96+/A) /17161,

s = (189 + 32v/A) /323,

s3 = (333 — 404/ A) /467

produced Scholten curve

y? = (x — 16/3)(x + 3/1072)
(x —1/16)(x + 16/67)
(x + 1/20)(x — 20/67)

with Kummer surface

a? = 194769, b* = 126939,

c? = 64009, d? = 126939.




Found many more examples
for various choices of A

= thousands of different
#E(F 2) for p = plor 1.



Found many more examples
for various choices of A

= thousands of different
#E(F 2) for p = plor 1.

A good example for crypto:
y> = (z2+3)(z+1/9)

(z—=1/7)(z = 7/3)
(z—8/7)(z —T7/24).

#J(Fp) — #J,(FP) — #E(Fp2)

— 324 for a prime £ ~ 2249,

#E'(F 2) =12 - prime.
22 = —46893, b2 = 20020.
c?2 = 20020 d? = 5800.
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Another good example:

y? = (z—1)(z +1/11)
(z—1/4)(z+4/11)
(z4+5/7)(z —7/55).

Slightly lower security level:
#J(Fp) — #J/(Fp) — #E(Fp2)
— 7204 for a prime £ ~ D244.5
#E'(F 2) = 260 - prime.

Particularly nice arithmetic:
(a°:b%:c?:d?) = (20:12:12:5);
( ..)=1(49:15:15:1);
(al2 ) =(3:5:5:12);
(

% --) = (15:49:49:735).



