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Rewind to 2012 Gaudry–Schost:

“the computation took

more than 1,000,000 CPU hours”.
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The Gaudry–Schost motivation:
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Inputs: “squared „ coordinates”

(x2 : y2 : z2 : t2) for Q2,

(x3 : y3 : z3 : t3) for Q3,

(x1 : y1 : z1 : t1) for Q1 = Q3 − Q2.

This diagram computes

(x4 : y4 : z4 : t4) for Q4 = 2Q2,

(x5 : y5 : z5 : t5) for Q5 = Q3 + Q2.
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Inputs: “squared „ coordinates”

(x2 : y2 : z2 : t2) for Q2,

(x3 : y3 : z3 : t3) for Q3,

(x1 : y1 : z1 : t1) for Q1 = Q3 − Q2.

This diagram computes

(x4 : y4 : z4 : t4) for Q4 = 2Q2,

(x5 : y5 : z5 : t5) for Q5 = Q3 + Q2.

Just 14 mults for Q4

(1986 Chudnovsky–Chudnovsky).

Huge speedup if constants`
1
a2 : 1

b2 : 1
c2 : 1

d2

´
etc. are small.

Just 25 mults for Q4; Q5

(2006 Gaudry) after Q1 precomp.



(xi : yi : zi : ti ) are points on

original Kummer surface K :

4E2xyzt = ((x2 + y2 + z2 + t2)

−F (xt + yz)− G(xz + yt)

−H(xy + zt))2

where

A2 = a2 + b2 + c2 + d2;

B2 = a2 + b2 − c2 − d2;

C2 = a2 − b2 + c2 − d2;

D2 = a2 − b2 − c2 + d2;

F = (a4−b4−c4+d4)=(a2d2−b2c2);

G = (a4−b4+c4−d4)=(a2c2−b2d2);

H= (a4+b4−c4−d4)=(a2b2−c2d2);

E2 = F 2 + G2 +H2 + FGH − 4.



Surface is from 1864 Kummer,

Über die Flächen vierten Grades

mit sechzehn singulären Punkten:
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Jacobian J of a related

genus-2 hyperelliptic curve C.

“Standard” X : J={±1} ,� K
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Q2; Q3 are points on

Jacobian J of a related

genus-2 hyperelliptic curve C.

“Standard” X : J={±1} ,� K

defines squared „ coords on J.

Use diagram k times to compute

X(Q1) 7→ X(nQ1); X((n + 1)Q1)

for any n ∈ {0; 1; : : : ; 2k − 1}.

Beware typos in the “standard”

Rosenhain/Mumford/Kummer

formulas in 2007 Gaudry, 2010

Cosset, 2013 Bos–Costello–Hisil–

Lauter. See our paper for simpler

formulas as Sage scripts.



1966 Mumford, On the equations

defining Abelian varieties. I :

“There are several thousand

formulas in this paper which

allow one or more ‘sign-like

ambiguities’: i.e., alternate and

symmetric but non-equivalent

reformulations. These occur in

definitions and theorems. I have

made a superhuman effort to

achieve consistency and even to

make correct statements: but I

still cannot guarantee the result.”



1966 Mumford, On the equations

defining Abelian varieties. I :

“There are several thousand

formulas in this paper which

allow one or more ‘sign-like

ambiguities’: i.e., alternate and

symmetric but non-equivalent

reformulations. These occur in

definitions and theorems. I have

made a superhuman effort to

achieve consistency and even to

make correct statements: but I

still cannot guarantee the result.”

Sage is better than superhuman!



1975 Weil: “Kummer discovered

that family of surfaces : : : entirely

without the help of the powerful

tool provided by theta-functions;

actually, the connection with

theta-functions was noticed

only in 1877, by Cayley and by

Borchardt : : : His example is of

particular value at a time when

it is again realized by algebraic

geometers that the detailed

study of well-chosen special

varieties remains one major road

to progress in their field.”
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2012 Gaudry–Schost:

“We want to find a curve

of genus 2 over a prime field

that is suitable for building

a public-key cryptosystem.”

Obvious choice of field:

Fp where p = 2127 − 1. Fast.

#J(Fp) ≈ 2254; big enough.

1000000 CPU hours found

(a2; b2; c2; d2) = (−11; 22; 19; 3),

primes #J(Fp)=16;#J ′(Fp)=16.

Here J ′ is Jacobian of nontrivial

quadratic twist of curve C.
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Is this faster than a similar-

security elliptic curve over Fp2

or a similar-size prime field?

Counting ops suggests: Yes,

especially with small a2 etc.

Implementations (2006 Bernstein,

2013 Bos–Costello–Hisil–Lauter,

2014 Bernstein–Chuengsatiansup–

Lange–Schwabe): Yes.

2015 Costello–Longa E with√
−10 CM, 2-isogeny to E: faster

on some CPUs but not others,

not compressed, not twist-secure.
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Summary: Gaudry–Schost J

holds speed records for

high-security n;Q 7→ nQ.

But what about P;Q 7→ P + Q?

n 7→ nP? m; n; P;Q 7→ mP + nQ?

Fastest known addition formulas

are faster for E than for J.

So J isn’t competitive for

key generation, signing, etc.

Hyper-and-elliptic curve

cryptography: Build one group

supporting the fastest formulas

from genus 1 and genus 2.
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Group is E(Fp2) = W (Fp).

E is an Fp2-complete Edwards

curve; W is Weil restriction.

Note: 2 parameters for W .

Map W (Fp)→ K(Fp) using

fast isogeny W → J = JacH for

some H, and fast X : J → K.

Note: 3 parameters for K.

Surprise: We have examples

where a2; b2; c2; d2 are small!

This allows fastest n; P 7→ nP .

Explanation: Can lift from

Fp2=Fp to Q(
√

∆)=Q.



Another virtue of these groups:

genus-1 point-counting is fast.

(Use Magma; Sage needs Fp.)

History of using W → J

for genus-2 point-counting

via genus-1 point-counting:

2002 Gaudry–Hess–Smart

in char 2; odd char is “hard”.

2001 Galbraith: “rather difficult”.

2003 Diem, 2003 Diem–Scholten,

2003 Scholten, 2003 Thériault,

2004 Diem–Scholten, 2009 Satoh,

2011 Freeman–Satoh: various

odd-char constructions.
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Assume: odd prime p;

r; s; ˛ ∈ Fp2 ; ˛ =∈ Fp;

minor additional hypotheses.

Write r = rp, s = sp, ˛ = ˛p.
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Scholten curves

(2003 Scholten + simplifications)

Assume: odd prime p;

r; s; ˛ ∈ Fp2 ; ˛ =∈ Fp;

minor additional hypotheses.

Write r = rp, s = sp, ˛ = ˛p.

Define g ∈ Fp2 [z ] as

rv6 + sv4u2 + sv2u4 + ru6

r˛
6

+ s˛
4
˛2 + s˛

2
˛4 + r˛6

where u = 1−˛z , v = 1−˛z .

Note that g ∈ Fp[z ].

Scholten curve H : y2 = g(z).
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Denominator of g is in Fp.

Choose square root ! ∈ Fp2 .

Define E as the elliptic curve

y2 = rx3 + sx2 + sx + r .

Define ffi : H → E as

(z; y) 7→ (v2=u2; !y=u3).

Choose an Fp-basis for Fp2 ,

hence a Weil restriction W of E.

ffi induces H → W , which induces

«′ : J → W where J = JacH.

Concretely: «′(P1 + P2) =

W coords of ffi(P1) + ffi(P2).
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Our paper interpolates to

obtain low-degree formulas for «′

on Mumford coordinates for J.

Also low-degree formulas for « :

W → J with «′(«(P )) = 2P .

All formulas are defined over Fp.

(Can show: «(P ) is trace of sum

of ffi-preimages of P ; “norm-

conorm” map used in, e.g., 2002

Gaudry–Hess–Smart, 2003 Diem,

2004 Arita–Matsuo–Nagao–

Shimura. But this doesn’t

give a very fast algorithm.)
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Scholten with fast Kummer?

Given Scholten curve,

compute corresponding

original Kummer surface K:

Factor g into linear factors.

By linear-fractional transformation

move to twisted Rosenhain form

‹y2 = x(x−1)(x−–)(x−—)(x−�).

Compute

b2 =

r
—(—− 1)(–− �)
�(� − 1)(–− —)

,

c2 =

q
–—
� , a2 = b2c2�

— , d2 = 1.
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Take s1; s2; s3 ∈ Fp2 , norm 1,

with s2
1 ; s

2
2 ; s

2
3 distinct.

−s2
1 s

2
2 s

2
3 has norm 1.

Write it as r=r with r ∈ F∗
p2 .

Define s = −r(s1 + s2 + s3).

Take any ˛ ∈ Fp2 − Fp
with (˛=˛)2 =∈

˘
s2

1 ; s
2
2 ; s

2
3

¯
.

Then g has 6 distinct roots

(1± sj )=(˛ ± ˛sj ) ∈ Fp.

Hope that a2; b2; c2; d2 ∈ Fp;

i.e.,

q
–—
� ;
√
· · · ∈ Fp.

Pray for small height.
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Lifting to Q(
√

∆)=Q

Fp2 = Fp(
√

∆) for many

small squarefree integers ∆.

Take, say, ˛ =
√

∆.

Take small norm-1 elements

s1; s2; s3 ∈ Q(
√

∆).

As before define r; s ∈ Q(
√

∆);

g ∈ Q(
√

∆)[z ]; and –; —; � ∈ Q.

–; —; � are small.

Maybe the square roots exist,

giving small a2; b2; c2; d2 ∈ Q.

Or maybe there’s an obstruction.



For each small quadratic field:

We tried all small s1; s2; s3.



For each small quadratic field:

We tried all small s1; s2; s3.

For, e.g., ∆ = −67 found that

s1 = (−17143 + 96
√

∆)=17161,

s2 = (189 + 32
√

∆)=323,

s3 = (333− 40
√

∆)=467

produced Scholten curve

y2 = (x − 16=3)(x + 3=1072)

(x − 1=16)(x + 16=67)

(x + 1=20)(x − 20=67)

with Kummer surface

a2 = 194769; b2 = 126939;

c2 = 64009; d2 = 126939:



Found many more examples

for various choices of ∆

⇒ thousands of different

#E(Fp2) for p = 2127 − 1.



Found many more examples

for various choices of ∆

⇒ thousands of different

#E(Fp2) for p = 2127 − 1.

A good example for crypto:

y2 = (z + 3)(z + 1=9)

(z − 1=7)(z − 7=3)

(z − 8=7)(z − 7=24).

#J(Fp) = #J ′(Fp) = #E(Fp2)

= 32‘ for a prime ‘ ≈ 2249.

#E′(Fp2) = 12 · prime.

a2 = −46893; b2 = 20020;

c2 = 20020; d2 = 5800:
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(z + 5=7)(z − 7=55).
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Another good example:

y2 = (z − 1)(z + 1=11)

(z − 1=4)(z + 4=11)

(z + 5=7)(z − 7=55).

Slightly lower security level:

#J(Fp) = #J ′(Fp) = #E(Fp2)

= 720‘ for a prime ‘ ≈ 2244:5.

#E′(Fp2) = 260 · prime.

Particularly nice arithmetic:

(a2 : b2 : c2 : d2) = (20 : 12 : 12 : 5);

(A2 : : : :) = (49 : 15 : 15 : 1);`
1
a2 : · · ·

´
= (3 : 5 : 5 : 12);`

1
A2 : · · ·

´
= (15 : 49 : 49 : 735).


